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is Determined by the Earth’s Motion in the Inhomogeneous Space-Time

Continuum. The Effect of “Half-Year Palindromes”
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As obtained in this experimental research, the sequence of the shapes of histograms (the
spectra of the amplitudes of fluctuations), measured during an astronomical day from
6 h to 18 h of the local time, is very similar (with high precision of probability) to the
sequence of the histogram shapes obtained during an astronomical night from 18 h to
6 h of the local time a half of year later in exact. We call the effect that the sequences
of the histogram shapes in the same half of day measured a half of year later are similar
after inversion the “effect of half-year palindromes”. This means that the shapes of
histograms are stable characteristics of a given region of space.

In the previous work [32], we considered the phenomenon of
“palindromes”, which stands for a high probability of simi-
lar histograms to be found upon comparison of two data se-
ries: first, representing the results of measurements of 239Pu
�-decay over astronomical day (since 6 to 18 h by local, lon-
gitude, time) and, second, measured over astronomical night
(since 18 to 6 h, in continuation of the first series) and in-
verted. “Inverted” means that the order of histograms in the
second series is reversed. The palindrome effect implies that
(1) the shape of histograms depends on the spatial region
passed by the axially rotating Earth over the period of mea-
surements, and (2) the properties of this spatial region are not
shielded by the Earth: whether in the daytime or nighttime,
the histograms corresponding to the same spatial region are
similar. In the course of the Earth’s motion along the circum-
solar orbit, i.e., upon its translocation into new spatial regions,
histogram shapes change; the effect of palindromes, however,
will manifest itself every new day.
A remark It should be stressed that the shape of histograms
depends on many factors: rotation of the Earth about its axis;
motion of the Earth along the sircumsolar orbit; relative po-
sitions of the Earth, Moon and Sun; axial rotation of the Sun;
motion of the Moon along the circumterrestrial orbit. In the
past years, we revealed and described, more or less, most of
these factors. It seems there is an hierarchy of causes (fac-
tors) that determine histogram shape. Among them, the axial
rotation of the Earth and, correspondingly, the near-day pe-
riods in the change of histogram shapes are of primary im-
portance. Because of such a multifactorness, the number of
histogram shapes related to the effect of any single factor may
amount to only a part of the total. In the case of palindrome
effects, for example, this number is about 15–20% of the total
possible shapes.

As supposed by M. N. Kondrashova, the palindrome ef-
fect should also be revealed upon comparing histograms that

have a half-year interval between them, i.e., histograms that
correspond to the measurements made when the Earth was at
the opposite ends of a diameter of the circumsolar orbit [33].
This supposition agrees with our earlier observation on sim-
ilarity between the series of daytime histograms obtained on
the days of vernal equinox and the series of nighttime his-
tograms taken in the periods of autumnal equinox. However,
in those experiments the “daytime” and “nighttime” terms
were not associated with the rotational and translational mo-
tion of the Earth about its axis and along the circumsolar or-
bit, so the results were poorly reproducible. With the terms
“daytime” and “nighttime” strictly defined (since 6 to 18 h
and since 18 to 6 h by local time, respectively), the supposi-
tion was proved for different seasons, equinoctial periods and
solstices. The daytime series of vernal equinox, for exam-
ple, are highly similar to the inverse daytime and noninverse
nighttime series of autumnal equinox.

Thus, there are “half-day” and “half-year” palindrome ef-
fects. This is illustrated in Figure 1.

The effect of “half-day” palindromes consists in the high
probability of a series of nighttime histograms to be similar
to the inverse series of daytime histograms measured on the
same day (equally, noninverse daytime series are similar to
the inverse nighttime ones). For example, the sequence “1-2-
3-4-5” of the series of nighttime histograms is similar to the
sequence “5-4-3-2-1” of the series of daytime histograms.

The effect of “half-year” palindromes results from the
Earth’s motion at two opposite points of the circumsolar or-
bit being directed oppositely during the same half of the day.
This effect consists in the high probability of a series of night-
time histograms at a certain point of the circumsolar orbit to
be similar to the noninverse series of daytime histograms at
the opposite point of the orbit (the same holds true upon com-
paring a nighttime (daytime) series to the inverse nighttime
(daytime) series at the opposite point of the orbit).

Simon E. Shnoll. The “Scattering of the Results of Measurements”. The Effect of “Half-Year Palindromes” 3
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Fig. 1: A scheme illustrating “palindrome effects”. With the Sun in the centre, the scheme shows four positions of the Earth on the circum-
solar orbit. Both the Earth and the Sun are rotating counterclockwise; motion of the Earth along the circumsolar orbit is counterclockwise
as well. As seen in the Figure, the Earth’s rotational motion in the nighttime is co-directional to its motion along the circumsolar orbit and
to rotation of the Sun. In the daytime, the direction of these motions is opposite. Hence, in the case of “backward” motion (in the daytime),
the object measured passes in the inverse order the same spatial regions that it has passed in the direct order in the nighttime.

The half-year palindromes indicate, first of all, that cer-
tain features of the space continuum keep for a long time:
after half a year we observe similar histograms. Obviously,
a daytime picture of the stellar sky will correspond to the
nighttime one after six months. The daytime series resem-
bling the nighttime ones after half a year also means that the
factors determining the shape of histograms are not shielded
by the Earth.

As follows from these effects,
(1) the shape of histograms does not depend on the direc-

tion that a spatial region is scanned in during the Earth’s
motion (from right to left or vice versa);

(2) factors that determine histogram shape are not shielded
by the Earth: both in the day- and nighttime, series of
histograms turn out similar and dependent only on the
region (vector) of space passed by the object measured
at that moment;

(3) the shape of histograms is determined by the spatial
regions being scanned in the course of rotational and
translational motion of the Earth; in other words, the
shape of histograms is a specific characteristic, which
reflects peculiarities of the spatial region scanned dur-
ing the measurement.

The fine structure of histograms resembles interferrential
pictures [3–5, 15–17, 25]. This analogy may have a real sign-
ificance: every spatial region is a result of interference of
many gravitational waves, and the interferrential picture em-
erging can be reflected somehow in the shape of histograms.

Discovering the half-year palindromes, in addition to the
half-day ones, allows us to consolidate all the previous find-
ings and unify our views on the phenomenon of “macroscopic
fluctuations”, which stands for regular changes in the fine
structure of sampling distributions (histograms) calculated
from the results of measurements of processes of diverse
(any) nature [2–16].

Now there is a good explanation for the high probability
of a certain histogram shape to appear regularly, on a daily
and yearly basis. The similarity of histograms obtained at
different geographical points at the same local time becomes
evident too.

As follows from all the data collected, our old conclu-
sion — that alterations in the histogram shape are caused by
the motion of the object studied along with the rotating and
translocating Earth relatively to the “sphere of fixed stars”
(“siderial day” and “sidereal year” periods) and the Sun (“so-
lar day” and “near-27-day” periods) — is correct. The shape

4 Simon E. Shnoll. The “Scattering of the Results of Measurements”. The Effect of “Half-Year Palindromes”
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of histograms also depends on motion of the Moon about the
Earth and changes in the relational positions of the Earth,
Moon and Sun [10, 23–29]. Supplemented with the results
of experiments, in which �-activity was measured with a
collimator-based setup [24, 26–28], these data indicate, on
the one hand, a sharp anisotropy of our world and, on the
other hand, a relative stability of characteristics of the space
continuum.

Discussion

In some way, the data presented above can be considered as a
completion of the series of experiments that was started more
than 50 years ago (the first paper was published in 1958 [1]).
Over this period, the results obtained have been reviewed sev-
eral times, and all the necessary references are provided in the
correspondent reviews [3, 4, 12, 14, 15, 17, 25, 31]. Never-
theless, a brief consideration of the course of those studies
would not be out of place.

The subject of this series of experiments was, basically,
the “scatter of results”, which will inevitably accompany any
measurements. For most scientific and practical purposes,
this “scatter” is a hindrance, impeding accurate evaluation
of the parameters measured. To overcome undesirable in-
fluence of data scattering, researchers use a well-known and
widely approved apparatus of statistical analysis, specifically
designed to process the results of measurements. Different
processes (of different nature) will be characterized by their
own specific amplitude of data scattering, and they have even
been classified according to this attribute. In biological pro-
cesses, for example, the scatter (its mean-square estimate) can
reach tens percent of the value measured. In chemical re-
actions, the scatter — if not resulted from trivial causes —
would be smaller and amounts to several percent. In purely
physical measurements, the scatter can be as small as sev-
eral tenth or hundredth percent. There is a saying, popular
in the scientific circles, that “biologists measure ‘bad’ pro-
cesses with ‘bad’ devices, chemists measure ‘bad’ processes
with ‘good’ devices, and physicists measure ‘good’ processes
with ‘good’ devices”. In fact, the relative amplitude of this
unavoidable scatter of results is determined by deep causes,
and among them is the subjection of the quantities (objects)
measured to cosmophysical regularities. In this sense, the fig-
urative “bad-good” assessment of natural processes changes
its sign: the “best” (most sensitive) are biological processes;
chemical processes are “somewhat worse”; and “much
worse” (least sensitive) are processes like quantum generation
or natural oscillations of piezoelectric quartz. From this view-
point, a valuable and important process to study is radioac-
tive decay, in which relative dispersion is equal, according to
Poisson statistics, to

p
N , where N is the quantity measured.

Free of trivial errors, the scatter of the results of measure-
ments has, usually, a purely stochastic character and, hence,
will be described by a smooth, monotonously decreasing at

both ends distribution, like Gaussian or Poisson functions. In
reality, however, never do experimenters obtain such
a smooth distribution. Whether the experimental distribution
fits a theoretical one is decided by applying fitting criteria
based on central limit theorems. These criteria are integral;
they neglect the fine structure of distributions, which is con-
sidered casual.

The main result of our works consists in proving non-
randomness of the fine structure of sample distributions (i.e.,
histograms) constructed with the highest possible resolution.
The proof is based on the following facts:

1. There is a high probability that at the same place and
time, the fine structure of distributions obtained for dif-
ferent, independent processes will be similar;

2. The phenomenon is universal and independent of the
nature of the process studied. Whether biochemical re-
actions or radioactive decay — if measured at the place
and time, they will show similar histograms;

3. There exists a “near-zone effect”, meaning that neigh-
bour histograms calculated for non-overlapping seg-
ments of a time series of the results of measurements
would be more similar than random far-apart histo-
grams;

4. In the course of time, the shape of histograms changes
regularly: similar histograms appear with periods equal
to the sidereal and solar days, “calendar” and “sidereal”
years [21];

5. At the same local time, similar histograms will appear
at different geographical points: this is a so-called “ef-
fect of local time”. This phenomenon was observed
at both large and small distances between the objects
measured. “Large distances” means that the measure-
ments were carried out in different countries, in the
Arctic and Antarctic, and on the board of ships sailing
round the world. “Small distances” can be as short as
10 cm, as in V. A. Pancheluga’s experiments with noise
generators [27–30];

6. The “palindrome effects” discussed here and in the pre-
vious work [32] round off the set of proofs.

All these pieces of evidence were collected in the exper-
iments with quite stochastic, according to the accepted crite-
ria, processes.

The high quality of the apparatus for continuous, 24-hour
measurements of �-activity constructed by I. A. Rubinstein
enables us to collect long, non-non-interrupted data series for
many years. On the basis of these data, accurate evaluation of
the yearly periods has been made. A key step was conducting
long-term measurements with I. A. Rubinstein’s collimator-
equipped detectors, which isolated beams of �-particles emit-
ted in certain directions. Those experiments gave evidence
that the shape of histograms depends on the spatial vector of
the process. The sharpness of this dependence implies a sharp
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Volume 1 PROGRESS IN PHYSICS January, 2009

anisotropy of the space continuum [20, 22, 25].
In addition to the effects listed above, we have also found

regularities that have been attributed to the relative positions
of the Earth, Moon and Sun [10, 23, 26, 28, 32].

The whole set of these results is in agreement with the
scheme in Figure 1.

Thus, the regularities found in the “scatter of results” of
various measurements reflect important features of our world.
The fine structure of histograms — spectra of amplitudes of
fluctuations of the results of measurements of processes of
diverse nature — is the characteristic of the inhomogeneous,
anisotropic space-time continuum.
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We have found an empirical law for the variation of the length of the Earth’s day with
geologic time employing Wells’s data. We attribute the lengthening of the Earth’s day
to the present cosmic expansion of the Universe. The prediction of law has been found
to be in agreement with the astronomical and geological data. The day increases at a
present rate of 0.002 sec/century. The length of the day is found to be 6 hours when the
Earth formed. We have also found a new limit for the value of the Hubble constant and
the age of the Universe.

1 Introduction

According to Mach’s principle the inertia of an object is not
a mere property of the object but depends on how much mat-
ter around the object. This means that the distant universe
would affect this property. Owing to this, we would expect a
slight change in the strength of gravity with time. This change
should affect the Earth-Moon-Sun motion. It is found that the
length of the day and the number of days in the year do not re-
main constant. From coral fossil data approximately 400 mil-
lion years (m.y.) ago, it has been estimated that there were lit-
tle over 400 days in a year at that time. It is also observed that
the Moon shows an anomalous acceleration (Dickey, 1994
[1]). As the universe expands more and more matter appears
in the horizon. The expansion of the universe may thus have
an impact on the Earth-Moon-Sun motion. Very recently, the
universe is found to be accelerating at the present time (Pee-
bles, 1999 [2], Bahcall et al., 1999 [3]). To account for this
scientists suggested several models. One way to circumvent
this is to allow the strength of gravity to vary slightly with
time (Arbab, 2003 [4]). For a flat universe, where the expan-
sion force is balanced by gravitational attraction force, this
would require the universe to accelerate in order to avoid a
future collapse. This can be realized if the strength of the
gravitational attraction increases with time (Arbab, 1997 [5],
2003 [4]), at least during the present epoch (matter domi-
nated). One appropriate secure way to do this is to define an
effective Newton’s constant, which embodies this variation
while keeping the “bare” Newton’s constant unchanged. The
idea of having an effective constant, which shows up when
a system is interacting with the outside world, is not new.
For instance, an electron in a solid moves not with its “bare”
mass but rather with an effective mass. This effective mass
exhibits the nature of interaction in question. With the same
token, one would expect a celestial object to interact (cou-
ple) with its effective constant rather than the normal New-
ton’s constant, which describes the strength of gravity in a
universe with constant mass. We, therefore, see that the ex-

pansion of the universe affects indirectly (through Newton’s
constant) the evolution of the Earth-Sun system. Writing an
effective quantity is equivalent to having summed all pertur-
bations (gravitational) affecting the system. With this mini-
mal change of the ordinary Newton’s constant to an effective
one, one finds that Kepler’s laws can be equally applicable to
a perturbed or an unperturbed system provided the necessary
changes are made. Thus one gets a rather modified Newton’s
law of gravitation and Kepler’s laws defined with this effec-
tive constant while retaining their usual forms. In the present
study, we have shown that the deceleration of the Earth ro-
tation is, if not all, mainly a cosmological effect. The tidal
effects of the Earth deceleration could, in principle, be a pos-
sible consequence, but the cosmological consequences should
be taken seriously.

The entire history of the Earth has not been discovered
so far. Very minute data are available owing to difficulties
in deriving it. Geologists derived some information about
the length of the day in the pats from the biological growth
rhythm preserved in the fossil records (e.g., bi-valves, corals,
stromatolites, etc.). The first study of this type was made by
the American scientist John Wells (1963 [7]), who investi-
gated the variation of the number of days in the year from
the study of fossil corals. He inferred, from the sedimenta-
tion layers of calcite made by the coral, the number of days
in the year up to the Cambrian era. Due to the lack of a well-
preserved records, the information about the entire past is
severely hindered. The other way to discover the past rotation
is to extrapolate the presently observed one. This method,
however, could be very misleading.

2 The model

Recently, we proposed a cosmological model for an effective
Newton’s constant (Arbab, 1997 [5]) of the form

Ge� = G0

�
t
t0

��
; (1)
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where the subscript “0” denotes the present value of the quan-
tity: G0 is the normal (bare) Newton’s constant and t0 is the
present age of the Universe. Here Ge� includes all pertur-
bative effects arising from all gravitational sources. We re-
mark here that G0 does not vary with time, but other pertur-
bations induce an effect that is parameterized in Ge� in the
equation of motion. Thus, we don’t challenge here any varia-
tion in the normal Newton’s constant G0. We claim that such
a variation can not be directly measured as recently empha-
sized by Robin Booth (2002 [7]). It can only be inferred from
such analysis. We remark here that � is not well determined
(� > 0) by the cosmological model. And since the dynamics
of the Earth is determined by Newton’s law of gravitation any
change in G would affect it. This change may manifest its
self in various ways. The length of day may attributed to ge-
ological effects which are in essence gravitational. The grav-
itational interaction should be described by Einstein’s equa-
tions. We thus provide here the dynamical reasons for these
geological changes. We calculate the total effect of expansion
of the universe on the Earth dynamics.

The Kepler’s 2nd law of motion for the Earth-Sun system,
neglecting the orbit eccentricity, can be written as

G2
e�
�
(M +m)2m3�Te� = 2�L3

e� ; (2)

where m, M are the mass of the Earth and the Sun respec-
tively; Le� is the orbital angular momentum of the Earth and
Te� is the period (year) of the Earth around the Sun at any
time in the past measured by the days in that time. Te� de-
fines the number of days (measured at a given time) in a year
at the epoch in which it is measured. This is because the
length of day is not constant but depends on the epoch in
which it is measured. Since the angular momentum of the
Earth about the Sun hasn’t changed, the length of the year
does not change. We however measure the length of the year
by the number of days which are not fixed. The length of the
year in seconds (atomic time) is fixed. Thus one can still use
Kepler’s law as in (2) (which generalizes Kepler’s laws) in-
stead of adding other perturbations from the nearby bodies to
the equation of motion of the Earth. We, however, incorpo-
rate all these perturbations in a single term, viz. Ge� . Part of
the total effect of the increase of length of day could show up
in geological terms. We calculate here the total values affect-
ing the Earth dynamics without knowing exactly how much
the contribution of each individual components.

The orbital angular momentum of the Earth (around the
Sun) is nearly constant. From equation (2), one can write

Te� = T0

�
G0

Ge�

�2

; (3)

where T0 = 365 days and G0 = 6.67�10�11 N m2kg�2.
Equations (1) and (3) can be written as

Te� = T0

�
t0

t0 � tp
�2�

; (4)

where t0 is the age of the universe and tp is the time measured
from present time backward. This equation can be casted in
the form

x = ln
�
Te�

T0

�
= 2� ln

�
t0 � tp
t0

�
; (5)

or equivalently,

t0 =
tp

(1� exp(�x=2�))
: (6)

To reproduce the data obtained by Wells for the number
of days in a year (see Table. 1), one would require � = 1.3
and t0 w 11�109 years. This is evident since, from (Arbab,
2003 [4]) one finds the Hubble constant is related to the age
of the Universe by the relation,

t0 =
�

2 + �
3

�
H�1

0 = 1:1H�1
0 ; (7)

and the effective Newton’s constant would vary as

Ge� = G0

�
t0 � tp
t0

�1:3

: (8)

This is an interesting relation, and it is the first time rela-
tion that constrained the age of the Universe (or Hubble con-
stant)from the Earth rotation. However, the recent Hipparcos
satellite results (Chaboyer et al., 1998 [8]) indicate that the
age of the universe is very close to 11 billion years. Hence,
this work represent an unprecedented confirmation for the age
of the universe. One may attribute that the Earth decelerated
rotation is mainly (if not only) due to cosmic expansion that
shows up in tidal deceleration. Thus, this law could open a
new channel for providing valuable information about the ex-
pansion of the Universe. The Hubble constant in this study
amounts to H0 = 97.9 km s�1Mpc�1. However, the Hubble
constant is considered to lie in the limit, 50 km s�1Mpc�1

< H0 < 100 km s�1 Mpc�1. Higher values of H0 imply a
fewer normal matter, and hence a lesser dark matter. This
study, therefore, provides an unprecedented way of determin-
ing the Hubble constant. Astronomers usually search into the
space to collect their data about the Universe. This well de-
termined value of � is crucial to the predictions of our cos-
mological model in Arbab, 2003 [4]. We notice that the grav-
itational constant is doubled since the Earth was formed (4.5
billion years ago).

From (3) and (8) one finds the effective number of days in
the year (Te� ) to be

Te� = T0

�
t0

t0 � tp
�2:6

; (9)

and since the length of the year is constant, the effective
length of the day (De� ) is given by

De� = D0

�
t0 � tp
t0

�2:6

; (10)

so that
T0D0 = Te� De� : (11)
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Time� 65 136 180 230 280 345 405 500 600

solar days/year 371.0 377.0 381.0 385.0 390.0 396.0 402.0 412. 0 424.0
�Time is measured in million years (m.y.) before present.

Table 1: Data obtained from fossil corals and radiometric time (Wells, 1963 [7]).

Time� 65 136 180 230 280 345 405 500 600

solar days/year 370.9 377.2 381.2 385.9 390.6 396.8 402.6 412.2 422.6

length of solar day (hr) 23.6 23.2 23.0 22.7 22.4 22.1 21.7 21.3 20.7

Time� 715 850 900 1200 2000 2500 3000 3560 4500

solar days/year 435.0 450.2 456.0 493.2 615.4 714.0 835.9 1009.5 1434.0

length of solar day (hr) 20.1 19.5 19.2 17.7 14.2 12.3 10.5 8.7 6.1
�Time is measured in million years (m.y.) before present.

Table 2: Data obtained from our empirical law: equations (9) and (10).

We see that the variation of the length of day and month
is a manifestation of the changing conditions (perturbation)
of the Earth which are parameterized as a function of time (t)
only. Thus, equation (7) guarantees that the length of the year
remains invariant.

3 Discussion

The Wells’s fossil data is shown in Table 1 and our corre-
sponding values are shown in Table 2. In fact, the length of
the year does not change, but the length of the day was shorter
than now in the past. So, when the year is measured in terms
of days it seems as if the length of the year varies. Sonett et
al. (1996 [9]) have shown that the length of the day 900 m.y.
ago was 19.2 hours, and the year contained 456 days. Our
law gives the same result (see Table 2). Relying on the law of
spin isochronism Alfvén and Arrhenius (1976 [10]) infer for
the primitive Earth a length of day of 6 hours (p.226). Using
coral as a clock, Poropudas (1991 [11], 1996 [12]) obtained
an approximate ancient time formula based on fossil data. His
formula shows that the number of days in the year is 1009.77
some 3.556 b.y. ago. Our law shows that this value corre-
sponds rather to a time 3.56 b.y. ago, and that the day was 8.7
hours. He suggested that the day to be 5–7 hours at approx-
imately 4.5 b.y. ago. Ksanfomality (1997 [13]) has shown
that according to the principle of isochronism all planets had
an initial period of rotation between 6–8 hours. However, our
model gives a value of 6 hours (see Table 2). Berry and Baker
(1968 [14]) have suggested that laminae, ridges and troughs,
and bands on present day and Cretaceous bivalve shells are
growth increments of the day and month, respectively. By
counting the number of ridges and troughs they therefore find
that the year contains 370.3 days in the late Cretaceous. Ac-
cording to the latest research by a group of Chinese scientists
(Zhu et al. [15]), there were 15 hours in one day, more than
540 days, in a year from a study of stromatolite samples. We
however remark that according to our law that when the day
was 15 hours there were 583 days in a year 1.819 billion years

ago. The difference in time could be due to dating of their
rock.

Recently, McNamara and Awramik (1992 [16]) have con-
cluded, from the study of stromatolite, that at about 700 m.y.
ago the number of days in a year was 435 days and the length
of the day was 20:1 hours. In fact, our model shows that this
value corresponds more accurately to 715 m.y. ago. Vanyo
and Awramik (1985 [17]) has investigated stromatolite, that
is 850 m.y. old, obtained a value between 409 and 485 days in
that year. Our law gives 450 days in that year and 19.5 hours
in that day. This is a big success for our law. Here we have
gone over all data up to the time when the Earth formed. We
should remark that this is the first model that gives the value
of the length of the day for the entire geologic past time.

The present rate of increase in the length of the day is
0.002 m s/century. Extrapolating this astronomically deter-
mined lengthening of the day since the seventeenth century
leads to 371 days in the late Cretaceous (65 m.y. ago) Pan-
nella (1972 [18]). The slowing down in the rotation is not
uniform; a number of irregularities have been found. This
conversion of Earth’s rotational energy into heat by tidal fric-
tion will continue indefinitely making the length of the day
longer. In the remote past the Earth must have been rotat-
ing very fast. As the Earth rotational velocity changes, the
Earth will adjust its self to maintain an equilibrium (shape)
compatible with the new situation. In doing so, the Earth
should have experienced several geologic activities. Accord-
ingly, one would expect that the tectonic movements (plate’s
motion) to be attributed to this continued adjustment.

We plot the length of day (in hours) against time (million
years back) in Fig. (1). We notice here that a direct extrapo-
lation of the present deceleration would bring the age of the
Earth-Moon system t a value of 3.3 billion years. We observe
that the plot deviates very much from straight line. The plot
curves at two points which I attribute the first one to emer-
gence of water in huge volume resulting in slowing down the
rotation of the Earth’s spin. The second point is when water
becomes abundant and its rate of increase becomes steady.

10 Arbab I. Arbab. The Length of the Day: A Cosmological Perspective
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Fig. 1: The variation of length of day versus geological time.

These two points correspond to 1100 m.a. and 3460 m.a.,
and their corresponding lengths of day are 18.3 and 8.9 hours,
respectively. As the origin of life is intimately related to ex-
istence of water, we may conclude that life has started since
3.4 billion years ago, as previously anticipated by scientists.

4 Conclusion

We have constructed a model for the variation of length of the
day with time. It is based on the idea of an effective Newton’s
constant as an effective coupling representing all gravitational
effects on a body. This variation can be traced back over the
whole history of the Earth. We obtained an empirical law for
the variation of the length of the day and the number of days
in a year valid for the entire past Earth’s rotation. We have
found that the day was 6 hours when the Earth formed. These
data pertaining to the early rotation of the Earth can help pale-
ontologists to check their data with this findings. The change
in the strength of gravity is manifested in the way it influences
the growth of biological systems. Some biological systems
(rythmites, tidalites, etc.) adjust their rhythms with the lunar
motion (or the tide). Thus any change in the latter system will
show up in the former. These data can be inverted and used
as a geological calendar. The data we have obtained for the
length of the day and the number of days in the year should be
tested against any possible data pertaining to the past’s Earth
rotation. Our empirical law has been tested over an interval as
far back as 4500 m.y. and is found to be in consistency with
the experimental data so far known. In this work we have ar-
rived at a generalized Kepler’s laws that can be applicable to
our ever changing Earth-Moon-Sun system.
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In this paper, a new Quantum Theory of Magnetic Interaction is proposed. This is done
under a relaxation of the requirement of covariance for Lorentz Boost Transformations.
A modified form of local gauge invariance in which fermion field phase is allowed to
vary with each space point but not each time point, leads to the introduction of a new
compensatory field different from the electromagnetic field associated with the photon.
This new field is coupled to the magnetic flux of the fermions and has quanta called
magnatons, which are massless spin 1 particles. The associated equation of motion
yields the Poisson equation for magnetostatic potentials. The magnatons mediate the
magnetic interaction between magnetic dipoles including magnets and provide plausi-
ble explanations for the Pauli exclusion principle, Chemical Reactivity and Chemical
Bonds. This new interaction has been confirmed by numerical experiments. It estab-
lishes magnetism as a force entirely separate from the electromagnetic interaction and
converts all of classical magnetism into a quantum theory.

1 Introduction

Quantum Electrodynamics (QED) is the most accurate theory
available. The associated electromagnetic interaction, which
is embodied in Maxwell’s equations, is universally viewed
as a unification of the electric force and the magnetic force.
Such an interpretation, however, encounters difficulty when
applied to a rather basic situation. Specifically, consider two
electrons with parallel spins that are arranged spatially along-
side each other (" "). From the theory of QED based on the
Gordon decomposition [1, see p. 198], the electric charge of
the electron along with its spin results in an electromagnetic
interaction between the two particles which is made up of a
dominant electric (Coulomb) repulsion and a weaker attrac-
tive magnetic component. That the magnetic component is
attractive is stated explicitly by Fritzsch in his discussion of
chromomagnetic forces among quarks [2, see p. 170]). This
explains why orthopositronium, where the particle (electron
and positron) spins are parallel and hence the magnetic com-
ponent of the electromagnetic interaction is repulsive, has a
higher energy state than parapositronium where the particle
spins are anti-parallel and the magnetic component of QED is
attractive. However, from the classical theory of magnetism,
the magnetic moment of the two electrons results in a mag-
netic repulsion between the electrons rather than an attrac-
tion [3]. The commonplace occurrence of two bar magnets
interacting with each other presents a further problem for the
electromagnetic interaction since magnets, in general, carry a
net zero charge and therefore cannot interact by exchanging
photons. These examples appear to call into question the uni-
versally adopted practice of interpreting the magnetic force as
part of the electromagnetic interaction and suggest the need

for some level of re-examination. In attempting to address
these problems associated with the magnetic interaction, we
observe that according to the relativistic world-view, all phys-
ical laws of nature must have the same form under a proper
Lorentz transformation [4]. With respect to quantum field
theories, this means that the field equations describing the
various interactions of elementary particles must be Lorentz-
covariant, a requirement that places certain restrictions on the
allowed interaction models. Lorentz covariance is however
not an observed law of nature but is rather a mathematical re-
quirement that is assumed to apply universally. We wish to
relax the restrictions imposed by this condition and therefore
advance the following postulate:

Postulate 1
Not all interactions are covariant under Lorentz boost trans-
formations. On the basis of this conjecture, we develop a new
model of the magnetic interaction. Postulate 1 is the only as-
sumption used in this development and is no more far-fetched
than any of the several assumptions of the widely consid-
ered superstring theory for which there is no firm supporting
evidence and which includes (i) strings rather than particles
as fundamental entities, (ii) supersymmetry, the interchange-
ability of fermions and bosons and (iii) 9 dimensional rather
than 3 dimensional spatial existence! On the other hand, the
validity of our model and the likely correctness of the postu-
late are demonstrated by the significant extent to which the
consequences of the model accord with or provide plausi-
ble explanations for observed phenomena. In particular, the
model achieves the following:

• It predicts the existence of a new massless vector par-
ticle different from the photon that satisfies the wave
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equation for magnetic fields. This particle mediates the
magnetic interaction between magnetic dipoles thereby
establishing the magnetic interaction as one separate
from the electromagnetic interaction and converts all
of classical magnetism into a quantum theory.

• It provides plausible explanations for a wide range of
hitherto unexplained phenomena including phenomena
associated with the Pauli exclusion principle, chemical
reactivity and chemical bonds.

2 The electromagnetic interaction

At present, it is believed that the interaction of the electro-
magnetic field with charged point-like (Dirac) particles is
governed by the Principle of Minimal Interaction [4]; all
charged particles have only current-type interactions with the
electromagnetic field given by j�A� whereA� is the 4-vector
potential of the electromagnetic field and j� is the 4-vector
current. The minimal concept implies that all electromag-
netic properties can be described by this interaction and that
no other interactions are necessary. The interaction involves
both the charge of the particle and its magnetic moment re-
sulting from its spin magnetic moment (SMM) derived from
the Dirac theory and the quanta of the 4-vector electromag-
netic field are spin 1 photons. Consider a “spinless” Dirac
particle. For such a particle, the SMM is zero and hence elec-
tromagnetic interaction is only via the charge with the asso-
ciated electric field being mediated by the 4-vector A� [5]. If
on the other hand, the charge of the Dirac particle with spin
goes to zero, the SMM again goes to zero and the interaction
between the 4-vector A and the uncharged particle disappears.
Roman [4, see p. 436] used the proton-photon interaction in
the form j�A� and the absence of a neutron-photon interac-
tion (since the neutron is uncharged) to account for the ex-
perimental fact that the electromagnetic interaction destroys
the isotropy of isospin space, an effect that Sakurai [6] con-
sidered as “one of the deepest mysteries of elementary parti-
cle physics”.� It seems therefore that for neutrons, where the
electric charge is zero but the magnetic moment is non-zero,
interaction cannot be of the type j�A� i.e. the associated
magnetic field is not mediated by the 4-vector A� . The well-
known absence of interaction between (relatively stationary)
electric charges and magnets does perhaps suggest that differ-
ent mediating quanta are involved in these interactions. We
note from the electrodynamic equation B = r � Ak that,
unlike the electric field E that requires both the 3-vector po-
tential Ak and a scalar potential � for its definition, the mag-
netic field B is completely defined by Ak, which we know,
satisfies [3]

�Ak = �Jk: (2.1)

�Using this same nucleon-photon interaction, Roman also proved that
the electromagnetic interaction conserves the third component of isospin, T3,
a known experimental fact.

where Jk is current density, and which, as established by the
Aharonov-Bohm Effect [7], has independent physical exis-
tence. We therefore ask, is the 3-vector Ak a magnetic inter-
action field that is separate from the 4-vector A� electromag-
netic interaction field?

It is generally believed that all interactions are mediated
by gauge fields and hence if Ak is an interaction field, then
it should result from the gauge invariance principle [5]. Ac-
cording to this principle, changing the phase of a fermion lo-
cally creates phase differences, which must be compensated
for by a gauge field if these differences are not to be observ-
able. In other words, a gauge field results from fermion field
phase changes. The electromagnetic field of QED and the
gluon field of QCD (quantum chromodynamics) are exam-
ples of such compensating fields. Reversing this rule, we
suggest that an independently created gauge field should pro-
duce local phase changes in the fermion field through inter-
action, i.e. fermion field phase changes should result from a
gauge field. We believe that this is precisely what is demon-
strated by the Aharonov-Bohm Effect [7]. Here, a 3-vector
field Ak independently generated by an electric current, di-
rectly produces phase changes in a beam of electrons, in a
region where the associated magnetic field B is zero. It fol-
lows, we believe, that Ak can be produced by an appropriate
fermion field phase change, and that it represents an interac-
tion field.

In order to model Ak as a gauge field, an appropriate con-
served quantity, like electric charge, which will determine
the strength of the coupling of Ak to the fermion, must be
identified. In this regard, we note that an extensive quantum
field theory describing magnetic monopoles carrying mag-
netic charges has been developed [8]. The quanta of this
field theory are the quanta associated with the gauge field
A� of QED, namely photons, which in this theory couple to
both electric charge and magnetic charge. However magnetic
monopoles have not been found despite strenuous efforts and
therefore this theory remains unverified. Towards the devel-
opment of a new theory having Ak as the gauge field, we
adopt an approach sometimes employed in magnetostatics [3,
see p. 325] and define a magnetic charge � which, though
physically unreal, is treated as the source of magnetic flux
for the purposes of the development.

3 A gauge theory of magnetism

For a fermion with magnetic moment �m, we define [3]

� = r � �m: (3.1)

where we refer to � as magnetic charge and regard it as the
source of the magnetic flux associated with the magnetic mo-
ment �m. Now consider the Lagrangian density L(x) of the
fermion field  (x) given by

L(x) = � (x)(i�@� �m) (x) : (3.2)
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L is clearly invariant under the transformation

 
0
(x) = e�i�a (x) ; (3.3)

where � is a constant and � is the magnetic charge of the
fermion. From Noether’s theorem [4], it follows that the mag-
netic charge is conserved i.e.

@t� = @t
�X

�i
Z

� i0 id3x
�

= 0: (3.4)

In practical terms, this means that magnetic flux is con-
served. Thus, like electric charge, the conservation of mag-
netic charge (flux) can be viewed as a consequence of the in-
variance of the fermion Lagrangian density under the global
transformation (3.3). Towards the generation of Ak through
local phase changes, we recall that the electromagnetic field is
the gauge field which guarantees invariance of the Lagrangian
density under space-time local U(1) gauge transformations,
i.e. � is a function of space �x and time t. Here, noting that the
electron interference pattern produced byAk in the Aharonov-
Bohm effect varies spatially as Ak is changed, we let the pa-
rameter �, in (3.3) be a function of space �x, � = �(�x) i.e. it
may have different values at different points in space but con-
tinues to be the same at every time t. Considering a neutron
field  n say, (3.3) becomes

 
0
(x) = e�i��(�x) (x): (3.5)

Under this space-local transformation, the Lagrangian
density is not invariant. Invariance is achieved by the intro-
duction of a 3-vector massless field Ak, k = 1; 2; 3, such that

L = � n(i�@� �m) n � � � nk nAk ; (3.6)

where Ak ! Ak + @�(�x)
@�x as

 n ! e�i��(�x)  n : (3.7)

The quantity � nk n varies like a vector under space
rotation and space inversion but not under a Lorentz boost.
However, under postulate 1, such a term is allowed in the
interaction. Hence, by demanding space-local invariance, a
3-vector field Ak is introduced. When we add to the fermion
Lagrangian density a term representing kinetic energy of Ak
[4], we arrive at the equation of motion for Ak given by

Ak = � � nk n : (3.8)

This is a 3-vector Klein-Gordon equation whose associ-
ated quanta have spin 1 charge 0 and mass 0. Variation of
(3.6) with respect to  n gives

(i�@� �m) n = � � kAk n ; (3.9)

which is the modified Dirac equation in the presence of the
fieldAk. Analogous to the electromagnetic case, we associate
the quantity � � nk n with current density Jk such that

Ak = �Jk ; (3.10)

where � is the permeability constant. This is equation (2.1) of
classical electrodynamics. In the case of magnetic material,
the equivalent current density is referred to as magnetization
or Amperian current density Jm [3, see p. 315] given by

Jm = r�M ; (3.11)

whereM is the magnetic dipole moment/unit volume or mag-
netization . Equation (3.10) is the well-known wave equation
for magnetic potentials. [3]. If the magnetic charge distribu-
tion is time-independent, the wave equation (3.10) reduces to

r2Ak = ��Jk : (3.12)

Equation (3.12) is the Poisson equation for magnetostatic
potentials that contains all of classical magnetism. It leads,
under appropriate conditions, to the inverse square law for
magnetic poles as well as an inverse higher-order law for
magnetic dipoles given by

F =
3��1�2

4�r4 ; (3.13)

where the dipoles are parallel and spatially opposite each
other "" [4, see p. 311, problem 19.10]. Thus, Jk is the source
of the potentialAk and we interpretAk as the magnetic gauge
field with quanta of spin 1, mass zero, charge zero and odd
parity which we shall call magnatons. It is the gauge field
which guarantees invariance under space-local U(1) gauge
transformations. The conservation of magnetic charge is di-
rectly associated with the universality of the magnetic cou-
pling constant for all particles with a magnetic moment and
the strength of the coupling is the magnetic charge (flux) of
the particle. Thus, while for electrically charged particles
the interaction with an electromagnetic field — the Quan-
tum Electrodynamic Interaction or electromagnetic interac-
tion — is mediated by the photon and involves the electric
charge and the associated SMM, the interaction of a “magnet-
ically charged” particle with a magnetic field is mediated by
the magnaton and involves the particle’s magnetic moment.
This is a new quantum interaction, which we shall refer to as
the Quantum Magnetodynamic Interaction or magnetic inter-
action. It is in general different from the magnetic compo-
nent of the electromagnetic interaction. To demonstrate this
difference, consider again two electrons with parallel spins
(""). Recall, from the theory of QED, (e.g. [1, see p. 198]),
that the electric charge of the electron along with its spin re-
sults in an electromagnetic interaction between the two par-
ticles which is made up of a dominant electric repulsion and
a weaker attractive magnetic component. In the new theory,
the magnetic moment of the two electrons results in a mag-
netic repulsion given by (3.13) consistent with the classical
theory of magnetism and different from the magnetic compo-
nent of the electromagnetic force, which is attractive. Since
the potential of the magnetic interaction is of the form 1=r3,
its effect will not generally be noticed in QED interactions
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where the potential is of the form 1=r, but becomes dominant
at short distances. Experimentally, in electron-positron high-
energy scattering for example, there are indeed sharp reso-
nances as well as novel asymmetries in the angular distribu-
tions, which cannot be accounted for in the QED perturba-
tion theory, which Barut [9] has considered to be possibly of
magnetic origin. In fact, Barut points out that in perturbation
theory, the short distance behaviour of QED is completely
unknown since the forces involved change completely at high
energies or short distances. We believe that it is the magnetic
interaction mediated by the magnaton, which becomes effec-
tive at short distances, that is the operative mechanism. We
conclude then that the observed magnetic interaction between
magnetic dipoles and magnets is mediated not by photons as
is widely believed, but by magnatons. Because magnatons
are massless vector particles, the associated magnetic field is
long-range and results in interactions that are both attractive
and repulsive, all in agreement with observation.

4 Application of the quantum magneto-dynamic inter-
action

The quantum magnetodynamic interaction effectively
converts all of classical magnetism into a quantum theory and
is therefore supported by 400 years of scientific discovery in
magnetism, started by Gilbert in 1600. We expect new de-
tailed predictions from the theory because of its quantum me-
chanical nature but defer this substantial exercise. Instead,
we examine simple and direct tests of the model and show
that it offers plausible explanations in precisely those areas
where there are no simple answers. The larger the number
of applications where it provides a persuasive account, the
greater will be our confidence in its correctness and conse-
quently our preparedness to engage in more detailed analysis.
In the following sub-sections, three areas are discussed: The
Pauli exclusion principle, chemical reactivity and chemical
bonds.

4.1 The Pauli Exclusion Principle

The Pauli Exclusion Principle is an extremely important prin-
ciple in science [10]. It is the cornerstone of atomic and
molecular physics and all of chemistry. It states that two
electrons (or other fermions) cannot have the same spatial
wave function unless the spins are anti-parallel ("#) i.e. apart
from the electric repulsion, parallel spin electrons tend to re-
pel each other while anti-parallel spin electrons tend to at-
tract each other. The operative force of attraction/repulsion is
unknown. It cannot be the magnetic component of the elec-
tromagnetic force since it has the wrong sign and because
of the inability to identify this so-called “Pauli Force”, the
tendency is to label this behaviour a “quantum-mechanical
effect, having no counterpart in the description of nature ac-
cording to classical physics” [10, see p. 564]. We suggest that
the tendency for parallel spin electrons to repel each other and

anti-parallel spin electrons to attract each other arises as a re-
sult of the quantum magnetodynamic interaction. The mag-
netic moment of an electron is aligned with its spin, making
it effectively a tiny magnet. Therefore, parallel spin electrons
will experience mutual repulsion according to equation (3.13)
arising from the exchange of magnatons, while anti-parallel
spin electrons will experience mutual attraction. This, of
course, is consistent with classical magnetism represented
by (3.13).

Periodic Table of Elements
An immediate application of the magnetic attraction between
anti-parallel spin electrons is in the energy levels of atoms.
The attractive magnetic force in the anti-parallel spin elec-
trons accounts for the anti-parallel pairing of electrons in
atomic orbitals where the electrons are close together, this
leading to the Periodic Table of elements. We further suggest
that the attractive component of the long-range electromag-
netic force between parallel spin electrons accounts for the
experimental fact that unpaired electrons in different atomic
orbitals having the same energy are parallel spin-aligned.

Solidity of matter
In solids, inter-atomic and inter-molecular forces are in gen-
eral considered to be manifestations of the electromagnetic
interaction between the constituents, and the electric
(Coulomb) component plays the dominant role. This inter-
action provides an attractive force that holds the constituent
atoms in a regular lattice. This is very evident in solids such
as sodium chloride. For small inter-atomic distances such that
the orbitals of inner electrons overlap, a repulsive force com-
ponent arises. This repulsive force at short distances is called
the repulsive core and is a general feature of atomic inter-
action. It prevents the interpenetration of atoms and thereby
provides the solidity of matter [11]. The repulsive core is
attributed to the Pauli Exclusion Principle and Gillespie ex-
plains this as follows [12, see p. 69]: “. . . because of the Pauli
principle, in any region of space around a nucleus in which
there is a high probability of finding a pair of electrons of op-
posite spin, there is only low probability of finding any other
electrons. Since most molecules have an equal number of
electrons of opposite spin, no other electrons can penetrate
into each other to a significant extent.” Again no force is iden-
tified and in fact Gillespie refers to the unknown Pauli forces
as apparent forces that are not real. We propose that the quan-
tum magnetodynamic interaction between the magnetic fields
of the orbiting anti-parallel electron pairs in the various atoms
is the missing component in Gillespie’s explanation and that
this along with the electric force prevents collapse in solids.
The magnetic interaction neutralizes the associated magnetic
field of the anti-parallel pair such that there is no magnetic
interaction (which could be attractive) between the pair and
the magnetic field of other electrons. As a result the electric
field of the pair repels other electrons and prevents them from
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penetrating to any significant extent. This, we suggest, is re-
sponsible for the solidity of matter with the magnetic neutral-
ization being a critical feature of the process. The existence
of the magnetic interaction in the repulsive core mechanism
is supported by Earnshaw’s theorem [13] according to which
a system of only interacting electric charges cannot be stable.

4.2 Chemical reactivity

Chemical reaction generally involves the union or separation
of atoms. While the Coulomb force is a dominant feature
of this activity, we suggest that the primary basis of chem-
ical reactivity is the magnetic interaction. This interaction
explains why atoms and molecules with unpaired electrons
in the valence shell like the alkali metals, the halogens and
free radicals, tend to be highly reactive. The unpaired elec-
trons in such substances have a magnetic field that interacts
with the magnetic field of unpaired electrons of other atoms
and molecules. The hydroxyl radical (OH) is an example of
an odd electron molecule or free radical having an unpaired
electron. It is extremely reactive because the radicals can
combine with each other or with odd electron carriers, each
contributing an electron to form pairs with the constituents
drawn together and bound by the magnetic interaction. The
magnetic interaction causes unpaired electrons to be points
of high reactivity and hence free radicals have no more than
a fleeting existence at room temperature [14]. The presence
of this magnetic field in substances with unpaired electrons is
evident in nitric oxide, boron and oxygen, all of which have
one or more unpaired valence electron and are paramagnetic.
Liquid oxygen will actually cling to a magnet. On the other
hand, atoms and molecules with paired electrons like the no-
ble gases of Group 8 on the Periodic Table tend to be unre-
active. This occurs because the paired electrons in such sub-
stances are anti-parallel in spin alignment and this results in a
substantial neutralization of the overall magnetic field associ-
ated with the pair. Since this magnetic field is being proposed
as the agent responsible for promoting reactions, such sub-
stances would be expected to be less chemically reactive, as
is observed. Because of this unavailability of unpaired elec-
trons, the atoms of the members of Group 8 all exist singly.

Experimental confirmation
Important numerical experiments carried out by Greenspan
[15] provide strong confirmation of this magnetic interaction
and the attraction it produces between anti-parallel electron
pairs. This researcher found that classical dynamical calcu-
lations for the ground-state hydrogen molecule using a Cou-
lombic force between the bond electrons along with spectro-
scopic data yielded a vibrational frequency of 2.20�1014 Hz,
which was a significant deviation from the experimentally de-
termined value of 1.38�1014 Hz. By assuming the force be-
tween the electrons to be fully attractive rather than fully re-
pulsive, Greenspan obtained the correct vibrational frequen-
cy. This approach was successfully tested for the following

ground-state molecules: H1
2, H2

2, H1H2, H1H3, and Li72. In
all, these cases, deterministic dynamical simulations of elec-
tron and nuclei motions yielded correct ground-state vibra-
tional frequencies as well as correct molecular diameters un-
der the assumption that the binding electrons attract. In an-
other paper [16] Greenspan showed that the assumption of
electron attraction also yields the correct vibrational frequen-
cies and average molecular diameters for ground-state mole-
cules Li72, B11

2 , C12
2 , and N14

2 . Obtaining correct ground-state
results for both vibrational frequencies and average molecular
diameters in this large number of molecules was most unex-
pected and is an extremely strong indication of the correct-
ness of the magnetic interaction model proposed in this paper.

4.3 Chemical bonds

Chemical bonding is due to the attraction of atoms for the
electrons of other atoms toward their unfilled orbitals. We
suggest that the basis of this attraction is the magnetic interac-
tion between the unpaired electrons associated with these un-
filled orbitals. Here we consider ionic bonds, covalent bonds
and the concept of the rule-of-two that is central to chemistry.

Ionic bonds
In ionic bonds, donor atoms such as sodium tend to lose elec-
trons easily while acceptor atoms such as chlorine tend to ac-
quire additional electrons. When atoms of these two kinds
interact, a re-arrangement of the electron distribution occurs;
an electron from the donor atom migrates to the acceptor atom
thereby making the acceptor atom negatively charged and the
donor atom positively charged. The Coulomb interaction be-
tween these ions then holds them in place in the resulting
crystal lattice. [11]. In this explanation of the formation of
an ionic bond, while the role of the Coulomb force is clear,
it is not clear what makes the electron from the donor atom
migrate to the acceptor atom. We suggest that apart from
the action of the electric force, the migration of the electron
from a donor atom to an acceptor atom during a chemical
reaction results from the magnetic interaction. As the chem-
icals are brought together, the electron of the donor atom is
close enough to interact with the electron of the acceptor atom
via their magnetic fields. The operative quantum magnetody-
namic interaction causes the electron of the donor atom and
the electron of the acceptor atom to be drawn together in an
anti-parallel spin alignment consistent with magnetic attrac-
tion. The resulting magnetically bound pair becomes attached
to the acceptor atom because of its greater electric attraction
(electronegativity), precisely as observed.

Covalent bonds
While some bonds are ionic, the majority of chemical bonds
have a more or less covalent character. This bond is the foun-
dation of organic chemistry and is the basis of the chemistry
of life as it binds DNA molecules together. According to
the current understanding [11], atoms with incomplete shells
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share electrons, with the electrons tending to concentrate in
the region between the atoms. This concentration of elec-
trons exerts a Coulombic attraction on the positive nuclei of
the two atoms and this gives rise to a covalent bond. What is
not evident in this explanation though is why the shared elec-
trons cluster between the atoms, despite their mutual electric
repulsion. The accepted approach is to solve the Schrodinger
equation arising from the application of wave mechanics to
the system and on this basis attempt to show that the elec-
trons occupy the region where they are observed to cluster.
This approach to the explanation of the nature of the covalent
bond has been described by Moore [17] as the most important
application of quantum mechanics to chemistry. However,
this quantum-mechanical method is at best only an approx-
imation as the only atoms that can be described exactly by
wave mechanics are hydrogenic (single-electron) atoms such
as H, He+1 and Li+2. As a result, most of the claimed predic-
tions are really systematized experimental facts as pointed out
by Luder [18]. Moreover, wave mechanics does not identify
the force that causes the clustering. The quantum magneto-
dynamic interaction offers an immediate explanation for this
clustering: the two electrons involved in a covalent bond al-
ways have opposite spin arising from the interaction of the
associated magnetic fields and this results in magnetic attrac-
tion between them, and hence the clustering. The strong di-
rectional characteristic of covalent bonds is a significant in-
dicator of the magnetic nature of the bond, and the close
proximity of the associated electron orbitals is consistent with
dominant magnetic interaction. The general saturable nature
of this bond and the empirical fact that an electron pair can-
not normally be used to form more than one covalent bond
arise because the intensity of the magnetic field of the anti-
parallel electron pair constituting the bond is significantly re-
duced due to the anti-parallel alignment. This reduction in
reactivity resulting from magnetic field neutralization in the
anti-parallel pair has already been observed in the noble gases
where only electron pairs exist.

To illustrate covalent bond formation based on the mag-
netic interaction, we examine the covalent bonds in hydrogen
gas (like atoms) and hydrogen chloride (unlike atoms). The
hydrogen atom has one electron in the 1s orbital. Consider the
approach of two hydrogen atoms in the formation of a hydro-
gen molecule. If the electron spins are parallel (triplet state),
then there will be magnetic (and electric) repulsion between
the electrons as their orbitals overlap. This repulsive state
with spin-aligned electrons in triplet state hydrogen atoms is
spectroscopically detectable, thus confirming the overall cor-
rectness of this description. Magnetic repulsion along with
electric repulsion between the nuclei prevents the formation
of a stable molecule. If the electron spins are anti-parallel
(singlet state), then for sufficient electron orbital overlap, the
resulting magnetic attraction between the electrons is enough
to overcome the electric repulsion between them (as well as
between the nuclei), and the electrons cluster in a region be-

Fig. 1: Covalent bond formation in hydrogen chloride: the s orbital
of the hydrogen atom overlaps with a p orbital of the chlorine atom.

tween the two nuclei. The electric force of attraction between
this electron cluster and the two nuclei establishes the cova-
lent bond and a stable hydrogen molecule H2 results. It is an
observed fact [19] that atomic hydrogen is highly unstable as
the atoms tend to recombine to form H2 molecules. We at-
tribute this to the action of the magnetic interaction between
the unpaired electrons as described. Similar action occurs in
chlorine and oxygen molecules. As a second example, con-
sider the formation of hydrogen chloride from an atom of hy-
drogen and an atom of chlorine. Hydrogen has one unpaired
electron in the K shell in a spherical orbital and chlorine has
seven valence electrons in the M shell, 2 filling the 3s orbital
and 5 in the 3p orbitals comprising 3 orthogonal dumbbell-
shaped orbitals about the nucleus. Two of these 3p orbitals
are filled with paired electrons while the remaining 3p orbital
has a single unpaired electron. When a hydrogen atom and a
chlorine atom approach, the spherical orbital of the hydrogen
overlaps with the unfilled elliptical orbital of the chlorine and
the magnetic interaction between the unpaired electrons in
these two orbitals causes these 2 electrons to cluster between
the 2 atomic nuclei in an anti-parallel spin formation. The
elliptical shape of the chlorine’s 3p orbital is altered in the
process. This magnetic interaction between these unpaired
elections establishes the covalent bond and the consequent
formation of hydrogen chloride (HCl). The arrangement is
shown in Figure 1.

The bound electrons are situated closer to the chlorine
atom because of its higher electronegativity though they are
not completely transferred to the chlorine atom as in sodium
chloride. This imbalance causes the HCl molecule to be po-
lar with a positive pole near the hydrogen atom and a nega-
tive pole near the chlorine atom. Thus, both the ionic bond
and the covalent bond involve a magnetically bound (anti-
parallel spin-aligned) electron pair that is attracted to two pos-
itively charged atomic nuclei by Coulomb forces. The rela-
tive strength of these two electric forces in a specific bond
determines the exact position of the electron pair between
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the atomic nuclei and hence its location along the bonding
continuum represented by pure covalent (H2)-polar covalent
(HCl)-ionic (NaCl) bonding.

Rule-of-two
The “rule of two” [12] is a central concept in chemistry that is
more significant than the well-known “rule-of-eight” or stable
octet for which there are many exceptions. It is recognition
of the observational fact that electrons are generally present in
molecules in pairs, despite their mutual electric repulsion. We
attribute this tendency to electron pair formation to the mag-
netic attraction between the two anti-spin aligned electrons
forming the pair as verified by the Greenspan data. The new
magnetic interaction therefore explains the universal “rule-of
two” simply and naturally.

5 Conclusion

In this paper, we have proposed a new magnetic interaction
— quantum magneto-dynamics or QMD — that is mediated
by massless spin 1 quanta called magnatons. These media-
tors are different from photons, the quanta of the electromag-
netic interaction in QED. QMD is associated with the mag-
netic moment of the fermions and accounts for all magnetic
interactions between magnets. Magnatons are massless vec-
tor particles that give the magnetic field its long-range attrac-
tive/repulsive character. They satisfy the Poisson equation
of classical magnetism and are, we believe, the transmission
agents in the Aharanov-Bohm effect. QMD provides plausi-
ble explanations for various hitherto unexplained phenomena
including the Pauli exclusion principle, chemical reactivity
and chemical bonds. It explains the “Pauli Force” that leads
to electron pairing in atomic orbitals. It also explains cova-
lent bonds which are the foundation of organic chemistry as
well as the “rule of two” according to which electrons are
present in molecules in pairs with only a few exceptions, de-
spite their mutual electric repulsion. Greenspan [15, 16] has
confirmed this attractive magnetic force between anti-parallel
spin aligned electrons for several molecules in important nu-
merical experiments. The effects of QMD are not evident
in low-energy QED interactions because the potential of the
magnetic interaction is of the form 1=r3 but become domi-
nant at high energies or short distances. The extent to which
the new quantum theory of magnetism accords with obser-
vation and its success in providing simple answers in several
areas where relativistic models provide none all strongly sug-
gest that the theory may be right and that a more detailed
investigative programme should be pursued. Issues that need
to be explored include:

1. The renormalizability of the new interaction to enable
calculations;

2. Quantitative application of the magnetic interaction to
the Pauli Exclusion phenomenon, chemical reactivity
and chemical bonds;

3. Application to molecular geometry;
4. Analysis of the new interaction in order to reveal new

quantum mechanical phenomena such as may occur in
electron-positron high-energy scattering [9], polarised
proton-proton collisions [20] and elastic electron-
neutron scattering [5].

We have been led to this new interaction by breaking away
from the excessively restrictive idea of Lorentz covariance.
An alternative modification of U(1) gauge invariance explor-
ed in ( [21], where we demand that the Lagrangian density
be invariant under a time-local (rather than space-local) U(1)
gauge transformation  ! 

0
=U with U being time-

dependent (rather than space-dependent), generated a scalar
spin0 field (rather than a 3-vector spin1 field) which we iden-
tify as the gravitational field (instead of the magnetic field).
This field satisfies a wave equation, which contains the Pois-
son equation for gravitational potentials and hence 300 years
of Newtonian gravitation. This is a further indication that the
basic approach may be valid. In future research, therefore, we
intend to pursue the modified gauge invariance approach used
in this paper and demand that nucleon interaction be invariant
under an isotopic gauge transformation  !  

0
= U with

U being a space-dependent isospin rotationU(�x). The hoped-
for result is massless rho-mesons which when unified with the
spin1 magnatons are given mass through spontaneous sym-
metry breaking thereby yielding massive rho-mesons. Such
an approach in [22] involving a time-dependent isospin ro-
tation U(t) and unification with spin0 gravitons yielded pi-
mesons!
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This paper argues that there is a polarizable vacuum state (the Planck vacuum) that is
the source of the quantum vacuum; the free particles; the gravitational, fine structure,
and Planck constants; the gravitational field and the spacetime of General Relativity; the
Maxwell equations and the Lorentz transformation; and the particle Compton relations
and the quantum theory.

1 Introduction

This is an unusual paper that needs to be put into perspec-
tive to be understood because the definitions contained herein
evoke preconceived ideas that get in the way of the reader. For
example, the words “bare charge” mean something very spe-
cific to the quantum-field-theory specialist that evoke notions
of renormalization and Feynman diagrams. The definition of
these words given here, however, mean something quite dif-
ferent; so this preface is intended to provide a setting that will
make the paper easier to understand.

About ten years ago the author derived the gravitational
(G= e2�=m2�), Planck (~= e2�=c), and also fine structure
(�= e2=e2�) constants in a somewhat confused and mixed-
up manner. Although their derivation at that time left some-
thing to be desired, the simple elegance and connectedness of
these three fundamental equations has provided the motiva-
tion behind the search for their explanation. Thus it was the
“leading” of these three constants that resulted in the paper
that is about to be read. The intent at the beginning of the
investigations was not some urge to discover a grand theory
that unifies diverse areas of physics, although the search for
the physics behind the constants appears to be doing just that.

The Planck vacuum (PV) state is envisioned as an infinite,
invisible (not directly observable), omnipresent, uniform, and
homogeneous negative energy state somewhat analogous to
the Dirac “sea” in quantum mechanics. The quantum vac-
uum, on the other hand, consists of virtual particles that ap-
pear and disappear at random in free space, the space where
free particles and the rest of the universe are observed. The
source of this quantum vacuum is assumed to be the PV,
where the fields of the quantum vacuum are analogous to non-
propagating induction fields with the PV as their source. The
PV is also assumed to be the source of the free particles.

The charge of the Planck particle is called the bare charge,
and it is this bare charge that is the true, unscreened, charge of
the electron and the rest of the charged elementary particles.
The polarizability of the PV is shown to be responsible for
the fact that the observed electronic charge e has a smaller
magnitude than the bare charge e�.

The PV theory is not derived from some pre-existing the-
ory, e.g. the quantum field theory — it is assumed to be the

source of these pre-existing theories. The simple calculations
in the paper lead to the above constants and from there to
the many suggestions, assumptions, speculations, and hand-
waving that necessarily characterize the PV theory at this
early stage of development. It is expected, however, that the
theory will eventually lead to a “sea change” in the way we
view fundamental physics. So let’s begin.

The two observations: “investigations point towards a com-
pelling idea, that all nature is ultimately controlled by the ac-
tivities of a single superforce”, and “[a living vacuum] holds
the key to a full understanding of the forces of nature”; come
from Paul Davies’ popular 1984 book [1] entitled Superforce:
The Search for a Grand Unified Theory of Nature . This liv-
ing vacuum consists of a “seething ferment of virtual parti-
cles”, and is “alive with throbbing energy and vitality”. Con-
cerning the vacuum, another reference [2] puts it this way;
“we are concerned here with virtual particles which are cre-
ated alone (e.g., photons) or in pairs (e+e�), and with the
vacuum — i.e., with space in which there are no real par-
ticles”. This modern vacuum state, as opposed to the clas-
sical void, is commonly referred to as the quantum vacuum
(QV) [3]. The virtual particles of this vacuum are jumping
in and out of existence within the constraints of the Heisen-
berg uncertainty principle (�E�t� ~); i.e., they appear for
short periods of time (�t) depending upon their temporal en-
ergy content (�E), and then disappear. The QV, then, is an
ever-changing collection of virtual particles which disappear
after their short lifetimes �t, to be replaced by new virtual
particles which suffer the same fate, ad infinitum.

Among other things, the following text will argue that the
source of the QV is the Planck vacuum (PV) [4] which is an
omnipresent degenerate gas of negative-energy Planck parti-
cles (PP) characterized by the triad (e�, m�, r�), where e�,
m�, and r� (��=2�) are the PP charge, mass, and Compton
radius respectively. The charge e� is the bare (true) electronic
charge common to all charged elementary particles and is
related to the observed electronic charge e through the fine
structure constant � = e2=e2� which is one manifestation of
the PV polarizability. The PP mass and Compton radius are
equal to the Planck mass and length [5] respectively. The
zero-point (ZP) random motion of the PP charges e� about
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their equilibrium positions within the PV, and the PV dynam-
ics, are the source of both the QV and the free particles. The
PV is held together by van der Waals forces. In addition to
the fine structure constant, the PV is the source of the gravi-
tational (G = e2�=m2�) and Planck (~ = e2�=c) constants. The
non-propagating virtual fields of the QV are assumed to be
real fields appearing in free space which are analogous to in-
duction fields with the PV as their source.

A charged elementary particle is characterized by the triad
(e�, m, rc), where m and rc are the particle’s mass and
Compton radius. The field intrinsic to the particle is the
bare Coulomb field e�r=r3, where r is the radius vector
from the particle to the field point. All other fields, clas-
sical or quantum, associated with the particle and its mo-
tion arise from this fundamental field and its interaction with
the PV.

Section 2 traces the concept of the PV from the first obser-
vation of the initial paragraph after the preface to the deriva-
tion of the fine structure, gravitational, and Planck constants;
to the Compton relation of the PP; and to the free-space per-
mittivities. A rough heuristic argument shows the binding
force of the vacuum to be van-der-Waals in nature.

The ultimate PV-curvature force is derived in Section 2
from Newton’s gravitational equation. This ultimate force is
shown in Section 3 to be tied to the Riemannian spacetime of
General Relativity (GR) which, therefore, is related to the real
physical curvature of the PV. As a consequence, GR describes
the spacetime curvature of the PV.

Using the Coulomb field of the bare charge, the polar-
izability of the PV, and an internal feedback mechanism in-
trinsic to the PV; Section 4 derives the relativistic electric
and magnetic fields associated with the charge, and infers the
Lorentz transformation and constancy of the speed of light
from the results.

The electromagnetic vacuum (EV) consists of the virtual
photons mentioned in the first paragraph which lead collec-
tively to the ZP electromagnetic field with which Section 5
argues that the EV has its origin in the PV.

A free charged particle distorts the PV in two ways. Its
bare Coulomb field polarizes the vacuum, and its mass exerts
a van-der-Waals attractive force on the PPs of the PV. Sec-
tion 6 shows how these two vacuum-distorting forces lead to
the quantum mechanics and, by inference from Section 5, to
the quantum field theory (QFT).

Section 7 summarizes and comments on the ideas pre-
sented in Sections 1 through 6.

2 Planck particle and vacuum

The idea from Davies’ first observation that a single super-
force controls all of nature is interpreted here to mean that the
ultimate strengths of nature’s fundamental forces are identi-
cal, whether those forces are actually realizable or just asymp-
totically approachable. The static Coulomb and gravitational

forces between two like, charged elementary particles are
used in this section to derive the fine structure constant, the
ultimate Coulomb force, the ultimate gravitational force, the
gravitational constant, and the ultimate PV-curvature force.
Using a new expression (4) for the gravitational force, and
the results from the above; the Compton relation of the PP,
and the free-space permittivities (the dielectric constant and
magnetic permeability) are derived. These derivations utilize
three normalization constants to isolate the ultimate forces.
The three constants correspond to charge normalization (e�),
mass normalization (m�), and length normalization (r�).
These constants start out as normalization constants, but end
up defining a new fundamental particle (the PP) and a funda-
mental vacuum state (the PV).

The static Coulomb force between two like, charged par-
ticles can be expressed in the following two forms:

Fel =
e2

r2 = �
�r�
r

�2
F 0� ; (1)

where r is the distance between particles, � � e2=e2�, and
F 0� � e2�=r2� . If e� is assumed to be the maximum parti-
cle charge (the electronic charge unscreened by a polarizable
vacuum state), and r� is assumed to be some minimum length
(r� < r for all r); then F 0� is the ultimate Coulomb force.

The static gravitational force of Newton acting between
two particles of mass m separated by a distance r can be ex-
pressed in the following forms:

�Fgr =
m2G
r2 =

m2

m2�

�r�
r

�2
F� ; (2)

where G denotes Newton’s gravitational constant, and
F� � m2�G=r2� . If m� is the maximum elementary particle
mass, and r� is the minimum length, then F� is the ultimate
gravitational force as m�=r� is the maximum mass-to-length
ratio.

Adhering to the idea of a single superforce implies that
the force magnitudes F 0� and F� must be equal. This equality
leads to the definition of the gravitational constant

G =
e2�
m2�

(3)

in terms of the squared normalization constants e2� and m2�.
The gravitational force in (2) can also be expressed as

�Fgr =
(mc2=r)2

c4=G
(4)

by a simple manipulation where c is the speed of light. The
ratio mc2=r has the units of force, as does the ratio c4=G. It
can be argued [6] that c4=G is a superforce, i.e. some kind
of ultimate force. The nature of the two forces, mc2=r and
c4=G, is gravitational as they emerge from Newton’s gravita-
tional equation; but their meaning at this point in the text is
unknown. As an ultimate force, c4=G can be equated to the ul-
timate gravitational force F� because of the single-superforce
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assumption. Equating c4=G and F� then leads to

c4

G
=
m� c2
r�

(5)

for the ultimate force c4=G. It is noteworthy that the form
m�c2=r� of this force is the same as that ratio in the parenthe-
sis of (4), which must be if c4=G is to represent an ultimate
force of the form mc2=r. That (5) is an ultimate force is clear
from the fact that m� is the ultimate particle mass and r� is
the minimum length, roughly the nearest-neighbor distance
between the PPs constituting the PV.

Invoking the single-superforce requirement for the ulti-
mate force c4=G from (5) and the ultimate Coulomb force F 0�
leads to

m�c2
r�

=
e2�
r2�

(6)

or

r�m�c =
e2�
c
� ~ ; (7)

where e2�=c defines the (reduced) Planck constant. Further-
more, if the reasonable assumption in made that the minimum
length r� is the Planck length [5], then m� turns out to be the
Planck mass [5]. Noting also that (7) has the classic form of a
Compton relation, where r� is the Compton radius (��=2�),
it is reasonable to assume that the triad (e�, m�, r�) charac-
terizes a new particle (the PP). Thus the Compton radius r�
of the PP is r� = e2�=m�c2.

The units employed so far are Gaussian. Changing the
units of the first equation in (7) from Gaussian to mks units [7]
and solving for �0 leads to

�0 =
e2�

4�r�m�c2
[mks] (8)

where �0 is the electric permittivity of free space in mks units.
Then, utilizing �0�0 = 1=c2 leads to

�0 = 4�
r�m�
e2�

[mks] (9)

for the magnetic permittivity. The magnitude of �0 is easy
to remember — it is 4��10�7 in mks units. Thus r�m�=e2�
in (9) had better equal 10�7 in mks units, and it does (e� in
Gaussian units is obtained from (3) and G, or from (7) and ~;
and then changed into mks units for the calculation).

Shifting (8) and (9) out of mks units back into Gaussian
units leads to

� =
1
�

=
e2�

r�m�c2
= 1 (10)

for the free-space permittivities in Gaussian units. Consid-
ering the fact that the free-space permittivities are expressed
exclusively in terms of the parameters defining the PP, and
the speed of light, it is reasonable to assume that the free-
space vacuum (the PV) is made up of PPs. Furthermore,
the negative-energy solutions to the Klein-Gordon equation
or the Dirac equation [3], and the old Dirac hole theory [3],

suggest that a reasonable starting point for modeling the PV
may be an omnipresent gas of negative-energy PPs.

The PV is a monopolar degenerate gas of charged PPs.
Thus the PPs within the vacuum repel each other with strong
Coulombic forces, nearest neighbors exerting a force roughly
equal to

e2�
r2�

=
�

5:62�10�9

1:62�10�33

�2
� 1049 [dyne] (11)

where r� is roughly the nearest-neighbor distance. The ques-
tion of what binds these particles into a degenerate gas nat-
urally arises. The following heuristic argument provides an
answer. Using the definition of the gravitational constant
(G = e2�=m2�), the gravitational force between two free PPs
separated by a distance r can be written in the form

�m2�G
r2 = �e2�

r2 (12)

leading to a total gravitational-plus-Coulomb force between
the particles equal to

(�1 + �)
e2�
r2 (13)

where the Coulomb force (�e2�=r2) comes from (1). This
total force is attractive since the fine structure constant
�� 1=137< 1. The total force between two PPs within the
PV must be roughly similar to (13). Thus it is reasonable
to conclude that the vacuum binding force is gravitational in
nature.

3 General Relativity

Newton’s gravitational force acting between two particles
of mass m1 and m2 separated by a distance r can be express-
ed as

Fgr = � (m1c2=r)(m2c2=r)
c4=G

=

=
(�m1c2=r)(�m2c2=r)

�m�c2=r� ;
(14)

where (5) has been used to obtain the second expression. Al-
though the three forces in the second expression must be grav-
itational by nature as they come from the gravitational equa-
tion, their meaning is unclear from (14) alone.

Their meaning can be understood by examining two equa-
tions from the GR theory [5], the Einstein metric equation

G�� =
8�T��
c4=G

=
8�T��
m�c2=r�

(15)

and the Schwarzschild equation

ds2 = � [1� 2n(r)] c2dt2 +
dr2

[1� 2n(r)]
+ r2 d
2 (16)

where the n-ratio is

n(r) � mc2=r
c4=G

=
mc2=r
m�c2=r�

(17)
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and where G�� is the Einstein curvature tensor, T�� is the
energy-momentum density tensor, ds is the Schwarzschild
line element, and dt and dr are the time and radius differen-
tials. The remaining parameter in (16) is defined in [5]. The
line element in (16) is associated with the curvature of space-
time outside a static spherical mass — in the particle case the
equation is only valid outside the particle’s Compton radius
[8]. For a vanishing mass (m = 0), the n-ratio vanishes and
the metric bracket [1�2n(r)] reduces to unity; in which case
(16) describes a flat (zero curvature or Lorentzian) spacetime.

As mc2=r in (16) and (17) is a spacetime-curvature force,
(14) implies thatm1c2=r andm2c2=r are PV curvature forces.
The ultimate curvature force m�c2=r� appears in the denom-
inators of (14), (15), and (17). Thus it is reasonable to con-
clude that the theory of GR refers to the spacetime-curvature
aspects of the PV. The forces m1c2=r and m2c2=r are attrac-
tive forces the masses m1 and m2 exert on the PPs of the PV
at a distance r from m1 and m2 respectively.

According to Newton’s third law, if a free mass m exerts
a force mc2=r on a PP within the PV at a distance r from m,
then that PP must exert an equal and opposite force on m.
However, the PP at �r exerts an opposing force on m; so the
net average force the two PPs exert on the free mass is zero.
By extrapolation, the entire PV exerts a vanishing average
force on the mass. As the PPs are in a perpetual state of ZP
agitation about their average “r” positions, however, there is
a residual, random van der Waals force that the two PPs, and
hence the PV as a whole, exert on the free mass.

Puthoff [9] has shown the gravitational force to be a long-
range retarded van der Waals force, so forces of the form
mc2=r are essentially van der Waals forces. The ZP electro-
magnetic fields of the EV are the mechanism that provides the
free-particle agitation necessary to produce a van der Waals
effect [9]. But since the source of the EV is the PV (see Sec-
tion 5), the PV is the ultimate source of the agitation respon-
sible for the van-der-Waals-gravitational force between free
particles, and the free-particle-PV force mc2=r.

4 Maxwell and Lorentz

The previous two sections argue that curvature distortions
(mass distortions) of the PV are responsible for the curva-
ture force mc2=r and the equations of GR. This section ar-
gues that polarization distortions of the PV by free charge
are responsible for the Maxwell equations and, by inference,
the Lorentz transformation. These ends are accomplished by
using the bare Coulomb field of a free charge in uniform mo-
tion, a feedback mechanism intrinsic to the PV [10], and the
Galilean transformation; to derive the relativistic electric and
magnetic fields of a uniformly moving charge.

The bare Coulomb field e�r=r3 intrinsic to a free bare
charge e� polarizes the PV, producing the Coulomb field

E0 =
er
r3 =

e
e�

e�r
r3 = �1=2 e�r

r3 =
e�r
�0 r3 (18)

observed in the laboratory, and creating the effective dielec-
tric constant �0 (� e�=e = 1=

p
�) viewed from the perspec-

tive of the bare charge, where � is the fine structure constant.
In terms of the fixed field point (x; y; z) and a charge trav-
eling in the positive z-direction at a uniform velocity v, the
observed field can be expressed as

E0 =
e [xbx + yby + (z � v t)bz ]
[x2 + y2 + (z � v t)2]3=2

; (19)

where the charge is at the laboratory-frame origin (0; 0; 0) at
time t= 0. This expression assumes that the space-time trans-
formation between the charge- and laboratory-coordinate
frames is Galilean.

The observed field produces an effective dipole at each
field point. When the charge moves through the vacuum, the
dipole rotates about the field point and creates an effective
current circulating about that point. The circulating current,
in turn, produces the magnetic induction field�

B1 = �� �E0 =
e� (z � v t)

r3 �� ; (20)

where � = v=c, �� = � bz, �� is the azimuthal unit vector, and
r2 = x2 + y2 + (z � vt)2 is the squared radius vector r � r
from the charge to the field point. The field B1 is the first-step
magnetic field caused by the bare charge distortion of the PV.

An iterative feedback process is assumed to take place
within the PV that enhances the original electric field E0.
This process is mathematically described by the following
two equations [10]:

r�En = �1
c
@Bn

@t
(21)

and
Bn+1 = �� �En ; (22)

where n (= 1; 2; 3 : : :) indicates the successive partial elec-
tric fields En generated by the PV and added to the original
field E0. The successive magnetic fields are given by (22).
Equation (21) is recognized as the Faraday equation.

The calculation of the final electric field E, which is the
infinite sum of E0 and the remaining particle fields En, is
conducted in spherical polar coordinates and leads to [10]

E =
(1� �)Ec�

1� �2 sin2�
�3=2 ; (23)

where � is the infinite sum of integration constants that comes
from the infinity of integrations of (21) to obtain the En, and
� is the polar angle between the positive z-direction and the
radius vector from the charge to the field point. The field Ec is
the observed static field of the charge, i.e. equation (19) with
v = 0. The final magnetic field is obtained from B = ���E.
�The polarization vector P = �eE0 = (�0 � 1)E0=4� rotating about

a field point in the PV produces an effective current proportional to � sin �
which leads to the magnetic induction field B1 = �� �E0.
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Finally, the constant � can be evaluated from the conser-
vation of electric flux [10] (the second of the following equa-
tions) which follows from Gauss’ law and the conservation of
bare charge e� (the first equation):Z

D � dS = 4�e� �!
Z

E � dS = 4�e (24)

where dS is taken over any closed Gaussian surface sur-
rounding the bare charge, and where D = �0E = (e�=e)E
is used to bridge the arrow. Inserting (23) into the second
equation of (24) and integrating yields

� = �2 (25)

which, inserted back into (23), leads to the relativistic elec-
tric field of a uniformly moving charge [7]. The relativistic
magnetic field is B = �� � E. The conservation of electric
flux expressed by the second equation of (24) is assumed as a
postulate in [10]. The first equation shows that the postulate
follows from Gauss’ law and the conservation of bare charge.

The relativistic field equations E and B for a uniformly
moving charge are derived above from the Coulomb field
e�r=r3 of the bare charge in (18), an assumed PV feedback
dynamic given by (21) and (22), and the Galilean transforma-
tion. Of course, the relativistic equations can also be derived
[7] from the Coulomb field er=r3 (where r2 = x2 +y2 + z2)
of the observed electronic charge e at rest in its own coordi-
nate system, and the Lorentz transformation. It follows, then,
that the Lorentz transformation is a mathematical shortcut for
calculating the relativistic fields from the observed charge e
(= e�

p
�) without having to account directly for the polar-

izable PV and its internal feedback dynamic. Furthermore, it
can be argued that the constancy of the speed of light c from
Lorentz frame to Lorentz frame, which can be deduced from
the resulting Lorentz transformation, is due to the presence of
the PV in the photon’s line of travel.

If there were no polarizable vacuum, there would be
no rotating dipole moments at the field points (x; y; z); and
hence, there would be no magnetic field. A cursory exam-
ination of the free-space Maxwell equations [7] in the case
where the magnetic field B vanishes shows that the equations
reduce to r � E = 4���, and to the equation of continuity
between e� and its current density. Thus it can be argued that
the Maxwell equations owe their existence to the polariz-
able PV.

5 Electromagnetic vacuum

The EV is the photon part of the QV mentioned at the begin-
ning of the Introduction, i.e. the virtual photons that quickly
appear and dissappear in space. This section argues that the
EV has its origin in the PV.

The virtual photons of the EV lead to the ZP electric field
(see [9] for detail)

Ezp(r; t) = Re
2X

�=1

Z
d
k

Z kc�

0
dk k2 be� fAkg�

� exp [i (k � r� !t+ �)]
(26)

the spectrum of which Sakharov [11] has argued must have an
upper cutoff wavenumber kc� that is related to the “heaviest
particles existing in nature”. In the present context, the heav-
iest particles existing in nature are clearly PPs. Puthoff [9,12]
has calculated the wavenumber to be kc�=

p
�c3=~G, which

can be expressed as kc�=
p
�=r� by substituting the con-

stants ~= e2�=c and G= e2�=m2� and using the PP Compton
relation. The cutoff wave number is characteristic of the min-
imum length r�, the Compton radius of the PP, associated
with the PV.

The amplitude factor in (26) is [9]

Ak =
�
~!
2�2

�1=2
= e�

�
k

2�2

�1=2
; (27)

where ~ = e2�=c and k = !=c are used to obtain the sec-
ond expression. This result implies that bare charges are the
source of the ZP field, for if e� were zero, the amplitude fac-
tor would vanish and there would be no field. It is reasonable
to assume that these bare charges reside in the PV.

Equation (26) can be expressed in the more reveal-
ing form

Ezp(r; t) =
��

2

�1=2 e�
r2�

Izp(r; t) ; (28)

where Izp is a random variable of zero mean and unity mean
square; so the factor multiplying Izp in (28) is the root-mean-
square ZP field. Since m�c2=r3� is roughly the energy density
of the PV, the ZP field can be related to the PV energy density
through the following sequence of equations:

m�c2
r3�

=
e2�=r�
r3�

=
�
e�
r2�

�2

� hE2
zpi ; (29)

where the PP Compton relation is used to derive the sec-
ond ratio, and the final approximation comes from the mean
square of (28). The energy density of the PV, then, appears to
be intimately related to the ZP field. So, along with the kc�
and the Ak from above, it is reasonable to conclude that the
PV is the source of the EV.

6 Quantum theory

A charged particle exerts two distortion forces on the collec-
tion of PPs constituting the PV, the curvature force mc2=r
and the polarization force e2�=r2. Sections 2 and 3 examine
the PV response to the curvature force, and Section 4 the re-
sponse to the polarization force. This section examines the
PV response to both forces acting simultaneously, and shows
that the combination of forces leads to the quantum theory.

The equality of the two force magnitudes
mc2

r
=
e2�
r2 =) rc =

e2�
mc2

(30)
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at the Compton radius rc of the particle appears to be a funda-
mental property of the particle-PV interaction, wherem is the
particle mass. This derivation of the Compton radius shows
the radius to be a particle-PV property, not a property solely
of the particle.

The vanishing of the force difference e2�=r2
c�mc2=rc = 0

at the Compton radius can be expressed as a vanishing tensor
4-force [7] difference. In the primed rest frame (k0 = 0) of
the particle, where these static forces apply, this force differ-
ence �F 0� is (� = 1; 2; 3; 4)

�F 0� =
�
0; i

�
e2�
r2
c
� mc2

rc

��
= [0; 0; 0; i 0] ; (31)

where i=
p�1. Thus the vanishing of the 4-force compo-

nent �F 04 = 0 in (31) is the source of the Compton radius
in (30) which can be expressed in the form mc2 = e2�=rc =
= (e2�=c)(c=rc) = ~!c, where !c� c=rc =mc2=~ is the Com-
pton frequency associated with the Compton radius rc. As an
aside: the transformation of the force difference (31) to the
laboratory frame using �F� = a���F 0� leads to a �F3 = 0
from which the de Broglie radius (�d=2�), rd� rc=�=
= ~=mv, can be derived.

In what follows it is convenient to define the 4-vector
wavenumber tensor

k� = (k; k4) = (k; i !=c) ; (32)

where k is the ordinary vector wavenumber, and i!=c is the
frequency component of k�. This tensor will be used to derive
the particle-vacuum state function, known traditionally as the
particle wavefunction.

The vanishing of the 4-force component �F 04 from (31) in
the rest frame of the particle leads to the Compton frequency
!c. Thus from (32) applied to the prime frame, and k0= 0,
the equivalent rest-frame wavenumber is k0� = (0; i !c=c).

The laboratory-frame wavenumber, where the particle is
traveling uniformly along the positive z-axis, can be found
from the Lorentz transformation k�=a��k0� [7] leading to

kz = k0z � i� k04 and k4 = i� k0z + k04 ; (33)

where

a�� =

0B@ 1 0 0 0
0 1 0 0
0 0  �i�
0 0 i� 

1CA (34)

is used, �= v=c and 2 = 1=(1��2), and where the x- and
y-components of the wavenumbers vanish in both frames.
With k0z = 0 and k04 = i!c=c, the laboratory-frame wavenum-
ber from (32) and (33) becomes

k� = (0; 0; � !c=c; i!c=c) = (0; 0; p=~; iE=c~) ; (35)

where p=mv andE=mc2 are the relativistic momentum
and energy of the particle. The second parenthesis in (35)

Fig. 1: The flow-diagram traces the particle-vacuum interaction to
the Compton radius rc and the Compton frequency !c. From there,
the corresponding four-vector wavenumber k0� and the Lorentz
transformation lead to the particle-vacuum wavefunction  , the gra-
dient and time derivative of which then yield the momentum and
energy operators, and the quantum mechanics.

is derived from the first parenthesis and !c =mc2=~, from
which kz = p=~ and k4 = iE=c~= i!z=c emerge.

The relativistic momentum p and energy E in kz = p=~
and !z =E=~ characterize the classical particle motion, and
suggest the simple plane-wave

 = A exp [i(kzz � !zt)] = A exp [i(pz � Et)=~] (36)

as a suitable state function to characterize the wave behavior
of the particle-PV system. This laboratory-frame state func-
tion reduces to the state function  = A exp

��imc2t=~� in
the particle rest frame where v = 0. The S(z; t) � pz�Et in
the exponent of (36) are particular solutions (for various non-
vanishing m) of the free-particle, relativistic Hamiltonian-
Jacobi equation [8, p.30] although this fact is not used here
in deriving the state function.

Since �i~r = p and i~(@=@t) =E from (36),
it is clear that the momentum (bp��i~r) and energy
( bE� i~(@=@t)) operators have their origin in the vacuum
perturbation caused by the two forces mc2=r and e2�=r2 as
these two forces are responsible for the wavefunction (36).
Once the operators bp and bE are defined, the quantum me-
chanics follows from the various classical (non-quantum) en-
ergy equations of particle dynamics. A flow-diagram of the
preceding calculations is given in Figure 1.
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The preceding calculations leading from the particle-PV
interaction to the quantum mechanics are straightforward.
Tracing the QFT [12] of the massive particles to the PV is
less clearcut however. Nevertheless, as Section 5 shows the
PV to be the source of the EV, it is easy to conclude that the
PV must also be the source of the massive-particle-vacuum
(MPV) part of the QV, and thus the QFT.

7 Summary and comments

This paper presents a new theory in its initial and specu-
lative stage of development. Sections 2 through 6: show
that the fine structure constant, the gravitational constant, and
the Planck constant come from the PV; derive the free-space
permittivities in terms of the PP parameters, showing that
the free-space vacuum and the PV are one and the same;
show that the previously unexplained force mc2=r is a cur-
vature force that distorts both the PV and the spacetime of
GR, and that GR describes the spacetime aspects of the PV;
show the PV to be the source of the Maxwell equations and
the Lorentz transformation; show that the QV has its origin
in the PV; show that the PV is the source of the Compton
relations (rcmc= ~) and the quantum theory.

The Compton radius rc (= e2�=mc2) is traditionally as-
cribed to the particle, but emerges from the PV theory as
a particle-PV interaction parameter. Inside rc (r < rc) the
polarization force dominates (e2�=r2>mc2=r) the curvature
force, while outside the reverse is true. Both the EV and MPV
parts of the QV are omnipresent, but inside rc the MPV is re-
sponsible for the particle Zitterbewegung [3, p.323] caused
by “exchange scattering” taking place between the particle
and the MPV, resulting in the particle losing its single-particle
identity inside rc.

The development of the PV theory thus far is fairly sim-
ple and transparent. The theory, however, is fundamentally
incomplete as particle spin is not yet included in the model.
Calculations beyond the scope and complexity of those here
are currently underway to correct this deficiency.

Even in its presently incomplete state, the PV theory ap-
pears to offer a fundamental physical explanation for the large
body of mathematical theory that is the vanguard of mod-
ern physics. The predictive ability of the QFT, or the mod-
ern breakthroughs in astrophysics made possible by GR, are
nothing less than spectacular; but while the equations of these
theories point toward a fundamental reality, they fall short
of painting a clear picture of that reality. Most students of
physics, for example, are familiar with the details of the Spe-
cial Theory of Relativity, and a few with the differential tensor
calculus of GR. In both cases, however, the student wonders if
there is a real physical space related to these mathematically-
generated spacetimes, or whether these spacetimes are just
convenient schematic diagrams to help visualize the mathe-
matical artifacts in play. The present paper argues that there

is indeed a real physical space associated with spacetime, and
that space is the free-space PV.
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The quantum vacuum consists of virtual particles randomly appearing and disappearing
in free space. Ordinarily the wavenumber (or frequency) spectrum of the zero-point
fields for these virtual particles is assumed to be unbounded. The unbounded nature
of the spectrum leads in turn to an infinite energy density for the quantum vacuum and
an infinite renormalization mass for the free particle. This paper argues that there is a
more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum
emerges and that the “graininess” of this more fundamental vacuum state truncates the
wavenumber spectrum and leads to a finite energy density and a finite renormalization
mass.

1 Introduction

The quantum vacuum (QV) [1] consists of virtual particles
which are created alone (photons) or in massive particle-
antiparticle pairs, both of which are jumping in and out of
existence within the constraints of the Heisenberg uncertainty
principle (�E�t� ~); i.e., they appear in free space for short
periods of time (�t) depending upon their temporal energy
content (�E) and then disappear. So the QV is an ever-
changing collection of virtual particles which disappear after
their short lifetimes �t to be replaced by new virtual particles
that suffer the same fate, the process continuing ad infinitum.
The photon component of the QV is referred to here as the
electromagnetic vacuum (EV) and the massive-particle com-
ponent as the massive particle vacuum (MPV).

The quantum fields ascribed to the elementary particles
are considered to be the “essential reality” [2] behind the
physical universe; i.e., a set of fields is the fundamental build-
ing block out of which the visible universe is constructed.
For example, the vector potential for the quantized electro-
magnetic field can be expressed as [1, p. 45]

A(r; t) =
2X
s=1

X
k

�
2�c~
kV

�1=2

�
� [ak;s(t) exp (ik � r) + h:c:] ek;s ;

(1)

where the first sum is over the two polarizations of the field,
k = jkj, V =L3 is the box-normalization volume, ak;s(t) is
the photon annihilation operator, h:c: stands for the Hermitian
conjugate of the first term within the brackets, and ek;s is the
unit polarization vector. This is the quantized vector potential
for the EV component of the QV. The vector potential satisfies
the periodicity conditions

A(x+ L; y + L; z + L; t) = A(x; y; z; t) (2)

or equivalently

k = (kx; ky; kz) = (2�=L)(nx; ny; nz) ; (3)

where the ni can assume any positive or negative integer or
zero. Since the Planck constant ~ is considered to be a pri-
mary constant, the field in (1) is a fundamental field that is
not derivable from some other source (e.g. a collection of
charged particles). This paper argues that ~ is not a primary
constant and thus that there is a more fundamental reality be-
hind the quantum fields.

The most glaring characteristic of the EV (and similarly
the MPV) is that its zero-point (ZP) energy [1, p. 49]

2X
s=1

X
k

~!k
2

= c~
X
k;s

k
2

(4)

is infinite because of the unbounded nature of the k (jkij<1)
in (3). The sum on the right side of the equal sign is an ab-
breviation for the double sum on the left and !k = ck. Using
the well-known replacementX

k;s

�!X
s

�
L
2�

�3 Z
d3k =

V
8�3

X
s

Z
d3k (5)

in (4) leads to the EV energy density

c~
V

X
k;s

k
2

=
c~
2�2

Z 1
0

k3 dk =1 ; (6)

where the infinite upper limit on the integral is due to the
unbounded k in (3).

The present paper does two things: it identifies a charged
vacuum state (the PV [3]) as the source of the QV; and cal-
culates a cutoff wavenumber (based on an earlier indepen-
dent calculation [4]) for the integral in (6). The PV model
is presented in the Section 2. In a stochastic-electrodynamic
(SED) calculation [4] Puthoff derives the particle mass, the
cutoff wavenumber (in terms of the speed of light, the Planck
constant, and Newton’s gravitational constant), and the grav-
itational force. The Puthoff model is reviewed in Section
3 and the resulting cutoff wavenumber changed into a form
more useful to the present needs by substituting derived rela-
tions [3] for the Planck and gravitational constants.
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Section 4 argues that the QV has its source in the PV. It
accomplishes this result by comparing the PV and QV energy
densities. The reader is asked to excuse the course nature of
the comparisons used to make the argument. Section 5 com-
ments on the previous sections and expands the PV theory
somewhat.

The de Broglie radius is derived in Appendix A to assist
in the calculations of Section 4. The derivation is superfi-
cially similar to de Broglie’s original derivation [5], but dif-
fers essentially in interpretation: here the radius arises from
the two-fold perturbation the free particle exerts on the PV.

2 Planck vacuum

The PV [3] is an omnipresent degenerate gas of negative-
energy Planck particles (PP) characterized by the triad
(e�;m�; r�), where e�,m�, and r� (��=2�) are the PP charge,
mass, and Compton radius respectively. The charge e� is the
bare (true) electronic charge common to all charged elemen-
tary particles and is related to the observed electronic charge e
through the fine structure constant � = e2=e2� which is a man-
ifestation of the PV polarizability. The PP mass and Compton
radius are equal to the Planck mass and length respectively. In
addition to the fine structure constant, the particle-PV interac-
tion is the ultimate source of the gravitational (G = e2�=m2�)
and Planck (~ = e2�=c ) constants, and the string of Compton
relations relating the PV and its PPs to the observed elemen-
tary particles and their bare charge e�

r�m�c2 = � � � = rcmc2 = � � � = e2� ; (7)

where the charged elementary particles are characterized by
the triad (e�;m; rc), m and rc being the mass and Compton
radius (�c=2�) of the particle. Particle spin is not yet included
in the theory. The ZP random motion of the PP charges e�
about their equilibrium positions within the PV, and the PV
dynamics, are the source of both the free particles and the QV.

The Compton relations (7) have their origin in the two-
fold perturbation of the PV by the free particle which po-
larizes and “curves” (in a general relativistic sense) the PV.
The particle-PV interaction is such that the polarization force
(e2�=r2) and the curvature force (mc2=r) are equal at the
Compton radius rc [3]:

e2�
r2 =

mc2

r
�! rcmc2 = e2� ; (8)

where the second equation can be expressed in its usual form
rcmc = ~. The requirement that the force equality in (8) hold
in any Lorentz frame leads to the momentum (bp = �i~r)
and energy ( bE = i~@=@t) operators and to the de Broglie
radius (Appendix A). The so-called “wave-particle duality”
of the particle follows from the coupling of the free particle
to the (almost) continuous nature of the PV whose continuum
supports the wave associated with the wave property ascribed
to the particle.

3 Puthoff model

One of the charges in the product e2� terminating the chain
of Compton relations (7) belongs to the free particle while
the other represents the magnitude of the PP charges mak-
ing up the PV. The fact that the bare charge is common to
all the charged elementary particles depicted by (7) suggests
that perhaps e� is massless, and that the mass m in the parti-
cle triad (e�;m; rc) results from some reaction of the charge
to the ZP fields. In a seminal paper [4] Puthoff, in effect, ex-
ploits the idea of a massless charge to derive the particle mass,
the wavenumber kc� truncating the spectrum of the ZP fields,
and the Newtonian gravitational force. This section reviews
Puthoff’s SED calculations and casts them into a form conve-
nient to the present needs. Some minor license is taken by the
present author in the interpretation behind equations (12) and
(13) concerning the constant A.

The Puthoff model starts with a particle equation of mo-
tion (EoM) for the mass m0

m0�r = e�Ezp ; (9)

wherem0, considered to be some function of the actual parti-
cle mass m, is eliminated from (9) by substituting the damp-
ing constant

� =
2e2�

3c3m0
(10)

and the electric dipole moment p = e�r, where r represents
the random excursions of the charge about its average po-
sition at hri = 0. The force driving the particle charge is
e�Ezp, where Ezp is the ZP electric field (B5). Equation (9)
then becomes

�p =
3c3�

2
Ezp ; (11)

which is an EoM for the charge that, from here on, is consid-
ered to be a new equation in two unknowns, � and the cutoff

wavenumber kc�. The mass m of the particle is then defined
via the stochastic kinetic energy of the charge whatever that
may be. A reasonable guess is the kinetic energy of the dis-
carded mass m0

mc2 �
�
m0 _r2

2

�
=



_p2
2
�

3c3�
(12)

realizing that, at best, this choice is only a guide to predicting
what parameters to include in the mass definition. The dipole
variation _p2 is explained below. The simplest definition for
the mass is then

m � 1
c2
A



_p2
2
�

3c3�
; (13)

whereA is a constant to be determined, along with � and kc�,
from a set of three experimental constraints.

The three constraints used to determine the three con-
stants �, kc�, and A are: 1) the observed mass m of the parti-
cle; 2) the perturbed spectral energy density of the EV caused
by radiation due to the random accelerations experienced by
the particle charge e� as it is driven by the random force
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e�Ezp; and 3) Newton’s gravitational attraction between two
particles of mass m.

The dipole moment p in (11) can be readily determined
using the Fourier expansions [6]

p(t) =
Z 1
�1

ep(
) exp (�i
t) d
=(2�)1=2 (14)

and

Ezp(r; t) =
Z 1
�1

eEzp(
) exp (�i
t) d
=(2�)1=2; (15)

where ep(
) and eEzp(
) are the Fourier transforms of the
dipole moment vector p and the field Ezp respectively.

The mass of the particle is defined via the planar motion
of the charge normal to the instantaneous propagation vector
k in (B5) and results in (Appendix B)


_p2
2
�

= 2


(bx � _p)2� =

3~c5�2k2
c�

2�
; (16)

where bx is a unit vector in some arbitrary x-direction and the
factor 2 accounts for the 2-dimensional planar motion. When
the average (16) is inserted into (13), the constant

� =
2�m
A~k2

c�
(17)

emerges in terms of the two as yet unknown constants A
and kc�.

Acceleration of the free bare charge e� by Ezp generates
electric and magnetic fields that perturb the spectral energy
density of the EV with which Ezp is associated. The corre-
sponding average density perturbation is [4]

��0(k) =
~c3�2k
2�2R4 =

2m2c3k
A2~k4

c�R4 ; (18)

where (17) is used to obtain the final expression, and where
R is the radius from the average position of the charge to
the field point of interest. An alternative expression for the
spectral energy perturbation

��(k) =
~k

2�2c3

�
mG
R2

�2

(19)

is calculated [4] from the spacetime properties of an acceler-
ated reference frame undergoing hyperbolic motion, and the
equivalence principle from General Relativity. Since the two
perturbations (18) and (19) must have the same magnitude,
equating the two leads to the cutoff wavenumber

kc� =
�

2�c3

A~G

�1=2
; (20)

where G is Newton’s gravitational constant.
The final unknown constant A in (20) is determined from

the gravitational attraction between two particles of mass m

calculated [4] using their dipole fields and coupled EoMs, re-
sulting in Newton’s gravitational equation

F = �~c3�2k2
c�

�R2 = �2m2G
AR2 ; (21)

where (17) and (20) are used to obtain the final expression.
ClearlyA = 2 for the correct gravitational attraction, yielding
from (20) and (17)

kc� =
�
�c3

~G

�1=2 �
=
�1=2

r�

�
(22)

and

� =
�m
~k2
c�

=
mG
c3

�
=
�
r�
rc

�
r�
c

�
(23)

for the other two constants. The expressions in the brackets
of (22) and (23) are obtained by substituting the PV expres-
sions for the gravitational constant (G= e2�=m2�), the Planck
constant (~= e2�=c), and the Compton relation in (8). The
bracket in (22) shows, as expected, that the cutoff wavenum-
ber in (B5) is proportional to the reciprocal of the Planck
length r� (roughly the distance between the PPs making up
the PV). The bracket in (23) shows the damping constant �
to be very small, orders of magnitude smaller than the Planck
time r�=c. The smallness of this constant is due to the al-
most infinite number (� 1099 per cm3) of agitated PPs in
the PV contributing simultaneously to the ZP field fluctua-
tions.

An aside: zitterbewegung
SED associates the zitterbewegung with the EV [7, p. 396],
i.e. with the ZP electric and magnetic fields. In effect then
SED treats the EV and the MPV as the same vacuum while
the PV model distinguishes between these two vacuum states.
Taking place within the Compton radius rc of the particle, the
particle zitterbewegung can be viewed [1, p. 323] as an “ex-
change scattering” between the free particle and the MPV on
a time scale of about rc=2c, or a frequency around 2c=rc.
The question of how the particle mass derived from the av-
eraging process in (13) can be effected with the charge ap-
pearing and disappearing from the MPV at such a high fre-
quency naturally arises. For this averaging process to work,
the frequency of the averaging must be significantly higher
than the zitterbewegung frequency. This requirement is easily
fulfilled since ckc� � 2c=rc. To see that the averaging fre-
quency is approximately equal to the cutoff frequency ckc�
one needs only consider the details of the average



(bx � _p)2�

in (13) which involves the integral
R kc�

0 k dk � R 1033

0 k dk.
Ninety-nine percent of the averaging takes place within the
last decade of the integral from 1032 to 1033 (the corres-
ponding frequency ck in this range being well beyond the
Compton frequency c=rc of any of the observed elementary
particles), showing that the effective averaging frequency is
close to ckc�.
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4 EV and MPV with truncated spectra

The non-relativistic self force acting on the free charge dis-
cussed in the previous section can be expressed as [1, p. 487]

e�Eself =
2e2�
3c3

d�r
dt
� �r �m (24)

where the radiation reaction force is the first term and the
renormalization mass is

�m =
4e2�

3�c2

Z kc�

0
dk (25)

assumed here to have its wavenumber spectrum truncated at
kc�. An infinite upper limit to the integral corresponds to the
box normalization applied in Section 1 to equation (3) where
jnij<1 is unbounded. However, if the normal mode func-
tions of the ZP quantum field are assumed to be real waves
generated by the collection of PPs within the PV, then the
number of modes ni along the side of the box of length L is
bounded and obeys the inequality jnij6L=2p� r�, where r�
is roughly the separation of the PPs within the PV. Thus the
cutoff wavenumber from the previous section (kc�=

p
�=r�)

that corresponds to this ni replaces the infinite upper limit or-
dinarily assumed for (25). So it is the “graininess” (r� , 0)
associated with the minimum separation r� of the PPs in the
PV that leads to a bounded ki and ni for (3), and which is
thus responsible for the finite renormalization mass (25) and
the finite energy densities calculated below.

Electromagnetic vacuum
Combining (4) and (5) with a spectrum truncated at kc� leads
to the EV energy density [1, p. 49]

c~
V

X
k;s

k
2

=
2c~
8�3

Z
d3k

k
2

=
c~
4�3

Z
d
k

Z kc�

0
dk k2 k

2
=

=
4�c~
4�3

Z kc�

0
dk k2 k

2
=

c~
2�2

k4
c�
4

=
c~
8r4�

=
1
8
e2�=r�
r3�

; (26)

where the 2 in front of the triple integral comes from the sum
over s= 1; 2; and where kc�=

p
�=r� and c~= e2� are used

to obtain the final two expressions. If the energy density of
the PV (excluding the stochastic kinetic energy of its PPs) is
assumed to be roughly half electromagnetic energy (� e2�=r�)
and half mass energy (� m�c2), then

e2�=r� +m�c2
r3�

= 2
e2�=r�
r3�

(27)

is a rough estimate of this energy density. Thus the energy
density (26) of the EV (the virtual-photon component of the
QV) is at most one sixteenth (1=16) the energy density (27)
of the PV. Although this estimate leaves much to be desired,
it at least shows the EV energy density to be less than the PV
energy density which must be the case if the PV is the source
of the EV.

Massive particle vacuum
The energy density of the ZP Klein-Gordon field is [1, p. 342]

h0jHj0i
V

=
1

2V

Z
d3kEk �3(0) =

=
�3(0)
2V

Z
d
k

Z kc�

0
dk k2Ek =

1
4�2

Z kc�

0
k2Ek dk =

=
e2�

4�2

Z kc�

0
k2 �k2

c + k2�1=2 dk ; (28)

where �3(0) =V=8�3 is used to eliminate �3(0) and Ek =
= e2�

p
k2
c + k2 comes from (A5). Equation (28) leads to

h0jHj0i
V

=
e2�kc
4�2

Z kc�

0
k2
�

1 +
�
k
kc

�2 �1=2

dk =

=
e2�=rc
4�2

Z kc�

0
k2
h

1 + (rck)2
i1=2

dk =

=
e2�=rc
4�2r3

c

Z rckc�

0
x2(1 + x2)1=2dx =

=
1
16

e2�=r�
r3�

�
1 +

r2�
�r2

c
+ � � �

�
� 1

16
e2�=r�
r3�

; (29)

where kc = 1=rc is used in the first line. The final integral is
easily integrated [8] and leads to the expansion in the second-
to-last expression. The final expression follows from the fact
that the second (r2�=�r2

c � 10�40) and higher-order terms in
the expansion are vanishingly small (the ratio r�=rc� 10�20

is used as a rough average for the ratio of the Compton radii of
the PP and the observed elementary particles). So the energy
density in (29) is one thirty-second (1=32) of the PV energy
density in (27).

The k2 term under the radical sign in (28) corresponds to
the squared momentum of the massive virtual particles con-
tributing to the average vacuum density described by (28).
The second term in the large parenthesis of (29) is approx-
imately the relative contribution of the virtual-particle mass
to the overall energy density as compared to the coefficient in
front of the parenthesis which represents the energy density of
the virtual-particle kinetic energy. Thus the kinetic energy of
the virtual particles in the MPV dominates their mass energy
by a factor of about 1040.

5 Conclusion and comments

The conclusion that the PV is the source of the quantum fields
is based on the fact that ~ (= e2�=c) is a secondary con-
stant, where one of the e�s in the product e2� is the particle
charge and the other is the charge on the PPs making up the
PV; and that the amplitude factor Ak in the ZP electric field
(B5) is proportional to the charge on the PPs in the PV. The
ubiquitous nature of ~!= e2�k in the quantum field equations,
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whether k is an electromagnetic wavenumber or a de Broglie
wavenumber, further supports the conclusion.

The Compton relations (7) and the Puthoff model in Sec-
tion 3 both suggest that the particle charge e� is massless.
To be self-consistent and consistent with the Puthoff model,
the PV model for the Compton relations must assume that
the Compton radius rc = rc(m) = e2�=mc2 is larger than the
structural extent of the particle and the random excursions of
the charge leading to the mass (13).

The PV theory has progressed to this point without ad-
dressing particle spin — its success without spin suggesting
perhaps that spin is an acquired, rather than an intrinsic, prop-
erty of the particle. A circularly polarized ZP electric field
may, in addition to generating the mass in (13), generate an
effective spin in the particle. This conclusion follows from a
SED spin model [7, p. 261] that uses a circularly polarized ZP
field in the modeling process — in order to avoid too much
speculation though, one question left unexplored in this spin
model is how the ZP field acquires the circular polarization
needed to drive the particle’s spin. Perhaps the ZP field ac-
quires its circular polarization when the magnetic field prob-
ing the particle (a laboratory field or the field of an atomic
nucleus) induces a circulation within the otherwise random
motion of the PP charges in the PV, these charges then feed-
ing a circular polarization back into the ZP electric field Ezp
of the EV, thus leading to the particle spin.

Appendix A de Broglie radius

A charged particle exerts two distorting forces on the collection of
PPs constituting the PV [3], the polarization force e2�=r2 and the cur-
vature force mc2=r. The equality of the two force magnitudes at the
Compton radius rc in (8) is assumed to be a fundamental property
of the particle-PV interaction. The vanishing of the force difference
e2�=r2

c � mc2=rc = 0 at the Compton radius can be expressed as
a vanishing tensor 4-force [9] difference. In the primed rest frame
of the particle where these static forces apply, this force difference
�F 0� is (� = 1; 2; 3; 4)

�F 0� =
�
0; i

�
e2�
r2
c
� mc2

rc

��
= [ 0; 0; 0; i 0 ] ; (A1)

where i=
p�1 . Thus the vanishing of the 4-force component

�F 04 = 0 in (A1) is the source of the Compton relation in (8) which
can be expressed in the form mc2 = e2�=rc = (e2�=c)(c=rc) = ~!c ,
where !c � c=rc =mc2=~ is the Compton frequency corresponding
to the Compton radius rc .

The 4-force difference in the laboratory frame, that is �F� =
= a���F 0� = 0�, follows from its tensor nature and the Lorentz
transformation x� = a�� x0� [9], where x� = (x; y; z; ict) ,

a�� =

0B@ 1 0 0 0
0 1 0 0
0 0  � i� 
0 0 i�  

1CA (A2)

and �; � = 1; 2; 3; 4 . Thus (A1) becomes

�F� =
�

0; 0; �
�
e2�
r2
c
� mc2

rc

�
; i

�
e2�
r2
c
� mc2

rc

��
=

=
�

0; 0;
�

e2�
�r2

d
� mc2

rd

�
; i
�
e2�
r2
L
� mc2

rL

��
=

= [ 0; 0; 0; i0 ]

(A3)

in the laboratory frame. The equation �F3 = 0 from the final two
brackets yields the de Broglie relation

p =
e2�=c
rd

= ~

rd
= ~kd (A4)

where p = mv is the relativistic particle momentum, rd � rc=�
is the de Broglie radius, and kd = 1=rd is the de Broglie wave-
number.

Using (8) and (A4), the relativistic particle energy can be ex-
pressed as

Ekd =
�
m2c4 + c2p2�1=2 =

=
�
e4�k2

c + c2~2k2
d
�1=2 = e2�

�
k2
c + k2

d
�1=2 ; (A5)

where mc2 = e2�=rc, kc = 1=rc, and c~ = e2� are used to obtain
the final two expressions.

The equation �F4 = 0 from (A3) leads to the relation p= ~=rL,
where rL� rc= is the length-contracted rc in the ict direction.
The Synge primitive quantization of flat spacetime [10] is equiva-
lent to the force-difference transformation in (A3): the ray trajec-
tory of the particle in spacetime is divided (quantized) into equal
lengths of magnitude �c = 2�rc (this projects back on the “ict”
axis as �L = 2�rL); and the de Broglie wavelength calculated from
the corresponding spacetime geometry. Thus the development in
the previous paragraphs provides a physical explanation for Synge’s
spacetime quantization in terms of the two perturbations e2�=r2 and
mc2=r the free particle exerts on the PV.

Appendix B Charge EoM with the self force

Combining (24) and (25) leads to the charge’s self force

e�Eself = 2e2�
3c3
�d�r
dt
� !0��r

�
(B1)

with !0� � 2c=
p
� r�. Adding (B1) to the right side of (9) then

yields the x-component of the charge’s acceleration corresponding
to (11):

�x = �
�d�x
dt
� !0��x

�
+ 3c3�

2e�
bx �Ezp (B2)

which can be solved by the Fourier expansions

x(t) =
Z 1

�1
ex(
) exp (�i
t) d
=(2�)1=2 (B3)

and

Ex(r; t) =
Z 1

�1
eEx(
) exp (�i
t) d
=(2�)1=2 (B4)

whereEx � bx �Ezp, and where the ZP electric field Ezp is assumed
to have an upper cutoff wavenumber kc� [3, 4]:

Ezp(r; t) = Re
2X

�=1

Z
d
k

Z kc�

0
dk k2 be�(k)Ak�

� exp
�
i (k � r� !t+ ��(k))

�
;

(B5)
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where Re stands for “real part of”; the sum is over the two trans-
verse polarizations of the random field; the first integral is over the
solid angle in k-space; be� is the unit polarization vector; Ak =
=
p
~!=2�2 = e�

p
k=2�2 is the amplitude factor which is pro-

portional to the bare charge e� of the PPs in the PV; != ck; and ��

is the random phase that gives Ezp its stochastic character.
The inverse Fourier transform of Ex from (B4) works out to be

eEx(
) =
��

2

�1=2 2X
�=1

Z
d
k

Z kc�

0
dk k2 bx � be�(k)Ak�

���(
� !) exp [ i (k � r + ��(k))] +

+ �(
 + !) exp [�i (k � r + ��(k))]
	 (B6)

in a straightforward manner, where �(
�!) and �(
+!) are Dirac
delta functions. Equation (B6) is easily checked by inserting it into
(B4) and comparing the result with bx �Ezp from (B5).

Calculating �x and d�x=dt from (B3) and inserting the results,
along with (B4), into (B2) leads to the inverse transform

ex(
) = �
�
3c3�=2e�

� eEx(
)
(1 + �!0�)
2 + i�
3 (B7)

for x(t). Then inserting (B7) into (B3) yields

x(t) = �
�

3c3�
2e�

�
Re

2X
�=1

Z
d
k
Z kc�

0
dk k2 bx � be�(k)Ak�

� exp [ i (k � r� !t+ ��(k))]
(1 + �!0�)!2 + i�!3

(B8)

for the random excursions of the charge.
Differentiating (B8) with respect to time while discarding the

small � terms in the denominator leads to the approximation

_x(t) =
�

3c3�
2e�

�
Re

2X
�=1

Z
d3k bx � be�(k)�

� Ak i! exp [ i (k � r� !t+ ��(k))]
!2

(B9)

for the x-directed velocity, from which the dipole average (16)

_p2
2
�

= 2


(bx � _p)2� = 2e2�



_x2(t)

�
= 3~c5�2k2

c�
2�

(16)

follows, where e2� = c~ is used to eliminate e2�, andZ
d3k =

Z
d
k

Z kc�

0
dk k2 (B10)

is used to expand the triple integral during the calculation.
Differentiating (B8) twice with respect to the time leads to the

dipole acceleration that includes the charge’s self force:

�p = 3
2

�r�
rc

�2
rcc2 Re

2X
�=1

Z
d
k

Z kc�

0
dk k2 be�(k)�

� Ak exp [ i (k � r� !t+ ��(k))]
1 + �!0� + i�ck

;

(B11)

which differs from (11) only in denominator on the right side of
(B11). The last two terms in the denominator are orders of magni-

tude smaller than one: �!0� < r�=rc � 10�20 and �ck < �ckc� =p
� r�=rc � 10�20. Thus the charge’s self force is not a significant

consideration in the definition (13) of the particle’s mass.

Submitted on September 22, 2008 / Accepted on September 30, 2008

References

1. Milonni P.W. The quantum vacuum — an introduction to Quan-
tum Electrodynamics. Academic Press, New York, 1994.

2. Weinberg S. The search for unity — notes for a history of Quan-
tum Field Theory. Daedalus, v. 106, 1977, 17.

3. Daywitt W.C. The planck vacuum. Progress in Physics, 2009,
Jan., v. 1, 20.

4. Puthoff H.E. Gravity as a zero-point-fluctuation force. Phys.
Rev. A, 1989, v. 39, no. 5, 2333–2342.

5. de Broglie L. Une tentative d’interprétation causale et non
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A unified model of gravitation and electromagnetism is extended to derive the Yukawa
potential for the strong force. The model satisfies the fundamental characteristics of the
strong force and calculates the mass of the pion.

1 Introduction

A unified theory of interaction, as it is generally understood,
implies a description of the four fundamental forces — gravi-
tation, electromagnetism, the strong interaction and the weak
force — in terms of a single mathematical formulation. It has
been shown [1–3] that a unified model of gravitation and elec-
tromagnetism can be derived by starting from a Lagrangian
for gravitation,

L = �m0(c2 + v2) expR=r ; (1)
where

m0 = gravitational rest mass of a test body mov-
ing at velocity v in the vicinity of a mas-
sive, central body of mass M ,

 = 1=
p

1� v2=c2 ,

R = 2GM=c2 is the Schwarzschild radius of the
central body.

This Lagrangian characterizes the dynamics of a system.
Applying the canonical equations of motion, the follow-

ing conservation equations follow:

E = mc2eR=r = total energy = constant ; (2)
L2 � M2e2R=r = constant; (3)
Lz � MzeR=r = eR=rm0r2 sin2� _�; (4)

= z component of L = constant;

where m = m0=2 and

M = (r�m0v) (5)

is the total angular momentum of the test body.
The kinematics of the system is determined by assuming

the local and instantaneous validity of special relativity (SR).
This leads to a Lagrangian characterizing the kinematics of
the system,

L = � em0c2
p

1� v2=c2 exp(re=r) : (6)

giving the following conservation equations:

Ee = emc2ere=r = constant; (7)
L2 � M2 exp(2re=r) = constant; (8)
Lz � Mz exp(re=r) = constant; (9)

where
re = R=2 ; (10)em =  em0 ; (11)

M = r� emv : (12)

For the hydrogen atom, R = Schwarzschild radius of the
proton, re = classical electron radius = R=2 = � e2= em0c2,
while em0 is the relativistic or kinematical rest mass of the
electron and M is the total angular momentum of the orbiting
electron.

We also note that

Ee = eEere=r ; (13)

where eE = emc2 is the total relativistic energy.
The common factor between the gravitational and electro-

magnetic interactions is the radius constant, R = 2re. These
two radii are related in terms of electromagnetic masses em
by Np � 1040, one of the numbers of Dirac’s Large Number
Hypothesis (LNH).

2 Basic properties of nuclear interaction

Any theory of the strong interaction must satisfy certain basic
properties of the force. They are:

(1) the force is charge independent,
(2) it only acts over a range � 10�13 cm,
(3) the form of its potential is

� Q2

r
exp(�r=rq) ;

(4) where the coupling constant Q2=~c � 1–15,
(5) rq is related to the mass of a pion by rq � h=m�c.

The above items describe the fundamental properties of the
strong force and we shall limit ourselves to showing how
these are accommodated in our model.

3 Derivation of an energy relation for the strong inter-
action

The energy equation (2) can be rearranged in a unique form
for r � R as follows:
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E = mc2 exp(R=r) ;

� mc2(1 +R=r) ;

= mc2(r=R+ 1)R=r ;

� mc2R=r exp(r=R) : (14)

The mathematical condition for the approximate equality
of (2) and (14) is found by equating the two equations:

exp(R=r) � R=r exp(r=R)

) R=r � exp
�
(R2 � r2)=rR

�
: (15)

The approximate equality of the two exponential forms
therefore holds uniquely for r2 � R2.

Repeating the above procedure for the electromagnetic
energy (7) we find

Ee � emc2re=r exp(r=re) : (16)

We rewrite the classical electron radius re aseme0c2 = � e2=re ; (17)

where we now write eme0 for the electromagnetic rest mass of
the electron.

Substituting (17) in (16) gives

E � � emc2� e2eme0c2

�
1
r

exp
�
r=(�e2= eme0c2)

�
: (18)

Defining
rq = jre j ; (19)

(18) can be written as

E � � emc2 rq
r

exp(�r=rq) (20)

= � Q2

r
exp(�r=rq) ; (21)

where Q2 is defined as

Q2 = emc2rq = eErq : (22)

Eq.(21) has the form of the Yukawa potential. The corre-
sponding gravitational form is given by (14).

3.1 Model for the strong interaction

It was seen that a Yukawa-type potential exists at r = R for
gravitational interaction as well as at r = re = R=2 for elec-
tromagnetic interaction. The two related energy equations
are respectively (14) and (16). Since our model postulates
the concurrent action of gravitation and electromagnetism we
have to find a model for the nuclear force that reconciles both
these equations simultaneously.

&%

'$

&%

'$
i ip p

-¾ R

¢
¢̧rq
tmq

Fig. 1: Model of a deuteron. Two protons are separated at a distance
R from each other. A particle of mass emq and charge �e moves in
a figure eight pattern alternatively about each of them at a radius of
r = rq = jrej from each proton.

Consider the model of a deuteron depicted in Figure 1.
The two protons are bound by a gravitational force ac-

cording to the energy given by (2). Each proton moves in
the gravitational field of the other, with the total kinetic en-
ergy expressed in terms of their reduced mass. The form of
this energy is not relevant at this stage. At the same time, a
charged particle of mass emq moves at a radius of r = rq al-
ternately about each proton, causing alternative conversions
from proton to neutron and vice-versa. Only this hybrid form
simultaneously and uniquely satisfies both the conditions for
the two Yukawa-type potentials. This is possible, as can be
seen from Figure 1, because R = 2rq:

We provisionally call the charged, orbiting particle a q-
particle.

3.2 Determination of the mass emq

The mass emq cannot be determined independently without
using some boundary condition. For gravitation, the New-
tonian form in the weak-field limit was used, and for electro-
magnetism the condition for bound motion was applied. Both
conditions are derived from observation. In this case we ap-
ply the experimental value for Q2 and assume

Q2

~c
� 1 : (23)

The q particle orbiting the protons spends half of its pe-
riod about each proton. In considering the proton-q particle
electromagnetic interaction, we must therefore assume that
the mass emq is spread over both protons. Its electromagnetic
energy eE is therefore equal to emqc2=2 for a single proton-q
particle interaction.

Applying this condition to (22) and using (17) we get

Q2 = eErq ;
=

1
2
emqc2

e2eme0c2
;

=
emq�~c
2 eme0

; (24)

where � = e2=~c is the fine-structure constant.
The condition Q2=~c= 1 then yieldsemq =

2 eme0

�
: (25)

34 Pieter Wagener. A Unified Theory of Interaction: Gravitation, Electrodynamics and the Strong Force



January, 2009 PROGRESS IN PHYSICS Volume 1

The mass emq is therefore equal to the mass of the ��
meson, namely emq = 274 eme0 = em� : (26)

We henceforth refer to the q particle as the �� meson or
pion, and use em� for emq , and em0 for eme0.

3.3 Comparison with characteristics of the strong inter-
action

In Section 2 we listed the characteristics of the strong interac-
tion. Comparing these with the results of our model we find:

1. The attractive force between the nucleons is gravita-
tional and therefore charge independent. It must be re-
membered that the gravitational force acts on the gravi-
tational masses of the protons, which are reduced to the
magnitude of the electromagnetic masses by the LNH
factor;

2. The strong interaction appears in its unique form at r=
=R= 2rq � 10�13 cm;

3. The Yukawa potential is given by (21);
4. The value of the coupling constant had to be assumed

to calculate the mass of the orbiting particle;
5. The expression for rq follows from (17), (25) and
� = e2=~c:

rq =
e2em0c2

=
2e2

� em�c2
=

2~em�c
: (27)

4 Discussion

The above derivations are in accord with Yukawa’s model of
nucleon interaction through the exchange of mesons. Eq.(21)
confirms the experimental result that nuclear forces only act
in the region r � rq � 10�13 cm. Conversely, forces that only
manifest in this region are describable by the Yukawa poten-
tial, which is a unique form for both the gravitational and
electrodynamic energy equations in this region. In terms of
our unified model it implies that nuclear forces only appear
different from the gravitational force because experimental
observations at 10�13 cm confirm the form of the Yukawa
potential.

One of the main obstacles to the unification of gravity and
the strong force has been the large difference in their coupling
constants. The foregoing derivations overcomes this difficulty
by the special form of the energy equations at distances close
to the Schwarzschild radius.

Since the strong force appears to be a special form of
gravity at small distances it explains why the strong force,
like gravity, is attractive. The occurrence of repulsion at the
core of the nucleus is presently little understood and if this
is to be explained in terms of our model one would have to
look at the form of the general energy equation in the re-
gion r < rq .

It was previously shown [2, 3] how gravitational and
electromagnetic energies could respectively be expressed as
a power series in R=r or re=r. However, the form of (21)
shows that this cannot be done for the energy arising from
nuclear forces since r � rq:

Our analysis of the three fundamental forces shows that
the forces are all manifestations of one fundamental force,
manifesting as universal gravitation. Electrodynamics arises
as a kinematical effect and the nuclear force as a particular
form at a distance equal to the classical electron radius. The
weak force is not yet accommodated in this model, but anal-
ogously it is expected to be described by the energies of (2)
and (7) in the region r < R.
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The assumption that elementary particles with nonzero rest mass consist of relativis-
tic constituents moving with constant energy pc results in a logarithmic potential and
exponential expression for particle masses. This approach is put to a test by assigning
each elementary particles mass a position on a logarithmic spiral. Particles then accu-
mulate on straight lines. It is discussed if this might be an indication for exponential
mass quantization.

1 Introduction

The approach of fitting parts of elementary particle mass
spectra involving logarithmic potentials has been subject to
research in the past decades. In this paper the simple assump-
tion of relativistic constituents moving with constant energy
pc in a logarithmic potential is discussed. A similar approach
has already been presented in one of the early papers by
Y. Muraki et al. [1], where the additional assumption of cir-
cular quantized orbits results in an empiric logarithmic mass
function with accurate fits for several meson resonance states.

Besides the basic assumption of constant energy pc of the
constituents and a resulting logarithmic potential, however,
the physical approach in this paper differs and results in an
exponential mass function with elementary particle masses
proportional to �n, where n are integers. � is a constant factor
derived and thus not empirical chosen to fit particle masses.

The mass function results in points on a logarithmic spi-
ral lining up under a polar angle ' and being separated by
the factor �. Elementary particle masses following this ex-
ponential quantization thus would, when placed on the spiral,
be found on straight lines. Even slight changes of the value
� would change the particle distribution on the spiral signif-
icantly. Linear distributions for particle masses on the spiral
thus would give hints if the logarithmic potential is an ap-
proach worth being further investigated to explain the wide
range of elementary particle masses.

2 Physical approach

Elementary particles with mass m consist of confined con-
stituent particles, which are moving with constant energy pc
within a sphere of radius R. For this derivation it is not es-
sential to define further properties of the constituents, e.g. if
they are rotating strings or particles in circular orbits.

The only assumption made is that the force F needed
to counteract a supposed centrifugal force FZ / c2=R act-
ing on each constituent is equal or proportional to pc=R, thus
F =FZ = a1=R, regardless of the origin of the interaction.

The potential energy needed to confine a constituent there-
fore is

E =
Z
a1

R
dR = a1

Z
1
R
dR = a1 ln

R
Ra

; (2a)

where Ra is the integration constant and a1 a parameter to be
referred to later. The center of mass of the elementary particle
as seen from the outside and thus the mass that is assigned to
the system is

m =
~

cR
: (2b)

The logarithmic potential energy in Eq. (2a) is assumed to
be proportional to m=R, yielding

E =
a2m
R

: (2c)

Both parameters a1 and a2 are supposed not to be a func-
tion of R, but to depend on constituent particle properties and
coupling constants, resp. For example, a1=a2 could be set
equal c2= ( is the gravitational constant), but such a con-
straint is not required. Insertingm from Eq. (2b) into Eq. (2c)
yields

E = a2
~

cR2 : (2d)

The angular momentum of the system is assumed to be an
integer multiple n of ~, with a ground state of radius R0.

En = a2
~

cR2
n

= a2
(n+ 1)~
cR2

0
; n = 0; 1; 2 : : : (2e)

From Eq. (2a) and Eq. (2e) it follows that

ln
Ra
Rn

= �(n+ 1)
R2
a

R2
0

with Ra =
�
a2~

a1c

�1
2

; (2f)

assigning the integration constant Ra a value. For n= 0 the
value for Rn is set to R0, allowing to calculate the ratio
Ra=R0 using Eq. (2f)

x = e�x2
with x =

Ra
R0

;

and with defining �= 1=x resulting in

� = 1:53158: (2g)
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Fig. 1: The masses of elementary particles placed on the spiral and listed for each resulting sequence starting from the center. The solid
lines are seperated by 45�. The red dot in the center is the electron at 0�. The outer limit of the spiral at 135� is about 2 GeV. Particles
allocated on a sequence, but with masses too large for this scale are marked red in the attached listings of sequence particles. The top for
example is far outside on S6 at 317�.

Since ln�= 1=�2 it follows that

Rn = Rae(n+1) ln� : (2h)

With Eq. (2b) and Eq. (2f) Ra can be written as

Ra = R0� ; (2i)
where

R0 =
~

m0c
with � = m0

�
a2c
a1~

�1
2

and inserting Ra into Eq. (2h) yields

Rn = R0ek'n where k =
1

2�
ln� ; (2j)

and
'n = 2�(n+ 1) + 's and 's = 2�

ln�
ln�

:

Eq. (2j) applies to particle masses by inserting Rn into
Eq. (2b). Thus with

mn =
~

Rnc
and m0 =

~

R0c
it follows that

mn = m0ek'n : (2k)

In Eq. (2k) �k is substituted by k, which just determines
to start with m0 as the smallest instead of the biggest mass
and thus turning the spiral from the inside to the outside in-
stead vice versa. This has no influence on the results. mn are
elementary particle masses and points on a logarithmic spiral
lining up at an angle 's as defined in Eq. (2j). These points
are referred to as a particle sequence S('s). The angle 's
should not be the same for all elementary particles since it is
a function of the parameters a1 and a2.

To determine whether elementary particle masses tend to
line up in sequences first of all a logarithmic spiral

m(') = m0ek'

with continues values for ' is calculated. m0 is the initial
mass and thus starting point of the spiral at '= 0. The start-
ing point m0 =m('= 0) is set so that as a result the electron
is placed at the angle '= 0.

One turn of the spiralm(')!m('+2�) corresponds to
multiplyingm(') by �, yieldingm(')�=m('+2�). Spiral
points lining up at the same polar angle ' differ by a factor �.

In a second step for each elementary particle mass pro-
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Fig. 2: Additional sequences shown within a mass range of 6.5 GeV. See Fig. 1 for listings of S1-S6.

Fig. 3: At a mass range of 175 GeV the Z and top align with S3 and S6, resp., as listed in Fig. 1.
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vided by the PDG table 2004 [2, 3] the resulting angle 's in
the logarithmic spiral is calculated using Eq. (2k) with m0 as
the electron mass and 's as defined in Eq. (2j). This results
in polar coordinates (mn; 's) and thus a point on the spiral
for each elementary particle.

After all elementary particles are entered as points into the
spiral it is analyzed if sequences S('s), thus particle masses
mn lining up in the spiral in the same direction 's are found.

3 Results

The results for particle sequences are shown step by step for
mass ranges from 2 GeV to 175 GeV to provide a clear over-
view. Elementary particles which are part of a sequence, but
out of the shown mass range and thus not displayed as red
dots in the spiral are marked red in the list of sequence parti-
cles, which is attached to each sequence.

All allocations of elementary particle masses to sequences
are accurate within at least �m=m= 4�10�3. All sequence
positions are fitted and accurate within 's� 0; 5�.

Fig. 1 shows the results within a mass range of 2 GeV
from the center to the outer limit of the spiral. The position
of the electron is set to 0� as the starting point of the spiral,
the muon then is found to be at 182�. Also on these sequences
are the phi (1680) and the K* (892), resp.

The K+, tau, psi (4160) and B (c) are at 45�. The proton,
N (1440) and N (2190) opposite at 225�. The eta, f (1)(1285),
D (s), Upsilon (10860), Z-boson are at 132� and the
Delta (1600), Sigma (c)(2455) and the top opposite at 317�,
resp. Calculating the Planck mass with mpl = (~c=)1=2 re-
sults in a position on sequence S6.

In Fig. 2 additional sequences within a mass range of
6.5 GeV are shown, e.g. the pi+, rho (770), pi (1800) and
chi (b2)(1P) are aligned at S (58�).

Also the f (0)(980), f (1)(1500), f (2)(2300), chi (b2)(1P)
and B (s) are aligned precisely in a sequence at 260�. The
f (2)(1525) and f (2)(2340) align at 278�.

Other sequences are as follows, at 150� (Xi, D* (2010),
Upsilon (11020)), at 156� (Xi-, Xi (2030), J/psi (1S)) and at
245� (eta’, rho (1450), Sigma (2250), B). Also the psi (4040),
psi (4415), Upsilon (1S) and Upsilon (3S) are found in se-
quences.

A picture of the mass range of elementary particles at 175
GeV is shown in Fig. 3, with the Z and top aligning in the
sequences S3 and S6, resp., as listed in Fig. 1.

4 Discussion and conclusion

In this simple model the mass distribution of elementary par-
ticles strongly depends on the derived quantization factor �.
Even slight changes ��=�� 5�10�4 disrupt the particle se-
quences. Thus of interest are the symmetric sequences S1-S6
with precise positions for the electron, muon, kaon, proton

and tau. Also the eta, K (892), D (s), B (c), Upsilon (10860),
Z and top are placed on these sequences. Other sequences
align particles like f’s, pi’s and Xi’s.

The existence of more than one sequence implies that �
in Eq. (2i), i.e. the ratio of parameters a1 and a2, has several
values within the elementary particle mass spectrum.

Randomly chosen values for � other than the derived one
do not provide symmetric and precise results, but rather uni-
form distributions, as should be expected. The results of the
precise and specific sequences in the derived logarithmic spi-
ral still might be a pure coincidence. But they also could be
an indication for constituent particles moving in a logarithmic
potential, resulting in an exponential quantization for elemen-
tary particle masses. Then the results would suggest the log-
arithmic potential to be considered an approach worth being
further investigated to explain the wide range of elementary
particle masses.

Submitted on November 27, 2008
Accepted on October 06, 2008

References

1. Muraki Y., Mori K., Nakagawa M. Logarithmic mass formulae
for elementary particles and a new quantum number. Lettere al
Nuovo Cimento, 1978, v. 23, no. 1, 27–31.

2. NIST, National Institute of Standards and Technology
(http://physics.nist.gov).

3. Particle Data Group (http://pdg.lbl.go).

Klaus Paasch. The Logarithmic Potential and an Exponential Mass Function for Elementary Particles 39



Volume 1 PROGRESS IN PHYSICS January, 2009

A Note of Extended Proca Equations and Superconductivity

Vic Christianto�, Florentin Smarandachey, and Frank Lichtenbergz
�Sciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org

E-mail: admin@sciprint.org
yChair of the Dept. of Mathematics, University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu
zBleigaesschen 4, D-86150 Augsburg, Germany

E-mail: novam@nlp-nicoletta.de

It has been known for quite long time that the electrodynamics of Maxwell equations
can be extended and generalized further into Proca equations. The implications of in-
troducing Proca equations include an alternative description of superconductivity, via
extending London equations. In the light of another paper suggesting that Maxwell
equations can be written using quaternion numbers, then we discuss a plausible exten-
sion of Proca equation using biquaternion number. Further implications and experi-
ments are recommended.

1 Introduction

It has been known for quite long time that the electrody-
namics of Maxwell equations can be extended and general-
ized further into Proca equations, to become electrodynamics
with finite photon mass [11]. The implications of introduc-
ing Proca equations include description of superconductivity,
by extending London equations [18]. In the light of another
paper suggesting that Maxwell equations can be generalized
using quaternion numbers [3, 7], then we discuss a plausi-
ble extension of Proca equations using biquaternion number.
It seems interesting to remark here that the proposed exten-
sion of Proca equations by including quaternion differential
operator is merely the next logical step considering already
published suggestion concerning the use of quaternion differ-
ential operator in electromagnetic field [7, 8]. This is called
Moisil-Theodoresco operator (see also Appendix A).

2 Maxwell equations and Proca equations

In a series of papers, Lehnert argued that the Maxwell pic-
ture of electrodynamics shall be extended further to include a
more “realistic” model of the non-empty vacuum. In the pres-
ence of electric space charges, he suggests a general form of
the Proca-type equation [11]:�

1
c2

@
@t2
�r2

�
A� = �0J�; � = 1; 2; 3; 4: (1)

Here A� = (A; i�=c), where A and � are the magnetic
vector potential and the electrostatic potential in three-space,
and:

J� = (j; ic ��) : (2)

However, in Lehnert [11], the right-hand terms of equa-
tions (1) and (2) are now given a new interpretation, where
�� is the nonzero electric charge density in the vacuum, and j
stands for an associated three-space current-density.

The background argument of Proca equations can be sum-
marized as follows [6]. It was based on known definition of
derivatives [6, p. 3]:

@� =
@
@x�

=
�
@
@t

;
@
@x
;
@
@y
;
@
@z

�
=
�
@0;�r�

@� =
@
@x�

=
�
@0;r�

9>>=>>; ; (3)

@�a� =
@a0

@t
+r~a ; (4)

@�@� =
@2

@t2
� @2

@x2 � @2

@y2 � @2

@z2 = @2
0�r2 = @�@� ; (5)

where r2 is Laplacian and @�@� is d’Alembertian operator.
For a massive vector boson (spin-1) field, the Proca equation
can be written in the above notation [6, p. 7]:

@�@�A� � @�(@�A�) +m2A� = j� : (6)

Interestingly, there is also a neat link between Maxwell
equations and quaternion numbers, in particular via the
Moisil-Theodoresco D operator [7, p. 570]:

D = i1
@
@x1

+ i2
@
@x2

+ i3
@
@x3

: (7)

There are also known links between Maxwell equations
and Einstein-Mayer equations [8]. Therefore, it seems plau-
sible to extend further the Maxwell-Proca equations to bi-
quaternion form too; see also [9, 10] for links between Proca
equation and Klein-Gordon equation. For further theoretical
description on the links between biquaternion numbers, Max-
well equations, and unified wave equation, see Appendix A.

3 Proca equations and superconductivity

In this regards, it has been shown by Sternberg [18], that the
classical London equations for superconductors can be writ-
ten in differential form notation and in relativistic form, where

40 V. Christianto, F. Smarandache, F. Lichtenberg. A Note of Extended Proca Equations and Superconductivity



January, 2009 PROGRESS IN PHYSICS Volume 1

they yield the Proca equations. In particular, the field itself
acts as its own charge carrier [18].

Similarly in this regards, in a recent paper Tajmar has
shown that superconductor equations can be rewritten in
terms of Proca equations [19]. The basic idea of Tajmar ap-
pears similar to Lehnert’s extended Maxwell theory, i.e. to
include finite photon mass in order to explain superconduc-
tivity phenomena. As Tajmar puts forth [19]:

“In quantum field theory, superconductivity is explain-
ed by a massive photon, which acquired mass due to
gauge symmetry breaking and the Higgs mechanism.
The wavelength of the photon is interpreted as the Lon-
don penetration depth. With a nonzero photon mass,
the usual Maxwell equations transform into the so-
called Proca equations which will form the basis for
our assessment in superconductors and are only valid
for the superconducting electrons.”

Therefore the basic Proca equations for superconductor
will be [19, p. 3]:

r� �E = �@ �B
@t

; (8)

and

r�B = �0�j +
1
c2
@ �E
@t
� 1
�2

�A : (9)

The Meissner effect is obtained by taking curl of equation
(9). For non-stationary superconductors, the same equation
(9) above will yield second term, called London moment.

Another effects are recognized from the finite Photon
mass, i.e. the photon wavelength is then interpreted as the
London penetration depth and leads to a photon mass about
1/1000 of the electron mass. This furthermore yields the
Meissner-Ochsenfeld effect (shielding of electromagnetic
fields entering the superconductor) [20].

Nonetheless, the use of Proca equations have some known
problems, i.e. it predicts that a charge density rotating at an-
gular velocity should produce huge magnetic fields, which is
not observed [20]. One solution of this problem is to recog-
nize that the value of photon mass containing charge density
is different from the one in free space.

4 Biquaternion extension of Proca equations

Using the method we introduced for Klein-Gordon equation
[2], then it is possible to generalize further Proca equations
(1) using biquaternion differential operator, as follows:

(}�})A� � �0J� = 0 ; � = 1; 2; 3; 4; (10)

where (see also Appendix A):

} = rq + irq =
�
� i @

@t
+ e1

@
@x

+ e2
@
@y

+ e3
@
@z

�
+

+ i
�
� i @

@T
+ e1

@
@X

+ e2
@
@Y

+ e3
@
@Z

�
: (11)

Another way to generalize Proca equations is by using
its standard expression. From d’Alembert wave equation we
get [6]:�

1
c2

@
@t2
�r2

�
A� = �0J� ; � = 1; 2; 3; 4; (12)

where the solution is Liennard-Wiechert potential. Then the
Proca equations are [6]:��

1
c2

@
@t2
�r2

�
+
�mpc

~

�2�
A� = 0 ; � = 1; 2; 3; 4; (13)

where m is the photon mass, c is the speed of light, and ~ is
the reduced Planck constant. Equation (13) and (12) imply
that photon mass can be understood as charge density:

J� =
1
�0

�mpc
~

�2
: (14)

Therefore the “biquaternionic” extended Proca equations
(13) become:�

}�}+
�mpc

~

�2�
A� = 0 ; � = 1; 2; 3; 4: (15)

The solution of equations (12) and (12) can be found us-
ing the same computational method as described in [2].

Similarly, the generalized structure of the wave equation
in electrodynamics — without neglecting the finite photon
mass (Lehnert-Vigier) — can be written as follows (instead
of eq. 7.24 in [6]):�

}�}+
�mpc

~

�2�
Aa� = RAa� ; � = 1; 2; 3; 4: (16)

It seems worth to remark here that the method as de-
scribed in equation (15)-(16) or ref. [6] is not the only pos-
sible way towards generalizing Maxwell equations. Other
methods are available in literature, for instance by using topo-
logical geometrical approach [14, 15].

Nonetheless further experiments are recommended in or-
der to verify this proposition [23,24]. One particular implica-
tion resulted from the introduction of biquaternion differential
operator into the Proca equations, is that it may be related to
the notion of “active time” introduced by Paine & Pensinger
sometime ago [13]; the only difference here is that now the
time-evolution becomes nonlinear because of the use of 8-
dimensional differential operator.

5 Plausible new gravitomagnetic effects from extended
Proca equations

While from Proca equations one can expect to observe gravi-
tational London moment [4,22] or other peculiar gravitational
shielding effect unable to predict from the framework of Gen-
eral Relativity [5, 16, 22], one can expect to derive new grav-
itomagnetic effects from the proposed extended Proca equa-
tions using the biquaternion number as described above.
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Furthermore, another recent paper [1] has shown that
given the finite photon mass, it would imply that if m is
due to a Higgs effect, then the Universe is effectively simi-
lar to a Superconductor. This may support De Matos’s idea
of dark energy arising from superconductor, in particular via
Einstein-Proca description [1, 5, 16].

It is perhaps worth to mention here that there are some
indirect observations [1] relying on the effect of Proca energy
(assumed) on the galactic plasma, which implies the limit:

mA = 3�10�27 eV: (17)

Interestingly, in the context of cosmology, it can be shown
that Einstein field equations with cosmological constant are
approximated to the second order in the perturbation to a
flat background metric [5]. Nonetheless, further experiments
are recommended in order to verify or refute this proposi-
tion.

6 Some implications in superconductivity research

We would like to mention the Proca equation in the follow-
ing context. Recently it was hypothesized that the creation of
superconductivity at room temperature may be achieved by
a resonance-like interaction between an everywhere present
background field and a special material having the appropri-
ate crystal structure and chemical composition [12]. Accord-
ing to Global Scaling, a new knowledge and holistic approach
in science, the everywhere present background field is given
by oscillations (standing waves) in the universe or physical
vacuum [12].

The just mentioned hypothesis how superconductivity at
room temperature may come about, namely by a resonance-
like interaction between an everywhere present background
field and a special material having the appropriate crystal
structure and chemical composition, seems to be supported
by a statement from the so-called ECE Theory which is pos-
sibly related to this hypothesis [12]:

“. . . One of the important practical consequences is that
a material can become a superconductor by absorption
of the inhomogeneous and homogeneous currents of
ECE space-time . . . ” [6].

This is a quotation from a paper with the title “ECE Gen-
eralizations of the d’Alembert, Proca and Superconductivity
Wave Equations . . . ” [6]. In that paper the Proca equation is
derived as a special case of the ECE field equations.

These considerations raises the interesting question about
the relationship between (a possibly new type of) supercon-
ductivity, space-time, an everywhere-present background
field, and the description of superconductivity in terms of the
Proca equation, i.e. by a massive photon which acquired mass
by symmetry breaking. Of course, how far these suggestions
are related to the physical reality will be decided by further
experimental and theoretical studies.

7 Concluding remarks

In this paper we argue that it is possible to extend further
Proca equations for electrodynamics of superconductivity to
biquaternion form. It has been known for quite long time that
the electrodynamics of Maxwell equations can be extended
and generalized further into Proca equations, to become elec-
trodynamics with finite photon mass. The implications of in-
troducing Proca equations include description of supercon-
ductivity, by extending London equations. Nonetheless, fur-
ther experiments are recommended in order to verify or refute
this proposition.
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Appendix A: Biquaternion, Maxwell equations and uni-
fied wave equation [3]

In this section we’re going to discuss Ulrych’s method to describe
unified wave equation [3], which argues that it is possible to define
a unified wave equation in the form [3]:

D�(x) = m2
� � �(x); (A:1)

where unified (wave) differential operator D is defined as:

D =
�
(P � qA)�

� �P � qA��� : (A:2)

To derive Maxwell equations from this unified wave equation,
he uses free photon expression [3]:

DA(x) = 0; (A:3)

where potential A(x) is given by:

A(x) = A0(x) + jA1(x); (A:4)

and with electromagnetic fields:

Ei(x) = �@0Ai(x)� @iA0(x); (A:5)

Bi(x) =2ijk @jAk(x): (A:6)

Inserting these equations (A.4)-(A.6) into (A.3), one finds
Maxwell electromagnetic equation [3]:

�r � E(x)� @0C(x) + ijr �B(x)�
� j(rxB(x)� @0E(x)�rC(x))�
� i(rxE(x) + @0B(x)) = 0:

(A:7)

For quaternion differential operator, we define quaternion Nabla
operator:

rq � c�1 @
@t

+
� @
@x

�
i+
�
@
@y

�
j +
� @
@z

�
k =

= c�1 @
@t

+~i � ~r :
(A:8)
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And for biquaternion differential operator, we may define a dia-
mond operator with its conjugate [3]:

}�} �
�
c�1 @

@t
+ c�1 i @

@t

�
+ f~rg� (A:9)

where Nabla-star-bracket operator is defined as:

f~rg� �
� @
@x

+ i @
@X

�
i +

+
�
@
@y

+ i @
@Y

�
j +
� @
@z

+ i @
@Z

�
k :

(A:10)

In other words, equation (A.9) can be rewritten as follows:
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�
k :

(A:11)

From this definition, it shall be clear that there is neat link be-
tween equation (A.11) and the Moisil-Theodoresco D operator, i.e.
[7, p. 570]:
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(A:12)

In order to define biquaternionic representation of Maxwell
equations, we could extend Ulrych’s definition of unified differential
operator [3,17,21] to its biquaternion counterpart, by using equation
(A.2) and (A.10), to become:

fDg� �
h�fPg� � qfAg��

�

�f �Pg� � qfAg���i ; (A:13)

or by definition P = � i~r, equation (A.13) could be written as:

fDg� �
h��~f~rg��qfAg��

�

��~f~rg��qfAg���i ; (A:14)

where each component is now defined in term of biquaternionic rep-
resentation. Therefore the biquaternionic form of the unified wave
equation [3] takes the form:

fDg � �(x) = m2
� � �(x) ; (A:15)

which is a wave equation for massive electrodynamics, quite similar
to Proca representation.

Now, biquaternionic representation of free photon fields could
be written as follows:

fDg � A(x) = 0 : (A:16)
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The positive and negative parity states of the even-even palladium isotopes were stud-
ied within the frame work of the interacting boson approximation model (IBA-1). The
energy spectra, potential energy surfaces, electromagnetic transition probabilities, back
bending and staggering effect have been calculated. The potential energy surfaces show
smooth transition from vibrational-like to gamma-soft and finally to rotational-like nu-
clei. Staggering effectle, has been observed between the positive and negative parity
states in palladium isotopes. The agreement between theoretical predictions and exper-
imental values are fairly good.

1 Introduction

The region of neutron-excess nuclei at mass A� 100 is an
area of interest to many authors because of the observation
of the phase transitions. Three phase transitional regions are
well known where the structure changes rapidly. Nd-Sm-Gd
and Ru-Pd regions where the change is from spherical to well
deformed nuclei when moving from lighter to heavier iso-
topes. But, Os-Pt regions the change is from well deformed
to -soft when moving from lighter to heavier isotopes.

The structure of these transitional nuclei has been the sub-
ject of many experimental and theoretical studies. Experi-
mentally, levels of 102Pd were populated from the decay of
102Ag populated in the 89Y (16O;3n) reaction [1] and their
properties were studied through  spectroscopy. Also, mea-
surements were performed using an array of eight HPGe de-
tectors on gamma multiplicity gated on proton spectra of
102-104Pd which have been measured [2] in the 12C + 93Np
reaction E(12C) = 40 MeV, at backward angles.The cross-
section along with the angular momentum and excitation en-
ergy are populated.

Theoretically, the transitional regions and phase transi-
tions in palladium isotopes have been analyzed in the frame
work of the IBA-2 model [3–7]. From the analysis of en-
ergies, static moments, transition rates, quadrupole moments
and mixing ratios, they were able to identify states having
large mixed - symmetry components.

Cranked Strutinsky Method [8], Geometric Collective
Model [9] (GCM) and the Relativistic Mean Field Theory
[10] have examined palladium series of isotopes to find ex-
amples displaying the characteristics of E(5) critical point be-
havior [11]for the shape transition from spherical vibrator to
a triaxially soft rotor.

In this article, we carried out a microscopic study of the
Yrast and negative parity states, electromagnetic transition
rates, B(E1), B(E2), potential energy surfaces, V (�; ), for
100-116Pd nuclei employing the interacting boson model.

2 Interacting boson approximation model (IBA-1)

2.1 Level energies

IBA-1 model [12–14 ] was applied to the positive and nega-
tive parity states in even-even 100-116Pd isotopes. The Ham-
iltonian employed [15] in the present calculation is:

H = EPS � nd + PAIR � (P � P ) +

+
1
2
ELL � (L � L) +

1
2
QQ � (Q �Q) +

+ 5OCT � (T3 � T3) + 5HEX � (T4 � T4) ;

(1)

where

P � p =
1
2

24 n(sysy)(0)
0 �

p
5(dydy)(0)

0

o
xn

(ss)(0)
0 �

p
5( ~d ~d)(0)

0

o 35(0)

0

; (2)

L � L = �10
p

3
h
(dy ~d)(1)x (dy ~d)(1)

i(0)

0
; (3)

Q �Q =
p

5

26664
�

(Sy ~d+ dys)(2) �
p

7
2

(dy ~d)(2)
�
x�

(sy ~d+ + ~ds)(2) �
p

7
2

(dy ~d)(2)
�
37775

(0)

0

; (4)

T3 � T3 = �p7
h
(dy ~d)(2)x (dy ~d)(2)

i(0)

0
; (5)

T4 � T4 = 3
h
(dy ~d)(4)x (dy ~d)(4)

i(0)

0
: (6)

In the previous formulas, nd is the number of boson; P �P ,
L �L, Q �Q, T3 �T3 and T4 �T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons; EPS is the boson energy; and PAIR,
ELL, QQ, OCT , HEX is the strengths of the pairing, an-
gular momentum, quadrupole, octupole and hexadecupole in-
teractions.
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nucleus EPS PAIR ELL QQ OCT HEX E2SD(eb) E2DD(eb)
100Pd 0.6780 0.000 0.0095 �0.020 0.0000 0.0000 0.1020 �0.3817
102Pd 0.5840 0.000 0.0115 �0.0200 0.0000 0.0000 0.1270 �0.3757
104Pd 0.5750 0.0000 0.0225 �0.0200 0.0000 0.0000 0.1210 �0.3579
106Pd 0.5630 0.0000 0.0230 �0.0200 0.0000 0.0000 0.1220 �0.3609
108Pd 0.5180 0.0000 0.0235 �0.0200 0.0000 0.0000 0.1170 �0.3461
110Pd 0.4950 0.0000 0.0235 �0.0200 0.0000 0.0000 0.1110 �0.3283
112Pd 0.4950 0.0000 0.0235 �0.0200 0.0000 0.0000 0.08770 �0.2594
114Pd 0.52200 0.0000 0.0235 �0.0200 0.0000 0.0000 0.0612 �0.1810
116Pd 0.5700 0.0000 0.0216 �0.0200 0.0000 0.0000 0.0742 �0.2195

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

2.2 Electromagnetic transition rates

The electric quadrupole transition operator [15] employed in
this study is:

T (E2) = E2SD � (sy ~d+ dys)(2) +

+
1p
5
E2DD � (dy ~d)(2) : (7)

The reduced electric quadrupole transition rates between
Ii ! If states are given by

B (E2; Ii � If ) =
[< If k T (E2) k Ii >]2

2Ii + 1
: (8)

3 Results and discussion

3.1 The potential energy surfaces

The potential energy surfaces [16], V (�, ), as a function of
the deformation parameters � and  are calculated using:

EN�N� (�; ) = <N�N� ;� jH�� jN�N� ;�>

= �d(N�N�)�2(1 + �2) + �2(1 + �2)�2�
��kN�N�[4� ( �X� �X�)� cos 3]

	
+

+
�

[ �X� �X��2] +N�(N� � 1)
�

1
10
c0 +

1
7
c2
�
�2
�
;

(9)

where

�X� =
�

2
7

�0:5

X� � = � or � : (10)

The calculated potential energy surfaces, V (�; ), are
presented in Fig. 1. It shows that 100�110Pd are vibrational-
like nuclei while 112Pd is a -soft where the two wells on the
oblate and prolate sides are equal. 114;116Pd are prolate de-
formed and have rotational characters. So, 112Pd is thought
to be a transitional nucleus forming a zone between soft vi-
bration side and nearly deformed nuclei in the other side.

3.2 Energy spectra

The energy of the positive and negative parity states of pal-
ladium series of isotopes are calculated using computer code
PHINT [17]. A comparison between the experimental spectra
[18–26] and our calculations for the ground state and (�ve)
parity states are illustrated in Fig. 2. The model parameters
given in Table 1 are free parameters and adjusted to reproduce
as closely as possible the excitation energy of the (+ve) and
(�ve) parity levels. The agreement between the calculated
levels energy and their correspondence experimental values
for all nuclei are slightly higher for the higher excited states.
We believe this is due to the change of the projection of the
angular momentum which is due mainly to band crossing.

Unfortunately there is no enough measurements of elec-
tromagnetic transition ratesB (E1) orB (E2) for these series
of nuclei. The only measured B (E2; 0+

1 ! 2+
1 )’s are pre-

sented, in Table 2 for comparison with the calculated values.
The parameters E2SD and E2DD are displayed in Table 1
and used in the computer code NPBEM [17] for calculating
the electromagnetic transition rates after normalization to the
available experimental values.

No new parameters are introduced for calculating electro-
magnetic transition rates B (E2), (Table 1), and B (E1), (Ta-
ble 2), of intraband and interband. The values of the ground
state band are presented in Fig. 3 and show bending atN = 64
which means there is an interaction between the (+ve)
ground state and the (�ve) parity states.

The moment of inertia I and angular frequency ~! are
calculated using equations (11, 12):

2J
~2 =

4I � 2
�E(I ! I � 2)

; (11)

(~!)2 = (I2 � I + 1)
�

�E(I ! I � 2)
(2I � 1)

�2

: (12)

The plots in Fig. 4 show upper bending at I+ = 12 and
lower bending at I+ = 14 for 100-116Pd. It means, there is a
crossing between the ground and the (�ve) parity states.
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Fig. 1: Potential energy surfaces for 100-116Pd nuclei.
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Fig. 2: Comparison between exp. [18–26] and theoretical (IBA-1) energy levels.
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I+i I+f
100Pd 102Pd 104Pd 106Pd 108Pd 110Pd 112Pd 114Pd 116Pd

01 Exp*. 21 —— 0.460(30) 0.535(35) 0.660(35) 0.760(40) 0.870(40) 0.660(11) 0.380(20) 0.620(18)

01 Theor. 21 0.2275 0.4657 0.5317 0.6663 0.7672 0.8631 0.6640 0.3804 0.6237

21 01 0.0455 0.0931 0.1063 0.13333 0.1534 0.1726 0.1328 0.0761 0.1247

22 01 0.0001 0.0004 0.0007 0.0013 0.0023 0.0034 0.0029 0.0017 0.0028

22 02 0.0199 0.0395 0.0449 0.0582 0.0738 0.0925 0.0785 0.0481 0.0819

23 01 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0007 0.0006 0.0010

23 02 0.0286 0.0669 0.0822 0.1051 0.1126 0.1100 0.0704 0.0356 0.0576

23 03 0.0045 0.0082 0.0095 0.0128 0.0180 0.0270 0.0260 0.0166 0.0292

24 03 0.0012 0.0044 0.0074 0.0129 0.0234 0.0423 0.0462 0.0317 0.0570

24 04 0.0335 0.0602 0.0640 0.0755 0.0744 0.0702 0.0398 0.0182 0.0279

41 21 0.0702 0.1545 0.1846 0.2396 0.2943 0.3265 0.2535 0.1463 0.2429

41 22 0.0071 0.0137 0.0156 0.0202 0.0249 0.0300 0.0245 0.0150 0.0264

41 23 0.0117 0.0278 0.0346 0.0449 0.0492 0.0492 0.0323 0.0168 0.0277

61 41 0.0711 0.1756 0.2236 0.3011 0.3635 0.4188 0.3244 0.1878 0.3153

61 42 0.0098 0.0177 0.0195 0.0241 0.0273 0.0304 0.0233 0.0139 0.0244

61 43 0.0062 0.0191 0.0261 0.0353 0.0384 0.0380 0.0250 0.0131 0.0218

81 61 0.0476 0.1559 0.2225 0.3180 0.3950 0.4613 0.3599 0.2102 0.3574

81 62 0.0107 0.0184 0.0197 0.0236 0.0252 0.0266 0.0198 0.0116 0.0205

81 63 —— 0.0094 0.0169 0.0253 0.0288 0.0295 0.0201 0.0109 0.0185

101 81 —— 0.0969 0.1835 0.2936 0.3849 0.4629 0.3679 0.2183 0.3769

101 82 —— 0.0178 0.0187 0.0219 0.0224 0.0229 0.0166 0.0096 0.0171

Table 2: Values of the theoretical reduced transition probability, B(E2) (in e2 b2).
*Ref. 27.

I�i I+f
100Pd 102Pd 104Pd 106Pd 108Pd 110Pd 112Pd 114Pd 116Pd

11 01 0.0009 0.0020 0.0033 0.0052 0.0091 0.0148 0.0213 0.0255 0.0259

11 02 0.1290 0.1248 0.1299 0.1314 0.1340 0.1360 0.1369 0.1379 0.1384

31 21 0.1268 0.1228 0.1235 0.1246 0.1309 0.1414 0.1530 0.1605 0.1617

31 22 0.0267 0.0361 0.0395 0.0443 0.0501 0.0566 0.0645 0.0719 0.0771

31 23 0.0006 0.0018 0.0030 0.0053 0.0108 0.0190 0.0268 0.0311 0.0335

32 21 0.0093 0.0031 0.0016 0.0012 0.0014 0.0028 0.0053 0.0079 0.0099

32 22 0.0912 0.0278 0.0190 0.0153 0.0136 0.0146 0.0172 0.0196 0.0193

32 23 0.1132 0.2103 0.2247 0.2243 0.2172 0.2109 0.1827 0.1686 0.1599

51 41 0.2660 0.2582 0.2578 0.2576 0.2637 0.2747 0.2873 0.2959 0.2979

51 42 0.0260 0.0392 0.0457 0.0530 0.0604 0.0670 0.0736 0.0801 0.0861

51 43 0.0002 0.0010 0.0018 0.0032 0.0058 0.0088 0.0111 0.0125 0.0137

71 61 0.415* 0.4035 0.4005 0.3982 0.4025 0.4121 0.4236 0.4319 0.4341

71 62 0.0163 0.0325 0.0419 0.0515 0.0598 0.0663 0.0722 0.0781 0.0844

91 81 0.5714 0.5561 0.5489 0.5439 0.5454 0.5524 0.5617 0.5689 0.5709

91 82 —— 0.0187 0.0318 0.0436 0.0533 0.0604 0.0664 0.0725 0.0792

111 101 —— 0.7143 0.7015 0.6933 0.6914 0.6950 0.7017 0.7073 0.7088

Table 3: Values of the theoretical reduced transition probability, B(E1) (in � e2b).
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This fact has confirmed by studying the staggering effect
to palladium isotopes which presented in Fig.5.

Fig. 3: The calculated B(E2)’s for the ground state band.

3.3 The staggering

The presence of (+ve) and (�ve) parity states has encour-
aged us to study staggering effect [28–30] for 100-116Pd se-
ries of isotopes using staggering function equations (15, 16)
with the help of the available experimental data [18–26].

Stag (I) = 6�E (I)� 4�E (I � 1)� 4�E (I + 1)

+ �E (I + 2) + �E (I � 2) ; (13)

with
�E (I) = E (I + 1)� E (I) : (14)

The calculated staggering patterns are illustrated in Fig. 5
which show an interaction between the (+ve) and (�ve) par-
ity states of 100-104Pd and 112-1116Pd nuclei at I+ = 12. Un-
fortunatelly, there is no enough experimental data are avail-
able for 106-110Pd to study the same effect.

3.4 Conclusions

IBA-1 model has been applied successfully to 100-116Pd iso-
topes and we have got:

1. The levels energy are successfully reproduced;

2. The potential energy surfaces are calculated and show
vibrational-like to 100�110Pd, -soft to 112Pd and rota-
tional characters to 114-116Pd isotopes where they are
mainly prolate deformed nuclei;

3. Electromagnetic transition rates B (E1) and B (E2)
are calculated;

4. Upper bending for 100-106Pd has been observed at an-
gular momentum I+=12 and lower bending at I+=14
for all palladium isotopes;

5. Electromagnetic transition rates B (E1) and B (E2)
are calculated;and

Fig. 4: Angular momentum I as a function of 2J /~2.

Fig. 5: �I = 1, staggering patterns for 100-116Pd isotopes.
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6. Staggering effect and beat patterns are observed and
show an interaction between the (�ve)and (+ve) par-
ity states at I+ = 12 for palladium isotopes except for
106-110Pd where scarce experimental data are avail-
able.
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The Apparent Lack of Lorentz Invariance in Zero-Point Fields
with Truncated Spectra

William C. Daywitt
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The integrals that describe the expectation values of the zero-point quantum-field-
theoretic vacuum state are semi-infinite, as are the integrals for the stochastic electro-
dynamic vacuum. The unbounded upper limit to these integrals leads in turn to infinite
energy densities and renormalization masses. A number of models have been put for-
ward to truncate the integrals so that these densities and masses are finite. Unfortunately
the truncation apparently destroys the Lorentz invariance of the integrals. This note ar-
gues that the integrals are naturally truncated by the graininess of the negative-energy
Planck vacuum state from which the zero-point vacuum arises, and are thus automati-
cally Lorentz invariant.

1 Introduction

Sakharov [1] hypothesized that Newton’s gravitational con-
stant is inversely proportional to a truncated integral over the
momenta of the virtual particles in the quantum vacuum [2]
(QV), and that the cutoff wavenumber “. . . determines the
mass of the heaviest particles existing in nature. . . ” according
to a suggestion by M. A. Markov. Inverting the Markov sug-
gestion, the Planck vacuum (PV) model [3, 4] assumes that
these “heaviest particles” are the Planck particles (PPs) con-
stituting the degenerate negative-energy PV state, and that it
is the separation between these PPs that leads to the cutoff

wavenumber. Puthoff [4, 5] furthers the Sakharov argument
by calculating the cutoff wavenumber to be

kc� =
�
�c3

~G

�1=2 �
=
�1=2

r�

�
; (1)

where G is Newton’s gravitational constant and r� is the
Planck length. The ratio in the bracket is derived by substi-
tuting the constants ~ = e2�=c, G = e2�=m2�, and the Compton
relation r�m�c2 = e2� from the PV model, where m� is the
Planck mass and e� is the bare (true) charge common to the
charged elementary particles.

It is accepted knowledge that the truncation of the vacuum
integrals destroys their Lorentz invariance. For example, a
stochastic electrodynamic version of the zero-point (ZP) elec-
tric field can be expressed as [5]

Ezp(r; t) = Re
2X

�=1

Z
d
k

Z kc�

0
dk k2 e�(k)Ak �

� exp
�
i (k � r� !t+ ��(k))

�
; (2)

where the cutoff wavenumber kc� apparently destroys the Lo-
rentz invariance of the field. The accepted Lorentz-invariant
version of (2) replaces kc� by1. By giving the cutoff wave-
number an interpretation different from a momentum wave-

number, however, this note argues that (2) is Lorentz invariant
as it stands. The next section presents this argument.

The virtual-particle field consists of virtual photons and
massive virtual-particle pairs, the collection being the QV. It
is assumed that the structure of the PV and the ZP agitation of
its PPs are responsible for the structure of the virtual-particle
field, the corresponding average of the photon field being the
ZP electric field in (2). While the negative-energy PV is as-
sumed to be invisible (not directly observable), it offspring
the QV appears in free space and interacts with the free par-
ticles therein. The argument in the next section assumes this
perspective.

2 Cutoff wavenumber

The set of orthogonal modes associated with a continuous
medium contains an infinite number of eigenfunctions. If the
medium is quasi-continuous like the PV, however, the number
is finite. Using this fact, the development of the ZP electric
field is reviewed below to show that the cutoff wavenumber
is associated with the number of PPs per unit volume in the
PV and is not fundamentally a momentum wavenumber for
the QV fields. Thus being associated with the PP density,
the cutoff wavenumber is not dependent upon the free-space
Lorentz frames observing the QV.

The ZP electric field can be expressed as [6, p.73]

Ezp(r; t) =
�

8�3

V

�1=2

�
� Re

X
�

X
n

ek;�Ak exp
�
i(k � r� !t+ �k;n)

�
; (3)

where the first sum is over the two polarizations of the field,
k = jkj, V =L3 is the box-normalization volume, ek;� is the
polarization vector,

�2A2
k =

~!
2

=
e2�k
2

(4)

William C. Daywitt. The Apparent Lack of Lorentz Invariance in Zero-Point Fields with Truncated Spectra 51



Volume 1 PROGRESS IN PHYSICS January, 2009

yields the amplitude factor Ak which is proportional to the
bare charge e� of the PPs in the PV, and �� is the random
phase that gives Ezp its stochastic character. The two ratios
in (4) are the ZP energy of the individual field modes. The
field satisfies the periodicity condition

Ezp(x+ L; y + L; z + L; t) = Ezp(x; y; z; t) (5)

or equivalently

k = (kx; ky; kz) = (2�=L)(nx; ny; nz) = (2�=L)n ; (6)

where k = (2�=L)n, and where ordinarily the ni can assume
any positive or negative integer and zero.

An unbounded mode index ni in (6) leads to the infinite
energy densities and renormalization masses that plague both
the quantum field theory and the stochastic electrodynamic
theory. However, if the normal mode functions of the ZP
field are assumed to be waves supported by the collection of
PPs within the PV [4], then the number of modes ni along
the side of the box of length L is bounded and obeys the in-
equality jnij6 (L=2�)kc�=L=2

p
� r�. So it is the “graini-

ness” (r� , 0) associated with the minimum separation r� of
the PPs that leads to a bounded ki and ni for (6), and which is
thus responsible for finite energy densities and renormaliza-
tion masses [4]. Unfortunately this truncation of the second
sum in (3) leads to apparently non-Lorentz-invariant integrals
for the “continuum” version of that equation developed be-
low.

Using the replacement [6, p.76]X
�

X
n

f(kn; en;�) an;� �! (7)

�!
�
V

8�3

�1=2X
�

Z
d3kf(k; e�(k)) a�(k) (8)

in (3) and truncating the field densities at kc�=
p
�=r� leads

to [4, 5]

Ezp(r; t) = Re
X
�

Z
d3k e�(k)Ak �

� exp
�
i (k � r� !t+ ��(k))

�
=

= Re
X
�

Z
d
k

Z kc�

0
dk k2 e�(k)Ak �

� exp
�
i (k � r� !t+ ��(k))

�
; (9)

where d
k is the k-space solid-angle differential. As shown
below in (10) and(11) this cutoff wavenumber kc� is funda-
mentally related to the number of PPs per unit volume consti-
tuting the PV.

The ZP electromagnetic energy density of the QV calcu-
lated from (8) is


E2
zp
�

4�
=
Z kc�

0

e2�k
2
� k2 dk
�2 ; (10)

where the first ratio under the integral sign is the ZP energy
of the individual modes. The second ratio is the number of
modes per unit volume between k and k+ dk; so the number
of modes in that range is k2V dk=�2. If the total number
of PP oscillators (with three degrees of freedom each) in the
volume V is N , then the total number of modes in V is [7]Z kc�

0

k2V dk
�2 = 3N ; (11)

which provides an estimate for N=V . Integrating (10) gives

N
V

=
k3
c�

9�2

�
= (91=3�1=6r�)�3 � 1

(2:5r�)3

�
(12)

for the number of PPs per unit volume. The equation outside
the brackets shows that kc� is proportional to the cube root
of this PP density. The ratio in the bracket shows that the
average separation of the PPs is approximately 2.5 times their
Compton radii r�, a very reasonable result considering the
roughness of the calculations.

From (11) the previous paragraph shows that the cutoff

wavenumber kc� in (8) and (9) is associated with the mode
counting in (10) taking place within the invisible PV. Since
the number of these PV modes is not influenced by the free-
space Lorentz frame observing the QV, the kc� in (8) and (9)
must be independent of the Lorentz frame. Thus (8) and (9)
are Lorentz invariant as they stand since kc� is frame indepen-
dent and the integrands are already Lorentz invariant [8]. That
is, when viewed from different Lorentz frames, the wave-
number kc� remains the same; so the integrals are Lorentz
invariant.

3 Review and comments

From the beginning of the ZP theory the medium upon which
calculations are based is the free-space continuum with its un-
bounded mode density. So if the spectral density is truncated,
the ZP fields naturally lose their Lorentz-invariant character
because the truncation and the Lorentz viewing frames exist
in the same space. This contrasts with the development in the
preceding section where the truncation takes place in the in-
visible PV while the viewing is in the free space containing
the QV.

One way of truncating in free space without losing Lo-
rentz invariance [9,10] is to assume that the so-called elemen-
tary particles are constructed from small sub-particles called
partons, so that the components of the parton driving-field
Ezp with wavelengths smaller than the parton size (� r�) are
ineffective in producing translational motion of the parton as
a whole, effectively truncating the integral expressions at or
near the Planck frequency c=r�. The parton mass turns out
to be

m0 =
2
3

�
m2�
m

�
=

2
3

�
rc
r�

�
m� � 1020m� (13)
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where m� is the Planck mass, m is the particle mass, and rc
is the particle Compton radius. The parenthetical ratio in the
second expression is roughly 1020 for the observed elemen-
tary particles; i.e., for the observed particles, the parton mass
is about twenty orders of magnitude greater than the Planck
mass.

It is difficult to explain the inordinately large (1020m�)
parton mass in (12) that is due to the equation of motion

m0�r = e�Ezp (14)

at the core of the Abraham-Lorentz-Dirac equation used in
[9], where �r is the acceleration of the mass about its average
position at hri = 0. Equation (13) is easily transformed into
the equation of motion

e��r =
3c3�

2
Ezp (15)

for the charge e�, where �r is the charge acceleration. If the
time constant � is treated as a constant to be determined from
experiment [4, 5], then solving (14) leads to

� =
�
r�
rc

�
r�
c
� 10�20 r�

c
; (16)

where r�=c is the Planck time. Unlike the m0 in (12) and
(13), this inordinately small time constant can be accounted
for: it is due to the large number (N=V � 1097 per cm3) of
agitated PPs in the PV contributing simultaneously to the ZP
field fluctuations described by (8). It is noted in passing that
the size of the parton (� r�) is not connected to its mass m0
by the usual Compton relation (i.e., r�m0c2 , e2�) as is the
case for the PP (r�m�c2 = e2�).
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We have presented a cosmological model for the tidal evolution of the Earth-Moon
system. We have found that the expansion of the universe has immense consequences
on our local systems. The model can be compared with the present observational data.
The close approach problem inflicting the known tidal theory is averted in this model.
We have also shown that the astronomical and geological changes of our local systems
are of the order of Hubble constant.

1 Introduction

The study of the Earth-Moon-Sun system is very important
and interesting. Newton’s laws of motion can be applied to
such a system and good results are obtained. However, the
correct theory to describe the gravitational interactions is the
general theory of relativity. The theory is prominent in de-
scribing a compact system, such as neutron stars, black hole,
binary pulsars, etc. Einstein theory is applied to study the
evolution of the universe. We came up with some great dis-
coveries related to the evolution of the universe. Notice that
the Earth-Moon system is a relatively old system (4.5 bil-
lion years) and would have been affected by this evolution.
Firstly, the model predicts the right abundance of Helium in
the universe during the first few minutes after the big bang.
Secondly, the model predicts that the universe is expanding
and that it is permeated with some relics photons signifying a
big bang nature. Despite this great triumphs, the model is in-
fected with some troubles. It is found the age of the universe
determined according to this model is shorter than the one
obtained from direct observations. To resolve some of these
shortcomings, we propose a model in which vacuum decays
with time couples to matter. This would require the gravita-
tional and cosmological constant to vary with time too. To
our concern, we have found that the gravitational interactions
in the Newtonian picture can be applied to the whole universe
provided we make the necessary arrangement. First of all, we
know beforehand that the temporal behavior is not manifested
in the Newton law of gravitation. It is considered that gravity
is static. We have found that instead of considering perturba-
tion to the Earth-Moon system, we suggest that these effect
can be modeled with having an effective coupling constant
(G) in the ordinary Newton’s law of gravitation. This effec-
tive coupling takes care of the perturbations that arise from
the effect of other gravitational objects. At the same time the
whole universe is influenced by this setting. We employ a
cosmological model that describes the present universe and
solves many of the cosmological problems. To our surprise,

the present cosmic acceleration can be understood as a coun-
teract due to an increasing gravitational strength. The way
how expansion of the universe affects our Earth-Moon system
shows up in changing the length of day, month, distance, etc.
These changes are found in some biological and geological
systems. In the astronomical and geological frames changes
are considered in terms of tidal effects induced by the Moon
on the Earth. However, tidal theory runs in some serious diffi-
culties when the distance between Earth and Moon is extrap-
olated backwards. The Moon must have been too close to the
Earth a situation that has not been believed to have happened
in our past. This will bring the Moon into a region that will
make the Moon rather unstable, and the Earth experiencing
a big tide that would have melted the whole Earth. We have
found that one can account for this by an alternative consid-
eration in which expansion of the universes is the main cause.

2 Tidal theory

We know that the Earth-Moon system is governed by Kepler’s
laws. The rotation of the Earth in the gravity field of the Moon
and Sun imposes periodicities in the gravitational potential
at any point on the surface. The most obvious effect is the
ocean tide which is greater than the solid Earth tide. The
potential arising from the combination of the Moon’s gravity
and rotation with orbital angular velocity (!L) about the axis
through the common center of mass is (Stacey, 1977 [1])

V = �Gm
R0 �

1
2
!2
Lr

2 ; (1)

where m is the mass of the Moon, and from the figure below
one has

R02 = R2 + a2 � 2aR cos 

r2 = b2 + a2 sin2� � 2ab cos 

)
; (2)

where cos = sin � cos�, b= m
M+mR, while a is the Earth’s

radius.
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Fig. 1: The geometry of the calculation of the tidal potential of the
Moon and a point P on the Earth’s surface.

From Kepler’s third law one finds

!2
LR

3 = G(M +m) ; (3)

where M is the Earth’s mass, so that one gets for a� R

V = �Gm
R

�
1 +

1
2

m
M +m

�
�

� Gma2

R3

�
3
2

cos � 1
2

�
� 1

2
!2
La

2 sin2� : (4)

The first term is a constant that is due to the gravitational
potential due to the Moon at the center of the Earth, with
small correction arising from the mutual rotation. The second
term is the second order zonal harmonics and represents a
deformation of the equipotential surface to a prolate ellipsoid
aligned with the Earth-Moon axis. Rotation of the Earth is
responsible for the tides. We call the latter term tidal potential
and define it as

V2 = �Gma2

R3

�
3
2

cos � 1
2

�
: (5)

The third term is the rotational potential of the point P
about an axis through the center of the Earth normal to the
orbital plane. This does not have a tidal effect because it is
associated with axial rotation and merely becomes part of the
equatorial bulge of rotation. Due to the deformation an addi-
tional potential k2V2 (k2 is the Love number) results, so that
at the distance (R) of the Moon the form of the potential due
to the tidal deformation of the Earth is

VT = k2V2 = k2

� a
R

�3
= �Gma5

R6

�
3
2

cos � 1
2

�
: (6)

We can now identify  with �2: the angle between the
Earth-Moon line and the axis of the tidal bulge, to obtain the
tidal torque (� ) on the Moon:

� = m
�
@VT
@ 

�
 =�2

=
3
2

�
Gm2a5k2

R6

�
sin 2�2 : (7)

The torque causes an orbital acceleration of the Earth and
Moon about their common center of mass; an equal and op-
posite torque exerted by the Moon on the tidal bulge slows the
Earth’s rotation. This torque must be equated with the rate of
change of the orbital angular momentum (L), which is (for
circular orbit)

L =
�

M
M +m

�
R2!L ; (8)

upon using (3) one gets

L =
Mm
M +m

(GR)
1
2 ; L =

MmG 2
3

(M +m) 1
3
!�

1
3

L : (9)

The conservation of the total angular momentum of the
Earth-Moon system (J) is a very integral part in this study.
This can be described as a contribution of two terms: the first
one due to Earth axial rotation (S = C!) and the second term
due to the Moon orbital rotation (L). Hence, one writes

J = S + L = C! +
�

Mm
M +m

�
R2!L : (10)

We remark here to the fact that of all planets in the solar
system, except the Earth, the orbital angular momentum of
the satellite is a small fraction of the rotational angular mo-
mentum of the planet. Differentiating the above equation with
respect to time t one gets

� =
dL
dt

=
L

2R
dR
dt

= �dS
dt
: (11)

The corresponding retardation of the axial rotation of the
Earth, assuming conservation of the total angular momentum
of the Earth-Moon system, is

d!
dt

= � �
C
; (12)

assuming C to be constant, where C is the axial moment of
inertia of the Earth and its present value is (C0 = 8:043� 1037

kg m�3). It is of great interest to calculate the rotational en-
ergy dissipation in the Earth-Moon system. The total energy
(E) of the Earth-Moon system is the sum of three terms: the
first one due to axial rotation of the Earth, the second is due
to rotation of the Earth and Moon about their center of mass,
and the third one is due to the mutual potential energy. Ac-
cordingly, one has

E =
1
2
C!2 +

1
2
R2!2

L

�
Mm
M +m

�
� GMm

R
; (13)

and upon using (3) become

E =
1
2
C!2 � 1

2
GMm
R

: (14)
Thus

dE
dt

= C!
d!
dt
� 1

2
GMm
R2

dR
dt

; (15)

using (8), (11) and (12) one gets

dE
dt

= � � (! � !L) : (16)
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3 Our cosmological model

Instead of using the tidal theory described above, we rather
use the ordinary Kepler’s and Newton law of gravitational.
We have found that the gravitation constant G can be written
as (Arbab, 1997 [2])

Ge� = G0f(t) ; (17)

where f(t) is some time dependent function that takes care
of the expansion of the universe. At the present time we have
f(t0) = 1. It seems as if Newton’s constant changes with
time. In fact, we have effects that act as if gravity changes
with time. These effects could arise from any possible source
(internal or external to Earth). This variation is a modeled
effect due to perturbations received from distant matter. This
reflects the idea of Mach who argued that distant matter af-
fects inertia. We note here the exact function f(t) is not
known exactly, but we have its functional form. It is of the
form f(t) / tn, where n > 0 is an undetermined constant
which has to be obtained from experiment (observations re-
lated to the Earth-Moon system). Unlike Dirac hypothesis
in which G is a decreasing function of time, our model here
suggests that G increases with time. With this prescription in
hand, the forms of Kepler’s and Newton’s laws preserve their
form and one does not require any additional potential (like
those appearing in (5) and (6)) to be considered. The total
effect of such a potential is incorporated in Ge� . We have
found recently that (Arbab, 1997 [2])

f(t) =
�
t
t0

�1:3

; (18)

where t0 is the present age of the universe, in order to satisfy
Wells and Runcorn data (Arbab, 2004 [3]).

3.1 The Earth-Sun system

The orbital angular momentum of the Earth is given by

LS =
�

M
M +M�

�
R2
E
 ; (19)

or equivalently,

LS =
�

MM�
M +M�

�
(Ge�RE)

1
2

LS =
�

MM�
M +M�

�1
3
�
G2

e�



�1
3

9>>>=>>>; ; (20)

where we have replaceG byGe� , and 
 is the orbital angular
velocity of the Earth about the Sun. The length of the year (Y )
is given by Kepler’s third law as

Y 2 =
�

4�2

Ge�(M� +M)

�
R3
E ; (21)

where RE is the Earth-Sun distance. We normally measure
the year not in a fixed time but in terms of number of days. If

the length of the day changes, the number of days in a year
also changes. This induces an apparent change in the length
of year. From (20) and (21) one obtains the relation

L3
S = N1Ge�Y 2 ; (22)

and
L2
S = N2Ge�RE ; (23)

where N1, N2 are some constants involving (m, M , M�).
Since the angular momentum of the Earth-Sun remains con-
stant, one gets the relation (Arbab, 2009 [4])

Y = Y0

�
G0

Ge�

�2

; (24)

where Y is measured in terms of days, Y0 = 365:24 days.
Equation (23) gives

RE = R0
E

�
G0

Ge�

�
; (25)

whereR0
E = 1:496�1011 m. To preserve the length of year (in

terms of seconds) we must have the relation

D = D0

�
Ge�

G0

�2

; (26)

so that
Y0D0 = Y D = 3:155�107 s : (27)

This fact is supported by data obtained from paleontology.
We know further that the length of the day is related to !
by the relation D= 2�

! . This gives a relation of the angular
velocity of the Earth about its self of the form

! = !0

�
G0

Ge�

�2

: (28)

3.2 The Earth-Moon system

The orbital angular momentum of the Moon is given by

L =
�

M
M +m

�
R2!L (29)

or,

L =
�

Mm
M +m

�
(Ge�R)

1
2

L =
�

Mm
M +m

� 1
3
�
G2

e�
!L

�1
3

9>>>=>>>; ; (30)

where we have replace G by Ge� , and !L is the orbital an-
gular velocity of the Moon about the Earth. However, the
length of month is not invariant as the angular momentum of
the Moon has not been constant over time. It has been found
found by Runcorn that the angular momentum of the Moon
370 million years ago (the Devonian era) in comparison to the
present one (L0) to be

L0

L
= 1:016� 0:003 : (31)
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The ratio of the present angular momentum of the Moon
(L) to that of the Earth (S) is given by

L0

S0
= 4:83 ; (32)

so that the total angular momentum of the Earth-Moon sys-
tem is

J = L+ S = L0 + S0 = 3:4738�1034 Js : (33)

Hence, using (17) and (18), (28), (30) and (31) yield

L = L0

�
t
t0

�0:44

! = !0

�
t0
t

�2:6

; !L = !0L

�
t
t0

�1:3

9>>>=>>>; ; (34)

where t = t0 � tb, tb is the time measured from the present
backward. The length of the sidereal month is given by

T =
2�
!L

= T0

�
t0
t

�1:3

; (35)

where T0 = 27:32 days, and the synodic month is given by
the relation

Tsy =

 
T

1� T
Y

!
: (36)

We notice that, at the present time, the Earth declaration is
�5:46�10�22 rad/s2, or equivalently a lengthening of the day
at a rate of 2 milliseconds per century. The increase in Moon
mean motion is 9:968�10�24 rad/s2. Hence, we found that
_!=�54:8 _n, where n= 2�

!L . The month is found to increase
by 0.02788/cy. This variation can be compared with the pre-
sent observational data.

From (34) one finds

! !2
L = !0 !2

0L : (37)

If the Earth and Moon were once in resonance then !=
=!L�!c. This would mean that

!3
c = !0 !2

0L = 516:6�10�18 (rad/s)3

!c = 8:023�10�6 rad/s

9=; : (38)

This would mean that both the length of day and month
were equal. They were both equal to a value of about 9
present days. Such a period has not been possible since when
the Earth was formed the month was about 14 present days
and the day was 6 hours! Therefore, the Earth and Moon had
never been in resonance in the past.

Using the (11) and (34) the torque on the Earth by the
Moon is (Arbab, 2005 [4, 5])

� = �dL
dt

= �dS
dt

; � = � �0
�
t
t0

�0:56

; (39)

where �0 = 3:65 � 1015N m. The energy dissipation in the
Earth is given by

P =
dE
dt

;
dE
dt

=
d
dt

�
1
2
C!2 � 1

2
Ge�Mm

R

�
; (40)

where R, ! is given by (30) and (34).
We remark that the change in the Earth-Moon-Sun pa-

rameters is directly related to Hubble constant (H). This is
evident since in our model (see Arbab, 1997 [2]) the Hubble
constant varies as H = 1:11 t�1. Hence, one may attribute
these changes to cosmic expansion. For the present epoch
t0� 109 years, the variation of !, !L and D is of the order of
H0 (Arbab, 2009 [4,5]). This suggests that the cause of these
parameters is the cosmic expansion.

Fossils of coral reefs studied by John Wells (Wells, 1963
[7]) revealed that the number of days in the past geologic
time was bigger than now. This entails that the length of day
was shorter in the past than now. The rotation of the Earth
is gradually slowing down at about 2 milliseconds a century.
Another method of dating that is popular with some scien-
tists is tree-ring dating. When a tree is cut, you can study a
cross-section of the trunk and determine its age. Each year
of growth produces a single ring. Moreover, the width of the
ring is related to environmental conditions at the time the ring
was formed. It is therefore possible to know the length of day
in the past from palaeontological studies of annual and daily
growth rings in corals, bivalves, and stromatolite. The cre-
ation of the Moon was another factor that would later help the
planet to become more habitable. When the day was shorter
the Earth’s spins faster. Hence, the Moon tidal force reduced
the Earth’s rotational winds. Thus, the Moon stabilizes the
Earth rotation and the Earth became habitable. It is thus plau-
sible to say that the Earth must have recovered very rapidly
after the trauma of the Moon’s formation. It was found that
circadian rhythm in higher animals does not adjust to a period
of less than 17–19 hours per day. Our models can give clues
to the time these animals first appeared (945–1366 million
years ago).

This shortening is attributed to tidal forces raised by the
Moon on Earth. This results in slowing down the Earth ro-
tation while increasing the orbital motion of the Moon. Ac-
cording to the tidal theory explained above we see that the
tidal frictional torque � /R�6 and the amplitude of tides is
/ R�3. Hence, both terms have been very big in the past
when R was very small. However, even if we assume the
rate dR

dt to have been constant as its value now, some billion
years ago the Earth-Moon distance R would be very short.
This close approach would have been catastrophic to both the
Earth and the Moon. The tidal force would have been enough
to melt the Earth’s crust. However, there appears to be no
evidence for such phenomena according to the geologic find-
ings. This fact places the tidal theory, as it stands, in great
jeopardy. This is the most embarrassing situation facing the
tidal theory.
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4 Velocity-dependent Inertia Model

A velocity — dependent inertial induction model is recently
proposed by Ghosh (Gosh, 2000 [8]) in an attempt to sur-
mount this difficulty. It asserts that a spinning body slows
down in the vicinity of a massive object. He suggested that
part of the secular retardation of the Earth’s spin and of the
Moon’s orbital motion can be due to inertial induction by the
Sun. If the Sun’s influence can make a braking torque on the
spinning Earth, a similar effect should be present in the case
of other spinning celestial objects. This theory predicts that
the angular momentum of the Earth (L0), the torque (� 0), and
distance (R0) vary as

L0 = mM
(M +m) 1

3
G

2
3
e� !

� 1
3

L

� 0 = � L0
3!L

_!L

_R = �2
3
R
!L

_!L

9>>>>>>>=>>>>>>>;
: (41)

The present rate of the secular retardation of the Moon an-
gular speed is found to be d!L

dt � _!L � 0:27�10�23 rad s�2

leaving a tidal contribution of ��0:11�10�23 rad s�2. This
gives a rate of dR

dt � _R=�0:15�10�9 m s�1. Now the ap-
parent lunar and solar contributions amount to � 2:31�10�23

rad s�2 and � 1:65�10�23 rad s�2 respectively. The most
significant result is that dRdt is negative and the magnitude is
about one tenth of the value derived using the tidal theory
only. Hence, Ghosh concluded that the Moon is actually ap-
proaching the Earth with a vary small speed, and hence there
is no close-approach problem. Therefore, this will imply that
the tidal dissipation must have been much lower in the Earth’s
early history.
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Parameterized post-Newtonian formalism requires an existence of a symmetric metric
in a gravitational theory in order to perform a viability check regarding the experimental
data. The requirement of a symmetric metric is a strong constraint satisfied by very
narrow class of theories. In this letter we propose a viability check of a theory using
the corresponding theory equations of motion. It is sufficient that a connection exists,
not necessarily a metrical one. The method is based on an analysis of the Lorentz
invariant terms in the equations of motion. An example of the method is presented on
the Einstein-Infeld-Hoffmann equations.

1 Introduction

The parameterized post-Newtonian (PPN) formalism is a tool
used to compare classical theories of gravitation in the limit
of weak field generated by objects moving slowly compared
to c. It is applicable only for symmetric metric theories of
gravitation that satisfy the Einstein equivalence principle.

Each parameter in PPN formalism is a measure of depar-
ture of a theory from Newtonian gravity represented by sev-
eral parameters. Following the Will notation [1], there are ten
parameters: , �, �, �1, �2, �3, �1, �2, �3, �4;  is a measure
of space curvature; � measures the nonlinearity in superposi-
tion of gravitational fields; � is a check for preferred location
effects, i.e. a check for a violation of the strong equivalence
principle (SEP) whether the outcomes of local gravitational
experiments depend on the location of the laboratory relative
to a nearby gravitating body; �1, �2, �3 measure the extent
and nature of preferred-frame effects, i.e. how much SEP is
violated by predicting that the outcomes of local gravitational
experiments may depend on the velocity of the laboratory rel-
ative to the mean rest frame of the universe; �1, �2, �3, �4 and
�3 measure the extent and nature of breakdowns in global
conservation laws. The PPN metric components are

g00 =�1+2U�2�U2�2��W+ (2+2+�3+�1�2�) �1+

+ 2 (3 � 2� + 1 + �2 + �) �2 + 2 (1 + �3) �3 +

+ 2 (3+3�4�2�) �4� (�1�2�)A�(�1��2��3)w2U�
� �2wiwjUij + (2�3 � �1)wiVi +O(�3) ; (1.1)

g0i = � 1
2

(4 + 3 + �1 � �2 + �1 � 2�)Vi �
� 1

2
(1 + �2 � �1 + 2�)Wi �

� 1
2

(�1 � 2�2)wiU � �2wjUij +O(�5=2) ; (1.2)

gij = (1 + 2U) �ij +O(�2) ; (1.3)

where wi is the coordinate velocity of the PPN coordinate
system relative to the mean rest-frame of the universe and U ,
Uij , �W , A, �1, �2, �3, �4, Vi and Wi are the metric poten-
tials constructed from the matter variables and have similar
form as the Newtonian gravitational potential [1, 2].

The theories that can be compared using PPN formalism
are straightforward alternatives to GR. The bounds on the
PPN parameters are not the ultimate criteria for viability of a
gravitational theory, because many theories can not be com-
pared using PPN formalism. For example, Misner et al. [3]
claim that Cartan’s theory is the only non-metric theory to
survive all experimental tests up to that date and Turyshev [4]
lists Cartan’s theory among the few that have survived all ex-
perimental tests up to that date. There are general viability
criteria [5] for a gravitational theory: (i) is it self-consistent?
(ii) is it complete? (iii) does it agree, to within several stan-
dard deviations, with all experiments performed to date?

For a symmetric metric theory, the answer of (iii) is con-
sisted in checking the PPN parameters. But, for a non-
symmetric or a non-metric theory there is not a convenient
method. So, we propose a method for checking (iii) even in
the cases when the PPN formalism can not be applied such as
non-symmetric metric and non-metric theories. It is based on
a Lorentz invariance analysis of all terms in the equations of
motion of the corresponding theory. Since there is no general
equations of motion formula for all theories, we give an ex-
ample of the method on the Einstein-Infeld-Hoffmann (EIH)
equations. However, the general principle of the method can
be applied to any other theory in which the equations of mo-
tion can be derived, no matter whether the theory includes a
metric or not.

2 Lorentz invariant terms in the EIH equations

Given a system of n bodies, the equations of motion of the
j-th body is
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d2~rj
dt2

=
X
i,j

(~ri � ~rj)Gmi

r3
ij

�
1� 3

2c2
[ _~ri � (~rj � ~ri)]2

r2
ij

�

� 2(�+)
c2

X
k,j

Gmk

rjk
�2��1

c2
X
k,i

Gmk

rik
+

1
2c2

(~ri�~rj) _~vi �

� 2(1 + )
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_~ri _~rj + 
�vj
c

�2
+ (1 + )
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�2�
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+
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X
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Gmi
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�
(~rj � ~ri) � �(2 + 2) _~rj � (1 + 2) _~ri

���
� ( _~rj � _~ri) +

3 + 4
2c2

X
i,j

Gmi

rij
_~vi ; (2.1)

where ~rs is the radius-vector of the s-th body, ~vs = _~rs is the
velocity of the s-th body and upper dot marks the differentia-
tion with time. Formula (2.1) can be rearranged in the form

d2~rj
dt2

=
X
i,j

(~ri � ~rj)Gmi

r3
ij

�
1� 3

2c2
[ _~ri � (~rj � ~ri)]2
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+
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k,i
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+
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� � 2
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�

�
�X
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rjk
+
X
k,i

Gmk
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�#
: (2.2)

The second and the third term are of order c�2 and each
of them is Lorentz invariant, neglecting the terms of order c�4

and smaller, i.e. they take same values in all inertial systems.
So, (2.2) means

d2~rj
dt2

=
X
i,j

�
� (~rj � ~ri)Gmi

r3
ij

�
1� 3

2
[~vi � (~rj � ~ri)]2

r2
ijc2

+

+
v2
i
c2
� 2

~vi � ~vj
c2

�
+
Gmi

r3
ijc2

(~vj � ~vi)�(~rj � ~ri) � ~vj��+

+ Lorentz invariant terms: (2.3)

Every single Lorentz invariant term in (2.2), i.e. in (2.3),
can be replaced by a term proportional to the corresponding

Lorentz invariant term, so

d2~rj
dt2

=
X
i,j

�
� (~rj � ~ri)Gmi

r3
ij

�
1� 3

2
[~vi � (~rj � ~ri)]2

r2
ijc2

+

+
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c2
� 2

~vi � ~vj
c2

�
+
Gmi

r3
ijc2

(~vj � ~vi)[(~rj � ~ri) � ~vj ] +

+ A
(~ri�~rj)Gmi
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ij
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c2
+B

(~ri�~rj)Gmi
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ijc2

�

� [(~ri�~rj) � _~vi] + C
Gmi

rijc2
_~vi +D

Gmi

r3
ijc2

(~vj � ~vi)�

� [(~rj � ~ri) � (~vj � ~vi)] + E
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ij
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rkic2
+

+ F
X
k,i;j

(~ri � ~rj)Gmi

r3
ij

Gmk

rkjc2

�
: (2.4)

The bounds on the parameters A, B, C, D, E and F
can be determined directly from the experimental data. Now,
the viability check of any gravitational theory regarding the
agreement on the experimental data would be consisted in
checking how the theory fits in the bounds of the new pa-
rameters.

3 Conclusion

In this letter we introduced a new approach of viability check
of gravitational theories regarding the experimental data, ba-
sed on the analysis of the Lorentz invariance of the equations
of motion. An example is given for the EIH equations. This
method can be applied on any theory that has a connection
regardless it is metrical or not. The bounds of the new param-
eters can be determined directly from the experimental data.
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We have used as the velocity field of a fluid the functional form derived in Casuso
(2007), obtained by studying the origin of turbulence as a consequence of a new de-
scription of the density distribution of matter as a modified discontinuous Dirichlet in-
tegral. As an interesting result we have found that this functional form for velocities is a
solution to the Navier-Stokes equation when considering asymptotic behaviour, i.e. for
large values of time.

1 Introduction

The Euler and Navier-Stokes equations describe the motion
of a fluid. These equations are to be solved for an unknown
velocity vector ~u(~r; t) and pressure P (~r; t), defined for po-
sition ~r and time t> 0. We restrict attention here to incom-
prenssible fluids filling all real space. Then the Navier-Stokes
equations are: a) Newton’s law ~f =m~a for a fluid element
subject to the external force ~g (gravity) and to the forces aris-
ing from pressure and friction, and b) The condition of in-
compressibility. A fundamental problem in the analysis is to
find any physically reasonable solution for the Navier-Stokes
equation, and indeed to show that such a solution exists.
Many numerical computations appear to exhibit blowup for
solutions of the Euler equations (the same as Navier-Stokes
equations but for zero viscosity), but the extreme numerical
instability of the equations makes it very hard to draw reli-
able conclusions (see Bertozzi and Majda 2002 [1]). Impor-
tant progress has been made in understanding weak solutions
of the Navier-Stokes equations (Leray 1934 [2], Khon and
Nirenberg 1982 [3], Scheffer 1993 [4], Schnirelman 1997 [5],
Caffarelli and Lin 1998 [6]). This type of solutions means
that one integrates the equation against a test function, and
then integrates by parts to make the derivatives fall on the test
function. In the present paper we test directly the validity of
a solution which was obtained previously from the study of
turbulence.

2 Demonstration of validity of the asymptotic solution

We start from the Navier-Stokes equation for one-dimension:

@ux
@t

+ ux
@ux
@x

= �
@2ux
@x2 � @P

@x
+ g ; (1)

where � is a positive coefficient (viscosity) and g means a
nearly constant gravitational force per unit mass (an exter-
nally applied force).

Taking from Casuso, 2007 [7], the functional form de-
rived for the velocity of a fluid

ux = �X
k

sin(xkt)
it2

eit(x+k) + const; (2)

where �xk 6x + k6xk, k describe the central positions of
real matter structures such as atomic nuclei and xk means
the size of these structures. Assuming a polytropic relation
between pressure P and density � via the sound speed s we
have:

P = s2� =
s2

�

X
k

Z
sin(xkt)

t
eit(x+k)dt : (3)

Puting equations (2) and (3) into equation (1) we obtain:

A+B = C + g ; (4)
where

A = �X
k

"
cos(xkt)
it2

xk +
(x+ k)
t2

sin(xkt) +

+ 2
sin(xkt)
t3

#
eit(x+k) ; (5)

B =

"
�X

k

sin(xkt)
it2

eit(x+k) + const

#
�

�
"
�X

k

sin(xkt)
t

eit(x+k)

#
; (6)

C = �

"
�X

k

i sin(xkt) eit(x+k)

#
�

� is2

�

X
k

Z
sin(xkt) eit(x+k) dt : (7)

Now taking the asymptotic approximation, at very large
time t, we obtain

� sin(xkt) eit(x+k) = �s2

�

Z
sin(xkt) eit(x+k)dt+ g ; (8)

and differentiating and taking only the real part, we have

xk cos(xkt) = � s2

��
sin(xkt) ; (9)

which is the same as

�xk��
s2 = tan(xkt) (10)

then, in the limiting case (real case) xk! 0 and, again at very
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large time t, we have the solutions

xkt = 0; �; 2�; 3�; : : : ; n� (11)

with n being any integer number. So we have demonstrated
that the equation (2) is a solution for the Navier-Stokes equa-
tion in one dimension.

Now, for the general case of 3-dimensions we have to gen-
eralize the functional form which describes the nature of mat-
ter in Casuso, 2007 [7], in the sense of taking a new form for
the density

� =
1
�

X
k

Z
sin(rkt)

t
eit(r+k) dt ; (12)

where r=
p
x2 + y2 + z2, and applying the continuity eq-

uation
@�
@t

= � @
@x

(�ux)� @
@y

(�uy)� @
@z

(�uz): (13)

Using the condition of incompressibility included in
Navier-Stokes equations

div~u = 0 (14)

and assuming isotropy for the velocity field ux'uy 'uz , we
have

ux = uy = uz = � r
�(x+ y + z)

�
�X

k

sin(rkt)
it2

ei t(r+k) + const; (15)

where � rk 6 r + k6 rk. Including this expression for the
velocity in the 3-dimensional Navier-Stokes main equation
(taking into account the condition div~u = 0)

@
@t
ux = �

�
@2

@x2 +
@2

@y2 +
@2

@z2

�
ux � @P

@x
+ g ; (16)

we obtain

� r
�(x+ y + z)

X
k

eit(r+k) �

�
�
rk cos(rkt)

it2
+

(r + k) sin(rkt)
t2

� 2 sin(rkt)
it3

�
=

= ��ux � @P
@x

+ g ; (17)

where � means @2

@x2 + @2

@y2 + @2

@z2 . Again taking the approxi-
mation of very large time, we have

@P
@x

= g ; (18)
i.e.

i
s2x
�r

X
k

Z
sin(rkt) eit(r+k)dt = g : (19)

Taking the partial derivative with respect to time we ob-
tain

i
s2x
�r

X
k

sin(rkt) eit(r+k) = 0 (20)

or (which is the same),

eit(r+k) sin(rkt) = 0 ; (21)
i.e.

(cos[(r + k)t]� i sin[(r + k)t]) sin(rkt) = 0 : (22)

Taking only the real part

sin(rkt) cos[(r + k)t] = 0 : (23)

So, we have two solutions: (a) rkt= 0; �; 2�; : : : ; n�,
and (b) (r+ k)t= �

2 ; 3
�
2 ; : : : ; (2n+ 1)�2 . We must note that

the solution (a) is similar to the 1-dimension solution.

3 Conclusions

By using a new discontinuous functional form for matter den-
sity distribution, derived from consideration of the origin of
turbulence, we have found an asymptotic solution to the
Navier-Stokes equation for the three dimensional case. This
result, while of intrinsic interest, may point towards new ways
of deriving a general solution.
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As we know, it has been quite common nowadays for particle physicists to think of
six impossible things before breakfast, just like what their cosmology fellows used to
do. In the present paper, we discuss a number of those impossible things, including
PT-symmetric periodic potential, its link with condensed matter nuclear science, and
possible neat link with Quark confinement theory. In recent years, the PT-symmetry
and its related periodic potential have gained considerable interests among physicists.
We begin with a review of some results from a preceding paper discussing derivation of
PT-symmetric periodic potential from biquaternion Klein-Gordon equation and proceed
further with the remaining issues. Further observation is of course recommended in
order to refute or verify this proposition.

1 Introduction

As we know, it has been quite common nowadays for parti-
cle physicists to think of six impossible things before break-
fast [1], just like what their cosmology fellows used to do.
In the present paper, we discuss a number of those impossi-
ble things, including PT-symmetric periodic potential, its link
with condensed matter nuclear science, and possible neat link
with Quark Confinement theory.

In this regards, it is worth to remark here that there were
some attempts in literature to generalise the notion of sym-
metries in Quantum Mechanics, for instance by introducing
CPT symmetry, chiral symmetry etc. In recent years, the PT-
symmetry and its related periodic potential have gained con-
siderable interests among physicists [2, 3]. It is expected that
the discussions presented here would shed some light on these
issues.

We begin with a review of results from our preceding pa-
pers discussing derivation of PT-symmetric periodic potential
from biquaternion Klein-Gordon equation [4–6]. Thereafter
we discuss how this can be related with both Gribov’s theory
of Quark Confinement, and also with EQPET/TSC model for
condensed matter nuclear science (aka low-energy reaction
or “cold fusion”) [7]. We also highlight its plausible impli-
cation to the calculation of Gamow integral for the (periodic)
non-Coulomb potential.

In other words, we would like to discuss in this paper,
whether there is PT symmetric potential which can be ob-
served in Nature, in particular in the context of condensed
matter nuclear science (CMNS) and Quark confinement
theory.

Nonetheless, further observation is of course recommend-
ed in order to refute or verify this proposition.

2 PT-symmetric periodic potential

It has been argued elsewhere that it is plausible to derive a
new PT-symmetric Quantum Mechanics (PT-QM; sometimes
it is called pseudo-Hermitian Quantum Mechanics [3, 9])
which is characterized by a PT-symmetric potential [2]

V (x) = V (�x) : (1)

One particular example of such PT-symmetric potential
can be found in sinusoidal-form potential

V = sin' : (2)

PT-symmetric harmonic oscillator can be written accord-
ingly [3]. Znojil has argued too [2] that condition (1) will
yield Hulthen potential

V (�) =
A

(1� e2i�)2 +
B

(1� e2i�)
: (3)

Interestingly, a similar periodic potential has been known
for quite a long time as Posch-Teller potential [9], although
it is not always related to PT-Symmetry considerations. The
Posch-Teller system has a unique potential in the form [9]

U(x) = �� cosh�2 x : (4)

It appears worth to note here that Posch-Teller periodic
potential can be derived from conformal D’Alembert equa-
tions [10, p.27]. It is also known as the second Posch-Teller
potential

V�(�) =
� (�� 1)
sinh2 �

+
` (`+ 1)
cosh2 �

: (5)

The next Section will discuss biquaternion Klein-Gordon
equation [4, 5] and how its radial version will yield a sinu-
soidal form potential which appears to be related to equa-
tion (2).
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3 Solution of radial biquaternion Klein-Gordon equa-
tion and a new sinusoidal form potential

In our preceding paper [4], we argue that it is possible to
write biquaternionic extension of Klein-Gordon equation as
follows��

@2

@t2
�r2

�
+ i
�
@2

@t2
�r2

��
'(x; t) =

= �m2'(x; t) ; (6)

or this equation can be rewritten as�}�}+m2�'(x; t) = 0 (7)

provided we use this definition

} = rq + irq =
�
� i @
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+ e1

@
@x

+ e2
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@
@z

�
+

+ i
�
� i @

@T
+ e1

@
@X

+ e2
@
@Y

+ e3
@
@Z

�
; (8)

where e1, e2, e3 are quaternion imaginary units obeying
(with ordinary quaternion symbols e1 = i, e2 = j, e3 = k):

i2 = j2 = k2 = �1 ; ij = �ji = k ; (9)

jk = �kj = i ; ki = �ik = j ; (10)

and quaternion Nabla operator is defined as [4]

rq = � i @
@t

+ e1
@
@x

+ e2
@
@y

+ e3
@
@z

: (11)

Note that equation (11) already included partial time-
differentiation.

Thereafter one can expect to find solution of radial bi-
quaternion Klein-Gordon Equation [5, 6].

First, the standard Klein-Gordon equation reads�
@2

@t2
�r2

�
'(x; t) = �m2'(x; t) : (12)

At this point we can introduce polar coordinate by using
the following transformation

r =
1
r2

@
@r

�
r2 @
@r

�
� `2

r2 : (13)

Therefore by introducing this transformation (13) into
(12) one gets (setting ` = 0)�

1
r2

@
@r

�
r2 @
@r

�
+m2

�
'(x; t) = 0 : (14)

By using the same method, and then one gets radial ex-
pression of BQKGE (6) for 1-dimensional condition as fol-
lows [5, 6]�

1
r2

@
@r

�
r2 @
@r

�
�i 1

r2
@
@r

�
r2 @
@r

�
+m2

�
'(x; t)=0 : (15)

Using Maxima computer package we find solution of
equation (15) as a new potential taking the form of sinusoidal
potential

y = k1 sin
� jmj rp�i� 1

�
+ k2 cos

� jmj rp�i� 1

�
; (16)

where k1 and k2 are parameters to be determined. It appears
very interesting to remark here, when k2 is set to 0, then equa-
tion (16) can be written in the form of equation (2)

V = k1 sin' ; (17)
by using definition

' = sin
� jmj rp�i� 1

�
: (18)

In retrospect, the same procedure which has been tradi-
tionally used to derive the Yukawa potential, by using radial
biquaternion Klein-Gordon potential, yields a PT-symmetric
periodic potential which takes the form of equation (1).

4 Plausible link with Gribov’s theory of Quark Confine-
ment

Interestingly, and quite oddly enough, we find the solution
(17) may have deep link with Gribov’s theory of Quark con-
finement [8, 11]. In his Third Orsay Lectures he described a
periodic potential in the form [8, p.12]

� � 3 sin = 0 : (19)

By using Maxima package, the solution of equation (19)
is given by

x1 = k2 �
R

1p
k1�cos(y)

dy
p

6

x2 = k2 +

R
1p

k1�cos(y)
dy

p
6

9>>=>>; ; (20)

while Gribov argues that actually the equation shall be like
nonlinear oscillation with damping, the equation (19) indi-
cates close similarity with equation (2).

Therefore one may think that PT-symmetric periodic po-
tential in the form of (2) and also (17) may have neat link
with the Quark Confinement processes, at least in the con-
text of Gribov’s theory. Nonetheless, further observation is
of course recommended in order to refute or verify this pro-
position.

5 Implication to condensed matter nuclear science.
Comparing to EQPET/TSC model. Gamow integral

In accordance with a recent paper [6], we interpret and com-
pare this result from the viewpoint of EQPET/TSC model
which has been suggested by Prof. Takahashi in order to ex-
plain some phenomena related to Condensed matter nuclear
Science (CMNS).
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Takahashi [7] has discussed key experimental results
in condensed matter nuclear effects in the light of his
EQPET/TSC model. We argue here that his potential model
with inverse barrier reversal (STTBA) may be comparable to
the periodic potential described above (17).

In [7] Takahashi reported some findings from condensed
matter nuclear experiments, including intense production of
helium-4, 4He atoms, by electrolysis and laser irradiation ex-
periments. Furthermore he [7] analyzed those experimental
results using EQPET (Electronic Quasi-Particle Expansion
Theory). Formation of TSC (tetrahedral symmetric conden-
sate) were modeled with numerical estimations by STTBA
(Sudden Tall Thin Barrier Approximation). This STTBA
model includes strong interaction with negative potential near
the center.

One can think that apparently to understand the physics
behind Quark Confinement, it requires fusion of different
fields in physics, perhaps just like what Langland program
wants to fuse different branches in mathematics.

Interestingly, Takahashi also described the Gamow inte-
gral of his STTBA model as follows [7]

�n = 0:218
�
�1=2

� bZ
r0

(Vb � Ed)1=2dr : (21)

Using b = 5:6 fm and r = 5 fm, he obtained [7]

P4D = 0:77; (22)
and

VB = 0:257 MeV; (23)

which gave significant underestimate for 4D fusion rate when
rigid constraint of motion in 3D space attained. Nonetheless
by introducing different values for �4D the estimate result can
be improved. Therefore we may conclude that Takahashi’s
STTBA potential offers a good approximation (just what the
name implies, STTBA) of the fusion rate in condensed matter
nuclear experiments.

It shall be noted, however, that his STTBA lacks sufficient
theoretical basis, therefore one can expect that a sinusoidal
periodic potential such as equation (17) may offer better re-
sult.

All of these seem to suggest that the cluster deuterium
may yield a different inverse barrier reversal which cannot be
predicted using the D-D process as in standard fusion theory.
In other words, the standard procedure to derive Gamow fac-
tor should also be revised [12]. Nonetheless, it would need
further research to determine the precise Gamow energy and
Gamow factor for the cluster deuterium with the periodic po-
tential defined by equation (17); see for instance [13].

In turn, one can expect that Takahashi’s EQPET/TSC
model along with the proposed PT-symmetric periodic poten-
tial (17) may offer new clues to understand both the CMNS
processes and also the physics behind Quark confinement.

6 Concluding remarks

In recent years, the PT-symmetry and its related periodic po-
tential have gained considerable interests among physicists.

In the present paper, it has been shown that one can find
a new type of PT-symmetric periodic potential from solu-
tion of the radial biquaternion Klein-Gordon Equation. We
also have discussed its plausible link with Gribov’s theory of
Quark Confinement and also with Takahashi’s EQPET/TSC
model for condensed matter nuclear science. All of which
seems to suggest that the Gribov’s Quark Confinement the-
ory may indicate similarity, or perhaps a hidden link, with the
Condensed Matter Nuclear Science (CMNS). It could also be
expected that thorough understanding of the processes behind
CMNS may also require revision of the Gamow factor to take
into consideration the cluster deuterium interactions and also
PT-symmetric periodic potential as discussed herein.

Further theoretical and experiments are therefore recom-
mended to verify or refute the proposed new PT symmetric
potential in Nature.
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In General Relativity, the change of the energy of a freely moving photon should be
the solution to the scalar equation of the isotropic geodesic equations, which manifests
the work produced on the photon being moved along the path. I solved the equation
in terms of physical observables (Zelmanov, Physics Doklady, 1956, v. 1, 227–230),
and in the large scale approximation, i.e. with gravitation and deformation neglected in
the space, while supposing the isotropic space to be globally non-holonomic (the time
lines are non-orthogonal to the spatial section, a condition manifested by the rotation of
the space). The solution is E=E0 exp(�
2at=c), where 
 is the angular velocity of
the space (it meets the Hubble constant H0 = c=a= 2:3�10�18 s�1), a is the radius of
the Universe, t= r=c is the time of the photon’s travel. So a photon loses energy with
distance due to the work against the field of the space non-holonomity. According to the
solution, the redshift should be z= exp(H0 r=c)� 1�H0 r=c. This solution explains
both the redshift z=H0 r=c observed at small distances and the non-linearity of the
empirical Hubble law due to the exponent (at large r). The ultimate redshift, according
to the theory, should be z= exp(�)� 1 = 22:14.

In this short thesis, I show how the Hubble law, including its
non-linearity with distance, can be deduced directly from the
equations of the General Theory of Relativity.

In General Relativity, the change of the energy of a freely
moving photon should be the solution to the scalar equation
of isotropic geodesics, which is also known as the equation
of energy and manifests the work produced on the photon
being moved along the path. In terms of physically observ-
able quantities — chronometric invariants (Zelmanov, 1944),
which are the respective projections of four-dimensional
quantities onto the time line and spatial section of a given ob-
server — the isotropic geodesic equations are presented with
two projections onto the time line and spatial section, respec-
tively [1–3]

d!
d�
� !
c2
Fici +

!
c2
Dikcick = 0

d(!ci)
d�

� !F i + 2!
�
Di
k + A�ik�

�
ck + !4inkcnck = 0

9>>=>>; ;

where ! is the proper frequency of the photon, d� is the inter-
val of physically observable time, ci is the vector of the ob-
servable velocity of light (ckck = c2), Fi is the gravitational
inertial force, Aik is the angular velocity of the space rotation
due to the non-holonomity of space (the non-orthogonality
of the time lines to the spatial section), Dik is the deforma-
tion of space,4ink are the three-dimensional Christoffel sym-
bols. Integration of the scalar equation should give a function
E=E (t), where E= ~! is the proper energy of the photon.
However, integration of time in a Riemannian space is not a

trivial task. This is because the observable interval of time
d� =pg00 dt� 1

c2 vidx
i depends on the gravitational poten-

tial along the path, on the linear velocity vi =� cg0ipg00
of the

rotation of space (due to the non-holonomity of it), and on the
displacement dxi of the observer with respect to his coordi-
nate net during the measurement in process. The result of in-
tegration depends on the integration path, so time is not inte-
grable in a general case. We consider the “large scale approx-
imation”, where distances are close to the curvature radius
of the Universe; so gravitation and deformation are neglected
in the space (g00 = 1 and Dik = 0, respectively), and the ob-
server is resting with respect to his coordinate net (dxi = 0).
In such a case, integration of time is allowed, and is simple
as d� = dt. We also suppose the isotropic space, the “home
space” of photons, to be globally non-holonomic (vi , 0).
With these, the gravitational inertial force Fi, losing the grav-
itational potential w = c2 (1�pg00) = 0, consists of only the
second term, which is due to the space non-holonomity

Fi =
1pg00

�
@w
@xi
� @vi

@t

�
' � @vi

@t
:

We consider a single photon travelling in the x-direction
(c1 = c, c2 = c3 =0). With the “large scale approximation” in
a globally non-holonomic isotropic space, and assuming the
linear velocity of the space rotation to be v1 = v2 = v3 = v,
and be stationary, i.e. @v@t =B= const, the scalar equation of
isotropic geodesics for such a photon takes the form

dE
dt

= � B
c
E :
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This is a simplest uniform differential equation of the 1st
order, like _y=� ky, so that dyy =�kdt or d(ln y) =�kdt. It
solves as ln y=�kt+ lnC, so we obtain y= y0 e�kt. As a
result, the scalar equation of isotropic geodesics (the equation
of energy), in the “large scale approximation” in the globally
non-holonomic space, gives the solution for the photon’s en-
ergy (frequency) and the redshift z= !0�!

! as depending on
the distance r= ct travelled from the observer

E = E0 e�kt; z = ekt � 1 ;

such that at small distances of the photon’s travel, i.e. with
the exponent ex = 1 +x+ 1

2 x
2 + : : :' 1 +x, takes the form

E ' E0 (1� kt) ; z ' kt ;
where k= 1

c B= 1
c
@v
@t = const. Thus, according to our cal-

culation based on the General Theory of Relativity, a photon
being moved in a non-holonomic space loses its proper en-
ergy/frequency due to the work produced by it against the
field of the space non-holonomity (or the negative work pro-
duced by the field on the photon).

It is obvious that, given a stationary non-holonomity of
the isotropic space, we can express k through the angular
velocity 
 and the curvature radius a= c

H0
of the isotropic

space connected to our Metagalaxy (we suppose this is a con-
stant curvature space of sperical geometry), as

k =
1
c


2a ;

where H0 is the Hubble constant. So for the galaxies located
at a distance of r' 630 Mpc� (the redshift observed on them
is z' 0:16) we obtain


 =
r
z c
at

=
r
z c2

ar
' 2:4�10�18 sec�1;

that meets the Hubble constantH0 = 72�8�105 cm/sec�Mpc
= 2:3�0:3�10�18 sec�1 (according to the Hubble Space Te-
lescope data, 2001 [4]).

With these we arrive at the following law

E = E0 e
�H0r

c ; z = e
H0r
c � 1 ;

as a purely theoretical result obtained from our solution to the
scalar equation of isotropic geodesics. At small distances of
the photon’s travel, this law becomes

E ' E0

�
1� H0 r

c

�
; z ' H0 r

c
:

As seen, this result provides a complete theoretical
ground to the linear Hubble law, empirically obtained by Ed-
win Hubble for small distances, and also to the non-linearity
of the Hubble law observed at large distances close to the size
of the Metagalaxy (the non-linearity is explained due to the
�1 parsec = 3.0857�1018 cm ' 3.1�1018 cm.

exponent in our solution, which is sufficient at large r).
Then, proceeding from our solution, we are able to cal-

culate the ultimate redshift, which is allowed in our Universe.
It is, according to the exponential law,

zmax = e� � 1 = 22:14 :

In the end, we calculate the linear velocity of the rota-
tion of the isotropic space, which is due to the global non-
holonomity of it. It is �v= 
a=H0a= c, i.e. is equal to the
velocity of light. I should note, to avoid misunderstanding,
that this linear velocity of rotation is attributed to the isotropic
space, which is the home of isotropic (light-like) trajectories
specific to massless light-like particles (e.g. photons). It isn’t
related to the non-isotropic space of sub-light-speed trajecto-
ries, which is the home of mass-bearing particles (e.g. galax-
ies, stars, planets). In other words, our result doesn’t mean
that the visible space of cosmic bodies rotates at the veloc-
ity of light, or even rotates in general. The space of galaxies,
stars, and planets may be non-holonomic or not, depending
on the physical conditions in it.

A complete presentation of this result will have been held
at the April Meeting 2009 of the American Physical Society
(May 2–5, Denver, Colorado) [5], and also published in a spe-
cial journal on General Relativity and cosmology [6].
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An interesting hypothesis concerning the varying length of day has been formulated in
this edition, proposed by A.I. Arbab, based on a proposition of varying gravitational
constant, G. The main ideas are pointed out, and alternative frameworks are also dis-
cussed in particular with respect to the present common beliefs in astrophysics. Further
observation is of course recommended in order to refute or verify this proposition.

1 Introduction

An interesting hypothesis has been formulated in this edition,
proposed by A. I. Arbab [1,2], based on a proposition of vary-
ing gravitational constant, G. The main ideas are pointed out,
and alternative frameworks are also discussed in particular
because the idea presents a quite different approach compared
to the present common beliefs in astrophysics and cosmology,
i.e. that the Earth is not expanding because the so-called Cos-
mological expansion does not take place at the Solar system
scale.

2 Basic ideas of Arbab’s hypothesis

Arbab’s hypothesis is mainly an empirical model based on a
set of observational data corresponding to cosmological ex-
pansion [1]. According to this model, the day increases at a
present rate of 0.002 sec/century. His model started with a
hypothesis of changing gravitational constant as follows [1]:

Ge� = G0

�
t
t0

��
: (1)

We shall note, however, that such a model of varying con-
stants in nature (such as G, etc.) has been discussed by nu-
merous authors. The idea itself can be traced back to Dirac,
see for instance [3].

What seems interesting here is that he is able to explain
the Well’s data [4, 5]. In a sense, one can say that even the
coral reef data can be considered as “cosmological bench-
mark”. Furthermore, from this viewpoint one could expect
to describe the “mechanism” behind Wegener’s idea of tec-
tonic plate movement between continents [6]. It can be noted
that Wegener’s hypothesis has not been described before in
present cosmological theories. Moreover, it is also quite safe
to say that: “There has been no consensus on the main driving
mechanism for the plate tectonics since its introduction” [7].

It is worth noting here that the idea presented in [1,2] can
be considered as quite different compared to the present com-
mon beliefs in astrophysics and cosmology, i.e. that the Earth
is not expanding because the so-called Cosmological expan-
sion does not take place at the Solar system scale. Appar-
ently in [1] the author doesn’t offer any explanation of such a
discrepancy with the present beliefs in astrophysics; nor the
author offers the “physics” of the causal relation of such an
expansion at the Solar system scale. Nonetheless, the empir-
ical finding seems interesting to discuss further.

In the subsequent section we discuss other alternative
models which may yield more-or-less similar prediction.

3 A review of other solutions for cosmological expansion

In this regards it seems worth noting here that there are other
theories which may yield similar prediction concerning the
expansion of Earth. For instance one can begin with the inho-
mogeneous scalar field cosmologies with exponential poten-
tial [8], where the scalar field component of Einstein-Klein-
Gordon equation can be represented in terms of:

� = �k
2

+ log(G) +  : (2)

Alternatively, considering the fact that Klein-Gordon
equation is neatly related to Proca equation, and then one
can think that the right terms of Proca equation cannot be
neglected, therefore the scalar field model may be expressed
better as follows [9]:

(�+ 1)A� = j� + @� (@�j�) : (3)

Another approach has been discussed in a preceding pa-
per [10], where we argue that it is possible to explain the
lengthening of the day via the phase-space relativity as impli-
cation of Kaluza-Klein-Carmeli metric. A simpler way to pre-
dict the effect described by Arbab can be done by including
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equation (1) into the time-dependent gravitational Schrödin-
ger equation, see for instance [11].

Another recent hypothesis by M. Pitkanen [12] is worth
noting too, and it will be outlined here, for the purpose of
stimulating further discussion. Pitkanen’s explanation is
based on his TGD theory, which can be regarded as gener-
alization of General Relativity theory.

The interpretation is that cosmological expansion does
not take place smoothly as in classical cosmology but by
quantum jumps in which Planck constant increases at partic-
ular level of many-sheeted space-time and induces the expan-
sion of space-time sheets. The accelerating periods in cosmic
expansion would correspond to these periods. This would al-
low also avoiding the predicted tearing up of the space-time
predicted by alternative scenarios explaining accelerated ex-
pansion.

The increase of Earth’s radius by a factor of two is re-
quired to explain the finding of Adams that all continents fit
nicely together. Increases of Planck constant by a factor of
two are indeed favoured because p-adic lengths scales come
in powers of two and because scaling by a factor two are fun-
damental in quantum TGD. The basic structure is causal di-
amond (CD), a pair of past and future directed light cones
forming diamond like structure. Because two copies of same
structure are involved, also the time scale T=2 besides the
temporal distance T between the tips of CD emerges natu-
rally. CD’s would form a hierarchy with temporal distances
T=2n between the tips.

After the expansion the geological evolution is consistent
with the tectonic theory so that the hypothesis only extends
this theory to earlier times. The hypothesis explains why the
continents fit together not only along their other sides as We-
gener observed but also along other sides: the whole Earth
would have been covered by crust just like other planets.

The recent radius would indeed be twice the radius that
it was before the expansion. Gravitational force was 4 time
stronger and Earth rotated 4 times faster so that day-night was
only 6 hours. This might be visible in the biorhythms of sim-
ple bacteria unless they have evolved after that to the new
rhythm. The emergence of gigantic creatures like dinosaur
and even crabs and trees can be seen as a consequence of the
sudden weakling of the gravitational force. Later smaller an-
imals with more brain than muscles took the power.

Amusingly, the recent radius of Mars is one half of the
recent radius of Earth (same Schumann frequency) and Mars
is now known to have underground water: perhaps Mars con-
tains complex life in underground seas waiting to the time to
get to the surface as Mars expands to the size of Earth.

Nonetheless what appears to us as a more interesting
question is whether it is possible to find out a proper met-
ric, where both cosmological expansion and other observed
expansion phenomena at Solar-system scale can be derived
from the same theory (from a Greek word, theoros — “to
look on or to contemplate” [13]). Unlike the present beliefs

in astrophysics and cosmological theories, this seems to be a
continuing journey. An interesting discussion of such a pos-
sibility of “generalized” conformal map can be found in [14].
Of course, further theoretical and experiments are therefore
recommended to verify or refute these propositions with ob-
served data in Nature.�
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Israel L. Bershtein (1908–2000) was one of the famous radio physicists in the world. He
had constructed the theory of amplitude and frequency fluctuations for the electromag-
netic wave generators working in the radio and optical scales. He also had developed
numerous methods for precise measurement of the fluctuations, which also can be ap-
plied to ultimate small mechanical displacements. Besides these he was the first person
among the scientists, who had registered the Sagnac effect at radiowaves.

Fig. 1: I. L. Bershtein in 1930 (the left corner in the picture), being
a 5th grade university student at the Low Current Lab (a common
name for a radio laboratory in those years). This photo is interesting
from the historical viewpoint, because the background of a radio
laboratory of the 1930’s.

In November, 2008 we celebrate the 100th Birthday Anniver-
sary of Israel Lazarevich Bershtein, Doctor of Science in
Physics and Mathematics, a distinguished radio physicist,
the author of theoretical and experimental research methods
for fluctuations of radio and optical electromagnetic oscilla-
tors. The paper deals with I. L. Bershtein’s basic scientific
achievements.

I. L. Bershtein started his scientific activities when radio-
physics originated and broke new ground, so he took a part
in its development. I. L. Bershtein was born on November
22, 1908 in the Mogilyov city of the Russian Empire (nowa-
days the Republic of Belarus). After graduating from school
he studied physics at the Electromechanical Faculty of the
Leningrad Polytechnical Institute (1926–1930). A. F. Ioffe,

V. F. Mitkevich, D. D. Rozhansky, A. A. Chernyshev, and
M. A. Shatelen were among his teachers. A well-known de-
bate concerning the nature of electric current, electric and
magnetic fields and also the long-range action problem be-
tween V. F. Mitkevich, the full member of the USSR Acade-
my of Sciences, and Ya. I. Frenkel, the corresponding mem-
ber of the Academy, took a place in 1929–1930 at the Poly-
technical Institute. P. Ehrenfest was invited by A. F. Ioffe to
participate in two sessions of the debate. I. L. Bershtein took
a part in all three sessions of these.

After graduating from the Polytechnical Institute in 1931
I. L. Bershtein was employed at the Central Military Research
Radio Laboratory (later — the Frunze Factory). He how-
ever preferred scientific activities. In 1930 N. D. Papaleksi,
the corresponding member of the Academy, paid attention to
the talented student. On his advice I. L. Bershtein addressed
Prof. A. A. Andronov who agreed to become his scientific su-
pervisor. In 1933 I. L. Bershtein was enrolled for A. A. And-
ronov’s in-service training postgraduate course. His task was
to obtain expressions for amplitude and frequency fluctua-
tions of a self-oscillating system (by the example of valve os-
cillator) close to its periodic motion. I. L. Bershtein managed
to show that frequency fluctuations of the generator “blurred”
the infinitely narrow radiation line of an ideal oscillator and it
acquired width, while amplitude fluctuations created a rather
wide but low “pedestal” of the generation line. Results of this
work were recommended to publishing by L. I. Mandelstam,
the full member of the Academy, and they were published
in Soviet Physics — Doklady [1]. Paper [1] considerably ex-
ceeded the maximum permissible volume and A. A. Andro-
nov reached an agreement with the Editor-in-Chief S. I. Va-
vilov, the full member of the Academy, on publishing [1] in
total. In 1939 I. L. Bershtein under supervision of A. A. And-
ronov defended a Ph.D. thesis. The official opponents were
M. A. Leontovich and G. S. Gorelik. In 1941 I. L. Bershtein
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Fig. 2: I. L. Bershtein in 1938, among the research scientists and professors of the Gorky Physics and Technical Institute (GPTI). In the 1st
row (from left to right): unknown person; unknown person; Prof. S. M. Rytov; I. L. Bershtein; Prof. Jakov N. Nikolaev; Kholodenko. In the
2nd row (from left to right): Prof. Alexandra G. Lyubina; Prof. Victor I. Gaponov (the husband of Prof. Maria T. Grekhova, the Director of
GPTI, and the father of A. V. Gaponov-Grekhov, the full member of the Academy); unknown person.

published a more detailed statement of the theory of fluc-
tuations in valve oscillator [2]. The original theoretical re-
sults he had obtained required experimental validation, how-
ever the Fascist Germany aggression upon the USSR forced
I. L. Bershtein to postpone his fundamental research.

During the World War II I. L. Bershtein developed radio
receiving equipment for the Soviet army and aviation needs.
In 1946 I. L. Bershtein stopped his industrial activity and was
employed at the Gorky Physics and Technical Institute
(GPTI) in G. S. Gorelik’s department, and held a post of As-
sistant Professor and Full Professor of radioengineering at the
newly organized Radiophysical Faculty of the Gorky State
University. Nevertheless, until 1952 he continued to super-
vise the development and production of radio equipment at
a factory. At that time I. L. Bershtein starts to develop ex-
perimental methods for measuring amplitude and frequency
fluctuations of valve oscillator. In particular, he was the first
person who suggested to process measurement of small phase
fluctuations by the so-called method of triangle, based on the
interference of the measured and reference signals having an
insignificant constant phase shift relative to each other and
close amplitude values. The experimental measurement car-
ried out by I. L. Bershtein in [3, 4] completely verified his
earlier theoretical results [1, 2]. His paper [4] was awarded
the Mandelstam Prize presented to L. I. Bershtein at a session
of the USSR Academy of Sciences by N. I. Vavilov, the Pres-
ident of the Academy.

In papers [3, 4] I. L. Bershtein managed to measure the
lowest level of periodic phase modulation of the order 10�8

rad in the frequency band 1 Hz. This permitted to carry out
a very interesting physical experiment, i.e., to measure the
Sagnac effect at radio waves employing a cable of the 244 m
length coiled round a barrel [5]. The radio wavelength was 10
m and the angular velocity of the barrel’s rotation was 1–1.3
revolutions per second. Since the phase difference of counter-
running waves caused by the rotation is inversely proportional
to the wavelength, it is evident that the Sagnac interferometer
sensitivity at radio waves is 107 lower than the sensitivity un-
der the other equal conditions expected in the optical range.

I. L. Bershtein’s papers on fluctuations and the Sagnac ef-
fect [3–5] brought him world-wide popularity. He became a
leading Soviet scientist on fluctuation measurement. In 1954
he measured extremely small mechanical displacements em-
ploying the interference method, and recorded a displacement
of the order 10�3 Å (see [6]). (It should be noted that, in
1998, one of I. L. Bershtein’s disciples, namely — V. M. Geli-
konov, managed to increase the measurement accuracy of me-
chanical displacements by 4 orders to it. See [7] for detail.)
That year I. L. Bershtein defended a Dr.Sci. thesis (his op-
ponents were G. S. Landsberg, Yu. B. Kobzarev, S. M. Rytov,
and G. S. Gorelik) and after G. S. Gorelik’s departure for
Moscow he headed a scientific department in GPTI. In the
same time he became a Full Professor at the Radioengineer-
ing Faculty of the Gorky State University.

In 1957 I. L. Bershtein and his department were transfer-
red to the Radiophysical Research Institute (RRI), where he
studied klystron oscillators and matched their frequencies to
the frequencies of a quartz oscillator and an ammonia maser,
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Fig. 3: I. L. Bershtein in 1948. This is the time of the upper point of
his scientific achievements.

then investigated the oscillator fluctuations in AFC system
operation. In the mid-60’s I. L. Bershtein’s department started
developing a subject related to the pioneering experimental
and theoretical studies in the field of fluctuation processes in
gas lasers with Fabry-Pérot and ring resonators, including gas
lasers with an absorbing cell used for elaboration of the op-
tical frequency standards. At that time I. L. Bershtein devel-
oped a heterodyne method for frequency fluctuation measure-
ment, enabling his disciples Yu. I. Zaitsev and D. P. Stepanov
to be first persons in the world who measured frequency fluc-
tuations of a gas laser at the wavelength 0.63� [8]. In 1969
I. L. Bershtein was invited to held a lecture on his depart-
ment’s activities at P. L. Kapitsa’s workshop in Kapitza’s In-
stitute for Physical Problems in Moscow.

In 1970 the so-called polarization resonances in coun-
terrunning waves in an amplifying laser tube at the wave-
length 3:39� [9] were discovered with the participation of
L. I. Bershtein. He also studied the influence of the light back-
scattering on laser operation and reciprocal capture of the
counterrunning wave frequencies in a ring gas laser. The
AFC systems for laser generation developed by I. L. Bershtein
permitted his disciples to discover new effects in gas lasers
with an absorbing cell. The new effects they have discov-
ered were the dynamic self-stabilization of the generation fre-
quency which occurs not only at the centre of the transition
line of the absorbing gas, but also at the boundaries of the
entire non-uniformly broadened absorption line, the depen-
dence of the self-stabilization coefficient on the modulation
frequency [10], and the so-called dispersion resonances they
have recorded.

I. L. Bershtein was a member of the Editorial Board of
the journal Soviet Radiophysics published in RRI for about

Fig. 4: The mid-60’s. I. L. Bershtein being taking relax at the coast
of the Black Sea.

twenty years (1958–1976).
From 1977 to 1986 I. L. Bershtein headed a research lab-

oratory at the Institute of Applied Physics dealing with fiber-
optic interferometers. From 1987 to 1999, being a leading
consulting scientist, he continued his studies in the field of
fiber-optic gyroscopy and semiconductor radiation sources
for fiber optics. I. L. Bershtein died on August 16, 2000.

The life and scientific activity of I. L. Bershtein is a wor-
thy example of service to science. His work in the field of
self-oscillating system fluctuations and micro phase meter-
ing are the classics of science, and are extremely valuable for
radiophysics. He is the author of more than 60 scientific pub-
lications and many inventions certified by patents. He was
also awarded several prizes provided by the USSR Govern-
ment [11].

Under careful leading of I. L. Bershtein three persons have
got a Ph.D. degree. Those were I. A. Andronova, Yu. I. Zai-
tsev, and L. I. Fedoseev (the last person was led by I. L. Ber-
shtein commonly with V. S. Troitsky, the corresponding mem-
ber of the Academy). Many other research scientists were
also I. L. Bershtein’s disciples: Yu. A. Dryagin, D. P. Stepa-
nov, V. A. Markelov, V. V. Lubyako, V. A. Rogachev. The next
generations of research scientists were also I. L. Bershtein’s
disciples. Those are I. A. Andronova’s disciples, namely —
I. V. Volkov, Yu. K. Kazarin, E. A. Kuvatova, Yu. A. Mamaev,
A. A. Turkin, G. V. Gelikonov, and Yu. I. Zaitsev’s disciples
— V. M. Gelikonov, V. I. Leonov, G. B. Malykin, and also
D. V. Shabanov who was V. M. Gelikonov’s disciple, and also
L. M. Kukin, who was Yu. A. Dryagin’s disciple. I. L. Bersh-
tein patiently transferred all his scientific experience to the
aforementioned persons, who are actually his disiples and fol-
lowers in science.
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Fig. 5: I. L. Bershtein at the working desk in his cabinet. This photo,
pictured in 1967, is very specific to his nativity of a man who spent
his life in science.

The author of this paper would like to thank V. M. Ge-
likonov, E. G. Malykin, V. I. Pozdnyakova, and N. V. Roudik
for their assistance in this paper. This work was partly sup-
ported by the Council on President’s Grants of the Russian
Federation for Leading Scientific Schools (project no. NSh.
1931.2008.2).
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Already fifty years ago, Frank Robert Tangherlini, an American theoretical physicist,
suggested an original procedure which, targeting the synchronization of clocks located
in two different inertial reference frames of the space, was different from that Einstein
had introduced. As a result of these, Tangherlini had deduced the so-called the Tangher-
lini transformations, which are a sort of the transformations of the spatial coordinates
and time being moved from one inertial reference frame into another one. The Tangher-
lini transformations differ from the Lorentz transformations (which can be meant clas-
sic ones in the theory of relativity) and, in particular, suggest the velocity of light to be
anisotropic in a moving inertial reference frame. The Tangherlini transformations be-
ing applied provide adequate explanations to all well-known interference experiments
checking of the Special Theory of Relativity.

In this paper I have to present, to the scientific community,
the life and scientific achievements of Frank Robert Tangher-
lini, the prominent American theoretical physicist who meets
his 85th birthday on Saturday, March 14, 2009. He started his
scientific carrier with a blessed theoretical result, known later
as the Tangherlini transformations, which was shadowed and
unknown to the scientific community for about twenty years.
I also give here the direct and inversion Tangherlini trans-
formations, and tell the story how his famous PhD thesis [1]
containing the transformations, was written, and how he got
a PhD degree on the basis of the thesis.

Frank Robert Tangherlini was born on March 14, 1924,
in Boston (Massachusetts, USA) in the family of a worker.
His father, Emiliano Francesco Tangherlini (1895–1979) was
an Italian-born immigrant: being a young boy, Emiliano was
carried out from Italy into the USA by his father Luigi, a mar-
ble sculptor assistant. In his young years, Emiliano was em-
ployed as an instrumental worker at a machine factory, then,
in the years of the Great Depression, he happily found some
employment at the Boston Shipyard. What is interesting, one
of the flats in the house at Beacon Hill near Massachusetts
State House, where Emiliano Tangherlini had residence, was
owned by the Kennedy family — the great American family
which gave John Fitzgerald Kennedy (1917–1963), the thirty-
fifth President of the United States. (Also, John Kennedy’s
grandfather from the mother’s side was the Major of Boston
city). In 1947–1952, despite the big difference in the age and
in the social status of John Kennedy, Emiliano Tangherlini
found a friendship from the side of him when walked some-
where in the park near the home. They spent much time
together when talking about everything at the walks. Many

years later, when becoming the US President, John Kennedy
visited Emiliano Tangherlini when doing an official visit to
Boston: John Kennedy stopped his car escort, then went to
Emiliano Tangherlini through the crowding people who met
him on the street, and shacked Emiliano’s hand on the public.

The grandfather of Frank Robert Tangherlini from the
mother’s side, Barnett Rubinovich (he has changed his fam-
ily name to Robinson when becoming a US citizen), was born
in Krolevetz — a small town near Nezhin city of Chernigov
Gubernya of the Russian Empire. He immigrated to the USA
in the end of the 19th century, and settled in New York city
where he later owned a clothes shop. His daughter, Rose
(1894–1953) was born a few years later he arrived in the
USA. In 1919 Rose changed her religion from Judaism and
took Catholic belief, in order to get marry with Emiliano Tan-
gherlini. She was employed as a bookkeeper then, in the years
of the Great Depression, as a waitress in order to survive in
the hard conditions of the economical crisis.

In June 1941, Frank Robert Tangherlini completed his
high school education, by getting a silver medal (he also had
got a bronze medal in the field of the world history). Then,
in the Autumn of 1941, he became a student at Boston Jesuit
College, where he took education in electrical engineering
during five semesters. Being a student, he was set free of mil-
itary service. He actually had a possibility to continue this
“free-of-war time” until the actual end of the World War II.
Such a behaviour was not in his habit. In July 1943 he volun-
teered to the US army, and had the basic training during one
year at Fort Beining, Georgia. In the Autumn, 1944, he was
sent to Liverpool, England. Being in England he, in com-
mon with his two close friends, volunteered to a parachute
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Fig. 1: Frank Robert Tangherlini with two paratrooper friends in
Auxerre, France, Summer 1945. From left to right: Sergeant Frank
Tangherlini, Private James Barlow (he died in Connecticut, in Octo-
ber 2007), Private Joe Rhiley (later he was a major in the US Air-
force, and was killed in an aviation accident in Japan while on a
training mission with a Japanese pilot; there is an airfield in Nebras-
ka, his home state, named after him). Tanghelini called his youngest
son Riley (without “h”) in honour of his late friend.

training school at Hungerford, Berkshire, 60 miles West from
London city. When visiting London in free time, Tangherlini
saw the great destruction in the city and many people killed
due to the ballistic missiles V-2 launched from the Fascist
Germany through the strait. He observed the people, who ac-
tually lived at the London underground railways during many
weeks without seeing sunshine, in order to survive under the
Nazi’s air attacks.

A few months later, the paratrooper corps where Tangher-
lini continued military service was dispatched into France.
Tangherlini had got five parachute jumps into the battle, then
was a machine-gunner, and participated in many bloody bat-
tles in France, Belgium, Germany. In particular, he fought at
the Battle for Ardennes, where many Americans were killed.
Many his friends-in-battle were killed there. He met the end
of the World War II in Europe being a Paratrooper Sergeant.
It was in Ulm, Germany, the patrimony of Albert Einstein.
His paratrooper corps was moved to Austria, in order to keep
the Austrian-Italian border safely. Then they started prepara-
tion to a very risky dispatch known as the “jump at Tokyo”,
which was happily cancelled due to the capitulation of Japan.

Fig. 2: Paratrooper Sergeant Frank Tangherlini (right) and his
youngest brother Burt (left). Los Angeles, the Spring of 1946.

In January, 1946, Frank Robert Tangherlini returned to
the USA, and retired from military service. He has several
military orders from the US Government.

In close time after his coming back to the USA, Tangher-
lini continued his education. He moved to Harvard Univer-
sity, where he studied sciences in the same grade that Robert
Francis Kennedy (the US Attorney General in the future).
Tangherlini was graduated as a BSc at Harvard, then — as
MSc at the University of Chicago. In the years 1952–1955 he
was employed as a research engineer in Convair-General Dy-
namics Company, San Diego. It was some ierony that his sci-
entific supervisor was a German engineer, who worked for the
Fascist Germany at the Peenemunde Rocket Centre during the
World War II, and participated in the V-2 launches at London.

In 1959 Tangherlini got a PhD degree from Stanford Uni-
versity. He continued his post-doctorate studies in Copen-
hagen (1958–1959), at the Institute of Theoretical Physics
headed by Niels Bohr. Then Tangherlini continued his studies
at the School of Theoretical and Nuclear Physics, the Naples
University (1959–1960). In the same time many other physi-
cists, famous in the future, continued their post-doctorates
there. They were Francis R. Halpern (1929–1995), Murray
Gell-Mann (b. 1929), and the Japanese physicist Susunu
Okubo (b. 1930).

In the years 1960–1961 Frank Robert Tangherlini was
employed as a research scientist at the Institute of Field Phys-
ics, University of North Carolina. In 1961–1964 he was As-
sistant Professor at Duke University, North Carolina, then in
1964–1966 — Associate Professor at The George Washing-
ton University (four blocks from the White House, Washing-
ton, DC). In 1966–1967 he was a research scientist at Danish
Space Research Institute, Copenhagen, and in the same time

L10 Gregory B. Malykin. Frank Robert Tangherlini — the Founder of an Alternative Relativistic Kinematics



January, 2009 PROGRESS IN PHYSICS Volume 1

Fig. 3: Some people pictured at the Institute of Theoretical Physics (now — Bohr Institute). Copenhagen, the fall of 1959. Top row: nine
persons to the right, the tall person is Sheldon Glashow of the later Glashow-Weinberg-Salam electroweak theory. Just below him slightly
to the right is Eugen Merzbacher, the author of a text on quantum mechanics. The second person in the same row, going to the right, is
Frank Tangherlini. Go down two rows to the person almost directly below Tangherlini, with a beard, then move one person to the right ,
that is ”Ben” Sidorov (Veniamin A. Sidorov) who later became the full member of the Russian Academy of Sciences and Director of the
Accelerator Centre in Novosibirsk. Now go down two more rows to the first row. In the centre is Niels Bohr. Next to him, to your left,
is Felix Bloch, whom Tangherlini had for nuclear physics when he was at Stanford. Four persons to the left of Bloch is Aage Bohr, one
of Bohr’s sons. Next to Aage Bohr, to your left is Ben Mottelson, who worked with Aage Bohr on nuclear physics. Go back to Niels
Bohr, and count three persons to your right, that is Leon Rosenfeld who co-laborated with Bohr, particularly later on Complementarity.
Finally, the next to the last person on the right is Magnusson. He was from Iceland, and worked with Prof. Møller on the gravitational
energy-momentum tensor. Møller himself is not in the photo because he was then Director of NORDITA, a separate institute devoted
mainly to assistance in research of Scandinavian physicists.

— a lecturer at the Technical University of Denmark. A long
time from 1967 to 1994 he was Associate Professor at the
College of the Holy Cross, Worcester (Massachusetts). Com-
mencing in 1994 he is retired. He has residence in San Diego,
California, where he is still active in science and sport.

Frank Robert Tangherlini is a member of the American
Physical Society, and is also a member of several other civil
and sport clubs. He is enthusiastic in tennis and foot racing.
In particular, he participated, until the least time, in the an-
nual marathon runs in California. He journalist reports are
requested to publish by San Diego Union-Tribune. In 1947
he published a roman [2]. He survives by four children and
seven grandchildren (four girls and three boys).

Frank Robert Tangherlini has a wide field of scientific in-
terests: the Special Theory of Relativity, the General Theory
of Relativity, relativistic cosmology, Mach’s principle, and
many others. He authored many publications in the peer re-
view scientific journals. W. K. H. Panofsky (1919–2007) was

one of his co-authors in science [3].
In already 1951, Tangherlini paid interest to the possi-

bility of the superluminal objects — the objects whose ve-
locity exceeds the velocity of light. He discussed this prob-
lem in 1951–1956 with Hermann Weyl (1885–1955), Gregor
Wentzel (1898–1978), Wolfgang Pauli (1900–1958), John
Wheeler (1911–2008), Julian Schwinger (1918–1994). He
also had a talk with George Gamov (1904–1968), on the con-
nected theme — the ultimate high ratio “signal/noise” which
could be possible in radiowaves. All those considerations
concerning the principal possibility of superluminal motions
have led Tangherlini, in the future, to his own version of
the transformations of the spatial coordinates and time being
moved from one inertial reference frame into another one,
which is different from the Lorentz transformations.

These transformations — at now they are known as the
Tangherlini transformations — were deduced in 1958 while
Frank Robert Tangherlini worked on his PhD thesis, and were
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Fig. 4: Frank Tangherlini in 1959 at Copenhagen, after he has de-
fended his PhD thesis where the Tanghelini transformations and the
other important results were first introduced into theoretical physics.

the main part of the thesis. Tangherlini himself called these
the absolute Lorentz transformations.

His PhD supervisor was Sidney D. Drell (b. 1926), who
had became the best friend of Andrew D. Sakharow many
years later. At the initially stage of the development, Tangher-
lini had also another supervisor who consulted him: it was
Leonard Isaac Shiff (1915–1971), with whom Tangherlini
closely co-laborated commencing in 1955.

June of 1958 was met by Tangherlini at Stanford Univer-
sity. He gave a public presentation of his PhD thesis [1] then,
in September, he put his thesis on the desk of the Physics Sec-
tion of the Graduate Division, Stanford University. Positive
review on his PhD thesis were given from the side of Sidney
D. Drell and Leonard Isaac Shiff, while Albert H. Bouker, the
Dean of the Graduate Division, clarified that the PhD thesis
is enough ready to be defended. Tangherlini’s PhD thesis was
considered in the absence of the author himself, because at
that time he, in common with Drell, was with Niels Bohr in
Copenhagen, in the Institute of Theoretical Physics (this Insti-
tute was called later Bohr Institute). On December 9, 1958,
Florine H. McIntosh, the Secretary Committee on Graduate
Study, informed Tangherlini that his PhD thesis has met a
positive reaction from the side of the Committee’s members
— Joshua L. Soske (Geophysics), chairman, Walter E. Mey-
erhof (Physics), and Menaham M. Schiffer (Mathematics) —
who considered the thesis. On January 9, 1959, Harvey Hall,
the Registar of the Committee, provided a hardcopy of the
Stanford PhD Diploma to Tangherlini. Later Tangherlini pro-

duced a microfilm of his PhD thesis [1], then gave presenta-
tions, based on the microfilm, at Copenhagen. In particular he
provided the microfilm to several theoretical physicists such
as Oscar Klein (1894–1977), who noted that he met a simi-
lar method of the synchronization of clocks while he read the
lectures at Stockholm [4].

Being in 1959 at Copenhagen, Tangherlini composed a
detailed paper on the basis of his PhD thesis, then submitted
the paper to Annals of Physics (New York). Philip McCord
Morse (1903–1985), the founder and first editor of the jour-
nal, however declined Tangherlini’s paper. He argued that
this paper was so large (it was 76 pages of the typewriting)
for such a journal, and suggested, in his letter to Tangherlini
sent on September 23, 1959, that Tangherlini should truncate
it or, alternatively, split into two segregate papers. In his next
letter to Tangherlini (September 28, 1959), Morse hoped that
the requested version of the paper will be submitted in close
time. Unfortunately, there was no chance to do it, because
Tangherlini was very hurry of time while his post-doctorate
studies at Naples. Undoubtedly, it was a big mistake made by
Tangherlini that he ignored such a lucky chance. If that paper
would have been published in that time, the end of the 1950’s,
his theory [1] was wide known to the scientific community so
that the next fifty years of his life and scientific carrier were
much glorious than it was in his real life.

Meanwhile, a very brief contents of his main scientific re-
sults, in particular — the direct and inverse Tangherlini trans-
formations, were published in 1961, in a very short Section
1.3 of his large paper [5] spent on the applications of Mach’s
principle to the theory of gravitation. This paper got so much
attention from the side of the scientific community, that was
translated into Chinese by Prof. P. Y. Zhu, the famous Chinese
theoretical physicist, then published in China [6]. A short de-
scription of Tangherlini’s PhD thesis was also given in Ap-
pendix to his paper of 1994 [4].

The direct and inverse Tangherlini transformations are in-
troduced on the case, where the clocks, located in two dif-
ferent inertial reference frames, are synchronized with each
other by the signals of such a sort that they travel at infi-
nite velocity (for instance, these can be superluminal-speed
tachyons, the hypothetical particles). One regularly assumes
that such an instant synchronization is impossible in practice.
However this becomes real in the case where all clocks of the
resting and moving reference frames are located along the
same single line. To do it, one can use the so-called “light
spot” B. M. Bolotovski�� and V. L. Ginzburg suggested [7], be-
cause it has to travel at a superluminal phase velocity. (In
paper [8], I already considered the problem how two clocks,
distantly located from each other, can be synchronized by
means of such a “light spot”, and also the auxiliary problems
connected to it.) In his PhD thesis [1], Tangherlini suggested
also another method how to synchronize the clocks: this is
so-called the “external synchronization”, where the clocks,
distantly located from each other, become synchronized in
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a resting (“preferred”) inertial reference frame, then these al-
ready synchronized clocks are used for synchronization of the
other clocks, which are located in the moving inertial refer-
ence frames distant from each other. With these, each of the
moving clocks are synchronized at that moment of time, when
they meet the resting clocks. This method of synchronization
leads however to the non-equality of different inertial refer-
ence frames: the “preferred” inertial reference frame is such
that got the first synchronization of the clocks. The direct and
inverse Tangherlini transformation are

x0 =  (x� vt) ; x = �1x0 + vt0;
y0 = y; y = y0;
z0 = z; z = z0;
t0 = �1t ; t = t ;

9>>>>=>>>>; (1)

where v is the velocity (it is directed along the x-axis) of the
inertial reference frame K 0 with respect to the preferred in-
ertial reference frame K, = 1=

p
1� v2=c2 is the Lorentz-

factor, while c is the velocity of light.
It is obvious that the direct Tangherlini transformations

have the sequel that time t0 of a moving inertial reference
frame has to delay in  times with respect to t that is the
same that the transverse Doppler-effect in the Special Theory
of Relativity. The direct Tangherlini transformations (1) differ
from the Lorentz transformations in only the transformation
of time (this is due to the difference in the synchronization
method for the clocks in different inertial frames). Proceeding
from (1), Tangherlini obtained the velocity of light in vacuum,
c0, measured in the moving inertial reference frame K 0 [1]

c0 = c
1 + v

c cos�0 ; (2)

where the angle �0 is counted from the x0-axis in the moving
inertial frame K 0. Formula (2) means that the velocity of
light in the moving inertial frame K 0, i.e. the quantity c0,
is anisotropic to the angle �0. This is a direct result of the
synchronization procedure suggested by Tangherlini [1].

Tangherlini’s formula (2) gives an explanation to the re-
sults obtained in the Michelson-Morley experiment [9] and
also in the Kennedy-Thorndike experiment [10], because, ac-
cording to Tangherlini’s formula, the common time of the
travel of a light beam toward and backward doesn’t depend
on the velocity v the inertial reference frame K 0 moves with
respect to the “preferred” inertial reference frame K. More-
over, it is possible to show that the Tangherlini transforma-
tions provide an explanation to all interferention experiments
checking the Special Theory of Relativity, in particular —
Sagnac’s experiments [11]. (Read more on the Sagnac effect
and explanations of it in my recent papers [12,13].) It should
also be noted that the Lorentz transformations lead to the rela-
tion c0= c, which differs from Tangherlini’s formula (2). An-
other important sequel of the Tangherlini transformations is
that they keep Maxwell’s equations to be invariant [1].

Fig. 5: Prof. Frank Robert Tangherlini at the present days. San
Diego, California.

First time after Frank Robert Tangherlini suggested these
transformations, they met actually no attention from the side
of the scientific community. However just the anisotropy of
the cosmic microwave background was found in 1977, the
scientists have understood that fact that our inertial reference
frame, connected to the Earth, moves with a velocity of about
360 km/sec with respect to a “preferred” inertial reference
frame, where the microwave background radiation is mostly
isotropic so that the common momentum of all space masses
of our Universe is zero. After that experimental discovery,
many suppositions concerning the anisotropy of the velocity
of light were suggested, and the Tangherlini transformations
became requested. The first persons who called the Tangher-
lini transformations in order to explain the Michelson-Morley
result in the presence of the anisotropy of the velocity of light
were R. Mansouri and R. U. Sexl [14]. Then many papers
concerning the Tangherlini transformations were published.

There were several papers produced by the other authors
where the Tangherlini transformations were “re-discovered”
anew. Just two examples with the papers by S. Marinov, 1979
[15], and by N. V. Kupryaev, 1999 [16]. What is interesting,
Frank Tangherlini met Stefan Marinov at the General Relativ-
ity 9th Meeting in Jena, in 1980. Tangherlini wrote me in his
private letter on October 14, 2006, how this happened [17]:

“I met Marinov under a most curios circumstance: He
had put up over doorway of a hall where many of passed
through, a poster of about 1/3 meter width and about 2
meter long in which he criticized me, in artistic callig-
raphy, for not having folloved on my transformation. I
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found this very strange behaviour. After all why did’t
write to me, or arrange a meeting at conference? So I
suspect than he was somewhat crazy, although possibly
artistically talented. In any crazy, one should’t spend
too much time on him except as an example of how
people in science, just as in every day life, can astray.”

During more than the hundred years after the Special The-
ory of Relativity was constructed, the most researchers were
filled in belief that the Lorentz transformations originate in
two postulates of the Special Theory of Relativity: the equal-
ity of all inertial reference frames, and the isotropy of the
velocity of light in all inertial reference frames, including the
independence of the velocity of light from the velocity of the
source of light. If however using another procedure synchro-
nizing the clocks, we obtain other transformations of the co-
ordinates and time. In particular, if using the procedure syn-
chronizing the clocks through the infinite-speedy signals, as
Tangherlini suggested [1], we obtain the Tangherlini trans-
formations. In other word, the synchronizing procedure sug-
gested by Tangherlini leads to the kinematic relativistic trans-
formations of the spatial coordinates and time (1), which are
unexpected, but very adequate in the description of the trans-
fer from one inertial reference frame into another one.

In this concern, I would emphasize the very important
difference between the Tangherlini transformations and the
Lorentz transformations. In the Tangherlini transformations,
c0 (2) is the velocity of light in the inertial reference frame
K 0 measured by an observer who is located in the inertial
reference frame K. An observer located in the inertial refer-
ence frame K 0 will found that c0= c. On the contrary, in the
Lorentz transformations, given any inertial reference frame
(K 0,K, or any other inertial frame), there is c0= c and, hence,
the velocity of light in the inertial frame K, being measured
by the observers located in the inertial framesK 0 andK is al-
ways the same. The anisotropy of the coordinate velocity of
light c0= c in the inertial reference frameK 0 is the fee paid for
the absolute simultaneity in all inertial reference frames [18].

The author thanks Frank Robert Tangherlini for the com-
plete text of his PhD thesis [1] and the other papers useful to
me, and also for friendly discussions. I also thank V. V. Ko-
charovski, for useful notes, and N. V. Roudik and E. G. Maly-
kin who helped me. Special thank goes to D. Rabounski for
assistance. This work was partly supported by the Council
on President’s Grants of the Russian Federation for Leading
Scientific Schools (project no. NSh. 1931.2008.2).
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Comptes Rendus des Séances de l’Académie des Sciences,
1913, t. 157, 708–710.

12. Malykin G.B. The Sagnac effect: correct and incorrect explana-
tions. Physics-Uspekhi, 2000, v. 43, no. 12, 1229–1252 (trans-
lated from Uspekhi Fizicheskikh Nauk, 2000, v. 170, 1325–
1349).

13. Malykin G.B. Sagnac effect in a rotating frame of reference.
Relativistic Zeno paradox. Physics-Uspekhi, 2002, v. 45, no. 8,
907–909 (translated from Uspekhi Fizicheskikh Nauk, v. 172,
969–970).

14. Mansouri R., Sexl R.U. A test of Theory of Special Relativity.
General Relativiy and Gravitation, 1977, v. 8, 497–513; 515–
524; 809–814.

15. Marinov S. The coordinate transformation of the absolute
space-time theory. Found. Phys., 1979, v. 9, 445–460.

16. Kupryaev N.V. Extended representation of the lorentz transfor-
mations. Russian Physics Journal, 1999, v. 42, no. 7, 592–597
(translated from Izvestia VUZov, Fizika, 1999, no. 7, 8–14).

17. Private communication with the author, October 14, 2006.

18. Cavalleri G., Bernasconi C. Invariance of light speed and non-
conservation of simultaneity of separate events in prerelativistic
physics and vice versa in special relativity. Nuovo Cim., 1989,
v. B104, 545–561.

L14 Gregory B. Malykin. Frank Robert Tangherlini — the Founder of an Alternative Relativistic Kinematics



The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics

PROGRESS IN PHYSICS
A quarterly issue scientific journal, registered with the Library of Congress (DC, USA). This journal is peer reviewed and included in the ab-
stracting and indexing coverage of: Mathematical Reviews and MathSciNet (AMS, USA), DOAJ of Lund University (Sweden), Zentralblatt MATH
(Germany), Scientific Commons of the University of St. Gallen (Switzerland), Open-J-Gate (India), Referativnyi Zhurnal VINITI (Russia), etc.

To order printed issues of this journal, con-
tact the Editors. Electronic version of this
journal can be downloaded free of charge:
http://www.ptep-online.com
http://www.geocities.com/ptep online

Editorial Board

Dmitri Rabounski (Editor-in-Chief)
rabounski@ptep-online.com
Florentin Smarandache
smarand@unm.edu
Larissa Borissova
borissova@ptep-online.com
Stephen J. Crothers
crothers@ptep-online.com

Postal address

Chair of the Department
of Mathematics and Science,
University of New Mexico,
200 College Road,
Gallup, NM 87301, USA

Copyright c© Progress in Physics, 2007

All rights reserved. The authors of the ar-
ticles do hereby grant Progress in Physics
non-exclusive, worldwide, royalty-free li-
cense to publish and distribute the articles in
accordance with the Budapest Open Initia-
tive: this means that electronic copying, dis-
tribution and printing of both full-size ver-
sion of the journal and the individual papers
published therein for non-commercial, aca-
demic or individual use can be made by any
user without permission or charge. The au-
thors of the articles published in Progress in
Physics retain their rights to use this journal
as a whole or any part of it in any other pub-
lications and in any way they see fit. Any
part of Progress in Physics howsoever used
in other publications must include an appro-
priate citation of this journal.

This journal is powered by LATEX

A variety of books can be downloaded free
from the Digital Library of Science:
http://www.gallup.unm.edu/�smarandache

ISSN: 1555-5534 (print)
ISSN: 1555-5615 (online)

Standard Address Number: 297-5092
Printed in the United States of America

APRIL 2009 VOLUME 2

CONTENTS

W. C. Daywitt The Neutrino: Evidence of a Negative-Energy Vacuum State . . . . . . . . . . . . . 3

W. C. Daywitt Black Holes and Quantum Gravity from a Planck Vacuum Perspective. . . . .6

A. I. Arbab and Z. A. Satti On the Generalized Maxwell Equations and Their Prediction
of Electroscalar Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A. I. Arbab On the New Gauge Transformations of Maxwell’s Equations . . . . . . . . . . . . . . .14

A. Khazan Introducing the Table of the Elements of Anti-Substance, and the Theor-
etical Grounds to It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

R. Carroll Aspects of Stability and Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

S. A. Vasiliev On the Physical Model of the Phenomena Registered in the Experiments
by Shnoll’s Group and Smirnov’s Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

G. C. Vezzoli Beta Decay and Quark-Antiquark Non-Parity in Collision-Induced Gravity 44

I. I. Haranas and M. Harney The Mass of the Universe and Other Relations in the Idea
of a Possible Cosmic Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

W. C. Daywitt A Planck Vacuum Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

H. Eckardt An Alternative Hypothesis for Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . 56

N. Stavroulakis On the Field of a Stationary Charged Spherical Source . . . . . . . . . . . . . . . . 66

H. Müller Fractal Scaling Models of Resonant Oscillations in Chain Systems of Har-
monic Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B. Lehnert On Dark Energy and Matter of the Expanding Universe . . . . . . . . . . . . . . . . . . . . 77

S. E. Shnoll and I. A. Rubinstein Regular Changes in the Fine Structure of Histograms
Revealed in the Experiments with Collimators which Isolate Beams of Alpha-
Particles Flying at Certain Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

G. A. Quznetsov 4X1-Marix Functions and Dirac’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . 96

U. E. Bruchholz Key Notes on a Geometric Theory of Fields . . . . . . . . . . . . . . . . . . . . . . . . 107

V. Christianto and F. Smarandache Numerical Solution of Quantum Cosmological
Model Simulating Boson and Fermion Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

LETTERS
D. Rabounski and L. Borissova On the Earthly Origin of the Penzias-Wilson Micro-

wave Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L1

Robitaille P.-M. Water, Hydrogen Bonding and the Microwave Background . . . . . . . . . . . L5

Robitaille P.-M. Global Warming and the Microwave Background . . . . . . . . . . . . . . . . . . . . L9

A. Khazan On the Upper Limit (Heaviest Element) in the Periodic Table of Elements,
and the Periodic Table of Anti-Substance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L12

G. B. Malykin Corrections to the Biography of Frank Robert Tangherlini, Published
in Progress in Physics, Vol. 1, 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L14



Information for Authors and Subscribers

Progress in Physics has been created for publications on advanced studies in
theoretical and experimental physics, including related themes from mathe-
matics and astronomy. All submitted papers should be professional, in good
English, containing a brief review of a problem and obtained results.

All submissions should be designed in LATEX format using Progress in
Physics template. This template can be downloaded from Progress in Physics
home page http://www.ptep-online.com. Abstract and the necessary informa-
tion about author(s) should be included into the papers. To submit a paper,
mail the file(s) to the Editor-in-Chief.

All submitted papers should be as brief as possible. We usually accept
brief papers, no larger than 8–10 typeset journal pages. Short articles are
preferable. Large papers can be considered in exceptional cases to the sec-
tion Special Reports intended for such publications in the journal. Letters
related to the publications in the journal or to the events among the science
community can be applied to the section Letters to Progress in Physics.

All that has been accepted for the online issue of Progress in Physics is
printed in the paper version of the journal. To order printed issues, contact
the Editors.

This journal is non-commercial, academic edition. It is printed from pri-
vate donations. (Look for the current author fee in the online version of the
journal.)



April, 2009 PROGRESS IN PHYSICS Volume 2

The Neutrino: Evidence of a Negative-Energy Vacuum State

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA
E-mail: wcdaywitt@earthlink.net

This note argues that the neutrino is a phonon packet that exists and propagates within
the negative-energy Planck vacuum. Simple calculations connect the three neutrinos to
their corresponding leptons and show: that the neutrino mass is a ficticious or effective
mass; that the neutrino mass cannot be zero; that each of the three neutrinos has a
unique mass that determines its velocity; and that flavor (neutrino-type) mixing does
not involve mass mixing.

The total energy E of a relativistic particle of rest mass m is

E = (m2c4 + c2p2)1=2; (1)

where c is the speed of light, p=mv is the relativistic mo-
mentum, 2 = 1=(1��2), �= v=c, and v is the particle ve-
locity. Rearranging (1) leads to

v
c

=

"
1�

�
mc2

E

�2
#1=2

; (2)

which can be used to determine the particle mass by measur-
ing its velocity and relativistic energy. For any measurement
set (v;E), the same mass will emerge within the measure-
ment accuracy. When this measurement procedure is applied
to the neutrino [1, pp. 534–536], however, different masses
emerge. Thus the neutrino is not an elementary particle in the
usual sense of the term “elementary particle”. It is not sur-
prising, then, that the “mystery of neutrino mass” is currently
the most important subject of study in neutrino physics [1,
p. 180].

The present note argues that the neutrino is a massless
phonon packet traveling within the negative-energy Planck
vacuum (PV), the primary task being to determine the struc-
ture of that packet. Taking the decay of the neutron into a
proton and an electron as an example, the heuristic calcula-
tions proceed as follows: the sudden appearance of the elec-
tron as a decay product sets up a periodic disturbance in the
PV from which the packet emerges; it is then assumed that
the packet is the same as a phonon packet traveling a linear
lattice whose lattice points are separated by a distance equal
to the electron’s Compton wavelength. Treating the neutrino
as a phonon packet tracks the solid state theory remarkably
well, but the presentation here is sketchy because of the for-
mal complexity of the latter theory with its “undergrowth of
suffixes” as Ziman would put it [2, p. 17]. The more precise
details are left to a subsequent paper.

The PV [3] is an omnipresent degenerate gas of negative-
energy Planck particles (PP) characterized by the triad
(e�;m�; r�), where e�,m�, and r� (��=2�) are the PP charge,
mass, and Compton radius respectively. The vacuum is held

together by van-der-Waals forces. The charge e� is the bare
(true) electronic charge common to all charged elementary
particles and is related to the observed electronic charge e
through the fine structure constant � = e2=e2� which is a man-
ifestation of the PV polarizability. The PP mass and Comp-
ton radius are equal to the Planck mass and length respec-
tively. The particle-PV interaction is the source of the gravi-
tational (G= e2�=m2�) and Planck (~= e2�=c ) constants, and
the Compton relations (r�m�c2 = rcmc2 = e2�) relating the
PV and its PPs to the observed elementary particles, where
the charged elementary particles are characterized by the triad
(e�;m; rc), m and rc being the mass and Compton radius
(�c=2�) of the particle (particle spin is not yet included in the
theory). A feedback mechanism in the particle-PV interaction
leads to the Lorentz transformation. The zero-point random
motion of the PP charges e� about their equilibrium positions
within the PV, and the PV dynamics, are the source of the
quantum vacuum [4].

The mean power flux of phonons traveling a linear lattice
chain in an elastic medium is [2, p. 15]

U = hUi =
�X

k

~!kvka�kak
�

=
X
k

~!kvkNk ; (3)

where 06 k6�=ra, ~!k is the phonon energy for the k-th
mode, vk is the phonon group velocity, a�k and ak are the
phonon creation and annihilation operators, andNk = ha�kaki
is the number of phonons per unit length in the kth mode. Re-
stricting k to non-negative values (non-positive values would
work just as well) implies that only traveling waves (rather
than standing waves) are of interest in the calculations.

The dispersion relation connecting the phonon frequency
!k and wavenumber k is [2, p. 12]

!k =
�

4ga
m

�1
2
���� sin��n;k2

����� =
�

4ga
m

�1
2

sin
�
kra
2

�
; (4)

where ga is the “spring constant”. The angle �n;k = 2n�+
+ kra, where n (= 0; 1; 2; : : : ) are the positive branches or
Brillouin zones of interest and ka (= 2�=�a = 1=ra) is the k-
axis scaling factor. The absence of absolute-value bars in the
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final expression follows from the fact that 06 kra 6�. The
group velocity

vk =
d!k
dk

=
�
r2
aga
m

�1=2

cos
�
kra
2

�
(5)

is the velocity of the k-mode phonons. The phonon number
Nk is then the number of k-phonons per unit ra.

For a single phonon packet (a neutrino) traveling the
chain, i.e. for a single value of n and k, (3) leads to

Uk = ~!k � vk �Nk = Ek � vk (6)

where ~!k is the phonon energy of the packet and Ek �
~!kNk is the total energy carried by the packet. The index
k corresponds to the type of neutrino (�e, ��, or �� ) partici-
pating in the decay or capture processes.

The PV is an elastic medium and, because a free particle
distorts the PV, the sudden appearance or disappearance of a
free particle will initiate a corresponding phonon disturbance
in that vacuum. In the rest frame of the particle the static
distortion force is [3]

F (r) =
e2�
r2 � mc2

r
; (7)

where m is the particle mass and the first and second forces
are the polarization and curvature force respectively. (In the
laboratory frame these opposing forces lead to the particle’s
de Broglie radius [4, Append. A].) The two forces on the right
side of (7) are equal at the Compton radius (rc = e2�=mc2)
of the particle, the positive polarization force dominating in-
side this radius (r < rc) and the negative curvature force out-
side (r > rc). These opposing forces result in a harmonic-
oscillator-type disturbance within the PV, the effective
“spring constant” of which is easy to derive from (7):

�F (x) =
e2�

(rc + x)2 � mc2

rc + x
=

=
e2�
r2
c

"
� x
rc

+ 2
�
x
rc

�2

� � � �
#
� �e2�

r3
c
x = �gcx ; (8)

where x is the excursion of the disturbance about its equi-
librium position at x= 0, and where the particle Compton
relation e2�=r2

c =mc2=rc is used in deriving the second ex-
pression. For small excursions (x=rc � 1) the force reduces
to the final expression where gc� e2�=r3

c is the desired “spring
constant”.

Using ra = rc and ga = gc and the Compton radius (it is
rc = e2�=mc2) of the free particle (the lepton) in (4) and (5)
leads to

~!k =
e2�
rc

sin (krc=2)
1=2

� e2�k (9)

and

vk
c

= cos
�
krc
2

�
�1� 1

2

�
krc
2

�2

=1� 1
2

�
e2�k=2
mc2

�2

(10)

to second order in krc=2. The “spring constant” (gc) and scal-
ing factor (kc = 1=rc) tie the m-phonons to the m-lepton that
created them, where the prefix “m” stands for the lepton mass
in (10). Inserting (9) and (10) into (6) yields

Uk =
e2�
rc

sin (krc=2)
1=2

� c cos (krc=2) �Nk (11)

� e2�k � c
"

1� 1
2

�
e2�k=2
mc2

�2
#
�Nk (12)

for the mean power flux of the lepton-induced neutrino. The
magnitude of Nk varies with the needs of the decay or cap-
ture process to conserve momentum and energy (and spin,
although spin is not included in the present discussion). That
is, the PV absorbs the unbalanced momentum and energy of
the process.

Using rc = e2�=mc2, (11) and (12) can be put in the more
convenient form

Uk =mc2
sin (mkc2=2mc2)

1=2
� c cos (mkc2=2mc2) �Nk (13)

�mkc2 � c
"

1� 1
2

�
mkc2

2mc2

�2
#
�Nk (14)

wheremk� e2�k=c2 is a ficticious or effective mass. It is clear
from (14) that mk cannot vanish for then the packet flux Uk
would also vanish. The bracket shows that the packet propa-
gates at somewhat less than the speed of light.

It is instructive at this point to compare the particle and
phonon-packet models of the neutrino. In the particle model
described by (1) and (2), the energy and velocity of the neu-
trino are

E0� = cp0� = m0�c2 � � (15)

and
v0�
c

= 1� 1
2

�
m0�c2
E0�

�2

(16)

for E0��m0�c2. As discussed in the first paragraph, the par-
ticle mass m0� is a variable mass and, in order to make the
equations fit the experimental data, mass and flavor mixing
(see below) must be brought ad hoc into the particle model,
destroying the particle description of the neutrino in the pro-
cess. From (14) for the packet model

Ek = mkc2 �Nk (17)

and
vk
c

= 1� 1
2

�
mkc2

2mc2

�2

(18)

for smallmkc2. Equation (17) shows that the neutrino energy
Ek is the product of the phonon energymkc2 and the number
of phonons Nk in the packet. Equation (18) shows that the
neutrino velocity is determined solely by the neutrino mass
mk and its corresponding lepton mass m.
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The three types (or flavors) of neutrinos are the electron
(�e), muon (��), and tau (�� ) neutrinos and, in the particle
model, each flavor is assumed to have one or a combination
of three masses (m1;m2;m3) [1, p. 452]. The corresponding
three-neutrino mixing (or flavor oscillation) is a phenomenon
in which a neutrino created with a particular flavor is later
measured to have a different flavor due to a mismatch be-
tween the flavor and mass eigenstates of the three neutrinos.
In the packet model each neutrino has its own mass as seen
in (17) and (18), leading to the more straightforward flavor-
oscillation process described below.

The harmonic (quadratic) approximation [2, p. 12] to the
Hamiltonian for a linear lattice chain leads to the calculations
in equations (3) through (14). For a three-dimensional lattice,
the addition of the anharmonic cubic term [2, pp. 130–136]
to the quadratic Hamiltonian, along with the effects of the
selection rules, lead to a three-phonon process

(k;p) + (k0;p0)() (k00;p00) (19)

that can be tied to the three-neutrino mixing phenomenon,
where k and p, etc., are the wavenumber vector and polariza-
tion of the three phonons. That is, the only allowed transitions
are those in which two phonons combine to give a third, or
vise versa. In addition, conservation of energy requires that

~!k;p + ~!k0;p0 = ~!k00;p00 (20)

and the conservation of wave vector for a continuous medium
gives

k + k0 = k00 ; (21)

where, although the PV is discontinuous at the Planck level
(l� r�), it is effectively continuous at lengths l� rc� r�
where the observed particle Compton radius rc is concerned.
When the phonons are traveling the same straight line, the ks
in (19)–(21) can be replaced by their magnitudes. To illus-
trate the “physical” meaning of (19), consider the equation
going from left to right, where the k and k0 phonons combine
to produce the phonon k00: as k propagates, it distorts the
medium in such a fashion as to create an effective “diffrac-
tion grating” off of which k0 reflects, destroying the k and k0
phonons while creating the k00 phonon [2, p. 133].

Equations (19)–(21) are the foundation of the phonon-
packet description of flavor mixing which involves three
packets (one for each type of neutrino) of the form found
in (14). For example, employing (19) from right to left, the
neutrino described in (3) through (14) can change into two
different neutrinos according to a given probability law [2,
eqn.(3.1.6)]. Ignoring polarization and assuming the phonons
travel the same straight line, (20) and (21) reduce to

mkc2 +m0kc2 = m00kc2 (22)

and
k + k0 = k00 ; (23)

which are the same equation as mkc2 = e2�k, etc.. Thus the
effective masses of the neutrinos drop out of the mixing pro-
cess; i.e. there is no mass mixing in the packet description of
flavor mixing.

In summary, the ease with which the phonon-packet
model of the neutrino, based on the negative-energy PV, de-
scribes and explains the experimental data makes a compel-
ling case for that model and for a negative-energy vacuum
state. With the inclusion of flavor oscillations and variable
neutrino masses, on the other hand, the free-particle model
appears to be an exercise more in curve fitting than physical
modeling.
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This note explores the question of whether or not the Planck vacuum theory can explain
black holes and quantum gravity. It is argued that black holes do not physically exist
in nature and that the term “quantum gravity” makes no sense. The importance of the
Planck vacuum in constraining the n-ratio in the Schwarzschild line element is noted.

The Planck vacuum (PV) [1] is an omnipresent degenerate
gas of negative-energy Planck particles (PP) characterized by
the triad (e�;m�; r�), where e�, m�, and r� (��=2�) are the
PP charge, mass, and Compton radius respectively. The vac-
uum is held together by van der Waals forces. The charge
e� is the bare (true) electronic charge common to all charged
elementary particles and is related to the observed electronic
charge e through the fine structure constant �= e2=e2� which
is a manifestation of the PV polarizability. The PP mass and
Compton radius are equal to the Planck mass and length re-
spectively. The particle-PV interaction is the source of the
gravitational (G= e2�=m2�) and Planck (~= e2�=c ) constants,
and the Compton relations (r�m�c2 = rcmc2 = e2�) relating
the PV and its PPs to the observed elementary particles,
where the charged elementary particles are characterized by
the triad (e�;m; rc), m and rc being the mass and Compton
radius (�c=2�) of the particle (particle spin is not yet included
in the theory). A feedback mechanism in the particle-PV in-
teraction leads to the Lorentz transformation. The zero-point
random motion of the PP charges e� about their equilibrium
positions within the PV, and the PV dynamics, are the source
of the quantum vacuum [2]. Neutrinos appear to be phonon
packets that exist and propagate within the PV [3].

General relativity describes the spacetime-curvature as-
pects of the PV [1]. So it is natural to assume that this vacuum
state has something to do with black holes, “tunnels in space-
time”, and “wormholes connecting different universes” [4,
p. 642] if such things do indeed exist.

The Einstein metric equation, and the “Schwarzschild”
line element outside a static sphere of mass m, expressed in
terms of the PV parameters, are [1]

G�� =
8�T��
c4=G

=
8�T��
m�c2=r�

(1)

and

ds2 = � [1� 2nr] c2dt2 +
dr2

[1� 2nr]
+ r2 d
2; (2)

where the n-ratio is

nr � nr(m=r) � mc2=r
c4=G

=
mc2=r
m�c2=r�

(3)

with 06nr < 1. Here d
2� d�2 + sin2� d�2.

The force mc2=r is the distortion or curvature force the
mass m exerts on the PV at a distance r from the center of
the mass [1]. This curvature force is always smaller than the
ultimate curvature force c4=G=m�c2=r�. As r!1 the n-
ratio vanishes where the metric bracket [1�nr] is unity and
the spacetime is flat. At the surface of the sun, a white dwarf,
or a neutron star, nr is roughly 0.00001, 0.001, and 0.5 re-
spectively. Only at m�c2=r� is nr equal to one. Thus the
n-ratio is limited to nr < 1 by the nature of the PV.

The metric structure of (2) leads to a black hole with its
event horizon at nr=1=2 and to the corresponding “Schwarz-
schild radius” Rs = 2Mc2=(m�c2=r�) [4, pp. 630–636].
From here such ideas as “tunnels” and “wormholes” arise.
However, (2) is apparently incorrect [5–8]. For a point mass
m at r= 0, the original and correct Schwarzschild line ele-
ment [5] is

ds2 = � [1� 2n(R)] c2dt2 +
dR2

[1� 2n(R)]
+R2 d
2; (4)

where
R = r[1 + 8n3

r]
1=3 (5)

and where (4) is only valid for r > 0. The metric bracket is
now

1� 2n(R) = 1� 2nr
[1 + 8n3

r]1=3
; (6)

which is monotonically decreasing from 1 at nr = 0 to
0.0385. . . at nr = 1. Thus, in the allowable range of nr, the
line element ds in equation (4) is well behaved. Again the
metric bracket is unity as r!1 where both nr and n(R)
vanish.

The velocity of a radial photon starting from infinity and
heading toward r= 0 can be found by setting d
2 = 0 and
ds= 0 in (4). Its velocity dr=dt relative to its velocity (c) at
infinity is easily shown to be

�(nr) =
�
1 + 8n3

r
�2=3 �1� 2nr

(1 + 8n3
r)

1=3

�
; (7)

which yields �(0) = 1 as it should, and �(1) � 1=6 for a PP
(nr = 1) positioned at r= 0.

From the two preceding paragraphs it is clear that nothing
singular happens to the Schwarzschild line element of (4) in
the allowed range of nr. Furthermore, the PV theory does not

6 William C. Daywitt. Black Holes and Quantum Gravity from a Planck Vacuum Perspective



April, 2009 PROGRESS IN PHYSICS Volume 2

need to explain the black hole or its “tunneling” and “worm-
hole” attributes since the black hole does not exist.

The metric gravity discussed above deals with what hap-
pens when the curvature forcemc2=r of an isolated mass per-
turbs the PV. If “electromagnetics” is what happens when the
polarization force e2�=r2 of an isolated bare charge e� per-
turbs the PV, then it can be shown that electromagnetics leads
to the Maxwell equations, the relativistic electric and mag-
netic fields of a moving charge, and the Lorentz transforma-
tion [1]. Both of these phenomena deal with a single force
acting on the PV. In either case, the terms “quantum gravity”
or “quantum electromagnetics” make no sense because the
word “quantum” applies to what happens when both forces,
mc2=r and e2�=r2, perturb the PV simultaneously and lead to
the Planck constant

rcmc =
e2�
c

= ~ (8)

at r= rc where the two forces are equal. The standard name
for this dual-force perturbation is, of course, “quantum elec-
trodynamics” when dealing with an electron containing both
mass and charge. In summary, the search for a theory of
“quantum gravity” appears to make no sense.
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We have formulated the basic laws of electromagnetic theory in quaternion form. The
formalism shows that Maxwell equations and Lorentz force are derivable from just one
quaternion equation that only requires the Lorentz gauge. We proposed a quaternion
form of the continuity equation from which we have derived the ordinary continuity
equation. We introduce new transformations that produces a scalar wave and generalize
the continuity equation to a set of three equations. These equations imply that both
current and density are waves. Moreover, we have shown that the current can not cir-
culate around a point emanating from it. Maxwell equations are invariant under these
transformations. An electroscalar wave propagating with speed of light is derived upon
requiring the invariance of the energy conservation equation under the new transforma-
tions. The electroscalar wave function is found to be proportional to the electric field
component along the charged particle motion. This scalar wave exists with or without
considering the Lorentz gauge. We have shown that the electromagnetic fields travel
with speed of light in the presence or absence of free charges.

1 Introduction

Quaternions are mathematical construct that are generaliza-
tion of complex numbers. They were introduced by Irish
mathematician Sir William Rowan Hamilton in 1843 (Sweet-
ser, 2005 [1]). They consist of four components that are repre-
sented by one real component (imaginary part) and three vec-
tor components (real part). Quaternions are closed under mul-
tiplication. Because of their interesting properties one can use
them to write the physical laws in a compact way. A quater-
nion eA can be written as eA=A0 +A1i+A2j+A3k, where
i2 = j2 = k2 = � 1 and ij= k ; ki= j; jk= i ; ijk=� 1. A0
is called the scalar component and A1; A2; A3 are the vec-
tor components. Each component consists of real part and
imaginary part. The real part of the scalar component van-
ishes. Similarly the imaginary part of the vector component
vanishes too. This is the general prescription of quaternion
representation.

In this paper we write the Maxwell equations in quater-
nion including the Lorentz force and the continuity equation.
We have found that the Maxwell equations are derived from
just one quaternion equation. The solution of these equations
shows that the charge and current densities are waves trav-
eling with speed of light. Generalizing the continuity equa-
tion resulted in obtaining three equations defining the charge
and current densities. Besides, there exists a set of transfor-
mation that leave generalized continuity equation invariant.
When these transformations are applied to the energy con-
servation law an electroscalar wave propagating with speed
of light is obtained. Thus, the quaternionic Maxwell equa-

tion and continuity equation predict that there exist a scalar
wave propagating with speed of light. This wave could pos-
sibly arise due to vacuum fluctuation. Such a wave is not in-
cluded in the Maxwell equations. Therefore, the existence of
the electroscalar is a very essential integral part of Maxwell
theory. Expressions of Lorentz force and the power deliv-
ered to a charge particle are obtained from the quaternion Lo-
rentz force.

Moreover, the current and charge density are solutions
of a wave equation travelling with speed of light. Further-
more, we have shown that the electromagnetic field travels
with speed of light in the presence and/or absence of charge.
However, in Maxwell theory the electromagnetic field travels
with speed of light only if there is no current (or free charge)
in the medium. We have found here two more equations re-
lating the charge and current that should supplement the fa-
miliar continuity equation. These two equations are found
to be compatible with Maxwell equations. Hence, Maxwell
equations are found to be invariant under these new transfor-
mations. This suggests that the extra two equations should
be appended to Maxwell equations. Accordingly, we have
found an electroscalar wave propagating at the speed of light.
The time and space variation of this electroscalar wave in-
duce a charge density and current density even in a source
free. The electroscalar wave arises due to the invariance of the
Maxwell equations under the new set of transformations. We
have shown that such a scalar wave is purely electric and has
no magnetic component. This is evident from the Poynting
vector that has only two components, one along the particle
motion and the other along the electric field direction. We re-

8 Arbab I. Arbab and Zeinab A. Satti. On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave



April, 2009 PROGRESS IN PHYSICS Volume 2

mark that Maxwell equations are still exact and need no mod-
ifications. They steadily predict the existence of the a elec-
troscalar wave if we impose the new transformation we ob-
tained in this work.

2 Derivation of Maxwells’ equations

The multiplication of two quaternions is given byeA eB = (A0; ~A) (B0; ~B) =
= (A0B0 � ~A � ~B;A0 ~B + ~AB0 + ~A� ~B) : (1)

We define the quaternion D’Alembertian operator as

e�2 � �jrj2 = �erer� =
1
c2
@2

@t2
� ~r � ~r ; (2)

where Nabla and its conjugate are defined by

er =
�
i
c
@
@t
; ~r
�
; er� =

�
i
c
@
@t
; �~r

�
: (3)

The wave equation of the quaternionic vector potentialeA= (i'c ; ~A) has the forme� 2 eA = �0 eJ ; eJ = (ic� ; ~J) : (4)

where � is the charge density.
The electric and magnetic fields are defined by (Jackson,

1967 [2])

~E = �
�
~r'+

@ ~A
@t

�
; ~B = ~r� ~A : (5)

Using Eqs. (1)–(3), the scalar part of Eq. (4) now reads

� i
c
~r �
�
~r'+

@ ~A
@t

�
+
i
c
@
@t

�
1
c2
@'
@t

+ ~r � ~A
�
�

� ~r � �~r� ~A
�

= ic�0� : (6)

Using Eq. (5) the above equation yields

~r � ~B = 0 ; (7)

1
c2
@'
@t

+ ~r � ~A = 0 ; (8)

and
~r � ~E =

�
"0
; (9)

where c= 1p"0�0
. This is the Gauss Law and is one of the

Maxwell equations.
The vector part of the Eq. (4) can be written as

� i
c

�
~r� ~E +

@ ~B
@t

�
+
�
~r� ~B � 1

c2
@ ~E
@t

�
�

� ~r
�

1
c2
@'
@t

+ ~r � ~A
�

= �~J : (10)

This yields the two equations

~r� ~E +
@ ~B
@t

= 0 (11)

and
~r� ~B � 1

c2
@ ~E
@t

= �0 ~J : (12)

Eqs. (7), (9), (11) and (12) are the Maxwell equations.
By direct cancelation of terms, Eqs. (6) and (10), yield

the wave equations of the scalar potential ' and the vector
potential ~A, viz., �2'= �

"0 and �2 ~A=�0 ~J .
We thus see that we are able to derive Maxwell equations

from the wave equation of the quaternion vector potential. In
this formalism only Lorentz gauge is required by the quater-
nion formulation to derive Maxwell equations. This would
mean that Lorentz gauge is more fundamental. It is thus
very remarkable that one are able to derive Maxwell equa-
tions from just one quaternion equation. Notice that with the
4-vector formulation Maxwell equation are written in terms
of two sets of equations.

3 The quaternionic Lorentz force

The quaternionic Lorentz force can be written in the form

eF = q eV (er eA) ; eV = (ic ; ~v) ; eF =
�
i
P
c
; ~F
�

eA =
�
i'
c
; ~A
�
; er =

�
i
c
@
@t
; ~r
�

9>>>=>>>; ; (13)

where P is the power. The scalar part of the above equation
can be written in the form

� iq c

"�
~r � ~A+

1
c2
@'
@t

�
+
~v
c2
�
�
~r'+

@ ~A
@t

�#
�

� q ~v � ~r� ~A = i
P
c
: (14)

Upon using Eqs. (5) and (8), one gets

q ~v � ~r� ~A = 0 ) ~v � ~B = 0 ; (15)

and
P = q ~v � ~E : (16)

This is the usual power delivered to a charged particle
in an electromagnetic field. Eq. (15) shows that the charged
particle moves in a direction normal to the direction of the
magnetic field.

Now the vector component of Eq. (13) is

q
�
�@ ~A
@t
� ~r'+ ic ~r� ~A� ~v

c2
@'
@t
�

� ~v(~r� ~A) +~v�
�
i
c
@ ~A
@t

+
i
c
~r'+ ~r� ~A

��
= ~F : (17)
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This yields the two equations

~F = q
�
~E + ~v � ~B

�
; (18)

and
~Bm � ~B =

~v
c2
� ~E : (19)

Eq. (18) is the familiar Lorentz force. Eq. (19) gives a
new relation between the magnetic field of a moving charge
due to an electric field. Thus, we are able to derive the power
and the Lorentz force on a charged particle. This new mag-
netic field may be interpreted as the magnetic field seen in a
frame moving with velocity ~v when ~B= 0 in the rest frame.
It is thus an apparent field. This equation is compatible with
Eq. (15), since ~v � ~Bm =~v � ( ~vc2 � ~E) = 0, by vector prop-
erty. Moreover, we notice that ~E � ~Bm = ~E � ( ~vc2 � ~E) = 0.
This clearly shows that the magnetic field produced by the
charged particle is perpendicular to the electric field applied
on the particle. Thus, a charged particle when placed in an
external electric field produces a magnetic field perpendicu-
lar to the direction of the particle motion and to the electric
field producing it. As evident from Eq. (19), this magnetic
field is generally very small due to the presence of the factor
c2 in the dominator. Hence, the reactive force arising from
this magnetic field is

~Fm = q ~v � ~Bm ; (20)

which upon using Eq. (19) yields

~Fm = q ~v � � ~v
c2
� ~E

�
: (21)

Using Eq. (16) and the vector properties, this can be
casted into

~Fm =
P
c2
~v � v2

c2
q ~E : (22)

This reactive force acts along the particle motion (longi-
tudinal) and field direction. The negative sign of the second
term is due to the back reaction of the charge when acceler-
ates by the external electric field. The total force acting on the
charge particle is ~Ftotal = q ( ~E+~v � ~Btotal), ~Btotal = ~B+
+ ~Bm, ~Ftotal = q (1� v2

c2 ) ~E+ q~v� ~B+ P
c2 ~v. Notice that

when v� c, this force reduces to the ordinary force and no
noticeable difference will be observed. However, when v � c
measurable effects will be prominent.

4 Continuity equation

The quaternion continuity equation can be written in the former eJ = 0 ; eJ =
�
i�c ; ~J

�
; (23)

so that the above equation becomeser eJ =
�
�
�
~r � ~J +

@�
@t

�
;

i
c

�
@ ~J
@t

+ ~r� c2
�

+ ~r� ~J
�

= 0 : (24)

which yields the following three equations

~r � ~J +
@�
@t

= 0 ; (25)

and
~r�+

1
c2
@ ~J
@t

= 0 ; (26)

so that
~r� ~J = 0 : (27)

Using the Stockes theorem one can write Eq. (27) to get,R ~J � d~̀= 0. Eqs. (26) and (27) are new equations for a flow.
Eq. (27) states that a current emanating from a point in space-
time does not circulate to the same point. In comparison with
a magnetic field, we know that the magnetic field lines have
circulation.

Now take the dot product of both sides of Eq. (26) with
d~S, where S is a surface, and integrate to getZ

~r� � d~S +
Z

1
c2
@ ~J � d~S
@t

= 0 ; (28)

or Z
~r� � d~S +

1
c2
@I
@t

= 0 ; I =
Z
~J � d~S : (29)

But from Stokes’ theorem
R ~A�d~S=

R ~r� ~A�d~̀. There-
fore, one getsZ

~r� � d~S =
Z
~r� (~r�) � d~̀= 0 ; ~A = ~r� : (30)

This implies that @I@t = 0 which shows that the current is
conserved. This is a Kirchoff-type law of current loops. How-
ever, Eq. (25) represents a conservation of charge for electric
current.

Eq. (27) suggests that one can write the current density as

~J = ~r� ; (31)

where � is some scalar field. It has a dimension of Henry
(H). It thus represent a magnetic field intensity. We may
therefore call it a magnetic scalar. Substituting this expres-
sion in Eq. (26) and using Eq. (42), one yields

r2�� 1
c2
@2�
@t2

= 0 : (32)

This means that the scalar function �(r; t) is a wave trav-
eling with speed of light.

Now taking the divergence of Eq. (26), one gets

~r � ~r(� c2) +
@ ~r � ~J
@t

= 0 ; (33)

which upon using Eq. (25) becomes

r2(� c2) +
@�@�@t
@t

= 0 ; (34)
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or
1
c2
@2�
@t2
�r2� = 0 ; (35)

which states the the charge scalar (�) is a field propagating
with speed of light.

Now take the curl of Eq. (27) to get

~r� (~r� ~J ) = ~r(~r � ~J )�r2 ~J = 0 ; (36)

and upon using Eq. (25) and (26) one gets

~r
�
�@�
@t

�
�r2 ~J =

@ (�~r�)
@t

�r2 ~J =

=
@ 1
c2
@ ~J
@t

@t
�r2 ~J = 0 ; (37)

which states that the current density satisfies a wave that prop-
agate with speed of light, i.e.,

1
c2
@2 ~J
@t2
�r2 ~J = 0 : (38)

Therefore, both the current and charge densities are solu-
tions of a wave equation traveling with a speed of light. This
is a remarkable result that does not appear in Maxwell initial
derivation. Notice however that if we take @

@t of Eq. (12) and
apply Eqs. (11) and (9), we get

1
c2
@2 ~E
@t2
�r2 ~E = � 1

"0

�
~r�+

1
c2
@ ~J
@t

�
: (39)

Now take the curl of both sides of Eq. (12) and apply
Eqs. (11) and (7), we get

1
c2
@2 ~B
@t2
�r2 ~B = �0

�~r� ~J
�
: (40)

The left hand side of Eqs. (39) and (40) is zero according
to Eqs. (26) and (27). Therefore, they yield electric and mag-
netic fields travelling with speed of light. However, Maxwell
equations yield electric and magnetic fields propagating with
speed of light only if ~J = 0 and �= 0 (free space). Because
of Eqs. (26) and (27) electromagnetic field travels with speed
of light whether the space is empty or having free charges.
It seems that Maxwell solution is a special case of the above
two equations. Therefore, Eqs. (39) and (40) are remarkable.

Now we introduce the new gauge transformations of ~J
and � as:

�0 = �+
1
c2
@�
@t

; ~J 0 = ~J � ~r� ; (41)

leaving Eqs. (25) - (27) invariant, where � satisfies the wave
equation

1
c2
@2�
@t2
�r2� = �

�
~r � ~J +

@�
@t

�
: (42)

These transformations are similar to gauge transforma-
tions endorse on the vector potential ( ~A) and the scalar po-
tential (') leaving ~E and ~B invariant. It is interesting to see

that the current ~J and density � are not unique, however. van
Vlaenderen and Waser arrived at similar equations, but they
attribute the � field to a longitudinal electroscalar wave in
vacuum. Thus, even if there is no charge or current density
present in a region, the scalar field � could act as a source
for the electromagnetic field. Such a term could come from
quantum fluctuations of the vacuum. This is a very intriguing
result. Notice from Eq. (41) that the scalar wave (�) distribu-
tion induces a charge density, �vacuum = 1

c2
@�
@t , and a current

~Jvacuum =� ~r�. It may help understand the Casimir force
generated when two uncharged metallic plates in a vacuum,
placed a few micrometers apart, without any external elec-
tromagnetic field attract each other(Bressi, et al., 2002 [18]).
Notice that this vacuum current and density satisfy the con-
tinuity equations, Eqs. (25)–(27). Note that these vacuum
quantities could be treated as a correction of the current and
charge, since in quantum electrodynamics all physical quanti-
ties have to be renormalized. It is interesting that the Maxwell
equations expressed in Eqs. (39) and (40), are invariant under
the transformation in Eq. (41) provided that ~E0= ~E, ~B0= ~B.
It is thus remarkable to learn that Maxwell equations are in-
variant under the transformation,

�0 = �+
1
c2
@�
@t

; ~J 0 = ~J � ~r�

~E0 = ~E; ~B0 = ~B

9>=>; : (43)

We notice from Eq. (42) that the electroscalar wave prop-
agates with speed of light if the charge is conserved. How-
ever, if the charge is not conserve then � will have a source
term equals to the charge violation term. In this case the elec-
troscalar wave propagates with a speed less than the speed of
light. Hence, charge conservation can be detected from the
propagation speed of this electroscalar wave.

5 Poynting vector

The Poynting theorem, which represents the energy conser-
vation law is given by (Griffiths, 1999 [4])

@u
@t

+ ~r � ~S = � ~J � ~E ; (44)

where ~S is the Poynting vector, which gives the direction of
energy flow and u is the energy density. However, in our
present case we have

@utotal

@t
+ ~r � ~Stotal = � ~J 0 � ~E 0; (45)

where ~Stotal = ~Sem + ~Sm is the total Poynting vector, ~Sem =
= ~E� ~B

�0
, and utotal = 1

2 "0E2 + 1
2�0

( ~B+ ~Bm)2. Because of
Eqs. (15) and (19), the cross term in the bracket vanishes.
Hence,

utotal =
1
2
"0

�
1+

v2

c2

�
E2 +

B2

2�0
� 1

2
"0

�
~v
c
� ~E
�2

: (46)
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This implies that the excessive magnetic field of the
charged particles contributes an energy, um = 1

2 "0
v2

c2 E
2�

� �1� (n̂ � ê)2�, where n̂ and ê are two unit vectors along the
motion of the particle and the electric field. This contribution
is generally very small, viz., for v � c. When the charged
particle moves parallel to the electric field, i.e., n̂ � ê= 1, its
energy density contribution vanishes.

Using Eq. (19), one finds

~Sm =
~E � ~Bm
�0

=
~E
�0
�
�
~v � ~E
c2

�
=

= ("0E2)~v � ( ~E � ~v) "0 ~E : (47)

Using the vector identity, ~r� (f ~A) = (~rf) � ~A+ (~r� ~A)f
(Gradstein and Ryzik, 2002 [5]) and Eq. (19), the energy con-
servation law in Eq. (47) reads

@utotal

@t
+ ~r � �~Sem + ("0E2)~v

�
=

= � ~E � ~r��� "0( ~E � ~v)
�
: (48)

The left hand side of the above equation vanishes when

� = "0 ( ~E � ~v) : (49)

Thus, this scalar wave is not any arbitrary function. It is
associated with the electric field of the electromagnetic wave.
It is thus suitable to call this an electroscalar wave. Eq. (48)
with the condition in Eq. (49) states that when � is defined as
above, there is no work done to move the free charges, and
that a new wave is generated with both energy density and
having energy flow along the particle direction. Hence,

@utotal

@t
+ ~r � �~Sem + ("0E2)~v

�
= 0 : (50)

In such a case, we see that no electromagnetic energy
is converted (into neither mechanical energy nor heat). The
medium acts as if it were empty of current. This shows that
the scalar wave and the charged particle propagate concomi-
tantly. However, in the de Broglie picture a wave is associated
with the particle motion to interpret the wave particle duality
present in quantum mechanics. Eq. (50) shows that there is no
energy flow along along the magnetic field direction. There-
fore, this electroscalar wave is a longitudinal wave. The trans-
mission of such a wave does cost extra energy and it avails the
electromagnetic energy accompany it. Notice that this scalar
wave can be used to transmit and receive wireless signals (van
Vlaenderen and Waser, 2001 [6]). It has an advantage over the
electromagnetic wave, since it is a longitudinal wave and has
no polarization properties. We will anticipate that this new
scalar wave will bring about new technology of transmission
that avails such properties.

We have seen that recently van Vlaenderen, 2003 [7],
showed that there is a scalar wave associated with abandon-
ment of Lorentz gauge. He called such a scalar field, S. We

have shown that without such abandonment one can arrive at
the same conclusion regarding the existence of such a scalar
wave. We have seen that the scalar wave associated with the
current ~J travels along the current direction. However, van
Vlaenderen obtain such a scalar wave with the condition that
~J = ~B= 0. But our derivation here shows that this is not lim-
ited to such a case, and is valid for any value of ~E; ~B, and
~J . We can obtain the scalar wave equation of van Vlaenderen
if we apply our transformation in Eq. (41) to Maxwell equa-
tions.

Van Vlaenderen obtained a scalar field for ~E= 0 and
~B= 0. See, Eq. (25) and (26). These equations can be ob-
tained from from Maxwell and continuity equation by requir-
ing an invariance of Maxwell equations under our transforma-
tion in Eq. (41) without requiring ~E= ~B= 0. Therefore, our
Eq. (42) is similar to van Vlaenderen equation, viz., Eq. (35).

Wesley and Monstein [9] claimed that the scalar wave
(longitudinal electric wave) transmission has an energy den-
sity equals to 1

2�0
S2. However, if the violation of Lorentz

condition is very minute then this energy density term will
have a very small contribution and can be ignored in compar-
ison with the linear term in the Poynting vector term. No-
tice, however, that in such a case the van Vlaenderen predic-
tion will be indistinguishable from our theory with a valid
Lorentz condition. Hence, the existence of the electroscalar
wave is not very much associated with Lorentz condition in-
validation. Ignatiev and Leus [10] have confirmed experi-
mentally the existence of longitudinal vacuum wave without
magnetic component. This is evident from Eq. (47) that the
energy flows only along the particle motion and the elec-
tric field direction, without trace to any magnetic component.
van Vlaenderen proposed source transformations to general-
ize electrodynamic force and power of a charge particle in
terms of a scalar wave S. Therefrom, he obtain a Poynting
vector due to this scalar to be � S

�0
~E. These transformations

coincide with our new transformation that arising from the
invariance of the continuity equations under these transfor-
mation. Hence, Eq. (35) of van Vlaenderen would become
identical to our Eq. (43), by setting � = S

�0
, but not necessar-

ily limited to ~B= 0, as he assumed.
We summarize here the quaternion forms of the physical

laws which we have studied so far we:

• Maxwell equation: e� 2 eA=�0 eJ ;

• Lorentz force: eF = qeV (er eA);

• continuity equation: er eJ = 0 :

6 Conclusion

I think that a new and very powerful idea drives this work,
namely, that all events are nicely represented as a quaternion.
This implies that any collection of event can be generated by
an appropriate quaternion function. Scalar and vector mix
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under multiplication, so quaternions are mixed representa-
tion. Every event, function, operator can be written in terms
of quaternions. We have shown in this paper that the four
Maxwell equations emerge from just one quaternion equa-
tion. Moreover, Lorentz force and the power delivered by
a charged particle stem from one quaternion equation. The
quaternion form of the continuity equation gives rise to the
ordinary continuity equation, in addition to two more equa-
tions. The invariance of Maxwell equations under our new
transformation shown in Eq. (43) ushers in the existence of
new wave. This wave is not like the ordinary electromagnetic
wave we know. It is a longitudinal wave having their origin in
the variation of the electric field. It is called an electroscalar
wave, besides that fact that it has a dimension of magnetic
field intensity. Thus, in this paper we have laid down the the-
oretical formulation of the electroscalar wave without spoil-
ing the beauty of Maxwell equations (in addition to Lorentz
force). This scalar wave is not like the scalar potential which
is a wave with a source term represented by the density that
travels at a speed less than that of light. If the electroscalar
wave is found experimentally, it will open a new era of elec-
troscalar communication, and a new technology is then re-
quired. We remark that one does not need to invalidate the
Lorentz condition to obtain such wave as it is formulated by
some authors. In this work, we have generalize the continuity
equation to embody a set of three equations. These equations
imply that both current and density are waves traveling at a
speed of light. Urgent experimental work to disclose the va-
lidity of these predictions is highly needed.
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We have found new gauge transformations that are compatible with Maxwell’s equa-
tions and Lorentz gauge. With these transformations, we have formulated the electro-
dynamic equations that are shown to be invariant. New generalized continuity equa-
tions are derived that are also compatible with Maxwell’s equations. Moreover, we
have shown that the electromagnetic wave travels with speed of light in vacuum or a
medium with free charge or current if the generalized continuity equations are satisfied.
Magnetic monopoles don’t show up in ordinary experiments because the Lorentz force
acting on the magnetic charge is zero.

1 Introduction

Maxwell’s equations describing the electric ( ~E) and mag-
netic ( ~B) fields reveal that when these fields are written in
terms of a vector and scalar potentials, the equations of mo-
tion of these potential are generally solutions of wave equa-
tion with a source term. However, there is no unique way
to define these potentials. A set of new potentials satisfying
the Lorentz gauge can be solutions as well. Thus, Maxwell’s
equations are also invariant under these gauge transforma-
tions. Maxwell’s equations are invariant under Lorentz trans-
formation. Since the motion of charged particles is governed
by the continuity equation, Maxwell’s equations determine
the motion of the charged particles in conformity with this
equation.

Using quaternions, we have recently shown that Max-
well’s equations can be written as a single quaternionic equa-
tion (Arbab and Satti, 2009 [1]). It is a wave equation. This
immediately shows that the electromagnetic fields are waves.
Similarly, by writing the continuity equation in a quaternionic
form, we have shown that this equation yields three set of
equations. We call these equations the generalized continuity
equations (GCEs). Besides, we have found that the magnetic
field arised from the charge motion (with speed ~v) acted by an
electric field is given by ~B = ~v

c2 � ~E. Because of this feature,
the magnetic monopoles postulated by Dirac (Dirac, 1931
[2]) couldn’t show up, because the Lorentz force component
acting on this magnetic charge vanishes (Moulin, 2001 [3],
Wolfgang, 1989 [4]). Hence, magnetic monopole can only be
detected indirectly.

In the present paper, we have introduced new gauge trans-
formations that leave Maxwell’s equations, Lorentz gauge
and the continuity equations invariant. Moreover, we know
that according to Maxwell’s theory the electromagnetic fields
travel with speed of light in vacuum, i.e., when no free charge
or current exists. However, in our present formulation, we
have shown that the electromagnetic fields travel with speed

of light in vacuum or free charged medium if the GCEs are
satisfied.

2 Continuity equation

The flow of any continuous medium is governed by the con-
tinuity equation. The quaternionic continuity equation reads,
(Arbab and Satti, 2009 [1]),

er eJ =

"
�
�
~r� ~J+

@�
@t

�
i
c

 
@ ~J
@t

+ ~r�c2
!

+ ~r� ~J
#

= 0 ; (1)

where er =
�
i
c
@
@t
; ~r
�
; eJ =

�
i�c ; ~J

�
: (2)

This implies that

~r � ~J +
@�
@t

= 0 ; (3)

~r�+
1
c2
@ ~J
@t

= 0 ; (4)

and
~r� ~J = 0 : (5)

We call Eqs. (3)–(5) the generalized continuity equations
(GCEs). Equation (5) states the current density ~J is irrota-
tional.

In a covariant form, Eqs. (3)–(5) read

@�J� = 0 ; N�� � @�J� � @�J� = 0 : (6)

Notice that the tensor N�� is an antisymmetric tensor. It
is evident from Eq. (6) that Eqs. (3)–(6) are Lorentz invariant.
Now differentiate Eq. (3) partially with respect to time and
use Eq. (4), we obtain

1
c2
@2�
@t2
�r 2� = 0 : (7)
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Similarly, take the divergence of Eq. (4) and use Eq. (3),
we obtain

1
c2
@2 ~J
@t2
�r 2 ~J = 0 ; (8)

where � = �(~r; t) and ~J = ~J(~r; t). Therefore, both the cur-
rent density and charge density satisfy a wave equation prop-
agating with speed of light. In covariant form, Eqs. (7) and
(8) now read

� 2J� � @�@�J� = 0 : (9)

We remark that the GCEs are applicable to any flow
whether created by charged particles or neutral ones.

3 Maxwell’s equations

We have recently shown that quaternion equation (Arbab and
Satti, 2009 [1])e� 2 eA = �0 eJ ; eA =

�
i
'
c
; ~A
�

(10)

yields the Maxwell’s equations (Arbab and Satti, 2009 [1])

~r � ~E =
�
"0
; (11)

~r� ~E +
@ ~B
@t

= 0 ; (12)

~r� ~B � 1
c2
@ ~E
@t

= �0 ~J ; (13)

and
~r � ~B = 0 : (14)

The electric and magnetic fields are defined by the vector
potential (A) and the scalar potential (') as follows

~E = �~r'� @ ~A
@t

; ~B = ~r� ~A ; (15)

such that the Lorentz gauge

~r � ~A+
1
c2
@'
@t

= 0 ; (16)

is satisfied. We know that the electric and magnetic fields are
invariant under the following gauge transformations

~A 0 = ~A� ~r� ; ' 0 = '+
@�
@t

: (17)

The invariance of the Lorentz gauge implies that

1
c2
@2�
@t 2 �r 2� = 0 : (18)

The 4-vector potential, A�, can be written as

A� =
�'
c
; � ~A

�
: (19)

In a covariant form, Eq. (17) becomes

A0� = A� + @�� : (20)

Eq. (15) can be written in a covariant form as

F�� = @�A� � @�A� : (21)

In a covariant form, Maxwell’s equations, Eqs. (11)–(14),
read

@�F�� = �0J� ; @�F�� + @�F�� + @�F�� = 0 : (22)

Notice however that if we take @
@t of Eq. (12) and apply

Eqs. (13) and (14), we get

1
c2
@2 ~B
@t2
�r2 ~B = �0

�~r� ~J
�
: (23)

Now take the curl of both sides of Eq. (12) and apply
Eqs. (11) and (13), we get

1
c2
@2 ~E
@t2
�r 2 ~E = � 1

"0

�
~r�+

1
c2
@ ~J
@t

�
: (24)

We remark that, according to our GCEs, the electric and
magnetic waves propagate with speed of light whether
~J = � = 0 or not, as long as Eqs. (4) and (5) are satisfied.

In a covariant form, Eqs. (23) and (24) read

� 2F�� = �0 (@�J� � @�J�) : (25)

This can be casted in the form

@ �
�
��1

0 @�F�� + g��J� � g��J�� � @ �C��� = 0 ; (26)

where

C��� = ��1
0 @�F�� + g��J� � g��J� ; (27)

where g�� is the metric tensor. Notice that the current tensor
C��� is antisymmetric in the indices �; � and is a conserved
quantity. Likewise the total momentum and energy of the
electrodynamics system (fields + particles) is conserved, we
found here that the total current of the system, one arising
from the electromagnetic fields and the other from the parti-
cles motion, is conserved. The first term in Eq. (27) repre-
sents the electromagnetic current, the second term represents
the electronic current and the last term represents the vacuum
current (with negative sign) as suggested by Eq. (28).

4 New gauge transformations

Now we introduce the current density transformations
(CDTs) for ~J and �, viz.,

�0 = �+
1
c2
@�
@t

; ~J 0 = ~J � ~r� ; (28)
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leaving the generalized continuity equations (GCEs) invari-
ant. In a covariant form, Eq. (28) reads

J� 0 = J� + @�� : (29)

Applying this transformation in Eq. (6), one finds that

@�(J� + @��) = @�J� 0 = 0 ; N 0�� = N�� : (30)

It is thus evident that the GCEs are invariant under the
CDTs. Moreover, the application of the current transforma-
tion in the continuity equation, Eq. (3), yields

1
c2
@2�
@t2
�r 2� = �

�
~r � ~J +

@�
@t

�
: (31)

We thus that ~J and � in the GCEs are not unique and any
new set of ~J 0 and �0 will lead to the same GCEs provided that
� is gauged by Eq. (31). Since the right hand side of Eq. (31)
vanishes, � is a solution of a wave equation traveling with
speed of light in vacuum. This equation is similar to Eq. (18).
Notice also that Eqs. (23) and (24) are invariant under the fol-
lowing CDTs

�0=�+
1
c2
@�
@t

; ~J 0= ~J� ~r� ; ~E 0= ~E; ~B 0= ~B : (32)

In a covariant form, these read

J 0� = J� + @�� ; F 0�� = F�� : (33)

Now let us introduce new gauge transformations (NGTs)
as follows

~A 0= ~A+�~J ; ' 0='+�� c2; �=�0�2; �=const: (34)

In a covariant form, Eq. (34) reads

A 0� = A� + �J� ; (35)

so that the electromagnetic tensor

F 0�� = F�� + � (@�J� � @�J�) ; (36)

using Eq. (6), is invariant under the NGTs and hence, Max-
well’s equations are invariant too. Moreover, notice that the
Lorentz gauge

~r � ~A+
1
c2
@'
@t

= 0 ; or @�A� = 0 ; (37)

is also invariant under the NGTs provided that the continu-
ity equation, Eq. (3), is satisfied. The covariant derivative is
defined by

D� = @� � ie
~
A� : (38)

The quantum electrodynamics Lagrangian of a particle of
spinor  is given by

L =  (i~ c �D� �mc2) � 1
4�0

F��F�� : (39)

so that the Eq. (39) is invariant under the local gauge transfor-
mation of the spinor  (Bjorken, 1964 [5]). In terms of this
derivative, one has

F�� = D�A� �D�A� ; (40)

and Maxwell’s equations become

D�F�� = �0J� ; D�F�� +D�F�� +D�F�� = 0 : (41)

Upon using Eq. (6), Eq. (41) is invariant under NGTs.
Applying the NGTs into the above Lagrangian yields

L0 = L+ �J�J� : (42)

The current density is defined by J� = ec � . This
extra interaction term has already appeared in the Fermi the-
ory of beta decay. It is written in the form GFp

2
J�J�, i.e.,

� = GFp
2

, where GF is the Fermi constant. We anticipate that
this term is related to the mass of the photon (propagator).
This term term couldn’t be added to the initial Lagrangian
because, it breaks the ordinary gauge invariance. However,
the NGTs could rise to the mass of the photon. It is some-
thing like Higg’s mechanism that gives the elementary parti-
cles their masses. Such a term may be related to an interaction
of two electrons closed to each other like in Cooper pairs in
superconductivity. The behavior of superconductors suggests
that electron pairs are coupling over a range of hundreds of
nanometers, three orders of magnitude larger than the lattice
spacing. These coupled electrons can take the character of a
boson and condense into the ground state.

5 Symmetrized Maxwell’s equation

Dirac was the first to suggest the possibility of a particle that
carries magnetic charge. At the present time there is no ex-
perimental evidence for the existence of magnetic charges or
monopoles. This can be formulated in the context of Max-
well’s equations. Maxwell’s equations can be written in a
symmetric form by invoking the idea of monopole. Let us
denote the magnetic charge by qm and its density and current
by �m and Jm, so that symmetrized Maxwell’s equations are
written as follows

~r � ~E =
�e
"0
; (43)

~r� ~E = ��0 ~Jm � @ ~B
@t

; (44)

~r� ~B = �0 ~Je +
1
c2
@ ~E
@t

; (45)

and
~r � ~B = �0�m : (46)

Lorentz force will have the form (Moulin, 2001 [3])

F = qe( ~E + ~v � ~B) + qm( ~B � ~v
c2
� ~E) : (47)
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But since (Arbab and Satti, 2009 [1])

~B =
~v
c2
� ~E (48)

the Lorentz force does not affect the magnetic charge whether
it exists or not. Hence, the magnetic monopole does not man-
ifest its self via Lorentz force. The magnetic field generated
by the charged particle is in such a way that it does not influ-
ence the magnetic charge. Note also that the magnetic field
created by the charged particle does not do work because ~v� ~B.
The above symmetrized Maxwell’s equations have the duality
transformations, i.e., ~E ! ~B, ~B ! � ~E.

Using the vector identity ~r � ( ~A � ~C) = ~C � (~r� ~A)�
� ~A � (~r � ~C), it is interesting to notice that the divergence
of Eq. (48) vanishes, viz.,

~r � ~B = ~r �
�
~v
c2
� ~E

�
=

=
1
c2
h
~E � (~r� ~v)� ~v � (~r� ~E)

i
= 0; (49)

for a motion with constant velocity, where ~r� ~v = 0 and ~v
is perpendicular to ~r� ~E.

6 The Biot-Savart law

We can now apply Eq. (48) to calculate the magnetic field
acted on the electron in Hydrogen-like atoms. This magnetic
field is produced by the moving electron due to the presence
of an electric field created by the nucleus at a distance r, as
seen by the electron. Therefore,

~B =
~v
c2
� ~E ; (50)

where ~E is the electric produced by the nucleus at the elec-
tron site. The magnetic field due to a single moving charged
particle (q) is given by the Biot-Savart law as

~B =
�0

4�
q ~v � ~r
r3 : (51)

Comparing Eq. (50) with Eq. (51) and using the fact that
�0"0c2 = 1, one gets

~E =
q

4�"0

~r
r3 (52)

which is the familiar definition of the electric field of a single
charged particle. Hence, Eq. (50) is one variant of Biot-Savart
law. This law was not included in the original formulation of
Maxwell’s theory. Hence, Maxwell’s equations were missing
this law and thus were incomplete.

Since the electric field produced by the nucleus is perpen-
dicular to the electron velocity, Eq. (50) yields

B =
v
c2
E : (53)

But for Hydrogen-like atoms

E =
1

4�"0

Ze
r2 ; (54)

so that one has
B =

Zev
4�"0r2 : (55)

In terms of the orbital angular momentum (L) where
L = mvr, one has

~B =
Ze

4�"0mr3
~L : (56)

However, this is the same equation that is obtained using
the Biot-Savart law. This is a remarkable result, and suggests
that the relation ~B = ~v

c2 � ~E is truly fundamental in elec-
trodynamics. This term gives rise to the spin-orbit interaction
described by

Eint =
1

4�"0

Ze2

m2
ec2r3

~S � ~L : (57)

A factor of 1=2 correcting the above expression is intro-
duced by Thomas leading to

Eint =
1

8�"0

Ze2

m2
ec2r3

~S � ~L : (58)

We now use the Biot-Savart law to demonstrate that ~r �
~B = 0. This law is written in the form

~B =
�0

4�

Z ~J(~r 0)� (~r � ~r 0)
j~r � ~r 0j3 d3r0 : (59)

Using the vector identity ~r � ( ~A � ~C) = ~C � (~r� ~A)�
� ~A � (~r� ~C), one has

~r �
Z  ~J(~r 0)� (~r � ~r 0)

j~r � ~r 0j3
!
d3r0 =

=
Z

(~r�~r 0)
j~r�~r 0j3 �

�~r� ~J �d3r0�
Z
~J �
�
~r� (~r�~r0)
j~r�~r 0j3

�
d3r0:

(60)

Because of Eq. (5) and the fact that the curl of any pure
radial function is zero, i.e. ~r� (f(r) r̂) = 0, the first and the
second term vanish, so that above equation yields

~r � ~B = 0 : (61)

Now let us calculate the magnetic field at a distance r
from the wire produced by an infinitely long wire carrying a
current I . Using Ampere’s law, this is given by

B =
�0I
2�r

: (62)

However, using Eqs. (50) and (51) and the fact that
I t = q and ~v is perpendicular to ~r, one finds that the magnetic
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field sets up at a point P at a distance r is not instantaneous,
but reaches after a passage of time

�t =
2r
v
: (63)

Placing a detector at a distance r from the wire, one can
measured this time experimentally. 2 r is the round trip dis-
tance covered by the mediator (photon) traveling with speed v
to send the magnetic induction at a point P . This exhibits the
causal behavior associated with the wave disturbance. This
shows that an effect observed at the point r at time t is caused
by the action of the source a distant r away at an earlier or
retarded time t0 = t� r=c.The time r=c is the time of propa-
gation of the disturbance from the source to the point r. Be-
cause of this Maxwell’s equations satisfy the causality prin-
ciple. Notice that this magnetic field is not changing with
time. This may help understand that photons are emitted and
absorbed by electron continuously, asserting that the electro-
magnetic interaction is exchanged by a mediator, as advo-
cated by the quantum field theory.

7 Concluding remarks

We have shown in this paper the importance of the new gauge
transformations, and how they leave Maxwell’s equations
invariant. These are the continuity equations, the current-
density transformations and the current-gauge field transfor-
mations. According to Noether’s theorem, invariance of a
Lagrangian under any transformation will give rise to a con-
served quantity. Hence, we trust that there must be some
deep connections of these transformations with other electro-
dynamics phenomena. We emphasize here how the relation
~B = ~v

c2 � ~E is important in calculating magnetic fields pro-
duced by moving charged particle. This equation was miss-
ing in the derivation of Maxwell’s equations. Note that this
field is always perpendicular to the velocity of the particle,
i.e., ~v � ~B = 0. We have also found that ~B = ~v

c2 � ~E is
equivalent to Biot-Savart law. Thus, the quaternionic form
of Maxwell’s equations generalizes the ordinary Maxwell’s
equations and unified the Biot-Savart law with other electro-
magnetic laws. The magnetic charge (monopole) proposed
by Dirac could exist in principle, but it doesn’t feel the elec-
tromagnetic force. The generalized continuity equations are
in agreement with Newton’s second law of motion. More-
over, we have obtained the Euler and energy conservation
equations from the quaternionic Newton’s law. Application
of these new gauge transformations in quantum field theory
will be one of our future endeavor.

Acknowledgments

I would like to thank F. Amin for the enlightening and stimu-
lating discussion.

Submitted on December 06, 2008 / Accepted on December 13, 2008

References

1. Arbab A.I. and Satti Z.A. Progress in Physics, 2009,
v. 1, 8.

2. Dirac P.A.M. Proc. Roy. Soc., 1931, v. A133, 60.; Dirac
P.A.M. Phys. Rev., 1948, v. 74, 817.

3. Moulin F. Nuovo Cimento, 2001, v. 116B, 869.
4. Wolfgang R. Am. J. Phys., 1989, v. 57, 993.
5. Bjorken J.D. and Drell S.D. Relativistic Quantum Me-

chanics, McGraw-Hill Book Company, 1964.

18 Arbab I. Arbab. On The New Gauge Transformations Of Maxwell’s Equations



April, 2009 PROGRESS IN PHYSICS Volume 2

Introducing the Table of the Elements of Anti-Substance,
and the Theoretical Grounds to It

Albert Khazan
E-mail: albkhazan@.gmail.com

Herein we study how the Hyperbolic Law acts in the Periodic Table of Elements, in
each of the four quadrants of the plane “molecular mass X — contents of element Y ”.
It is shown that the symmetry of the equation Y =K=X is permitted only in the 1st and
2nd quadrants. The negative numerical values on the X-axis, and also K< 0, testify
that the 2nd quadrant should contain the elements and compounds of anti-substances.

1 Introduction

As can be seen in [1–4], our method has produced hyperbolas
located in the first quadrant. At the same time, their second
branches have not been investigated from the point of view of
the hyperbolic law in the Periodic Table of Elements.

Its essence is reflected in the fact that in any chemical
compound with molecular massX referred to one gram-atom
of a defined element K, its maintenance Y represents the
equilateral hyperbola Y =K=X whose top is located on the
valid axis located in a corner at 45 degrees with respect to the
abscissa in the positive direction.

2 Mathematical substantiation. A principle of sym-
metry

For any element K> 0 there is only one hyperbola consist-
ing of two branches (in the first and the third quadrants). Hy-
perbolas with various values K cannot be imposed against
each other. At each point of a hyperbola, there are coordi-
nates according to the equationXY =K whereX and Y can
have not only positive values, but also negative values. If we
identify the set of hyperbolas at various values K, they can
wholly fill the area of the rectangular corner XOY (the first
quadrant). In mathematics, the two branches of an equilat-
eral hyperbola are symmetric with respect to each other. The
valid axis passes through the tops located in the first and third
quadrants, and also through the center of symmetry. The nor-
mal to it is an imaginary axis, and also an axis of symmetry
around which it is possible to combine both quadrants.

3 The comparative analysis of equilateral hyperbolas in
the first and third quadrants

Let’s consider the hyperbolas of Beryllium, Chromium, Mer-
cury, and the last element identified by us, which we shall
call 155 and which is represented in Fig. 1. Apparently, the
ordinate of the curves is equal to unity, while the abscissa is
600. The tops of the curves are on the valid axis which is
perpendicular to the imaginary axis, while their curvature de-
creases with the growth of molecular mass. These properties
have been considered in detail in our previous works for the
first quadrant, in which Y =K=X (where X > 0, Y > 0).

If these hyperbolas are constructed in the coordinates
X < 0, Y < 0, (at K> 0), they will take the place of the sec-
ond branches and settle down in the third quadrant. Hence,
the properties of these equilateral hyperbolas, proceeding
from mathematical concepts, except for one, can be com-
pletely found. It is impossible to combine these curves in
two quadrants as the axes X and Y have different names and,
accordingly, we see that the scales are caused by chemical
conditions.

This discrepancy can be excluded if we take advantage
of the factor of scaling M = 20.2895 described in a previ-
ous work [1]. In a Fig. 2 the same hyperbolas in the coor-
dinates transformed by means of M are shown: X 0=X=M ,
Y 0=YM . Apparently, the form and properties of the hyper-
bolas after transformation remain unchanged and prove the
mathematical principles.

If now around an imaginary axis we make the third and
the first quadrants overlap, it is possible to see that there is
nearly full concurrence among the curves and valid axes
(Fig. 3). However, there is some increase in the ordinates be-
cause the abscissa in Fig. 2 possesses a slightly higher value
than that of the ordinate, which is easy to notice from the po-
sition of circles designating the second branches. It has no
basic value since the initial scales of the coordinate axes are
naturally various upon their schematic construction. There-
fore, the corner of the valid axis seems to be less than 45
degrees though its equation is given by the equality Y =X .
This fact is due to the scale of coordinate axes only. At iden-
tical values of X and Y , the tangent of the corner of an incli-
nation of the valid axis of an equilateral hyperbola is equal to
1, while, at the same time, its top is defined as a root square
of K and corresponds to the equality X0 =Y0.

It is necessary to note also that all the established laws
apply extensively to adjacent hyperbolas of the kind given by
Y = 1�KX [2].

4 Discussion of results

On the basis of our results, it is possible to draw a conclu-
sion that the properties of hyperbolas described by K =XY ,
which is in first quadrant, prove to be true. The same holds for
those in the third quadrant, where K = (�X)(�Y ). Hence,
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Fig. 1: Dependence of the contents of Be, Cr, Hg, No. 155 from molecular mass of the compounds.

Fig. 2: Dependence of the contents of Be, Cr, Hg, No. 155 from molecular mass of the compounds, using the scaling coefficient M .
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Fig. 3: The scale of the axes X and Y are numerically like each other, while the divisions of the scales are different. So, if a division is
3.075 in the axis X , while it is 1.75 in the axis Y . Under 60, the corner of the real axis gives 45�.

Fig. 4: Dependence of the contents of Be, Cr, Hg, No. 155 from molecular mass of the compounds in the 2nd and 4th quadrants.
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Fig. 5: Dependence of the contents of Be, Cr, Hg, No. 155 from molecular mass of the compounds in the 1st and 2nd quadrants.

Table 1: Eight periods of the Table of Substance and Anti-Substance.
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the action of the Hyperbolic Law covers also an area of neg-
ative values of coordinate axes covering 155.

We recall the construction of hyperbolas atK< 0 (Fig. 4).
Therefore, it has been established that in the second and the
fourth quadrants of the hyperbolas, the same laws hold, which
have also been established by us for the first and the third
quadrants. It is caused by the fact that the equilateral hy-
perbolas have equal parameters on the module, but opposite
in sign, namely, they are mutually interfaced and so possess
identical properties. Therefore, proceeding from the chemi-
cal concepts, they can be symmetric only after changing the
scale of the axes X , Y . Thus, referring to their congruence,
unlike other mathematical conditions: curves coincide in the
field of action of the factor M . Outside, its one hyperbola is
generated as the abscissa increases, while the second corre-
sponds to the increase in ordinate, not changing the direction
of a curve. As it has appeared, absolute symmetry is available
only on the axes X and Y .

Because in the third and fourth quadrants, a negative ordi-
nate (a degree of transformation of a substance) cannot occur
in Nature, we shall consider only quadrants 1 and 2.

From Fig. 5 it is seen that for K> 0 and K < 0 the
congruence of hyperbolas and their valid axes are imposed
against each other.

Corresponding to such symmetry, there is a question
about the observation of chemical conditions. In the first
quadrant, they have been considered in detail and do not cause
doubts. In the second case (atK < 0) the abscissa is negative,
and the ordinate is positive. Here the degree of transforma-
tion Y defined as the mass of an element (of one gram-atom),
with respect to the corresponding molecular mass, is given
by Y =K=(�X), or, in other words, K = (�X)Y . From the
point of view of mathematics, this result is fair. At the same
time, physicists are in need of further necessary elaboration
from the point of view of chemistry.

5 Substances and anti-substances

It is known that a Substance consists of atoms containing pro-
tons, neutrons, and electrons. An Anti-Substance differs only
by the prefix “anti”. In terms of chemical condition, all sub-
stances are divided into simple and complex (chemical com-
pounds). They can be organic and inorganic.

As the Hyperbolic Law in the Periodic Table has been
proved for hyperbolas of the first quadrant, there arises an
idea to apply it also to the second quadrant. As the basis
for this purpose, the quadrants are symmetric and the main-
tenance of elements in connection (Y ) has a positive value.
The difference consists only in those abscissas with opposite
signs. But it is possible only when the molecular mass of a
chemical compound has a minus sign. If, in the first quadrant,
we arrange all possible hyperbolas around 155 inclusively,
nothing prevents us from making the same apply to the sec-
ond quadrant. Hence, in it there are substances with a minus

sign, i.e., anti-substances constructed of anti-particles (sim-
ilar to the substances in the first quadrant). With respect to
mass, they are similar to a proton, neutron and, electron, only
with an opposite (minus) sign.

From this it follows that it is possible to construct Ta-
ble 1 (similar to the Periodic Table [3]) for the elements of
anti-substances. For example, the known synthesized ele-
ments (their hyperbolas are more exact): anti-hydrogen, anti-
deuterium, and anti-helium occupy symmetric places in both
quadrants.

6 Conclusions

On the basis of symmetry with application of the Hyperbolic
Law in the Periodic Table of Elements, the existence of anti-
substances has been indirectly proved. As well, the construc-
tion of the various hyperbolas in the second quadrant and in
the Table has been shown to be similar to that of the Periodic
Table of Substances. It is clear that the third and fourth quad-
rants cannot be (directly) applied to calculation in the field of
chemistry because the negative degree of transformation of
substances does not exist.

Hence, it is now possible to draw a conclusion that the
Hyperbolic Law established by us in the Periodic Table of
Elements is generally true for the characteristics of not only
substances, but also those of anti-substances. It also allows
us to calculate all nuclear masses up to the last element (anti-
element).
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We comment on some work of Ruslov and Vlasenko indicating how stable Hamiltonian
systems can be quantized under certain assumptions about the perturbations.

1 Introduction

In [7] we indicated some results of Rusov and Vlasenko [56,
57] involving Hamiltonian stability and quantization which
we summarize here with a somewhat different interpretation.
In [56, 57] (which are the same modulo typos and conclu-
sions) one indicates how the work of Chetaev [9–11] (based
in particular on classical results of Poincaré [52] and Lya-
punov [39]) allow one to relate stability of classical systems
to quantum mechanics in certain situations. We review here
some of the arguments (cf. also [7, 55, 60] for additional ma-
terial on the Poincaré-Chetaev equations).

One recalls that holonomic systems involve an agreement
of the degrees of freedom with the number of independent
variables. Then following [9] consider a holonomic system
with Hamiltonian coordinates

dqj
dt

=
@H
@pj

;
dpj
dt

= �@H
@qj

(1.1)

and think of perturbations (1A) qj= qj(t) + �j and pj =
= pj(t) + �j . Denoting then qj� qj(t) and pj� pj(t) one
has

d(qj + �j)
dt

=
@H(t; qi + �i; pi + �i)

@pj
d(pj + �j)

dt
= �@H(t; qi + �i; pi + �i)

@qj

9>>=>>; : (1.2)

Expanding and using (1.1) gives

d�j
dt

=
X�

@2H
@pj@qi

�i +
@2H
@pj@pi

�i
�

+Xj

d�j
dt

= �X�
@2H
@qj@qi

�i +
@2H
@qj@pi

�i
�

+ Yj

9>>>=>>>; ; (1.3)

where the Xj ; Yj are higher order terms in �; �. The first ap-
proximations (with Xj = Yj = 0) are referred to as Poincaré
variational equations. Now given stability questions relative
to functions Qs of (t; q; p) one writes

xs = Qs(t; qi + �i; pi + �i)�Qs(t; qi; pi) =

=
X�

@Qs
@qi

�i +
@Qs
@pi

�i
�

+ � � � (1.4)

which implies

dxs
dt

=
X�

@Q0s
@qi

�i +
@Q0s
@pi

�i
�

+ � � � (1.5)

where

Q0s =
@Qs
@t

+
X�

@Qs
@qi

@H
@pi
� @Qs
@pi

@H
@qi

�
: (1.6)

Given 16 s6 2k and 16 i; j 6 k one can express the �i; �i
in terms of xs and write (1B) (dxs=dt) = Xs (normal form)
with Xs(0) = 0. For equations (1B) with 16 s6n, for suf-
ficiently small perturbations �j ; �0j one assumes there exists
some system of initial values xs0 with

P
x2
s0 < A for an

arbitrarily small A (with perturbations �j ; �0j 6Ej ; E0j). Fur-
ther for arbitrarily small Ej ; E0j one assumes it is possible
to find A as above such that there exists one or more val-
ues �j ; �0j with absolute values 6Ej ; E0j . Under these con-
ditions the initial values of xs play the same role for sta-
bility as the �j ; �0j and one assumes this to hold. One as-
sumes also convergent power series for the Xs etc. Then
Lyapunov stability means that for arbitrary small A there ex-
ists � such that for all perburbations xs0 satisfying

P
x2
s0 6�

and for all t> t0 one has
P
x2
s <A (i.e. the unperturbed

motion is stable). Next one considers t> t0 and
P
x2
s 6H

and looks for a sign definite (Lyapunov) function V (with
V 0= @tV +

Pn
1 Xj(@V=@xj) then sign definite of opposite

sign or zero). If such a function exists the unperturbed motion
is stable (see [9] for proof).

We pick up the story now in [10] where relations between
optics and mechanics are also illuminated (but not considered
here). Take a holonomic mechanical system with coordinates
qi and conjugate momenta pi with n degrees of freedom. As-
sume the holonomic constraints are independent of time and
the forces acting on the system are represented by a potential
function U(qi). Let (1C) T = 1

2

P
i;j gijpipj denote the ki-

netic energy where the gij = gji are not dependent explicitly
on time. Hamilton’s equations have the form

2T =
X

gij
@S
@qi

@S
@qj

= 2(U + E) (1.7)

where E represents a kinetic energy constant (the sign of U
is changed in Section 2). Here the integral of (1.7) is (1D)
S(qi; �i)+ c with the �i constants and (1E) jj@2S=@qi@�j jj
, 0 while (1F) E = E(�i). According to the Hamilton-
Jacobi theory the general solution of the motion equations is
given via (1G) pi=@S=@qi and �i=�t(@E=@�i)+@S=@�i
where the �i are constants. In order to determine a stable
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solution one looks at the Poincaré variations

d�i
dt

=
X
j

�
@2H
@qj@pi

�j +
@2H
@pj@pi

�j
�

d�i
dt

= �X�
@2H
@qj@qi

�j +
@2H
@pj@qi

�j
�
9>>>=>>>; ; (1.8)

where H should be defined here via (1H) H =T �U . For a
stable unperturbed motion the differential equations for Poin-
caré variations (1.8) must be reducible by nonsingular trans-
formation to a system of linear differential equations with
constant coefficients all of whose characteristic values must
be zero (recall that the Lyapunov characteristic value X[f ] of
f isX[f ] =� lim

t!1[log(jf(t)j)=t] — cf. [39,40]). In such per-

turbed motion, because of (1G) one has (recall pi� @S=@qi)
�i =

X
j

@2S
@qi@qj

�j (i = 1; � � � ; n) : (1.9)

Hence
d�i
dt

=
X
j;s

�s
@
@qs

�
gij

@S
@qj

�
(i = 1; � � � ; n) : (1.10)

Note here that (1.8) involves
P
gijpipj � U so

(F)
@H
@pi

=
X

gijpj ;
@H
@qj

=
X @gij

@qj
pipj � @U

@qj
and (1.10) says

(FF)
d�i
dt

=
X

�s
�
@gij
@qs

@S
@qj

+ gij
@2S
@qs@qj

�
=

=
X

�s
@gij
@qs

@S
@qj

+
X

gij�j :

The second term here is [@2H=@pi@pj ]�j and we want to
identify the term �s(@gij=@qs)(@S=@qj) with @2H=@qs@pi�s.
However we can see that @U=@pi = 0 so �s(@2H=@qs@pi) =
= �s(2@2T=@qs@pi) = �s(@gij=@qs)pj confirming (1.10).
Here the qi; �i are represented by their values in an unper-
turbed motion. Now for a stable unperturbed motion let (1.10)
be reducible by a nonsingular linear transformation (1I) xi =
=
P
ij�j with a constant determinant � = jjij jj. If �ir

(r = 1; � � � ; n) are a normal system of independent solutions
of (1.10) then (1J) xir =

P
j ij�jr will be the solution for

the reduced system. For a stable unperturbed motion all the
characteristic values of the solutions xir (i = 1; � � � ; n) are
zero and consequently

jjxsrjj = C� = jjsj jj jj�jrjj =
= �C exp

�Z X @
@qi

�
gij

@S
@qj

�
dt
�
: (1.11)

Consequently for a stable perturbed motion (cf. [9,39,40])X @
@qi

�
gij

@S
@qj

�
= 0 : (1.12)

2 Stability approach

Following Rusov and Vlasenko one writes an integral of
the Hamilton-Jacobi (HJ) equation in the form (2A) S=
= f(t; qi; �i) + A (i = 1; � � � ; n) with the �i arbitrary con-
stants. The general solution is then (2B) pi = @S=@qi with
�i = @S=@�i where the �i are new constants of integration.
The canonical equations of motion are dqi=dt = @H=@pi and
dpi=dt = �@H=@qi where H is the Hamiltonian and under
perturbations of the �i; �i one writes �i = �qi = qi � qi(t)
and �i = �pi = pi� pi(t) and derives equations of first appro-
ximation

d�i
dt

=
X @2H

@qj@pi
�j +

X @2H
@pj@pi

�j

d�i
dt

= �X @2H
@qj@qi

�j �X @2H
@pj@qi

�j

9>>>=>>>; (2.1)

as in (1.8). By differentiating in t one obtains then (2C) C =
=
P

(�s�0s � �s�0s) where C is a constant. Also for given
�s; �s there is always at least one solution �0s; �0x for which
C , 0. Stability considerations (as in form. 1.1) then lead via
(F) �i =

P
(@2S=@qi@qj)�j and (2D) H = 1

2

P
gijpipj +

+U = T + U to

d�i
dt

=
X

�s
@
@qs

�
gij

@S
@qj

�
(2.2)

(note in Section 1 H �T �U following [10] but we take
now U!�U to agree with [56, 57] — the sign of U is not
important here). According to [56, 57], based on results of
Chetaev [10] (as portrayed in Section 1), it results that L=
=
P

(@=@qi)[gij(@S=@qj)] = 0 (as in form. 1.12) for stabil-
ity (we mention e.g. [9–11,39,40,45] for stability theory, Lya-
punov exponents, and all that).

REMARK 2.1. One also notes in [56, 57] that a similar
result occurs for (��) U ! U� = U + Q for some natural
Q and the stability condition (1.12) itself provides the natu-
ral introduction of quantization (see below). The perturbation
relation in (1.9) is irrelevant to this feature (which we did not
realize previously) and the quantum perturbations introduced
via Q will satisfy the Heisenberg uncertainty principle as de-
sired (cf. [3]). �

Now one introduces a function (2E)  =A exp(ikS) in
(1.12) where k is constant and A is a real function of the
coordinates qi only. There results

@S
@qj

=
1
ik

�
1
 
@ 
@qj
� 1
A
@A
@qj

�
(2.3)

so that (1.12) becomesX
i;j

@
@qi

�
gij
�

1
 
@ 
@qj
� 1
A
@A
@qi

��
= 0 : (2.4)

On the other hand for the perturbed motion (with U!
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! U�=U +Q) the HJ equation can be written in the form

1
2k2

X
i;j

gij
�

1
 
@ 
@qi
� 1
A
@A
@qi

� �
1
 
@ 
@qj
� 1
A
@A
@qj

�
=

= @tS + U +Q (2.5)

with @tS obtained via (2E). Adding (2.4) and (2.5) yields

1
2k2 

X
i;j

@
@qi

�
gij

@ 
@qj

�
� 1

2k2A

X
i;j

@
@qi

�
gij
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@qj

�
�

� 1
k2A

X
i;j

gij
@A
@qj

�
1
 
@ 
@qi
� 1
A
@A
@qi

�
�

� 1
ikA 

[A@t �  @tA ]� U �Q = 0 (2.6)

as a necessary stability condition (in the first approximation).
Note (2.6) will not contain Q if A is defined via

1
2k2A

X
i;j

@
@qi

�
gij

@A
@qj

�
+

+
i
kA

X
i;j

gij
@A
@qj

@S
@qi
� 1
ikA

@tA+Q = 0 (2.7)

which means

Q = � 1
2k2A

X
i;j

@
@qi

�
gij

@A
@qj

�
@tA = �X

i;j

gij
@A
@qj

@S
@qi

9>>>>=>>>>; : (2.8)

A discussion of the physical content of (2.8) appears in
[56, 57] and given (2.8) the stability condition (2.6) leads to

i
k
@t = � 1

2k2

X
i;j

@
@qi

�
gij

@ 
@qj

�
+ U (2.9)

which is of course a SE for k = 1=~ (this is the place where
quantum mechanics somewhat abruptly enters the picture —
see Remark 2.1). In fact for kinetic energy (2F) T = 1

2m

�
p2

1 +
+ p2

2 + p2
3
�

(2.9) leads to

Q = � ~2

2m
�A
A

; @tA = � 1
m

X @A
@xj

pj ; k =
1
~

(2.10)

and (2.9) becomes (note A = A(q))

i~@t = � ~2

2m
� + U : (2.11)

Going backwards now put the wave following function
 =A exp(iS=~) in (2.11) to obtain via (1.12) and (2.8) the
Bohmian equations

@tA=� 1
2m
�
A�S+ 2rA �rS �=�rA � rS

m

@tS = �
�

(rS)2

2m
+ U � ~2

2m
rA
A

�
9>>=>>; ; (2.12)

where the quantum potential QP is naturally identified.
If one writes now P =  �=A2 then (2.12) can be re-

written in a familiar form

@tP = �rP � rS
m

@tS +
(rS)2

2m
+ U �
� ~2

4m

�
�P
P
� 1

2
(rP )2

P 2

�
= 0

9>>>>>>>=>>>>>>>;
: (2.13)

That P is indeed a probability density is “substantiated”
via a least action of perturbation principle attributed to Che-
taev [11, 56, 57] which involves (2G)

R
Qj 2jdV = min

where dV is a volume element with
R j j2dV = 1 and this

condition is claimed to be necessary for stability (one as-
sumes that the influence of perturbative forces generated byQ
is proportional to the density of trajectories j j2 =A2 and dV
cannot be a phase space volume element as stated in [56,57]).
Write now, using (2D)

Q = �@tS�U�T = �@tS�U�1
2

X
gij

@S
@qi

@S
@qj

: (2.14)

Then if (2E) holds one can show that

1
2

X
gij

@S
@qi

@S
@qj

= � 1
2k2 2

X
gij

@ 
@qi

@ 
@qj

+

+
1

2k2A2

X
gij
@A
@qi

@A
@qj

+
ik

2k2A2

X
gij
@A
@qi

@S
@qj

: (2.15)

Then for the first term on the right side substitute its value
from the first stability condition (2.4), then insert this relation
into (2.15) and put the result into the equation (2.14) corre-
sponding to the variational principle; the result is then (2.6)
and consequently the resulting structure expression and the
necessary condition for stability coincide with (2.8) and (2.9).
This leads one to conclude that stability and (Bohmian) quan-
tum mechanics are two complementary procedures of Hamil-
tonian theory. The authors cite an impressive list of references
related to experimental work related to the analysis in [56,57].

3 The quantum potential

From Sections 1–2 we have seen that a stable Hamiltonian
system as indicated gives rise to a quantum Schrödinger equa-
tion with quantum potentialQ. It seems therefore appropriate
to examine this in the light of other manifestations of the QP
as in e.g. [3–6, 16–19, 24, 26–28, 30, 36, 37, 53]. We note that
following [4] one can reverse some arguments involving the
exact uncertainty principle (cf. [3,26–28,53]) to show that any
SE described by aQP based on j j2 =P can be modeled on
a quantum model of a classical Hamiltonian H perturbed by
a term HQ based on Fisher information, namely

HQ =
c

2m

Z
(rP )2

P
dx =

c
2m

Z
P (�p)2; (3.1)
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where �p=rP=P . This does not of course deny the pres-
ence of “related” x� q oscillations �x� �q and in fact in
Olavo [49] (cf. also [3]) Gaussian fluctuations in �q are indi-
cated and related to �p via an exact uncertainty relation (3A)
(�p)2 � (�q)2 = ~2=4. We note that the arguments establish-
ing exact uncertainty stipulate that the position uncertainty
must be entirely characterized by P = j j2 (cf. [3,26–28,53]).
Thus the quantum potential generates the quantum perturba-
tions �p and these are essentially unrelated to the �p� �i
of (1.9).

REMARK 3.1. We recall here [29] (cf. also [54]) were
it is shown that quantum mechanics can be considered as a
classical theory in which a Riemannian geometry is provided
with the distance between states defined with natural units
determined via Planck’s constant (which is the inverse of the
scalar curvature). �

REMARK 3.2. In [2] one shows that non-relativistic
quantum mechanics for a free particle emerges from classi-
cal mechanics via an invariance principle under transforma-
tions that preserve the Heisenberg inequality. The invariance
imposes a change in the laws of classical mechanics corre-
sponding to the classical to quantum transition. Some similar-
ities to the Nottale theory of scale relativity in a fractal space-
time are also indicated (cf. [3, 8, 47, 48]). There are relations
here to the Hall-Reginatto treatment which postulates that the
non-classical momentum fluctuations are entirely determined
by the position probability (as mentioned above). In Brenig’s
work one derives this from an invariance principle under scale
transformations affecting the position and momentum uncer-
tainties and preserving the Heisenberg inequality. One modi-
fies the classical definition of momentum uncertainty in order
to satisfy the imposed transformation rules and this modifica-
tion is also constrained by conditions of causality and addi-
tivity of kinetic energy used by Hall-Reginatto. This leads to
a complete specification of the functional dependance of the
supplementary term corresponding to the modification which
turns out to be proportional to the quantum potential. �

REMARK 3.3. We note that in work of Grössing (cf. [6,
24]) one deals with subquantum thermal oscillations leading
to momentum fluctuations (3B) �p=�(~=2)(rP=P ) where
P is a position probability density with �r log(P ) =�rQ
forQ a thermal term (thus P = c exp(��Q) where �= 1=kT
with k the Boltzman constant). This leads also to consider-
ation of a diffusion process with osmotic velocity u/�rQ
and produces a quantum potential

Q =
~2

4m

�
r2 ~Q� 1

D
@t ~Q

�
(3.2)

where ~Q=Q=kT and D= ~=2m is a diffusion coefficient.
Consequently (cf. [6] one has a Fisher information (3C) F /
�2 R exp(��Q(rQ)2d3x. As in the preceeding discussions
the fluctuations are generated by the position probability den-

sity and one expects a connection to (Bohmian) quantum me-
chanics (cf. [3, 12, 18, 19]). �

REMARK 3.4. There is considerable literature devoted
to the emergence of quantum mechanics from classical me-
chanics. There have also been many studies of stochastic and
hydrodynamic models, or fractal situations, involving such
situations and we mention in particular [1, 3–6, 8, 12, 13, 18–
20, 23, 24, 26–28, 36, 37, 42–44, 46–49, 53, 58, 59, 61]; a sur-
vey of some of this appears in [3]. For various geometri-
cal considerations related to the emergence question see also
[14, 15, 25, 30–35, 51, 62] and in connection with chaos we
cite e.g. [1, 25, 38, 41, 50, 51, 62, 63]. �
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24. Grössing G. Phys. Lett. A, 2008, v. 372, 4556–4562; Found.
Phys. Lett., 2004, v. 17, 343–362; arXiv: quant-ph/0201035,
0205047, 0404030, 0410236, 0508079, and 0806.4462.

25. Gutzwiller M. Chaos in classical and quantum mechanics.
Springer, 1990.

26. Hall M. and Reginatto M. Jour. Phys. A, 2002, v. 35, 3289–
3303; Fortschr. Phys., 2002, v. 50, 646–651; arXiv: quant-ph/

0201084.

27. Hall M., Kumar K., and Reginatto M. Jour. Phys. A, 2003, v. 36,
9779–9794.

28. Hall M. arXiv: gr-qc/0408098, quant-ph/0007116; Jour.
Phys. A, 2004, v. 37, 7799 and 9549 (preprinted in arXiv:
quant-ph/0404123 and 0406054).

29. Heslot A. Amer. Jour. Phys., 1983, v. 51, 1096–1102; Phys.
Rev. D, 1985, v. 31, 1341–1348.

30. Hiley B. Quo vadis quantum mechanics. Springer, 2005,
pp. 299–324.

31. Holland P. The quantum theory of motion. Cambridge Univ.
Press, 1993.

32. ’t Hooft G. arXiv: hep-th/0707.4568, quant-ph/0604008.

33. Isidro J., Santander J., and de Cordoba P.F. arXiv: hep-th/

0808.2351 and 0808.2717; gr-qc/0804.0169.

34. Isidro J. arXiv: hep-th/0110151, 0204178, 0304175, 0407161,
0411015, and 0510075; quant-ph/0307172, 0310092, and
0407159.

35. Isidro J. and de Gosson M. arXiv: hep-th/0608087; quant-ph/

0608093.

36. Kaniadakis G. arXiv: quant-ph/0112049.

37. Kaniadakis G. and Scarfone A. arXiv: cond-mat/0303334.

38. Klages R. Microscopic chaos, fractals, and transport in non-
equilibrium statistical mechanics. World Scientific, 2007.

39. Lyapunov A. The general problem of stability of motion. Gos-
tekhizdat, 1950; Princeton Univ. Press, 1947.

40. Malkin I. Theory of stability of motion. Gostekhizdat, 1952;
Some problems in the theory of nonlinear oscillations. Gostekh-
izdat, 1956.

41. Magnitskij N. and Sidorov S. New methods for chaotic dynam-
ics. World Scientific, 2006.

42. Nasiri S. arXiv: quant-ph/0511125.

43. Nasiri S., Sobouti Y., and Taati F. arXiv: quant-ph/0605129.

44. Nelson E. Quantum fluctuations. Princeton Univ. Press, 1985;
Dynamical theory of Brownian motion. Princeton Univ. Press,
1967.

45. Nemytskii V. and Stepanov V. Qualitative theory of differential
equations. Dover, 1989.

46. Nottale L. Fractal space-time and microphysics: Toward a the-
ory of scale relativity. World Scientific, 1993.
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The study of experimental data leads to the conclusion about the existence of the fields
of the Earth as not being of clear physical nature. The structure and properties of these
fields on the Earth’s surface are studied. These fields turn out to be related to the mo-
tions of matter and, in particular, to the internal motions of the Earth itself. Therefore,
the fields may include precursors to earthquakes that conform to experiments. The
disclosed statistical relations of seismicity with the planet configurations, sunrises and
sunsets, and with the pulsar impact becomes logical. Other planets, the Sun and the
Moon must possess the same fields.

1 Introduction

Nearly thirty years ago, Meidav and Sadeh [1] discovered
the effect of pulsar CP1133 on seismicity that triggered the
professionals’ interest. Ya. B. Zeldovich immediately appre-
hended the potential meaning of this phenomenon. Accord-
ing to him, even if that message would be by ten per cent
true, he would only engage himself with this issue. Accord-
ing to Weber, the energy of the pulsar gravitational waves is
many orders of magnitude lower than that required for the
detected pulsar effect on seismicity. The interest in this phe-
nomenon gradually shrank to a nullity, mainly because this
phenomenon had not acquired any reasonable interpretation.
At about the same time, Ben-Menachem, the famous seismol-
ogist, detected a correlation between seismicity and sunrises-
sunsets that could not be explained as well. As a conse-
quence, the above Ben-Menachem’s discovery was overrid-
den, although he insisted that his experimental results were
correct. Recently, Georgian seismologists have found a corre-
lation between the planets’ configuration and earthquakes [2].
Moreover, as it turned out, some distant planets rather than
neighboring planets play a part in this correlation. T. Cherno-
glazova has disclosed a strong correlation between earthqua-
kes and the coverings of the planets and the Sun by the Moon
(in the sky). A. Ya. Lezdinsh has advanced further. He fore-
casts the epicenter, the time and the magnitude of the earth-
quakes at the same time for Kamchatka Peninsula by using
the correlation between earthquakes and stellar bodies’ po-
sitions relative to the Earth and the local horizon plane [3].
This method comes first in the open competition among many
methods of earthquake forecast (with maximal magnitude er-
ror 0.4 point). At rises and settings, the upper and the lower
culminations of the Sun, the Moon and the planets, Smirnov’s
detector (a specific gyroscope on a magnetic suspension)
changes its average angular spin rate by 0.7–1.5% for a short
period of time (generally, 1.5–3 minutes) [4–8]�. For instance,
�Developed by Kurchatov Institute of Atomic Energy and MEPHI.

at the rises of Jupiter the gravitational effect on the detector
is one and half billion times weaker than that of an observer
moving around the detectory. However, the device responded
to the planet but no to the observer. As in Refs. [1, 2, 3], here
we again observe an effect of the planets on the motions in
the Earth’s region with a lack of the effective energy for such
an event, and against all else, much more powerful effects.
Smirnov’s detector produces as well the anomalous signals,
the strong earthquakes precursors for 2–10 days before strong
earthquakes [9]. They are quite distinct from other signals
due to their unusually high amplitude and extended duration
(refer to Figs. 4 and 5 in Ref. [9]). Since Smirnov’s detector
indicates direction to the signal source as well, the perspec-
tive appears to find epicenters of the future strong earthquakes
up to thousand kilometers off the detector that demands the
labor-consuming but necessary forecast finalizing technique.
Smirnov’s and Shnoll’s detectors respond to the same astro-
nomical phenomena, but Shnoll’s one shows variations not in
angular velocity but in the G histogram shapes representing
macroscopic fluctuations of the rates of physical processesz.
In their experiments, Shnoll’s group [10–15] has studied G
histograms for processes of different physical nature and dif-
ferent energy saturation, from radioactive decays and chemi-
cal reactions to the noises in gravitational antennas. Despite
of the great differences in energy saturation of the above pro-
cesses (forty orders of magnitude) theirG histograms taken at
the same time tend to look alikex. The effects of the Sun and
the Moon on the G histograms have been disclosed. To put
it differently, again a certain distant impact on the processes
is disclosed in the absence of any accordance between the
impact energy and the energies of the processes. According
yFor proper calculation of the gravitational effect of planets, account

must be taken of free falling of the Earth in an external gravity field.
zDeveloped by Institute of Theoretical and Experimental Biophysics,

Russian Academy of Science.
xMore precisely, a probability increase of similar histograms occurrence

is observed. For brevity’s sake, this will be referred to as occurrence of
similar histograms.
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to S. E. Shnoll, the G histograms’ shape variations are gen-
erated by space-time fluctuations, because, as pointed out, it
is the only common factor for such different processes [14].
S. E. Shnoll has drawn attention to the important fact of the
energy-free nature of the considered impacts [15]:

“. . . The energy variation range for the processes under
study equals tens of orders of magnitude. It is therefore
clear that the “external force” that causes synchronous
alteration of the histogram shapes is of the non-energy
nature.”

Recently, responding to my request, V. A. Zubov et al.
(2008, Germany) have accordingly adjusted the technique of
their experiments. As a consequence, their direct physical ex-
periment has confirmed, at last, a significant impact of planets
on the living matter on the Earth [20]. For instance, during the
upper culmination of the Jupiter, the abrupt pulse variations
in the mean molecular weight of potato biomatrix clusters, in
terms of the number of the various clusters and their energy
irradiation, were observed [20]:

“During the Jupiter upper culmination the reliable pic-
ture of its effect on the potato biomatrix is disclosed.
. . . the Jupiter effect is unexpectedly strong during its
culmination . . . the commensurability of the planet and
the Moon effects follows from the experimental data”.

At least an approximate explanation of the above referred
phenomena is in order. A physical model is created below as
a logical consequence of the accumulated experimental ma-
terial. The model allows us to approach the understanding of
many of the described, seemingly paradoxical, facts. As long
as the detectors are located on the Earth, as the unique planet,
the effects of that can be studied in any direction relative to
its center, whereas the effects of the other planets, the Sun
and the Moon may be investigated on the Earth’s orbit only.
Shnoll’s detector has been used in observations in various ge-
ographical regions, including the North Pole and Antarctica
regions. Therefore our searching is based on the investiga-
tions of Shnoll’s detector data and the corresponding impacts,
mainly, of the Earth. This paper is based on the Refs. [16, 17].

2 Shnoll’s detector data and the principles of their phys-
ical modeling

Initially the duration Dt of the histograms G was 1 hour.
Presently, it has been reduced to less than a second. Let us de-
note the histogram with durationDt confined to the time mo-
ment t as G(t)�. Let us denote the corresponding histograms
from detectors A and B as GA(t) and GB(t), respectively.
Using the detectors’ data, observers can plot the graph of
the probability of occurrence of the similar histogram shapes
GB(t + �t�) and GA(t) depending on the time shift �t� and
then seek a narrow peak (or peaks) of the probability increase
�For example, the time moment t may be the middle or the beginning of

the G (t) histogram.

and determine such time shift �t, at which a maximum peak
occurs. (The peak width is usually equal to a few of the his-
tograms durations Dt.) In what follows, the regularities of
appearance of the similar histograms GB(t + �t) and GA(t)
at the above maxima are studied depending on the time shift
�t and on the detectors’ locations. Let us conditionally denote
the similarity of histograms as GB(t + �t) � GA(t), and the
coincidence of the histogram shapes as GB(t+ �t) = GA(t).
The above equalities refer to the similarity of two histograms
taken at the maxima of the aforesaid peaks, in the presence of
these peaks, but not with respect to a random similarity of any
pair of histograms. For brevity’s sake only, the histograms
GB(t + �t) and GA(t) similar at the above maxima denoted
below shall simply be referred to as “similar histograms”. A
series of the cycles and the regularities in the occurrence of
similar histograms has been determined. To understand the
physical meaning of these cycles and regularities, the physi-
cal principles of their modeling should be established (listed
below as enumerated notes).
Note 1: As mentioned above, the histogram shape varies with
distance effects, at least, of the Sun and the Moon. In physics,
the substance that transmits a distance effect is called a “field”.
Thus let us consider that the histogram shape is changed by
some fieldy F (probably, of electromagnetic or gravitational
origin). The field F may be multi-component (i.e. is com-
posed of the sub-fields F1, F2, F3, etc.) and many various
sources of the field F may exist. To interpret Shnoll’s de-
tectors data, the following postulated rules will be used. The
character of the field F impact on the detector is mapped into
the histogram shape. The identical histogram shapes (at the
maxima of the mentioned peaks) correspond to the identical
impact character of the field Fi (where i = 1; 2; 3; : : : ) from a
single source, the histogram shapes at the mentioned maxima
are not identical but only similar due to the different effects of
the fields from others sources and/or other field components
from the same source. Disclosed repetitions of similar his-
tograms correspond to repetitions of the impact character of
some field component Fi or of some field F . If one of the
Moon, the Sun, and the Earth possesses a field Fi, then all of
them possess this fieldz. �

According to Note 1, if the impact of the mentioned com-
ponent on the detector is much stronger than other impacts,
almost an identical histogram shape with almost a hundred
percent probability should be observed. The Earth is sur-
rounded by different celestial bodies. Of them, the high-
est variable impact on the Earth is caused by the Sun and
the Moon. Their maximal impact should be expected when
they are in the ray aimed at the Earth. Actually, during solar
eclipses, several Shnoll’s detectors located in different geo-
yIn the articles by Shnoll’s team, a cloudy notion of some “structures”

affecting the histograms is used. This one is used instead of the field notion.
This one is not explained [15].
zThe fact that this statement is true becomes clear from the sub-section

“About the reasons of the field beginning. . . ”.
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graphical locations, produce at the same moment almost iden-
tical histograms with nearly a hundred percent probability
[14]. This confirms the principles postulated in Note 1 and
indicates also that the statistical properties of the macroscopic
fluctuations, displayed by the histograms, are not random at
all, but that they are distantly generated by celestial bodies,
i.e. by their some field F . Thus an intensification of the im-
pact of the field F (relative to the background) is displayed
by the histograms through probability increase in the max-
ima of the above peaks. Therefore, through the histograms,
one can judge about the character and relative strength of the
impact of the field F and can also grade it using the proba-
bilities at the maxima of the peaks. Then the field concep-
tion will start to possess the quantitative character. As far
as the author knows, such dynamic investigations have not
been performed yet. It is useful to perform them through a
quantitative study of time and space distribution of the rela-
tive impact force, induced by each field component Fi from
each source. For this purpose, localized observations at very
short distances between the Shnoll detectors are most suit-
able [11]. According to experimental results, during the so-
lar eclipse the above-mentioned peak’s width is much shorter
than the eclipse duration. Consequently, interaction between
the field F from the Sun and the Moon at their junction is of
a strongly marked, very short, splash-like character. Similar
events happen during full-moon and new moon times [14].

Note 2: If an impact character on the detector is constant
in time, then (in the absence of other impacts), according to
Note 1, it induces histograms G(t), whose shape is indepen-
dent of time: GB(t+ �t�) =G(t) at any �t�. As a conse-
quence, there is no peak of histogram similarity at some def-
inite time shift �t�. Therefore, when the character of impact
gradually becomes constant, the histogram similarity peak
smears out gradually and disappears. Therefore, the Shnoll
technique based on the separation of the histogram similar-
ity peaks is unable to identify impacts of constant character.
In this case, the Shnoll technique gives the impression of an
impact’s absence, although the detector itself records both
changing and constant impacts. In the case of constant im-
pact, another technique is required to investigate the near-zero
temporal frequencies against the parameter �t�. When a con-
stant impact is considered in the background of a multiplicity
of other changing impacts on the detector, conclusions remain
the same, but the histogram shapes become rather similar than
coincidental (this, of course, if a constant impact still remains
visible in the presence of the other impacts). �

Let fVm
d g be the detector’s movement parameters, where

m= 0; 1; 2; 3; : : : and Vm
d is the m-th time derivative of the

detector’s speed Vd, V0
d � Vd. The same set fVm

S g denotes
the movement’s parameters of any object S.

Note 3: It is not excluded that the character of the impact
on the detector is defined by both the field F and orientation
O of some detector motion parameters Vm

d;a (belonging to a

set fVm
d g), to be called active, relative to a ray L by which

the field F arrives (similar to the case of a magnetic field and
a moving electrical charge). The force and character of the
impact may depend, of course, on the values of the motion
parameters. Apparently, the active parameters Vm

d;a repre-
sent acceleration and/or acceleration derivative, and/or rate,
etc. Let the field F , whose impact character depends also
on the orientation O, be called the second-type field F2 and
be distinguished from the first-type field F1, whose impact
character is independent of the direction of the detector’s mo-
tion parameter. If there is a dependence of the impacts on the
motion parameters, let us consider the following: the Earth’s
field impact depends on the parameters of the detector’s mo-
tion relative to the Earth, while the Sun’s field impact depends
on the parameters of the detector’s motion relative to the Sun,
etc. To put it differently, the impact of a field from some
source depends on the detector’s motion parameters relative
to this source. The following question arises: whether or not
the first and the second-type fields exist? �

Generally, the experimental data will be studied in refer-
ence to a geocentric (GSC) and heliocentric (HSC) systems
of coordinates. The GSC does not rotate relative to “motion-
less” stars. In the GSC, the Earth spins. In the GSC, let us de-
termine the latitude ' and longitude � of the Earth’s surface
points relative to the geographical Earth poles in the usual
manner, but the meridian �= const and the parallel '= const
do not rotate relative to “motionless” stars. Let two detec-
tors A and B be fixed on the Earth’s surface and at time t in
GSC have longitudes �A(t) and �B(t) and latitudes 'A(t) and
'B(t), respectively. For definiteness, if the detectors are lo-
cated at different rotating geographical meridians, let us con-
sider that the detector A is positioned ahead of detector B
relative to the Earth’s rotation direction. In the GSC system,
detectors rotate about the Earth axis, moving along a motion-
less parallel given by ' = const.

According to the experiment [10, 11, 14], as the detec-
tor slides along the a motionless parallel '= const, its his-
tograms change, but the following equalities, which express
the effect of local sidereal time, according to the terminology
of experimentalists, stand:

GB(t+ �tST ) � GA(t) at 'A(t) = 'B(t) = const; (1)

GB(t) � GA(t) at �A(t) = �B(t) ; (2)

GA(t+ TST ) � GA(t) ; (3)

where TST is the sidereal day, �tST = tST;A � tST;B , tST;A
and tST;B are the local sidereal times at the locations of the
detectors A and B, respectively. Sidereal day, TST , is the
period of rotation of the Earth and the detectors in the GSC
system about the Earth axis. In particular, in the GSC, at the
moment (t+TST ), the detectorA returns to the same location,
where it was at time t. In the GSC, when the detector is fixed
at a geographical point on the Earth’s surface, its parameters
Vm
d are the same with the respective parameters VSPIN;m

d of
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the detector’s fixation point’s rotary (spin) motion about the
Earth axis:

Vm
d = VSPIN;m

d : (4)

Obviously, the directions (and the values) of the parame-
ters Vm

d of the detectors’ rotary motion relative to the “mo-
tionless” stars are also repeated with the same period TST in
the GSC system. The velocity Vd and its even order deriva-
tives are directed along the tangent to the local parallel at
the detector’s location point. The odd-order derivatives of
the rate Vd (including acceleration V1

d) are directed along the
local normal to the Earth’s axis dropped from the detector’s
location point to the Earth axis. Therefore, in the GSC sys-
tem, directions of the parameters Vm

d do not change along
the meridians. In the GSC, the local sidereal times tST;A and
tST;B unambiguously characterize the angle of detectors’ ro-
tation about the Earth axis relative to their initial position at
the moment tST;A = tST;B = 0. In the GSC, the difference,
�tST , represents a period of time, after which detector B ar-
rives at the same place, where detector A was at the moment
t. Therefore, by virtue of Note 1, the equalities (1)–(3) mean:

Statement 1: There are some fields F , whose summarized
impact character at the Earth’s surface points depends on the
point location in the GSC, but not on time (equalities (1) and
(3), and changes in the GSC along the motionless parallels
and is constant along the motionless meridians of the Earth
(formula 2). �

For example, the effects (1)–(3) may be explained by the
existence of the Earth’s own field of the first type, not rotating
in the GSC and changing along the motionless parallels but
being constant along the motionless meridians of the Earth.
The effects (1) and (3) may also be explained by the exis-
tence of an external field of the second type F2ext, whose
rays L2ext are mutually parallel, and the field itself is con-
stant at the Earth’s orbit. According to Note 3, this shall lead
to repetitions in the impact character of the field F2ext, when
the directions and magnitudes of the vectors Vm

d are repeated.
By analogy, according to Note 3, the effect (2) can be caused
by the Sun’s field F2S , of the second type, because the direc-
tions of the Sun rays and the parameters Vm

d along the Earth
meridian do not virtually change, and, therefore, the angles
between them do not change along this meridian as well. As
can be seen, the use of only the local sidereal time effects
gives multiple interpretations.

Just as the above, the effect of the local solar time has also
been discovered experimentally [14] and is split into three
equalities (detectors A and B are again fixed at the Earth’s
surface)

GB(t+ �tS) � GA(t) at 'A(t) = 'B(t) = const; (5)

GB(t) � GA(t) at �A(t) = �B(t) ; (6)

GA(t+ TS) � GA(t) ; (7)

where TS is the solar day; �tS = tS;A � tS;B , tS;A and tS;B
are the local solar times at the locations of the detectors A
and B, respectively. The solar day, TS , is the period of repe-
titions of the upper culmination of the Sun. By analogy, the
effects of the local lunar time, the local planetary time, etc.
may be introduced, but these effects have not been studied
experimentally by Shnoll’s group. Since the effects (5) and
(7) include the local solar time, they obviously relate to the
impacts of the Sun. Due to the Earth’s motion along its orbit,
the direction from the Earth to the Sun changes slightly, ap-
proximately by a degree per day. Therefore, the solar day is
approximately 4 minutes longer than the sidereal day. The pa-
rameters Vm

d of the detector’s motion relative to the Sun, i.e.,
in the HSC system, are composed of the detector’s rotation
relative to the Earth’s axis (spin) and of its motion together
with the Earth along its orbit. As a consequence, in the HSC
system

Vm
d = VSPIN;m

d + VORB;m
d ; (8)

where VORB;m
d are the orbital motion parameters of the Earth

and the detector. Despite the almost full coincidence of the
formulae (1)–(3) and (5)–(7), their physical meaning is signif-
icantly different. Obviously, the orientation of the parameters
VORB;m
d in relation to the Sun’s ray, LS , passing through the

detector, does not change with time�. The orientation of pa-
rameters VSPIN;m

d relative to the ray LS , after a solar day TS ,
is repeated with high accuracy. This repetition would have
been exact, if the angle of the Earth axis to the ray LS did
not change during a solar day TS , but as is known, it changes
a little — by one fourth of a degree per day, approximately.
Thereafter, the parameters of the spin motion of the detectors
A and B at the times t and t + �tS , respectively, have an al-
most equal orientation relative to the ray LS . Therefore, by
virtue of Note 3, the effects (5) and (7) can be explained by the
existence of the Sun’s field F2S of the second type, almost or
exactly cylindrically symmetrical relatively to the axis pass-
ing through the Earth’s orbit center, and almost or exactly
perpendicular to its plane. If, indeed, such the field F2S does
exist, its impact should be repeated almost or exactly every-
time, when the orientation of the parameters VSPIN;m

d relative
to the ray LS is repeated. This is really what happens accord-
ing to the relations (5) and (7). The same effects could be
explained in other ways. For example, by the repetitions of
the total impact of the Sun’s and Earth’s fields, resulting from
the repetitions of the angles between the solar ray LS and the
ray LE of the Earth’s own field radiated from the Earth’s cen-
ter or from its rotation axis. It is seen here again that the use
of only the local solar time effects gives multiple interpreta-
tions.

Which field existence could be determined unambiguous-
ly? Let us answer this question using some other experiments.
Experiments using collimators have the decisive meaning for
answering the above question. As it turns out, the theoretical
�Within the accuracy of the Earth’s orbit deviations from a circular orbit.
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study of the experiments with collimators predicts many of
the effects (1)–(3) and (5)–(7) as well as the results of other
experiments. The study is based on the discovery and using of
the significant differences of the physical meaning of experi-
mental results obtained by using detectors of different types.

3 The particular rôle of the Shnoll radiation detectors

The effects of the local time (1)–(3), (5)–(7) are confirmed
experimentally by the histograms records of processes of dif-
ferent physical nature. For example, there is a version of
Shnoll’s detector D� based on the histograms recording of
the quantity of the moving �-particles emitted by the compact
radioactive source Plutonium-239 (239Pu). Another version
of the detector Dnoise is based on the histograms recording
of the noises in semiconductors. Seemingly, it’s all the same,
which physical process is used, because processes of different
physical nature display similar histograms at the same time
(see Introduction). Therefore, in the works of Shnoll’s group,
no difference is made between the physical meaning of the ex-
perimental results obtained by the detectors D� and Dnoise.
However, in practice, the difference is considerable. With-
out the understanding of this, it is difficult to correctly un-
derstand the many valuable experimental results of Shnoll’s
group. This difference is essentially used below.

The motion parameters Vm
� of the �-particles emitted in

different directions are differently oriented in space and,
therefore, they are differently affected by the fields of the sec-
ond type. If fields represented by F2 exist, the histograms of
the �-particles emitted in different directions should be dif-
ferent, i.e., at the level of macroscopic fluctuations an im-
pression of the space anisotropy should be formed. The phe-
nomenon described is, indeed, observed in the experiments
with the collimators, which cut off pencils of the �-particles’
emission directions [13, 14]. According to the results of all
experiments with the collimators, S. E. Shnoll comes to a con-
clusion [14]:

“. . . the shape of histograms depends on the�-particles’
emission direction in relation to a particular point of the
celestial sphere”.

Theoretically, the impact character of the type-two field
F2 on any detector should be depended on the orientation O
of the active detector motion parameters Vm

d;a relative to the
ray L2, by which the impact of the field F2 comes to the de-
tector. However, the points of the Earth equator are rotated
by the Earth about its axis at the linear speed V EQV = 0.465
km/s. The average speed of the Earth’s orbital motion equals
V ORB= 29.765 km/s. The average kinetic energy of the �-
particles emitted by Plutonium-239 equals 5.15 MeV, which
corresponds to the �-particle emission speed of V� = 15760
km/s. Obviously, the speeds V EQV and V ORB are negligi-
bly small in comparison with the speed V�. The act of the
�-particle irradiation is so short (tiny parts of a second) that

for the acceleration and acceleration derivatives the ratios are
very much not in favour of these motions of the Earth. There-
fore, I conclude:

Actually, the impact character of the type-two field F2
on the detectors D� is independent of the parameters
VSPIN;m
d and VORB;m

d . This character depends only on
the field F2 and directions of the �-particles emission
(used in the detector D�) relative to the ray L2.

In the collimator detector D�K , all parameters Vm
� of the

�-particles motion are directed along the collimator. Hence,
firstly, the detectors D� are, in fact, inapplicable to the study
of the effects on the histogram shapes of the directions and
magnitudes of the vectors VSPIN;m

d and VORB;m
d . Secondly,

the collimator detectors D�K are almost the ideal tool for
disclosing the second-type field and for the study of its im-
pact character dependence on the angles between the motion
parameters and ray L2. General scheme of experiments for
the disclosing of the field F2 is simple: the collimator detec-
tor D�K voluntarily, but periodically, with some period T ,
changes its direction relative to the ray L2. Then, at each rep-
etition of the orientation of the detector D�K relative to the
ray L2, the repetitions of the impact character of the field F2
and of the histogram similarity must be observed. Here it’s
all the same, either the collimator is fixed relative to the local
horizon plane (LHP) and changes its direction periodically
due to the Earth rotation or the detector direction is changed
by an experimenter. To determine the direction, for instance,
of the ray L2ext of the field F2ext, the collimatorD�K should
periodically circumscribe a round cone with some cone axis
OK and some constant angle K between the axis and gen-
erator of this cone. When the direction of the axis OK ap-
proaches to an unknown direction of the ray L2ext, the peak
at the point �t = T must gradually spread and disappear com-
pletely, when the directions of the axis OK and ray L2ext co-
incide. Indeed, when the axis OK is parallel to the ray L2ext,
the angle between the ray L2ext and the collimator is not
changed if the latter circumscribes a round cone. Therefore,
the impact character of the field F2ext on the collimator’s �-
particles is permanently constant. Then according to Note 2,
the narrow similarity peak disappears. The experiments with
rotating collimators have been run in [13]. However, since the
above specific rôle of the detectors D�K has been unclear, it
has also been impossible to understand what we are to do with
the collimators and how we should understand the results
of the experiments with the rotated collimators. Therefore,
firstly, insufficient attention has been paid to the experiments
with the rotated detectorsD�K . As a result, such experiments
has been run very little. Secondly, the results of these exper-
iments have caused bewilderment among their authors [13]:

“Despite the fact that the results obtained are quite
clear, they cause natural bewilderment . . . Apparently,
explanation of these phenomena requires changes in
the general physical concept”.
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The bewilderment was caused by dependence of the his-
togram shape on the collimator’s direction, disclosed in [13].
Thirdly, the authors of the experiments have come to the main
conclusion of the article [13] that the said angular dependence
“point to the sharp anisotropy of the space”. Fourthly, by
means of the experiments with the detectors D�, the impact
character and histogram shape dependencies on the direc-
tions of the impacted object’s motion parameters has not been
investigated.

The bewilderment is resolved, if we take into consider-
ation the angular dependence of the type- two field impacts
on the moving �-particles, whose existence may be discov-
ered just in the experiments with the rotated collimators. Ob-
viously, not every angular dependence is equivalent to the
space anisotropy. Therefore, the problem about the space
anisotropy requires further development. If S. E. Shnoll is
correct in the statement that changes in the histogram shape
are induced by the fluctuations of the space-time properties
[14], it is most likely, that the matter is thus: the type-two
fields generate the space-time fluctuations; but in the near-
Earth region the space is isotropic, and the small space fluc-
tuations are anisotropic (more precisely, they depend on the
angles between directions in the space and the ray of any
type-two field). By the concourse of the circumstances, the
experiments with the rotated collimators [13] coincide with
the particular version of the above general scheme of the ex-
periments for the detection of the field F2 with the following
particular parameters: the collimator circumscribes a round
cone; the axis OK is parallel to the Earth axis; K = 90� (i.e.
the collimator rotated in the local parallel plane ' = const);
T = 1

4 TST ;
1
3 TST ;

1
2 TST ; TST . These experiments are suit-

able for the disclosure of the type-two fields of the Sun, the
Earth and the sources external to the Solar System. The ex-
periments for the determination of the direction of the ray of
the external field F2 have not been carried out.

Note 4 (on the technology of the experiments): In the plate-
type detectors D�P , the point-like radioactive source is lo-
cated so close to the plate P detecting the �-particles that
nearly half of all �-particles are detected. In this case, the
�-particles are detected at once upon the setting of directions
of the emission. This is equivalent to the integral detection
of the �-particles by the many differently directed collimator
detectors D�K . The central direction of the �-particles’ en-
trapment coincides with the line perpendicular to the plate.
Let’s draw the perpendicular line through the plate center.
By symmetry, the directional diagram of the detector D�P
is symmetrical relative to this perpendicular line. Therefore,
the direction of this perpendicular line characterizes the direc-
tivity of the detector D�P and its orientation in space. This
perpendicular line we shall name the axis of the detectorD�P
and we shall denote it as O�P . In the experiments, the plate
P was always fixed horizontally relative to LHP and, conse-
quently, was turned about the Earth axis together with LHP

and the parameters VSPIN;m
d . Hence:

During the Earth rotation, the spatial orientations of the
detectorD�P , LHP and parameters VSPIN;m

d are always
changed synchronously and equally.

Primarily, the effects of the local time (1)–(3), (5)–(7) was
disclosed by the plate-type detector D�P and then confirmed
by the noise detector Dnoise. �

4 The disclosure and the cylindrical symmetry proper-
ties of the type two field F2

Let F2ext be some second-type field, external in relation to
the Solar System, whose ray L2ext and the field F2ext itself
are constant within the spatial area covered by the Solar Sys-
tem during the entire period of the experiments. How can we
disclose the field F2ext and determine the direction of its ray?
In accordance with the above-mentioned general scheme, we
should change the direction of the collimator D�K relative to
“motionless” stars almost voluntarily but periodically, with a
voluntarily chosen period T . Then the collimator’s orienta-
tion (and the parameters Vm

� of the motion of the �-particles)
relative to an unknown but constant direction of the ray L2ext
will be repeated with the period T . This will induce the sim-
ilarity between the histograms GK(t) of the detector D�K
separated in time by period T , i.e., the following equality will
be fulfilled:

GK(t+ T ) � GK(t) ; (9)

which usually has a clear narrow peak by the parameter �t�.
This similarity will be the indicator of the existence of the
field F2ext. In realized collimator experiences, the axisOK is
parallel to the Earth axis and, hence, has constant orientation
relative to the system of “motionless” stars (which is accurate
to small deviations). Therefore these experiences are suit-
able for the detection of the field F2ext. These experiences
were performed at the periods T = 1

4 TST ;
1
3 TST ;

1
2 TST ; TST .

For all the mentioned periods, the delineated (by �t�) nar-
row peak of the histogram similarity (9) was disclosed [13].
Hence, the field F2ext exists�. Taking into account the physi-
cal model developed here, it is useful to determine the direc-
tion of the ray L2ext and the force of the field F2ext, making
clear, first of all, whether it comes from the Galactic Plane
or from some external source relative to the Galaxy. Many
fields, such F2ext, may indeed occury. Therefore, one may

�At time TST , the detector returns to the same point in the GSC sys-
tem. Therefore, if T = TST , the histogram similarity (9) is also caused
by the Earth’s field of the first type (see below). At T = 1

4 TST ;
1
3 TST ,

the only parameter, which is repeated with the period T , is the collima-
tor orientation relative to “motionless” stars and the ray L2ext. Hence, at
T = 1

4 TST ;
1
3 TST the histogram similarity (3) unambiguously occurs due

to the existence of the field F2ext that makes sense of the experiments with
T = 1

4 TST ;
1
3 TST .

yDuring a single day, the direction of the ray from remote planets relative
to “motionless” stars is almost not changed.
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expect to get an interesting and informative investigation
result.

If the detectors A and B from equalities (1)–(3) and (5)–
(7) are the plate-type detectors, D�P , let us denote them as
D�PA and D�PB , respectively. When they are the noise de-
tectors, Dnoise, let us denote them as DnoiseA and DnoiseB .

The existence of the field F2ext explains the effects
(1) and (3) in the experiments with the detectors D�P ,
since the orientation of the detector D�PA, in relation
to the ray L2ext, is repeated after the period TST , and
the orientation of the detector D�PB in relation to the
ray L2ext at the moment t + �tST repeats the orienta-
tion of the detector D�PA at the moment t (see Note 4
and Section 3).

If we do not neglect the orbital motion, the existence of
the field F2ext cannot explain the effects (1) and (3) in the
experiments with the noise detector Dnoise as, by virtue of
equality (8), in the times �tST and TST there are no the cor-
responding repetitions of the directions of the detector’s pa-
rameters Vm

d relative to the ray L2ext because of the Earth’s
orbital motion. Probably, the effects (1) and (3) are generated
in the noise detector by any other field (about this, see Sec-
tion 5 “The disclosure and constancy of the type-one field F1
along meridians”).

By analogy, the disclosure of the type-two field F2S of
the Sun requires a periodical, with voluntarily chosen period
T , variation of the orientation of the collimator D�K in re-
lation to the solar ray LS passing through the detector D�K .
But in practice, the period of the previous experiments may
be used. For example, at T = 1

4 TST the collimator is rotated
in the plane of the local parallel (and, therefore, in the plane
of the local celestial equator) with quadruplicated angular ve-
locity of the Earth. Therefore the collimator almost exactly
repeats its orientation in relation to the ray LS in one forth of
the solar day TS . Indeed, in the experiments, the similarity
of the histograms GK(t+ 1

4 TS) and GK(t) have been deter-
mined [13]:

GK
�
t+

1
4
TS
�
� GK(t) : (10)

In the time interval 1
4 TS , nothing but  m� is repeated

where  m� are the angles between the parameters Vm
� of the

motion of �-particles and the solar rayLS . As a consequence,
the effect (10) is the result of the Sun’s field impact, moreover,
of the type-two field F2S , because its impact depends on the
above angles. The same is also confirmed experimentally at
the repetition of the above angles during the time intervals
1
3 TS ;

1
2 TS ; and TS . Thus:

The Sun’s field of the second type F2S and the active
motion parameters exist.

Which ones are the active motion parameters? This has
not been determined experimentally. At the time lapse of
529600 minutes, i.e., at the time of an integer number of the

solar days nearest to the sidereal year TSID = 525969 min,
the orientations of the detectors D�P and D�K relative to the
direction to the Sun are also repeated, and the histogram sim-
ilarity should occur, too. The required experiments were per-
formed with the plate-type detector D�P . The experiments
demonstrate [14] the presence of the effect that is the addi-
tional confirmation of the existence of the field F2S . The his-
togram similarity after the time lapse of 529600 minutes was
detected accurate to within a minute. At the time of a solar
day TS , the orientation of the detector D�PA relative to the
ray LS is repeated. Under the condition 'A(t) = 'B(t) =
const, the orientation of the detector D�PB relative to the ray
LS at the moment t + �tS repeats the orientation of the de-
tector D�PA at the moment t.

Therefore, the existence of the type-two field F2S of
the Sun must lead to the effects (5) and (7) in the ex-
periments with the detectors D�P but only under the
condition that the field F2S is accurately, or sufficiently
accurately, cylindrically symmetrical about the Earth’s
orbital axis, at least, in the orbital plane.�

The last condition is fulfilled because the effects (5) and
(7) are indeed observed in the experiments with the detector
D�P . Why is this condition fulfilled? The fact is that the ex-
periment has confirmed (see below) the cylindrical symmetry
of the type-two field of the Earth relative to the Earth’s rota-
tion axis. As a consequence, the Sun’s field F2S should be
cylindrically symmetrical about the Sun’s rotation axis. The
rotation axis of the Sun is approximately normal to the Earth’s
orbit plane that leads to a sufficiently low deviation of the field
F2S from the cylindrical symmetry about the Earth’s orbital
axis. It is easier to study the field of the second type in the
example of the Earth, because in relation to it the experiments
are more accessible (with the reason presented below).

The field F2S induces all effects (5) and (7), and in the
experiments with the noise detectors.

Indeed, in the period of a Sun’s day TS , the orientation of
the moving parameters Vm

d = VSPIN;m
d + VORB;m

d of the de-
tector DnoiseA relative to the solar ray LS is repeated. Under
the condition 'A(t) = 'B(t) = const, the orientation of the
moving parameters of the detector DnoiseB relative to the so-
lar ray LS at moment t+ �tS repeats the moving parameters
orientation of the detector DnoiseA that the last had relative
to the ray LS at the moment t. In this reason, the effects (5)
and (7) arise as it will be shown shortly.

Does the Earth has its own field F2E of the second type,
cylindrically symmetrical relative to the Earth’s rotation axis?
The presence of the fieldF2E may be checked experimentally,
for whose purpose let us compose an appropriate experiment.

�The impact character of the field F2S depends on both the said orien-
tations and the field F2S itself. If the field F2S does not possess the said
symmetry, it changes along the Earth’s orbit, which prevents the occurrence
of the effects (5) and (7).
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By virtue of the cylindrical symmetry, the field F2E , if it ex-
ists, comes from, as it were, from the Earth axis by the ray LE
perpendicular to the Earth axis (in the Earth’s areas outlying
from its poles). Let us use the noise detectorDnoise. Then the
impact character of the field F2E on the detector should de-
pend on the orientation of the active motion parameters Vm

d;a
of the detector relative to the ray LE passing through the de-
tector. According to Note 3, the motion parameters should be
considered in the GSC system.

In the framework of Shnoll’s technique, it is useless to
fix a detector Dnoise on the rotating Earth surface.

This is because in this case they will be moved in the GSC
system along the motionless parallels '= const and have
constant orientation and magnitudes of its parameters Vm

d;a
relative to the ray LE passing through the detector. Hence,
the impact character of the field F2E on each detector will be
constant in time.

Then, by virtue of Note 2, the Shnoll technique may
not determine the existence of the field F2E .�

Therefore, let us detach some detectors from the Earth’s
surface and begin to move them in the GSC system not in
parallel to the motionless parallels '= const. Then in the
GSC system, every detectorDnoise;n (n= 1; 2; 3; : : : ; N ) has
time-dependent active motion parameters Vm

d;a;n(t). The de-
tector Dn crosses the motionless parallel '= const at some
pointQn, at some moment of time tn. Vectors Vm

d;a;n(tn) are
the active motion parameters of the detector Dnoise;n at the
moments tn of the intersections by the detector of the mo-
tionless parallel '= const, that is at the point Qn. Let the
following condition be observed: the points Qn do not coin-
cide among themselves; the magnitudes and orientations of
the active motion parameters Vm

d;a;n(tn) relative to the ray
LE passing through the detector Dnoise;n are the same for
all detector Dnoise;n. Under the condition, despite the differ-
ences between the points Qn, the field F2E impact character
on all detectors at the moments of their crossing of the par-
allel '= const must be the same that should generate the ap-
propriate histograms similarity. The histogram of the detector
Dnoise;n timed to moment t will be denoted as Gn(t). As a
consequence, the following equality must be observed:

G1(t1) � G2(t2) � G3(t3) � � � � � GN (tN ) : (11)

The particular case of the above described experiment
with two detectors, that were detached from the Earth’s sur-
face and placed on board of the same aircraft flying to the
north at a constant speed relative to the Earth’s rotating sur-
face, was performed in [12]. In principle, the detectors may
be placed on board of different aircrafts, which fly differently,
providing that the above conditions is observed. In [12], one

�The same also relates to detectorsD� with the orientation fixed relative
to the LHP system, because in this case the detector orientation relative to the
ray LE do not change along the parallels.

detector was located northward from another. In the GSC
system, the aircraft is shifted eastward by the Earth rotation.
Therefore, in the GSC system, the detectors cross the parallel
' = const at some different pointsQ1 andQ2. Obviously, the
above conditions is observed. As a result, in these different
points of the parallel, the expressed peak of the histograms
G1(t1) and G2(t2) similarity (11) was really detected, i.e.:

G1(t1) � G2(t2) ; (12)

or, in other words:

This fact experimentally confirms existence of the field
F2E of the Earth.y

If only the field F2E does not change along the meridians,
the similar histograms would occur equiprobably at different
time shifts within the value t2�t1, and the histogram similar-
ity peak (12) would smears out and disappears (see Note 2).
Hence, the field F2E changes along the meridians. Not sim-
ple but useful is to broaden the experiment, as it is described
above, for studying of the impacts’ dependence on the values
and directions of the detector motion parameters relative to
the Earth’s axis and the ray LE passing through the detector.

It is much simpler to perform these investigations in a
laboratory by moving the detector relative to a rotating
massive body, because the last must, as it will be seen,
also generate the second type field and, since it is clear
now how the detector should be moved to study the
field impact.

By the opinion of experimenters, this experiment “con-
firms the hypothesis that the local time effect is induced by
systematic motion in a heterogeneous alternating space” [12].
Contrary to the above opinion, this experiment bears no re-
lation to the local time effect, but represents a new, long-
awaited result [16], which experimentally confirms the ex-
istence of the Earth’s field F2E of the second type. The above
experiment would relate to the local time effects, if the second
detector in GSC enters the same point of the same motionless
parallel, where the first detector has occurred before, i.e. if
points Q1 and Q2 are the same, as required by the local side-
real time effect. By analogy, there is no relation to the local
solar time effect.

5 The disclosure and constancy of the type-one field F1
along the meridians

As is obvious, many in the effects (1)–(3) and (5)–(7) are ex-
plainable as results of the disclosure of the type-two fields.
However, the existence of the type-two fields cannot explain
yObviously, t2 = t1 + (t2� t1) = t1 + � , where � � t2� t1. At any

moment t1, the first detector crosses some parallel ' = const. Therefore,
in the formula (12), the value t1 can be changed by the current time t and
present it asG1(t) � G2(t+ �). In [12], the value � is constant. The same
experiment could be performed with detectors D�K observing constancy of
the collimator direction relative to the ray LE (and in a sufficient resolution
power by time).
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synchronism along the meridian (2), (6) in the experiments
with the detectorD�P . Actually, as is easy to see, the orienta-
tions of the plate-type detectors D�PA and D�PB (perpendi-
cular to the plate) change along the meridians relative to the
rays LS , LE , L2ext and any other system of the ray mutually
parallel within the bounds of the Earth. At the same time,
the impact character of the type-two fields on the detectors
D�PA and D�PB depends on the above orientations. There-
fore, in the experiments with the detectors D�PA and D�PB ,
the type-two fields of the Earth, the Sun and any other exter-
nal source of them associated with the ray, mutually parallel
within the Earth, may not generate the synchronism (2) and
(6) on the Earth meridians. By analogy, regarding the orbital
motion of the Earth, the existence of the type-two fields may
not explain the effects (1) and (3) in the experiments with the
noise detector Dnoise. Hence:

The different field does exist, the impact character of
which is independent of the above orientations.

This field must affect the histograms of any Shnoll detec-
tor independently on the orientation of the parameters of its
motion or the motions of the �-particles (for example, on the
detectors D�P , D�K and Dnoise). The character of its im-
pact depends exclusively on the field itself, on the detector
location in this field and, probably, on the magnitudes of the
above motion parameters. By definition, this is the field F1 of
the first type. The constancy lines of its impact character are
the Earth meridians despite of the Earth’s motion in space.
Hence, this is the self-field F1E of the Earth. If the field F1E
impact character would not vary and along the Earth paral-
lels ' = const, it would be constants on the Earth’s surface.
Then there would be no reason for the raise of the probability
of the similar histograms occurrences when two detectors are
located on the same meridian. But, still, the indicated raise
is observed. Hence, the field F1E changes along the Earth
parallels ' = const.

According to Note 1, the Sun must have its own field F1S
of the first type, the impact character of which in the HSC
system is constant along of the Sun’s meridians, but changes
along its parallels motionless in the HSC system. The field
F1S should change along the Earth’s orbit. If the field F1S is
static at a time in the HSC system, the character of its impact
on the Earth should depend only on the Earth’s location along
the Earth’s orbit. In the sidereal year TSID, the Earth repeats
its location in its orbit. A sidereal year is not equal to an in-
teger of a sidereal day TST = 1436 min since in the sidereal
year the Earth makes not an integer of its turnovers about of
the Earth axis. Therefore, the detector’s motion parameters
and the motion parameters of the �-particles, if the detec-
tor is the radiation detector, at the moments t + TSID and
t are directed differently. It is simple to convince ourselves
that the angular difference in the directions on the equator at-
tains approximately 90�. Despite of the indicated difference
in the directions, if the Sun has a static field F1S , the impact

character of the field F1S on the detectorsDnoiseA andD�PA
should repeat in the sidereal year TSID. Hence, the histogram
similarity should be observed at the time TSID under the ef-
fect of the field F1S on the detectors. During the searching
by S. E. Shnoll’s group at about a year’s cycle, the required
experiment has been carried out but only with the detector
D�PA and with the use of many moments of a time t dur-
ing several sidereal years [14]. In the experiments of Shnoll’s
group [14], the expressed peak of the similarity among the
histograms divided by the interval TSID = 525969 min has
really been detected to one minute, which in addition exper-
imentally confirms the existence of the first-type fields (of
celestial bodies), their variability along motionless parallels
and their static character at a time.

As we have illustrated earlier, in the GSC system at
'A(t) = 'B(t) = const, the detector DnoiseB at the moment
t + �tST and the detector DnoiseA at the moment t + TST
arrive at the same point where the detector DnoiseA was at
the moment t and, therefore, arrive at the same point of the
field F1E . For this reason, the effects (1) and (3) should be
in the experiments with the noise detectors as it is observed.
Synchronism along the meridian is observed on the noise de-
tectors. But the magnitudes of the motion parameter VSPIN;m

d
of the noise detectorDnoise change along the Earth meridians
— from zero value at the Earth poles to a maximum value on
the Earth equator. Therefore field F1E can generate synchro-
nism along the meridian with the noise detectors only during
the event when only the impact force, but not the impact char-
acter, of the first-type field F1 depends on the magnitudes of
the detector’s motion parameters.

The effects (1) and (3) with the noise detectors are gener-
ated also by the exterior field F2ext if it is possible to neglect
the active parameters of the orbital motion. Indeed, in this
case only the spin motion parameter VSPIN;m

d of the noise de-
tectorDnoise relative to the Earth’s center plays a rôle. These
parameters of the noise detector DnoiseA repeat their orien-
tation relative to the ray L2ext at the time TST . A detector
DnoiseB at the moment t + �tST repeats the orientation of
the parameter VSPIN;m

d of the detector DnoiseB , which it pre-
viously had at the moment t. This way, it reduces to the ef-
fects (1) and (3). At any fixed moment t, the direction of
each parameter VSPIN;m

d does not change along the meridi-
ans. Therefore the field F2ext should generate synchronism
along the meridians (2) in the experiments with the noise de-
tector Dnoise but only if the impact force, but not the impact
character, of the second-type field F2 depends on the mag-
nitudes of the detector’s motion parameters (varying along
the meridians). The ray coming from each point of the Sun
(as well as the ray L2ext of the external field) is practically
mutually parallel in the Earth’s limit (to five thousandth of a
grade). Therefore the Sun’s field F2S also generates synchro-
nism along the meridians in the experiments with the noise
detector Dnoise but only under the last condition.

Thus, in all cases, for the appearance of the above syn-
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chronism on the noise detectors it is necessary that only the
impact force, but not the impact character, of the considered
fields depends on the magnitudes of the detector’s motion pa-
rameters. Synchronism along the meridians on the noise de-
tectors is observed. Hence:

At least for one of the fields F1 and F2, only the im-
pact force, but not the impact character, depends on the
magnitudes of the detector’s motion parameters.

Now, let’s ask ourselves whether it is possible to neglect
the active parameters of the orbital motion? Probably — yes,
if all active parameters are derivatives of the acceleration. In
fact, the first derivative VORB;2

d of the detector’s orbital accel-
eration with respect to the Sun makes only five ten-thousandth
of the first derivative VSPIN;2

d of the detector’s rotational ac-
celeration with respect to the Earth axis. With respect to the
derivatives and the motion relative to the galactic center, a
relation is not for the benefit of the latest. From the cur-
rent experiments with the noise detector, it is not possible
to draw a single one-valued conclusion concerning the rôle
of the orbital motions as the active parameters have not been
discovered.

6 About the reasons of the occurrence of the fields of
the first and the second types

The field F2E of the Earth is cylindrically symmetrical rela-
tive to the Earth axis. The Earth axis is the axis of its rotation.
Hence the field F2E is inseparably linked to the Earth rotation
about its axis. If we stop the Earth rotation, the Earth axis
loses its physical meaning and disappears and, consequently,
the field cylindrically symmetrical relative to the Earth rota-
tion axis loses its sense too. At the stopped Earth rotation, the
field no longer has reason to be cylindrically symmetrical rel-
ative to the Earth axis. In this case, any other field may exist
(with other properties) but not the above field F2E . Conse-
quently:

The field F2E arises as the result of the Earth rotation�.
The spatial distribution of the impact character of the field

F1E (as well as that of the field F2E) is determined by the
Earth’s rotational characteristics — by its meridians �=const
and parallels '= const. In fact, impact character of the field
F1E is constant along the Earth meridians �= const and
changes along the Earth parallels '= const. So the field F1E
is also inseparably linked to the Earth rotation about its axis.
At the stopped Earth rotation, the Earth poles, its meridians
�The Earth rotation forms and, most likely, generates the field F2E . The

point is that in all cases known in physics, if the field is formed by some
motion, then it is also generated by this motion. These are intimately related
to cases of the formation and generation of the magnetic field by moving
electric charges, or to cases of the formation and generation of the so-called
gravimagnetic, or co-gravitational fields of moving masses. For the consid-
eration below of the field’s dependence on motion, it does not matter, that
the field is generated or formed by motion. It is important only that the field
arises in the definite form as a result of the motion.

and parallels lose their physical meaning and disappear and,
consequently, the field F1E inseparably linked to the Earth
meridians and parallels loses its physical meaning, too. At
the stopped Earth rotation, the field has no reason to be linked
to the Earth meridians and parallels. In this case, any other
field (with others properties) may exist, not the above field
F1E . Hence:

The field F1E also arises as a result of the Earth
rotation.

The origination of the field as a result of a material body’s
rotation may be checked by laboratory experiment. In one of
the preceding paper of the author (2004), it is noted:

“If a sphere or a disk first is rotated and then is stopped
in a laboratory, the field generated by the rotation first
will appear and then will disappear. Our interest is to
register this phenomenon by the Shnoll detector and
then study, in a laboratory, the characteristics of this
field, its relations with rotation if, of course, the Shnoll
detector will be sensitive enough, because the labora-
tory body mass is negligibly small compared with the
masses of planets”.

Based on the theory developed here, it is interesting to ask
ourselves the following question: what must occur when the
body is rotated in a laboratory with the angular velocity !?
As a result of a body’s rotation, the fields of the first type,
F1B , and the second type, F2B , must be generated. Let the
position and the orientation of the detector D�P be constant
relative to a body’s axis. When != const, the fields F1B , F2B
and their the impacts character on the motionless detector are
constant in time. At != const, by virtue of Note 2, the Shnoll
technique gives no ability to detect impacts of the fields F1B ,
F2B , and

An impression of the absence of the impact arises, al-
though the detector itself registers the impacts of alter-
nate and constant character.

If the impact character depends on ! value, upon multi-
ple repetitions of the angular velocity with the period T , the
impact character must repeat multiply, tooy. Accordingly, the
peak of similarity of the detector histograms G(t) separated
in time by the period T should occur: G(t + �t) � G(t) at
�t = T . The first appropriate experiment has already been
performed with the detector D�P [18]. The Shnoll detector
had been found to be sensitive enough. The rotating massive
body was accelerated from the angular velocity !min = 10�
rad/s (300 rpm) to !max = 100� rad/s (3000 rpm). The ac-
celeration and deceleration times were about one minute, and
the rotation at the constant angular velocity !=!max lasted
for about three minutes. This repeated many times every 5
minutes of the slow rotation at !=!min = const. Finally,
the process periodically repeated every 10 minutes. During

yIf the impact character is independent of !, at its voluntary changes the
former false impression will be created.
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the acceleration, the value of ! was increased from !min to
!max, and during the deceleration the value of ! was de-
creased from !max to !min. As a consequence, the angular
velocity ! multiply repeated, approximately, at the periods
T = 3 � 5 min and T = 5 � 7 min. According to the devel-
oped theory, the similarity peaks of the histograms should be
observed at these periods. More similar histograms should be
observed at T = 5 min. But the greatest number of ! repeti-
tions happens within the period T = 10 min, where the max-
imal peak of the histogram similarity should be expected. In
accordance with the developed theory, in the first experiment
the impression was created [18]:

“. . . that the recording system is sensitive not to the pre-
sence or absence of the rotor’s centrifuge rotation, but
to its acceleration or deceleration”.

Secondly, the similarity peak of the histograms was de-
tected within the interval �t = 3� 7 min with the maximum
at the time shift �t about �t = 5 min (see Fig. 10a in Ref.
[18]). In accordance with the process’ cyclicity, the highest
peak is observed for the shear �t = 10 min (see Fig. 10a in
Ref. [18]). Despite the obviousness, the authors of the work
[18] have spoken about the appearance of the “five-minute pe-
riod instead of expected ten-min period”. They came to the
inexact conclusion because of the application of the Fourier
transform to the curve of numbers of the similar histograms
with respect to the shear �t between histograms (see Fig. 10b
in [18]). However, the maximum at the shear �t = 10 min al-
ready indicates the maximal repetition of the histogram shape
separated by the interval �t = 10 min. Therefore, to de-
tect repetition of the histogram shape in the interval �t = 10
min no Fourier transform is needed. The Fourier transform
indicates another: it indicates that at the time 5 minute the
peaks on the above curve repeat. These peaks are present at
�t = 5, 10 and 15 min. As a result, the Fourier transform
mixes the physically miscellaneous peaks and gives the spec-
trum its maximum at the frequency corresponding to the pe-
riod of the peaks’ repetition 5 min. This has no relation to the
sought interval of the histogram shape repetition�. Moreover,
it may be shown that in the considered experiment, the qua-
sistationary rotation takes place, i.e., the angular acceleration
is so low that it does not affect the instantaneous linear veloc-
ity, acceleration and accelerational derivative of the rotating
body’s points. Indeed, let pointM rotate at a variable angular
velocity !. Then it is clear that vectors of its linear velocity v,
linear acceleration a and accelerational derivative a0 in time
are defined by the expressions:

v =
�
!; r
�
; (13)

�If a multitude of other variable impacts did not interfere, obviously, the
similarity peaks would also be observed at �t = 20, 30, 40 min, etc. (see
Note 1). In this case, the Fourier transform would have physical meaning and
give the peak at the frequency corresponding to the period 10 min. The cut-
off of the transformed curve at time �t = 26 min and the said interference,
naturally, do not render the peak at the above frequency possible, and simply
mix the physically miscellaneous peaks.

a � v0 =
�
!;
�
!; r
��

+
�
!0; r

�
; (14)

a0 � v00 =
�
!;
�
!;
�
!; r
���

+
�
!;
�
!0; r

��
+

+ 2
�
!0;
�
!; r
��

+
�
!00; r

�
; (15)

where ! is the angular velocity vector, “prime” is signed for
time derivative, square brackets denote vector cross-product,
and r is the radius-vector of the point M relative to the axis
of rotation. For the stationary rotation case, j!0j = j!00j = 0.
Therefore, linear parameters v, a, a0 of the stationary rotation
are described by the first summands in the right part of the
formulas (13)–(15). The rest summands containing !0 and
!00 values describe the correction arising from the rotation’s
unevenness. For the purpose of estimation, let us suggest that
j!0j = !max�!min

60 sec = 3�
2 rad/s2. For example, at ! = !max,

we get���!; �!; r��� = (!max)2 jr j = (10000�)� �jr j ; (16)���!0; r��� =
3�
2
jr j : (17)

Therefore, the second sum in (14) is 10000�2�
3 = 20943

times smaller in absolute magnitude than the first summand,
and may be neglected. The linear acceleration a is determined
by the first summand and equals that of the stationary case.
As is estimated, the same is true for other values of ! and a0.
Therefore, it shall be reasonably assumed that the results of
this experiment indicate the effects of rotation, but not accel-
eration or deceleration of rotation. Thus:

The experiment confirms formation of the field as a re-
sult of the body’s rotation and discloses the presence
of the impact character dependence on the angular ve-
locity. Hence, at least for one of the fields F1 and F2,
the impact character depends on the magnitudes of the
motion parameters of the field source, and, by the prin-
ciples of relativity and reciprocity, also from the mag-
nitudes of the motion parameters of the detector.

Then we obtain the analogy of an electromagnetic field
impact on an electric charge — the electric field’s impact
does not depend on the velocity of the charge, and a magnetic
field’s impact depends on the magnitude and direction of the
velocity of the charge. If we trust this analogy, there should
expectedly be a mutual induction of fields F1 and F2. The
axisO�P of the detectorD�P has been directed to the body’s
rotational axis in the above circumscribed experiment. In an-
other experiment, the detector has been turned on. Its axis
was parallel to the body’s rotational axis. As a result, the
produced histograms, which form a response to the body’s
rotation, has disappeared [18]. The impact character of the
field F1 does not depend on the turns of the axis O�P of the
detector D�P . Therefore the effects of its action cannot dis-
appear at the turns of the detector D�P . At the turns of the
detector D�P , the action of only the field F2 varies. Hence,
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the response of the detector in the first experiment is the result
of the impact of the field F2. Consequently:

The impact character of the field F2 depends on the
magnitudes of the motion parameters of the source and
the receiver, and the impact character of the field F1
does not depend on these magnitudes. Only the impact
force of the field F1 can depend on these magnitudes.

And, the impact of the field F2 of a rotating body disap-
pears or the impact character of the field F2 does not depend
on the motion parameters of the source when the detector axis
O�P is parallel to the rotating body axis. These conclusions
are obtained by the supposition that the detector records di-
rectly the fields F1 and F2 generated by the rotation. How-
ever, in it there is some doubt. The rotating body mass is very
small in comparison with the masses of the planets. Probably,
the rotating body generates the fields F1and F2 so weakly,
that the detector is not capable of registering them. On the
contrary, the speed of the variations (changing) of these fields
in the experiments are unusually great on planetary scales,
i.e., in comparison with the speed of the variations (changing)
of such fields of the Earth, or of the remote planets. There-
fore, probably, there are enough strong fields of an induction
(induced by weak, but sufficiently fast varying fields of the
rotating body) which are registered with the detector. Then
essential conclusions can vary. Therefore:

In the development based on such experiences, it is use-
ful experimentally “to study in a laboratory the per-
formance of the investigated field”, especially by the
collimator detector D�K , to investigate in a laboratory
the relation between the field’s impact force and char-
acter on the location and the motion parameters of the
source and the detector, to study the effects of the local-
time type and a possible mutual induction of fields F1
and F2.

In order to detect the field’s existence at != const, it is
possible to move the detector.

The formation of the field F2E as a result of the Earth
rotation gives birth to consequences chain. The field F2E
of the entire Earth formed by rotation should be composed
of the elementary fields F2P of the material points P of the
Earth. The material points P move around the axis of the
Earth. Hence, the whole field F2E is composed of its el-
ementary components F2P arising as a result of the cyclic
motions of the material points P around the Earth axis (sim-
ilar to how a magnetic field is generated by the motion of an
electric charge). At any fixed moment of time t, a (sample)
material point P is located not at all points of its cyclic orbit
around the Earth axis, but at some fixed point K of its orbit.
At the moment t, at the point K, the field F2P is formed, nat-
urally, not due to the general characteristics of the motion of
the material point P on its whole orbit, but due to the local
characteristics of its motion at the point K at the moment t,
i.e., at least due to some active, parameter Vm

P;a of the motion

of the point P from the set fVm
P g, where m = 0; 1; 2; 3; : : : ;

Vm
P is the m-th derivative of the velocity VP of the material

point P , V0
P � VP . The significant task for the physical ex-

periment is to find out what the parameters of the motion of
the (sample) material point are active and how the field F2P
depends on them. Now, in general terms, the following can
be said: if some component of the field arises as a result of a
motion, then its intensity must depend on the motion’s inten-
sity, i.e., on the value of the active parameter Vm

P;a, and, for
the total field F2E of the entire Earth, on the angular veloc-
ity of the Earth rotation. The Earth is moving along its orbit
around the Sun. Therefore, the motion of the material points
P along the Earth orbit must lead to the formation of some
field FORB

2E which we shall denote as the orbital field of the
Earth. We will distinguish it from the Earth’s field formed
due to its self-rotation about its axis, which is called the spin
field and denoted as F SPIN

2E . Analogously to the orbital mo-
tion, the internal motions of the material points of the Earth
(the motions of tectonic plates, subcortical melt, water flows,
etc.) must lead to the formation of the field F IN

2E , which we
will denote as the field of the internal motions of the Earth.
The Earth is only one of many planets. Then the said must be
true for other planets, their satellites, the Sun, the Moon and
for other celestial bodies, because all of them consist of mate-
rial points, have orbital, spin and internal motions, i.e., all ce-
lestial bodies must have orbital, spin fields and fields formed
by their internal motions. This is in accordance with NOTE 1.
Any sample (a motionless one included) of matter consists of
physical material particles (molecules, atoms, etc.) which are
mobile. Hence, any sample of matter has the same fields. By
the same logic, the same consequences chain for the field F1E
are obtained. In particular, the field F1E of the entire Earth
is composed of elementary field F1P of the material points
P of the Earth. Consequently, the above conclusions about
relation between the type-two fields and the motions of their
sources are also true for the type-one field. Then the Earth
has a spin field, F SPIN

1E , and an orbital field, FORB
1E , of the first

type, as well as the type-one field F IN
1E formed by the inter-

nal motions of the Earth. The impact character of the field
FP = F1P + F2P depends on the magnitudes of the active
parameters of the motion of the material point P , since for
the entire Earth it depends on !.

7 Conclusions and discussion

From the experimental material accumulated by Shnoll’s
group, the following physical model is logically succeeded.
The Shnoll detector records the fields of two types. The im-
pact character of the second-type field F2 displayed by the
histogram shape depends on the orientation of the active pa-
rameters of motion of the object relative to the ray by which
the impact arrive at the object. The impact character of the
first-type field F1 does not depend on the above orientation.
The motion of the material particles P leads to the simulta-
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neous formation of the type-one field F1P and type-two field
F2P of the particles. Therefore, the fields F1P and F2P may
be considered as the components of the single field FP =
=F1P +F2P . The intensity of the fields F1P and F2P should
depend on the intensity of the motions, i.e., on the active pa-
rameters of motion of the particles P . The impact character
of the field FP =F1P +F2P depends on them, too. The ma-
terial particles of the Earth are moving around the Earth axis
and, as a result, form the Earth’s total spin fields of the first
type, F SPIN

1E , and the second type, F SPIN
2E . In the geocentric

coordinate system, GCS, (non-rotating relative to “motion-
less” stars), the impact character of the field F SPIN

1E is constant
along the motionless meridians �= const of the Earth but
changes along its motionless parallels '= const. The field
F SPIN

2E is cylindrically symmetrical about the rotation axis of
the Earth. Its impact character is constant along the parallels
'= const and changes along the meridians �= const. The
motion of the Earth’s particles, as of a single whole, along
the Earth’s orbit forms orbital fields of the Earth of the first
type, FORB

1E , and the second type, FORB
2E .

The motion of tectonic plates, subcortical melt, water
flows, etc. form the fields F IN

1E and F IN
2E of the Earth’s

internal motions of both types.

The measure of the relative strength of the considered
fields may be the probability of the appearance of similar his-
tograms by the considered field effect. This allows a change
over from a qualitative estimation to a quantitative estimation
of the field. The Earth is only one of many planets. Other
planets, their satellites, the Sun, the Moon and other celestial
bodies must have the same fields. The study of the results
of the experiments performed with the Shnoll detector has al-
lowed us to uncover the existence of the first and second-type
fields of the Earth and the Sun, as well as the field F2ext of the
second type external to the Solar system, the ray of which is
reciprocally parallel within the Earth’s orbit. Any sample (in-
cluding a motionless one) of matter consists of mobile mate-
rial particles (molecules, atoms, etc.) and possesses the same
fields. According to S. E. Shnoll’s opinion [14], his detector,
per se, detects fluctuations of local space-time properties. If
S. E. Shnoll is right, the physical nature of the above-studied
field F displays itself in the form of fluctuations of local
space-time properties (just as the gravitational field displays
itself in the form of space-time distortion). Then the statisti-
cal properties of the body’s internal motions should affect the
statistical character of the space-time fluctuations, induced by
this body. The inverse effect should also take place, i.e., there
should be an interaction between the statistical phenomena
in the body and in space-time. The studied aggregate field
F =F1 +F2 of the Sun, the Earth, the Moon, planets, and
other material bodies should also depend on the microscopic
motions of microscopic particles, for instance, on tempera-
ture and spin motions of their atoms. Therefore, the aggre-
gate field F of any material body should depend not simply

on its mass, but also on its substance, structure and processes
occurring in it.

One would think, that it doesn’t matter which Shnoll de-
tector is used, since the histograms of the processes of differ-
ent physical natures are similar and changed synchronously.
Nevertheless, in this paper a different physical meaning of
the experimental data of the detectors of the different types is
determined: the noise detector Dnoise indicates dependence
of the impact character on the active vectorial parameters of
the motions of the detector and the points of the Earth, but
the detectorsD�, based on the �-decay registration, indicates
dependence of the impact character on the active vectorial pa-
rameters of the motion of �-particles. Correspondingly, if the
dependence of the impact character and the histogram shapes
on the directions of motion parameters or on the spatial orien-
tation of the detector is studied, the method for the interpre-
tation of the experiments with the detector D� must always
be different from the method for the interpretation of the ex-
periments with the detector Dnoise, which has not been taken
into account in the works [10–14]. Taking into account the
last conclusion, the system of experimental data of the Shnoll
detector and the specific rôle of the experiments with the ro-
tating collimator D�K , cutting off the pencils of �-particles,
become clear. In the framework of the developed physical
model, the effects of local time (1), (3), (5), (7) and near-
year cycle with the period of 529600 minutes, observed on
detectors D�, are the theoretical consequences of the exper-
iments resulting from performance of the rotated collimator
D�K , in which the Sun’s second-type field F2S and the ex-
ternal field F2ext has been disclosed. Naturally, this is the
reason for the recommendation to use the detectors D� and
D�K for studying of the angular diagram of the type-two field
impact upon their laboratory generation. In particular, as de-
scribed in this paper, with the detectorsD� andD�K rotating
on different planes, it is desirable to study the character and
relative strength of the impact, and the directions of the ray
of the type-two field. The laboratory experiments may allow
us more reliably to determinate the details of the properties of
the fields of both types. For instance, the already performed
laboratory experiment has confirmed the theory’s conclusions
about the field generation by rotation and has disclosed the
disappearance of the response of the plate-type detector D�P
to the body’s rotation within the detector’s orientation along
the rotational axis [18]. This is in accordance with an exper-
iment, in which the collimator is parallel to the Earth’s rota-
tional axis. The Moon rotates about its axis 28 times slower
than the Earth. Therefore, the detection and study of the
Moon’s type-two field may answer the following question:
what changes, if the rotational velocity is strongly decreased?

In the nearest future, the influence of macroscopic inter-
nal motions of the Earth on the aggregate two-component
field FE of the Earth may gain direct practical importance for
the purpose of the detection of hidden water flows, motions
of tectonic plates and subcortical melt, forecasting of strong
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earthquakes, etc. According to seismology, earthquakes hap-
pen as a result of collision in the Earth’s crust of large plates
floating on the underlying melt. Let us briefly consider earth-
quakes themselves. During an earthquake, a short-term
(pulse) motion and displacement of large masses of the
Earth’s crust arise. Then, by virtue of our theory, a pulse
change of the field of the mentioned masses arises and, there-
fore, a pulse change of the Earth’s field F IN

E =F IN
1E +F IN

2E
arises too. That is why the Smirnov (and Shnoll) detectors
should detect earthquakes, being integral recorders of the mo-
tions and displacements of masses. The precursors’ appear-
ance in indications of the Smirnov detector before 2–10 days
of the earthquakes means, apparently, that some pulse
changes in the motions or displacements of the large masses
of the Earth’s crust or subcortical melt happen also and 2–10
days prior to a strong earthquake that may be, for example,
due to the mechanism in which the mentioned plates come
into sufficiently rigid contact and, as a result, they are suffi-
ciently abruptly decelerated. Therefore, the presence of earth-
quake precursors in the field FE is not surprising and seems
logical. However, the precursors’ strength is unexpected. The
Smirnov detector goes off scale, and it requires us to reduce
the detector’s sensitivity. Now the precursors of strong earth-
quakes are separated exactly by anomalously high amplitudes
(and with the duration increased, approximately, up to 12–13
minutes). The reason of the mentioned anomalous strength of
the precursors’ amplitudes may be due to the induction of a
strong field due to relatively quick changes in the motions and
positions of the tectonic plates or melt. Frequently, in physics,
the following rule of reciprocity is true: if some physical pro-
cess generates or changes some field then, vice versa, this
field or its changes may influence the behavior of this pro-
cess. As a result of the seismic motions, the aggregate two-
component field is formed and changed. Seemingly, the reci-
procity rule is realized in the connection between such fields
and earthquakes, i.e., the fields affect the Earth’s seismicity.
Moreover, if planets, the Sun and the Moon affect the motions
on the Earth via their own aggregate two-component field F ,
which has been disclosed by the Smirnov detector, then there
are serious foundations for the supposition that they also af-
fect the Earth’s internal motions related to the earthquakes.
This is directly confirmed by the detected correlation between
microseismicity and planetary motions. In favor of the same,
the old data of Ben-Menachem state the correlation between
microseismicity and sunrises and sunsets. According to the
Smirnov detector’s data, the strong splashes of the field F
of the Sun and planets occur exactly at risings, settings and
culminations. (Incidentally, the Sun’s gravitational impact is
minimal exactly at sunrises and sunsets.) This also explains
the Jupiter splash affecting in living matter immediately at
its upper culmination. Actually, the system of such splashes
is much wider. In particular, the strong short-term splashes
happen at pair-wise connections between planets, the Sun and
the Moon on the coelosphere and at their crossing of their net-

work’s definite lines, which will be discussed in a separate pa-
per. Therefore, a strong correlation between earthquakes and
the connection between the Moon and planets, observed by T .
Chernoglazova, becomes natural. The data on the effects of
the pulsar on the Earth’s seismicity indicate a noticeable long-
range action of the considered fields. Generally, the outlined
effects of planets and the pulsar on seismicity and terrestrial
motions indicate the existence of the long-range action fields.

However, astrophysics firmly states one’s position: plan-
ets are unable to impact the Earth. These are not mere words.
Actually, the total energy flow of a field (known or still un-
known to us) through its frontal area must be constant and
must be spread throughout the frontal area. The frontal area
increases with respect to r2 (in the case of its spherical shape,
where r is the distance from the point-source of the field). Fi-
nally, the energy-flux density of the field together with the
field intensity should decrease with respect to 1=r2 or faster.
The corresponding numerical estimates lead astrophysics to
the said position. However, astrophysics keeps back the fol-
lowing: the position is correct for the class of energy fields.
Scientific experiments and observations demonstrate the im-
pact of planets and pulsars on the Earth. Therefore, the di-
lemma arises: either astrophysics is right in the class of en-
ergy fields, then consequently there are the fields outside this
class (by definition, they are the energy-free fields) or astro-
physics is not right. The known physical laws do not prohibit
the existence of the energy-free impacts and fields. More-
over, from physics it is known that energy-free impacts ex-
ist. These energy-free impacts do not change the energy of
the process but merely control its development, for example,
turning on and off energy transforms from one of its kind to
another [16]. As is mentioned in the Introduction, S. E. Shnoll
has disclosed some universal, remote non-energy impact syn-
chronously affecting on processes of different physical nature.
That is, some substance — some physical field — does exist,
which is transferring these non-energetic impacts. In order
not to conflict with the mentioned position of astrophysics
and the conservation law of energy, this field itself must be
of non-energetic nature. Though the above idea about a non-
energetic field is unusual, it should be seriously investigated,
as it is the result of experiments and generally recognized sci-
entific views of astrophysics.

At the same time, the developed theory here does not dis-
close the physical nature of the fields. This theory is valid in-
dependently of whether the fields are energetic or energy-free,
electromagnetic, gravitational or of any other physical nature.
This theory just gives the field properties as the logical con-
sequence of the experimental material and independently of
their physical nature. Therefore, as A. A. Artamonov has rea-
sonably noted, this theory may be included as an independent
block for any future theory attempting to explain the proper-
ties and the physical nature of the considered fields.

In the interrelation between the considered fields and seis-
micity, significant are not only new prospects in the forecasts
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of earthquakes. Most likely, higher importance is attributed
to the renovated view on the physical model of evolution and
the interdependence between seismic processes themselves
and the surrounding cosmos [19]. The renovated view arises
also on geopathogenic zones, as on the zones of anomalies
of the considered fields since, according to the above theory
and other observations, these fields affect the state of living
systems, that will be discussed in a special paper.
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The quark-antiquark interaction, with non-conservation of parity, associated with
neutrino-nucleon inelastic scattering, and electron/positron decay consequent to nuclear
transmutation and re-materialization, are invoked as the phenomena responsible for heat
carry-off. The mechanism is applied to collision-induced gravity, including quantitative
justification, using Feynman parton theory. The application to heat dissipation neces-
sarily involves the tri-quark current that associates with weak interactions.

1 Introduction

Parity refers to the operation of studying a system or a se-
quence of events reflected in a mirror plane [1]. In chemistry
and biology, the term “chirality” is used, instead of parity, and
refers to a structure that is different from its mirror reflection,
and from this property, very important criteria of handedness
and broken symmetry arise [2]. In physics, a deeper under-
standing of the meaning of parity (often called space parity)
refers to every real object or process having a mirror image
that obeys the same physical laws as the original object. It was
originally assumed that parity is conserved upon collisions,
and this implied that elementary particles have antiparticles,
such as neutrinos and antineutrinos, such that the antiparticle
subscribed to the same physical laws as the particle. This all
changed with the publishing of Lee and Yang’s seminal work
[3] that argued that parity was not conserved in weak interac-
tions. One such interaction is radioactive decay, described to
arise from what is referred to as the “weak force”, contrast-
ing the strong force and electromagnetism both of which are
shown to conserve parity in interaction with matter. Experi-
ments by Wu et al. [4] involving the direction of beta decay
emitted from Co60 in a magnetic field (thus relative to the
associated applied magnetic field vector) confirmed that in
beta decay, parity is not conserved. The relationship between
gravitating bodies is also a manifestation of weak interac-
tions. In both a field-based wave-mechanical model of grav-
ity, and a particle-based collision-induced model of gravity
[5, 6], parity is thus interpreted to be non-conserved.

The theoretical analysis [6], which was based on the in-
terpretations from super K data that the neutrino oscillations
between flavors could only occur if the neutrino had a rest
mass, was cast in terms of a net transfer of linear momentum,
but since it is now known that the neutrino always possesses
left-handed helicity, and since it is reported that upon inelastic
collision between a neutrino at v � c, and a proton or a neu-
tron, the flavor of the neutrino has a very high probability to
change — thus the spin magnetic moment property of the par-
ticle changes — the analysis is broadened herein to include
total angular momentum. The nucleon’s spin properties, the

neutrino’s spin properties, and the neutrino’s essentially lin-
ear velocity at collision, all then demand the consideration
of spin angular momentum and linear angular momentum;
however, since quark properties must also be considered in
an inelastic interaction with protons or neutrons, the orbital
angular momentum must also be treated in a full analysis.

A major element of a collision-induced gravity model that
has not been yet explained is how the heat generated in the in-
elastic collision is carried-off from the local neighborhood of
the 3D coordinates of the collision. Without fully explain-
ing heat carry-off, such a model is not complete. The major
purpose of this current work is to propose to an international
forum of readers, a model for the phenomenological basis of
this removal of heat, so as to receive feedback and stimulate
further work.

In the interest of simplicity in basic modeling, the
collision-induced mathematical analysis did not treat the ef-
fect of a change-in-flavor of the neutrino (flux) consequent
to a neutrino-nucleon inelastic collision due, for example,
to a collision with nucleons of the moon during a total so-
lar eclipse, which would then generate a change in the col-
lision cross-section that could affect a subsequent collision
with another mass body (such as an interaction with a gravity
measuring experimental apparatus located at an Earth labora-
tory). As a more comprehensive knowledge of the properties
of the neutrino is emerging, it seems unlikely that a collision
of a neutrino with a mass particle would not cause a change
in flavor. Although the original model [6] has been success-
ful [7] in generating the total solar eclipse (occurring March
1997 in China) gravitational anomaly dip signal detected by
Wang et al. [8], and elaborated upon by Yang and Wang [9],
adjustment parameters are employed to reproduce the signal,
especially in the central region of the signal, but the funda-
mental functional basis for these collision-related parameter
adjustments is not yet established.

In wave mechanics terms, and in a particle approach,
when the spatial coordinates are reflected from coordinates
x, y, z through the origin to position �x, �y, �z, non-
conservation of parity means that what is physically ex-
pected/observed at x, y, z is not the same as what is expected/
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observed at �x, �y, �z. In the model/theory of collision-
induced gravity this has profound importance, and herein is
applied to explain the process of heat carry-off after the in-
elastic scattering net-transfer-of momentum interaction that
the collision model invokes as the fundamental cause of grav-
ity. Without solving the heat-carry-off problem, the collision
model suffers vulnerability to a potentially critical weakness.

In our original theoretical work [6] we utilized 10�38 cm2

for the collision cross-section of the neutrino with the neu-
tron, as well as for the collision cross-section with the pro-
ton — a value now supported by other studies [10] that re-
late to the Feynman parton model, and about one order of
magnitude higher than the values of sigma arising from ear-
lier work [11]. This is an extremely small collision cross-
section, and implies a very enormous flux density of particles
such that the neutrino could be considered a realistic candi-
date for the particle that carries the gravity interaction prop-
erty. The paradox is that even though experiments such as
those conducted in the Super K project or related works, re-
port that it is exceedingly difficult to detect a neutrino (as with
scintillator counter devices), these calculations and the inter-
pretations of experiments, do not consider that the neutrino
is taking part in gravity interactions, and thus is implicitly
detected. If the neutrino is indeed responsible for collision-
induced gravity, then the equipment and experiment that is
being utilized to detect its collisions with nucleons — such as
the 50000 gallons of nuclide treated water, and the associated
scintillation counters — is itself detecting neutrinos by virtue
of the gravitational interactions related to the experiment as
a whole.

2 Initial hypothesis

My own interpretation of very important and unique exper-
imental work of the collimated free-falling neutron experi-
ments at Grenoble [12] is that gravitational interactions must
be quantized. And my own hypothesis as to the origin of that
quantization, and also the origin of the phenomenon that ex-
plains the carry-off of heat generated from an inelastic scatter-
ing interaction (in which although momentum is conserved,
energy is not — because of the involved heat), is cast in terms
of the quantum mechanics of neutrino-nucleon inelastic colli-
sion, and this necessarily must involve the quark constituents
of the nucleon. (If this were not so, then I see no way in which
gravity can be quantized, and no way that collision-induced
gravity could pass all of the scrutinizing tests necessary for
embracing a model/theory as viable in modern physics.) Thus
the hypothesis must include that the quark-antiquark interac-
tion is involved in the heat carry-off phenomenon.

3 Related original experimental results

For the details regarding experimental findings, including the
non-constancy of G, that are not explicable through field the-

Fig. 1: Original raw data [16] of anomalous dip in gravity detected
by use of laser scattering between two gravitating dual-cable sus-
pended pendula, during the planetary line-up/syzygy of 18 May
2001: Earth/Sun/Jupiter’s-magnetosphere/Saturn. The leading edge
of the signal when expanded is a parabolic dip very similar to the
initial parabolic dip detected by Wang et al. [8] for the 1997 total
solar eclipse in China. The trailing edge is a parabolic bump, not
analogous to any reported data known to the author. I interpret the
above signal as due to occulting by the chromosphere-photosphere
1000 km zone of the Sun associated with an enormous change in
temperature (from 10,000 to 1,000,000 degrees) and a major change
in density, characteristic of the corona region.

ory, including General Relativity, see [8, 9, 13–16]. The orig-
inal data for my own experimental work, measuring a grav-
itational anomalous dip (� 35 sec) on 18 May 2001 (16:10
hrs EDT) during the lineup of Earth-Sun-Jupiter’s magneto-
sphere, and Saturn is given in Fig. 1 [16]. This signal was
measured using two close-proximity dual-cable suspended
Newton cradle pendula. The inter-pendula distance was inter-
rogated with a 100 mw He-Ne cw laser. A change in the very
short length-scale inter-pendula distance caused a change in
the scattered laser radiation which was detected by a light-
detecting diode. The output of the diode detector was fed
into a Goerz 7800 chart recorder in the Y vs t mode, and also
into a computer using an analogue-to-digital converter. All
apparatus was mounted on an optical bench floating on in-
ner tubes, and within a screened enclosure to preclude stray
signals. Isolation transformers and RC filters were employed
to minimize effects of transients. The operational amplifiers
were employed on an offset scale for highest sensitivity so
that the magnitude of the dip in gravity, which is shown in
Fig. 1, is a relative measurement in arbitrary units. To my
best estimate, the decrease in gravity due to the syzygy is of
the order of a few microgals (see caption to Fig. 1). At the
time of the measurement of the anomalous dip shown in Fig.
1, by use of a telescope attached to the experimental appa-
ratus, I could clearly see the two pendula separating slightly
due to the weakened gravity because of the presence of the
Sun, Jupiter’s magnetosphere, and Saturn that had moved
between the deep space source of neutrinos and the Earth-
laboratory.

The work of Refs. [8, 9, 13–16] strongly argue that G is
not a constant, and this has been readily shown by the work
of Gershteyn et al. at the Massachusetts Institute of Technol-
ogy, reporting [17] thatG varies at least 0.054% as a function
of the orientation of the vector between the two gravitating
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Cavendish spheres and the direction to large stars, and also
that G is periodic with the sidereal year This histogram peri-
odicity can only develop, in my judgment, if gravity is based
on external impinging particles such that once per sidereal
year the bulk of the Earth is interrupting the flux of gravity-
bearing particles some of which never reach the measuring
instrumentation (the Cavendish spheres). More precise exam-
ination of data of highly controlled robotically measured ex-
periments such as that of Ref. [17] should be capable of mea-
suring indications of periodicity of G on a monthly and daily
basis as well. My own work determined the value of G (mea-
sured in 2007 in New England) as G= 6.692�0.10�10�11)
cubic meters per kg sec2 [18]. This work was accomplished
with a fixed 16 pound spherical composite non-conducting
resting mass located on a micro-moveable track, and a close-
proximity 3 gram cork pendulum suspended from a nylon
fiber. The inter-mass distance was interrogated by a HeNe
cw laser, the radiation of which was scattered by the gravitat-
ing masses, and detected by a light-detecting diode and/or a
solar cell, the output of which was fed into an oscilloscope.

The spatial and temporal patterns of the scattered laser
light were measured as the massive sphere was slowly moved,
by a servo-mechanism, toward the oscillating cork pendulum,
which caused the frequency of oscillation of the cork pen-
dulum to change slightly. By measuring this change in fre-
quency (�f) as a function of distance between the gravitating
masses, we could determine the change in interacting energy,
and determine the change in the associated force between the
gravitating masses. We tested for any charge concentrations
on the gravitating masses, and observed none. The theoretical
analysis for the massive-sphere/pendulum interaction can em-
ploy either a Newtonian approach or a Lagrangian approach,
yielding the same results. From these analyses we could ex-
tract the value of G. Our work also showed that our value
of G changed somewhat if a film of water replaced air as the
inter-mass medium, and changed again, if the temperature of
that water was altered from 22�C to about 60�C.

Both our work and the highly accurate laser-cooling inter-
ferrometric Pb micro-mass work of Fixler et al. at Stanford
(published earlier in 2007), giving G= 6.693�10�11 [19], is
at significant variance from the accepted averaged value of
6.67, and thus indicates that corrections must be made to
those determinations based on using the standard accepted
value of G. As a function of collision parameters [6], G is
expected to change with time, and with location of the posi-
tion of measurement in the galaxy, and in the universe.

Our earlier measurements showed that G changes as a
function of temperature according toG=G0(1 + aT ), where
a is a micro-valued constant in accord with measurements
taken much earlier in England, and also changed as a function
of phase (increasing as ice melts to water) and as a function of
shape (increasing as a loop of 1 mil diameter Cu wire under-
went multi-convolutions of the loop to approximate a sphere
such as a spool of wool) [16,18].

4 Theoretical discussion

The parton model, advanced by Richard Feynman, postulates
that the nucleon is composed of point-like constituents, refer-
red to as partons. The partons share the total momentum
of the nucleon by constituting variable fractions of the to-
tal momentum, designated (within the Feynman model) by
the variable x. The probability, f(x), of the parton to carry
momentum does not depend upon the process in which it is
engaged, or the nucleon energy, but is an intrinsic property.
This, in my own interpretation, is fundamental to collision-
induced gravity — namely that the carrying and transfer-
ring of momentum is an intrinsic property of the neutrino-
nucleon interaction, and this is why, at least in part, the
gravitation interaction is weak. The partons are composed
of the three quarks (referred to as the valence quarks), but
also includes the quark-antiquark pairs emerging from vac-
uum point energy, explicable by the uncertainty principle
as well as involving gluons which are quanta of the strong
force of quark interactions. The question naturally arises of
how a weak force non-parity-conserving interaction can affect
strong force quanta. Because the momenta of quarks (and of
gluons) are added to give proton momentum, and from im-
plication of the collision-induced gravity theory, I wish to
postulate herein that there exists a constraint, and although
strong forces/interactions are necessary to break quark-quark
bonds and break apart the nucleus, weak forces are sufficient
to change, for example, a d-quark (down-quark) to u-quark
(up quark) which involve a transmutation of a neutron to a
proton, and which gives rise to a quark-antiquark interac-
tion, otherwise quantum mechanical selection rules could not
emerge. Justification for this postulate is given subsequently.

It is thus proposed herein, based on my own interpreta-
tion of what is necessitated and implied in collision-induced
gravity model and theory, that

. . . the within-nucleon transition of a d-quark to a u-
quark, or the reverse, is associated with the formation
of an antiquark, without the requirement of GeV ener-
gies necessary to break apart the nucleus.

(Because of the broken parity, I believe that further analy-
sis and research must be conducted to determine/understand
any thermal properties that might be associated with the anti-
quark).

The laws of quantum mechanics as applied to the wave
function that is associated with the quark-antiquark system,
imply that for a quark and antiquark, having angular momen-
tum, L, the parity is established by:

P = (�1)(L+ 1);

where L is an integer. Thus, in an even function, parity is
conserved, but if the applicable function is an odd function,
then parity is not conserved.
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The amount of orbital angular momentum, L, and the spin
angular momentum, S, of the quark-antiquark system is con-
strained by quantum mechanics as integers. Parity (P ) de-
pends only upon relative orbital angular momentum between
objects, however, charge conjugation (C) depends upon both
the orbital angular momentum and the combined spin states
of the quark and antiquark. If the sum of L+S is an odd
integer, then the wave function changes sign when charge
conjugation is effectuated upon a collision between a neu-
trino and a nucleon. From the analysis, there are a set of al-
lowed states J (PC) for a quark and an antiquark in net spin
0 and 1 coupled to orbital angular momentum, L, and total
spin J =L+S. It is within the context of allowed J (PC)
states whereby gravity is, I believe, quantized.

Since the neutron is believed to be spherically symmet-
ric, having a much simpler topology than the proton (which
appears to be peanut or torus shaped depending upon respec-
tively whether the quark spin aligns with the proton spin or
opposite to it), and since the magnetic moment of the neutron
is opposite in direction to that of the highest magnetic mo-
ment neutrino flavor — the tau neutrino which has a magnetic
moment two orders of magnitude higher than the electron
neutrino and/or the muon neutrino — the neutrino-neutron in-
elastic interaction is first analyzed herein. (I believe that the
change of shape of the proton, associated with the alignment
relationship of the spin of the quark emphasizes the impor-
tance of the quark-antiquark interaction, as related to gravita-
tion.)

The inelastic scattering interaction between the neutrino
and the neutron can be described as:

� (0) + n(0) �! p+ + e� + �[anti](0);

where � refers to the neutrino, p refers to the proton, e refers
to the electron, 0 means charge neutrality, and + and � re-
fer to positive and negative charge, and “anti” refers to an
anti-particle. The above represents a nuclear transmutation
creating an element of atomic number Z + 1, from an ele-
ment of atomic number, Z, however the transiently created
element having N � 1 neutrons, yet essentially unchanged
atomic weight A. This process must be associated with the
creation of heat, and kinetic energy cannot be conserved. This
neutrino-interaction generating a Z + 1 atom must decay to
the stable Z atomic number atom, and the created heat can-
not be allowed to build up, thus must be transported from the
system. The reverse-direction reaction, namely

p+ + e� + �[anti](0) �! n(0) + � (0)

must also be valid in the description of collision-induced
gravity�. This then indicates that if the neutrino or the an-
tineutrino perturbs the proton, then the electron can become
�Otherwise, if the inelastic collision with the neutrino, only involved

neutrons, then hydrogen (consisiting of one proton, one electron, and zero
neutrons) would not be observed to possess weight.

unstable and collapse into the proton, and combine with the
proton to form a neutron (by changing the direction of one
quark).

The reaction that then represents the decay of the unstable
Z + 1 state is normally written:

A
ZXN �! A

Z�1YN+1 + e+ + � ;

whereX and Y designate different elemental atoms that differ
by one proton, or by a single quark in the up-flavor (X), rather
than the down-flavor (Y ).

The equivalent reaction for the decay of the unstable state
after the interaction between the neutrino and the proton is
written as:

A
ZXN �! A

Z+1YN�1 + e� + ν ;

where ν represents the antineutrino. The above represents
beta decay.

In summary of the above, it is postulated that the gener-
ated heat is carried off by the neutrino, and the antineu-
trino, ejected with changed energy, that are produced,
respectively, in the above nuclear decay reactions, and
do so according to quantum mechanical selection rules
that emerge from the quark-antiquark non-conservation
of parity interaction.

It is herein proposed that the Feynman work indicating
that the cross-section for the neutrino-nucleon interaction
can be described through the quark distribution functions,
d�=dxdy, which expressed in terms of momentum of the u-
quark and the d-quark, is fundamental to explain collision-
induced gravity. The work clearly shows that more momen-
tum is transferred by quarks than be antiquarks.

The calculation yields that

�� = 1:56
�
Q� Q

3

�
� 10�38 cm2=GeV;

where Q represents the momentum integral (for the inte-
grated cross-section). This gives sigma �= 0:74� 02�10�38

cm2/GeV for the neutrino, and for the antineutrino, sigma
�[anti] = 0:28�0:01�10�38 cm2/GeV. Therefore � is linearly
energy dependent for both the neutrino and the anti-neutrino,
and, thus, so is the heat carry-off phenomenon. This also sug-
gests that more heat is carried off by neutrinos than antineu-
trinos, and this must be because of the structural differences
between the proton and the neutron, and differences in their
collision cross-sections with respect to neutrinos.

The implication of a collision-induced gravity is that since
gravity is statistical, and that the net change of momentum in-
volves a flux of externally impinging particles, and certainly
more than a single proton or neutron, and thus a collective
effect of protons and neutrons interacting with external par-
ticles (neutrinos), such interactions will always be at least
slightly different regarding the number of total particles in-
volved. This implies that no two measurements, taking place
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at two different time, of any experimental parameter will ever
yield exactly the same value — this possibly related to some
of the physical roots of the Uncertainty principle. Both the
entity being measured, and the entity doing the measuring,
are constantly changing to at least some infinitesimal level
because of the stochastic properties of a particle-based grav-
ity. This implies, for example, that typical Poisson statistics
are not simply an instrument to assess statistical error in mea-
surements, and standard deviation, but are a fundamentally
related to the statistical properties of gravity.

Before this paper can attain closure, it is necessary to
furnish scholarly support for my postulate that the quark-
antiquark interaction (necessary for establishing the quantum
mechanical selection rules that give rise to heat carry-off) can
arise from weak interactions. As a career condensed mat-
ter basic research physicist, who for the past ten years has
been working in gravitation measurements, and interpreta-
tions thereof aimed at an understanding of the fundamental
cause of gravity — not being a theoretical particle physicist
— I had to recruit the assistance from others upon realizing
reaching a potential impasse in endeavoring to explain heat
carry off — that impasse being explaining how a weak in-
teraction can affect the tri-quark current. I was graciously
assisted [20], and the following italicized material is a con-
densed version of this assistance which is highly cogent to
my work.

The non-conservation of parity of hadronic interactions
is closely related to the interaction current of neutrino
couplings. Key to understanding this relationship is
the unification between leptonic neutrinos and gluons.
This manifests at lower energy values of particle cou-
plings and is observed in decay patterns of the high-
quark meson complexes, such as the top- and bottom-
quarks, but these are resonant energies of the up-quark
and the down-quark. The proton-neutron interconver-
sion acts to cause a mixing of wave functions and the
exchange of a mesonic mediator. This is known as
Yukawa coupling, and it is the Yukawa meson that
carries the antiquark which couples to an up-quark
of the proton. These couplings necessarily relate to
the Heisenberg zero-point energy (ZPE) metric back-
ground.

In our measurement of G, cited earlier herein, the method
which we employed, involving ultra-close-length/scale grav-
itating bodies, interrogated by cw laser scattering (as a func-
tion of the temperature of the coupling medium of air or wa-
ter), inescapably had to involve the Casimir effect and ZPE
— albeit a classical or mixed version of the Casimir effect. It
seems that fundamental studies of the physics of the quark-
antiquark interaction must involve ZPE.

The net result is that the strong gluonic coupling can be
assumed by the weak antineutrino coupling in terms of
a neutral weak-interaction current. The current arises

from the triquark complex of a nucleon, and thus can
re-circulate; therefore the original nucleon (such as the
neutron in the �+ n inelastic interaction) can be re-
materialized. The associated long decay times are ideal
for heat carry-off. The significant point to this is that
the quark-antiquark coupling (designated ud’) is trans-
muted into a temporary diquark selfstate (designated
ud) following a simple exchange of the state-antistate
couplings of the neutral pions (designated dd’ and uu’).

My experimental results indicate that as related to gravita-
tional interactions, the above couplings collectively are asso-
ciated with time-constants, or relaxation times, of the order of
a fraction of a millisecond. The results of the above analysis,
and the available CERN Proton Synchrotron data on the neu-
trino and the antineutrino, and on the quark and the antiquark,
indicate that the input-output physics of the neutrino-nucleon
inelastic scattering process yields only a relatively small frac-
tion of the input energy being converted to heat. This is be-
cause of values of masses and velocities before and after the
inelastic collision do not change substantially. I estimate that
the maximum heat energy would be about 15% of the input
neutrino energy, and this depends upon the exit velocity of
the antineutrino. Detailed quantitative calculated results giv-
ing the heat carry-off in electron volts, as a function of input
energy in electron volts, will be eventually forthcoming as
theoretical intra-nucleus thermodynamic codes become more
detailed and comprehensive.

5 Conclusion and interpretation

I conclude that my conjecture/postulate that for d-quark/u-
quark neutrino-inelastic- collision-induced transmutations,
and consequent quark-antiquark interactions, the strong gluon
energies are not required for neutral currents, and the weak
gluon-neutrino interaction is sufficient, is supported by cur-
rent accepted theory. Although the above analysis includes
very complex internal nuclear processes, and although as sci-
entists we search for elegant simplicity in explanations of na-
ture, it seems to me that to provide an understanding of the
heat carry-off phenomenon in inelastic neutrino-nucleon scat-
tering, the invoking of these very complex workings within
the nucleon is necessary.
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Recent observations confirm that galactic red-shifts might be quantized and hint a pos-
sible new form of quantum mechanics, which could probably explain these observed
properties of the galaxies. This brief note investigates some expressions for the mass of
the universeMU , which were obtained with the help of the definition of the new cosmic
Planck’s constant ~g .

Introduction

After it was found that the recession velocities for single and
double galaxies appear to be quantized [1] then a new quan-
tum of action was also derived to yield [2, 3]:

~g =
�
1 +
p

3
�2
M

H
V 2 � 7:0�1074 erg�s; (1)

where V = 12 km/s, M = 1044 g, and H = 1:7�10�18 s�1.
Using Weinberg’s relation for the mass of an elementary par-
ticle [4] we can now expect to obtain the mass of the universe
if Planck’s constant in (2) has been substituted by the new
maximum value of the new cosmic quantum of action ~g [5].
Therefore we have

MU =

"
~2
gH
Gc

#1=3

: (2)

If we now solve for the new defined quantum of action ~g
in equations (2), and also use (1) we obtain that the mass of
the universe is given by:

MU =
�

1 +
p

3
�4
�
v4

GHc

�
: (3)

Relation (3) was obtained after treating the universe as
the “ultimate superparticle” following Weinberg’s idea [4],
and using his relation for the mass of an elementary parti-
cle. If now assume that velocity v corresponds to the radial
velocity of the individual “particle” galaxies we can further
assume that their velocities are those of the expansion of the
universe’s horizon, and will be equal to speed of light c, so
that we obtain:

MU =
�

1 +
p

3
�4
�
c3

GH

�
: (4)

Substituting for the known values of constants in (4), and
using H = 1:7�10�18 s�1 we obtain for the mass of the
universe to be

MU = 1:326�1058 g: (5)

The mass of the universe found here is actually higher
than the universes’s actuall mass of 7:5�1055 g as given in
[6] That could also be due to the contribution of the numeri-
cal term that enters the calculations from the definition of the
cosmic ~g . Since not all the objects in the universe are within
such a great cosmic distances to allow v � c, this could also
mean that the cosmic quantum mechanics idea could apply
to the universe at very early times when the objects were
closer together. To ensure numerically the value of the mass
of the universe from (3) a galaxy would have to have a radial
velocity v= 0:254c= 7:640�109 cm/s. Objects of this red-
shift are observationally quite frequent. Quasistellar objects
or quasars hold the record for redshifts up to z= 5 [7]. There-
fore it could be that at those cosmic distances that quasars ex-
ist qualifies them for possible candidates of cosmic quantum
mechanics, which somehow could be effecting their physics.
Now suppose that this superparticle universe contains a num-
ber of particles in an Euclidean sphere of radius c=H0 then,
following Narlikar [8] we have that:

N =
c3

2mpGH
: (6)

Using (6) and (4) we can also obtain for the mass of the
universe:

MU =
�

1 +
p

3
�4

[2mpN ] = 1:86�1058 g; (7)

and where mP is the mass of the proton, 1:672�10�24 g, and
N � 1080 is the total number of particles in the universe.

Let us now consider relation (4) and from that let us try to
obtain the mass of the “super-particle” universe at very early
times, and near Planck time. For that a very early Hubble
constant should be taken into account. Since the age of the
universe in general is equal to the inverse of the Hubble con-
stant, then 1

Hp
= tp = ~

mplc2
we finally have after simplifying

that
MU =

�
1 +
p

3
�4
mpl = 1:114�10�3 g: (8)
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Now let us define the maximum value of the cosmological
constant � which is defined below [9]

�max =
c3

G~
� 1066 cm�2 (9)

and occurs during the quantum era of the early universe and
using (1) we can now obtain the corresponding �max(~g) un-
der cosmic quantum mechanics and so we have

�max (~g) =
c3

G~g
= 5:782�10�37 cm�2: (10)

Using now (10) together with (4) we can also write for the
mass of the universe

MU =
�

1 +
p

3
�4
�

�max (~g)
H

�
~g =

= 1:894�10�17~g = 1:325�1058 g: (11)

From the above we see that the mass of the universe be-
comes a multiple of the cosmic ~g , or in other words the mass
of the universe is now quantized in units of the cosmic ~g .
That could probably indicate that if cosmic quantum mechan-
ics is in effect in the universe, basic quantities like mass, en-
ergy, or angular momentum could also be quantized, in an
analogy with ordinary quantum mechanics.

Next if we try to obtain the cosmic quantum mechani-
cal equivalent of Planck time by again substituting ~! ~g =
= 7�1074 ergs we have:

tplcos =
r
~gG
c5

= 4:383�107 s: (12)

This period is well into the radiation era of the universe
which lies between 10 s6 t6 1012 s [10]. Next we can obtain
the possible maximum cosmic Planck time for ~g = 2:228
�1094 ergs

tplcos =
r
~gG
c5
� 1
H0

= 2:472�1017 s: (13)

The time found in (13) is almost the value of the Hubble
constant today. This is the matter era of the universe. For the
value of time in (13) a temperature close to the microwave
background should be calculated. Therefore we have:

T =
1:5�1012

t2=3
= 3:808 K : (14)

Next a relation can be derived which connects the mass
of the “super-particle universe” to its gravitational energy un-
der the cosmic �max(~g). In general the energy of a hadron
particle is given by [11]:

Egrav =
Gm3c2

~2 � NH0 : (15)

Therefore (4) becomes:

MU =
�

1 +
p

3
�4
�

�max (~g)
H2

0

�
Egrav (~g) =

= 1:114�101Egrav (~g) = 1:894�1057 g: (16)

Conclusions

A relation for the mass of the universe has been derived in
the grand scheme of a possible quantum mechanics, an idea
that emanates from a probable redshift quantization in ob-
servational data. The mass of the universe has been found
to depend on three fundamental quantities: i.e. the speed
of light, the gravitational constant, and the Hubble parame-
ter. Its numerical value is almost two hundred times higher
than the actual mass of the universe. From that another ex-
pression for the mass of the universe at very early times has
also been retrieved. The mass of the universe at Planck time
seems to be slightly larger than the Planck mass by a factor
of a hundred. Next making use of a max quantum cosmic
cosmological term (lambda) we obtained the mass of the uni-
verse, which now appears quantized in the units of cosmic
~g . Also the Planck cosmic quantum mechanical time equiv-
alent was obtained for the two different values of ~g . The first
lies in the radiation era of the universe, and the second in the
matter era, being almost the same in magnitude with today’s
Hubble parameter, from which a temperature of 3.8 K is ob-
tained. Finally the mass of universe was obtained in relation
to its gravitational energy. Hence it might be that a relation
between ordinary and cosmic quantum mechanics based on
the results found might exists, a relation between microcosm
and macrocosm an idea, which had been suspected for long.
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Both the big-bang and the quasi-steady-state cosmologies originate in some type of
Planck state. This paper presents a new cosmological theory based on the Planck-
vacuum negative-energy state, a state consisting of a degenerate collection of negative-
energy Planck particles. A heuristic look at the Einstein field equation provides a con-
vincing argument that such a vacuum state could provide a theoretical explanation for
the visible universe.

1 Introduction

Cosmology, taken as a whole, is the study of the origin and
evolution of the universe [1, p. 1144]. The universe is the vis-
ible (observable by whatever means) universe that exists in
free space. At present there are two major competing cos-
mologies that theoretically describe the real observed uni-
verse, the big-bang cosmology [2] and the quasi-steady-state
cosmology [3], the big-bang cosmology being considered by
most cosmologists as the major one of the two. Both cos-
mologies claim some type of Planck state as the origin for
their calculations; in the big-bang case it is a point source
at time zero in which an explosion takes place, subsequently
creating the expanding universe; while in the quasi-steady-
state case a background field called the “creation field” cre-
ates free Planck particles (PP) on a quasi-continuous basis
that immediately decay into a large number of particles, sub-
particles and fields.

The present paper presents a new cosmological model
called the Planck-vacuum (PV) cosmology. The PV (briefly
described in Appendix A) is an omnipresent negative-energy
state that is assumed to be the Planck state that is the founda-
tion for the visible universe, its expansion, and also its even-
tual contraction. The addition of the PV to the visible uni-
verse in a cosmological model requires a name to distinguish
the combination from the visible universe of standard cos-
mology. The name used here is “cosmos” and includes, cor-
respondingly, the PV and the visible universe. As might be
expected, this new model differs significantly from the two
models mentioned in the preceding paragraph.

We begin with a brief look at the standard Einstein metric
equation

G�� =
8�G
c4

T�� =
8�

m�c2=r�
T�� (1)

where G�� and T�� are the Einstein and energy-momentum
tensors, and G and c are the gravitational and speed-of-light
constants. The force m�c2=r� in the denominator of the fi-
nal expression is the ultimate curvature force that can be ap-
plied to the spacetime of General Relativity or to the PV [4].
Compared to this force, the relative curvature force the sun,
a white dwarf, or a neutron star exert on spacetime and the

PV is 0.00001, 0.001, and 0.5 respectively. With the help of
Appendix A, the Einstein equation can also be expressed in
the form

G��=6
1=r2�

=
T��
��c2

(2)

where r� is the Compton radius of the PP and �� is its mass
density. The ratio 1=r2� can be thought of as the PP’s Gaus-
sian curvature. In this latter form both sides of the equation
are dimensionless. As the curvature force, the mass density,
and the Gaussian curvature are intimately related to the PPs
in the negative-energy PV, it is easy to conclude that the Ein-
stein equation and General Relativity must also be intimately
related to that vacuum state.

The PV-cosmology modeling begins in the next section
which concerns the expansion of the cosmos. Since little is
known about the PV at the present time, however, the calcula-
tions in that section and the one following it are a bit sketchy
and of a cursory nature.

The PV cosmology must address the question of how PPs
from the PV are injected into free space to populate the visible
universe with the particles and fields upon which the larger
components of the universe are built. A scenario for this in-
jection process that somewhat parallels the quasi-steady-state
theory of PP creation is presented in Section 3, the main dif-
ference being that in the quasi-steady-state model the PPs
evolve from “creation fields” while in the present theory they
spring directly from the negative-energy PV state.

A comments Section 4 closes the main text of the pa-
per. Appendix A gives a brief description of the PV theory to
date and Appendix B compares the PV to the cosmological-
constant term in the Einstein field equation.

2 Cosmological expansion

The mass density of the degenerate PV state in the PV cos-
mology is roughly equal to the PP mass density

�� � m�
4�r3�=3

� 1094 [gm cm�3] (3)

where m� and r� are the PP mass and Compton radius re-
spectively. If we somewhat arbitrarily take the universal
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mass density as �m � 10�30 [gm cm�3], then the ratio
�m=�� � 10�124 is vanishingly small. Thus it is unreason-
able to expect that the visible universe can effect the expan-
sion or contraction of the cosmos as it does for the universe
in the big-bang and quasi-steady-state cosmologies. This fact
leads to the conclusion that the expansion of the universe must
be determined by that of the PV itself.

The expansion of a homogeneous and isotropic universe
is characterized by the expansion factor S (= S(t)) in the
Robertson-Walker line element [3, p. 111]

ds2 = c2dt2 � S2
�

dr2

1� kr2 + r2d�2 + r2 sin2� d�2
�

(4)

where (t; r; �; �) are comoving coordinates, and where
k=+1, k=�1, and k= 0 denote a universe with a posi-
tive, negative, or zero curvature respectively. The Robertson-
Walker metric is used to determine the “kinematic” properties
of the universe for any given S, the dynamics of the expan-
sion only appearing implicitly in the time dependence of S.
For example, (4) can be used to derive the standard expres-
sions for the redshift z [3, pp.112-113] and the Hubble con-
stant H [3, pp.118–119]:

1 + z =
1
S

(5)

H =
_S
S

(6)

without specifying the particular dynamics of the expansion.
Thus these relations are equally valid in the big-bang, quasi-
steady-state, and PV cosmological models.

To determine the dynamics of the expansion factor in the
big-bang and quasi-steady-state cosmologies, some form of
the Einstein equation (2) is used. Both models start by cal-
culating the Einstein tensor G�� from the metric coefficients
of the Robertson-Walker line element (4). The standard big-
bang cosmology then assumes various energy-momentum
tensors for the right side of (2) to derive the Friedmann equa-
tions for S in the various phases of the expanding universe [2,
pp.48–50]. An early version of the quasi-steady-state model
modifies the numerator on the right side of (2) to include a
“creation field” for generating PPs, then derives Friedmann-
like equations for the expansion-factor dynamics [3, pp.322–
324]. As the expansion-factor dynamics in the PV-cosmology
model is determined by the expansion of the PV itself, how-
ever, it isn’t clear what part the Einstein and Friedmann-like
equations may or may not play in the research surrounding
the PV cosmology.

There is no compelling evidence that the constants gov-
erning the fundamental laws of physics were once different
from their present values [1, p. 1056]. This statement bares
significantly on the nature of the PV expansion — it implies,
in effect, that the PV expands by an increase in its content
rather than a change in its properties. Assume that the number

density of the PPs in the PV decreases as the PV expands for
example. Then the density of the virtual fields of the quan-
tum vacuum [5] would also decrease because the PV is the
source of the quantum vacuum [6]. This in turn would de-
crease the magnitude of the dominant Bethe term [7, p. 208]
in the 2S1=2 � 2P1=2 Lamb shift of atomic hydrogen as the
Bethe term is proportional to the density of the virtual fields
[5, p. 91]. Thus the 2S-2P transition frequency of the atom
would decrease as the PV expands, contradicting the assump-
tion in the first sentence of the paragraph.

3 Planck Particle creation

It is assumed that a sufficiently stressed PV will release one
or more of its PPs into the visible universe in a manner re-
sembling a mini-big-bang outburst. “[This] requirement is
in agreement with observational astrophysics, which in re-
spect of high-energy activity is all of explosive outbursts, as
seen in the QSOs, the active galactic nuclei, etc. The pro-
fusion of sites where X-ray and -ray activity is occurring
are in the present [quasi-steady-state] theory sites where the
creation of matter is currently taking place” [3, p. 340]. It is
then assumed that the new free-space PP decays into a num-
ber of secondary particles. The lifetime of the free PP is as-
sumed to be governed by the time required (t� = r�=c �
10�44 sec) for the internal PP fields (traveling at the speed
of light) to decay within the confines of the PP Compton ra-
dius r�.

It is too early in the PV-cosmology theory to present any
substantial analysis concerning the details of the activity men-
tioned in the previous paragraph. We are left, then, with a
heuristic description of the PP-creation process in terms of
the Einstein field equation. Taking the (covariant) divergence
of (2) gives

G��;� � 0 =) T��;� = 0 (7)

showing that the standard Einstein equation provides no
mechanism for creating PPs due to the vanishing divergence
of the energy-momentum tensor. Assume that at some point
x� (� = 0; 1; 2; 3) in empty spacetime (T�� � 0 before x0)
a PP is ejected from the PV into the free space of the visible
universe. In the standard action (see Appendix A)

A =
1
2c

�
��c2
1=r2�

�Z
R
6
p�g d4x+mac

Z
dsa (8)

whose variation yields (2), the world lines are considered to
be continuous in the full range 0 < jx�j < 1. At the point
x� where a PP is created, however, the PP world line begins.
It is possible to modify (8) in that case so its variation leads
to the modified Einstein equation [3, p. 323]

G��=6
1=r2�

=
T��(m�) + T ��(pv)

��c2
(9)

where, as interpreted here, the calligraphic tensor in the nu-
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merator at the right is associated with processes taking place
within the PV.

The free-PP creation represented by (9) is explained phys-
ically as an interchange of energy and momentum between
the PV and the PP injected into the visible universe. The di-
vergence of (9) now leads to

T��(m�);� = �T ��(pv);� (10)

which is meaningful only if the right side of the equation
leads to a positive free-space PP energy [3, p. 325]; i.e. only
if the 0-0 component of the PV energy-momentum tensor is
negative. That this tensor component is negative follows from
the fact that the PV state is a negative-energy state. Thus we
have

T 00
(m�) = �T 00

(pv) = +��c2 (11)
as

T 00
(pv) = ���c2 (12)

since the PP mass-energy density of a PP within the PV
is � ��c2.

4 Sundary comments

It is assumed that the origin of the light nuclei and the cosmic
microwave background in the PV-cosmology model are es-
sentially the same as those discussed in the quasi-steady-state
model [3, pp.350-358].

Both the big-bang and the quasi-steady-state cosmologies
are based on field theory, the big-bang cosmology on the
quantum field theory of the early universe [2] and the quasi-
steady-state cosmology on the so-called “creation fields”.
The choice of a field-theoretic approach reflects, of course,
the current paradigm that fields are the fundamental building
blocks of the particles and subparticles out of which the ob-
served universe is constructed. With the advent of the PV
theory, however, these fields now have a charged source (the
PPs within the PV) as their origin. It is this charged source
that is the foundation of the PV cosmology presented here.

The action integrals in (A8) of the appendix tie the cre-
ation field C� of the quasi-steady-state theory [3, p. 321] di-
rectly to the PPs in the PV.

The calculations in Appendix B show that the PV can-
not be identified with the cosmological-constant term in the
Einstein field equation.

Appendix A: The Planck Vacuum

The PV [4] is a uni-polar, omnipresent, degenerate gas of negative-
energy PPs which are characterized by the triad (e�;m�; r�), where
e�, m�, and r� (��=2�) are the PP charge, mass, and Compton ra-
dius respectively. The vacuum is held together by van der Waals
forces. The charge e� is the bare (true) electronic charge common
to all charged elementary particles and is related to the observed
electronic charge e through the fine structure constant � = e2=e2�

which is a manifestation of the PV polarizability. The PP mass and
Compton radius are equal to the Planck mass and length respec-
tively. The particle-PV interaction is the source of the gravitational
(G = e2�=m2�) and Planck (~ = e2�=c ) constants, and the string of
Compton relations

r�m� = � � � = rcm = � � � = e2�=c2 = ~=c (A1)

relating the PV and its PPs to the observed elementary particles,
where the charged elementary particles are characterized by the triad
(e�;m; rc), m and rc being the mass and Compton radius (�c=2�)
of the particle (particle spin is not yet included in the theory). The
zero-point random motion of the PP charges e� about their equilib-
rium positions within the PV, and the PV dynamics, are the source of
the quantum vacuum [6] [5]. Neutrinos appear to be phonon packets
that exist and propagate within the PV [8].

The Compton relations (A1) follow from the fact that an ele-
mentary particle exerts two perturbing forces on the PV, a curvature
force mc2=r and a polarization force e2�=r2:

mc2

r
= e2�
r2 =) rc = e2�

mc2
(A2)

whose magnitudes are equal at the particle’s Compton radius rc.
Equating the first and third expressions in (A1) leads to r�m� =

e2�=c2. Changing this result from Gaussian to MKS units yields the
free-space permittivities [4]

�0 = 1
�0c2

= e2�
4�r�m�c2

[mks] (A3)

where �0=4� = r�m�=e2� = rcm=e2� = 10�7 in MKS units. Con-
verting (A3) back into Gaussian units gives

� = 1
�

= e2�
r�m�c2

= 1 (A4)

for the permittivities.
A feedback mechanism in the particle-PV interaction leads to

the Maxwell equations and the Lorentz transformation. General Rel-
ativity describes the spacetime-curvature aspects of the PV. The ul-
timate curvature force [4]

c4

G
= m�c2

r�
(A5)

that can be exerted on spacetime and the PV is due to a free PP, large
astrophysical objects exerting a curvature force equal to Mc2=R,
where M and R are the mass and radius of the object. Equation
(A5) leads to the important ratio

c4

8�G
= 1

6
��c2
1=r2�

(A6)

where �� � m�=(4�r3�=3) is the PP mass density and 1=r2� is its
Gaussian curvature.

Using (A6), the Einstein-Hilbert action Ag can be expressed as

Ag = c3

16�G

Z
R
p�g d4x =

= 1
2c

�
��c2
1=r2�

�Z
R
6
p�g d4x

(A7)
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leading to the total PP-creation action [3, p. 321]

A = 1
2c

�
��c2
1=r2�

�Z
R
6
p�g d4x+mac

Z
dsa +

+ f
2c

Z
C�C�p�g d4x�

Z
C� da�;

(A8)

which includes the usual inertial second term, and the third and
fourth creation-field terms containing C�. The effect of the PV PPs
on this equation is clearly evident in the parenthesis of the first term
which is the ratio of the PP’s mass-energy density to its Gaussian
curvature.

Appendix B: Cosmological constant

The Einstein equation including the cosmological constant � is

(G�� + �g��)=6
1=r2�

= T��
��c2

; (B1)

which can be expressed as

G��=6
1=r2�

= T�� + T��
��c2

; (B2)

where

T (vac)
�� � �1

6
��c2
1=r2�

�g�� (B3)

leads to

�vacc2 � T00

g00
= �1

6
��c2
1=r2�

� (B4)

which is often seen as the “vacuum energy”.
From (B4)

�vac
��

= �1
6

�
1=r2�

(B5)

the ratio being negative for a positive �. If the vacuum density �vac
is identified as the PP mass density ��, then

� = 6
r2�
� 2:3� 1066 [cm�2] : (B6)

As � should be close to zero, it is clear that the PV is not related
to the cosmological constant.
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An alternative theory being analogous to Einstein’s special theory of relativity is pre-
sented. While Einstein based his theory on the relativity principle of motion and con-
stancy of the velocity of light, this theory assumes an absolute frame of reference and a
general length contraction. Both concepts are taken from general relativity and applied
to an asymptotically flat space. This results in a transformation group being differ-
ent from the Lorentz transformation and a Eucledian addition theorem of velocitites.
The results are in accordance with experiments and long known discrepancies between
special relativity and experimental findings are resolved as well as paradoxa being in-
troduced by Einstein’s original theory. Physical facts being unintelligible before can be
interpreted in the light of the alternative theory.

1 Introduction

The theory of special relativity of Albert Einstein is essen-
tially based on the constancy of the velocity of light in all iner-
tial frames of reference. Einstein introduced this as a physical
principle or axiom in order to explain the negative outcome of
the experiments of Michelson and Morley who tried to prove
the existence of a drift velocity of the earth in a hypothetical
ether. However, in the last years a number of experiments
came up showing that the velocity of light is not an incon-
trovertible constant. For example Nimtz [5, 6] has realised a
transfer of information by microwaves by speeds faster than
light. His explanations are wound and based on quantum ef-
fects (tunnelling) which should not appear in systems with
exclusively macroscopic dimensions. Most convincing would
be an explanation by classical physics which is also the ba-
sis of electromagnetic signal transmission. Another impor-
tant development is the re-interpretation of the Michelson-
Morley experiments [10, 11] which show that they had not
been evaluated in the right way. When doing this, earlier in-
consistencies are resolved and an absolute motion of the earth
against the space background is detected. This revolutionary
insight has not been recognized in the scientific public so far.
Therefore re-thinking about the concepts of special relativity
is required.

A second fundament of modern physics is the principle
of relativity. Besides the reasonable assumption that laws of
nature work in the same way in all reference frames not being
accelerated to one another, it is postulated that the transforma-
tion between reference frames is always of the same form. It
is assumed that all frames of reference be of equal kind. This
consideration does not take into account that the universe is
structured by masses which define reference points for phys-
ical processes. The whole universe is impleted with gravi-
tational and electromagnetic fields. This also holds for the
“empty” ranges between galaxies and galaxy clusters since
the particle density is non-vanishing in interstellar space to

today’s knowledge. So we can say that in certain areas of
the cosmos we can neglect the influence of cosmic fields, but
normally we use the visible beacons (earth, sun, centers of
galaxies) to define reference frames. The cosmos as a whole
is described by general relativity and Mach’s principle which
states that the masses define the space. Without masses there
is no space at all. Crothers [4] has pointed out that there is no
smooth transition from general to special relativity:

“Special Relativity is merely an augmentation to Min-
kowski space by the arbitrary insertion of mass and en-
ergy into Minkowski space with the constrained kine-
matic features of Minkowski space applied to those
masses and energies”.

This view is corroborated by newer advanced theories like
Einstein-Cartan-Evans theory [18] where space is not empty
but filled with the background or “vacuum” potential. With-
out potential there is no space, in accordance with Mach’s
principle. So it should become clear that general relativity (or
any similar advanced theory) is necessarily required to define
a basis for all physics. One can abstract then from these foun-
dations and concentrate on other problems, for example ex-
periments of particle collisions, without taking care of these
basic premises. When it comes to define the frames of refer-
ence, however, the state of motion relative to the absolutely
defined environment is important again.

All these arguments become much more intelligible if we
assume that the space between massive particles has a state
of motion. This sounds like introducing the old ether idea
from the nineteenth century. Our knowledge has only little
improved since then. The ether was abolished by Einstein, but
indirectly re-introduced by himself in his theory of general
relativity. It is possible to define an “objective” frame of ref-
erence constituted by existing masses. Considering Einstein-
Cartan-Evans theory, space is not empty but itself a medium
which for example has optical properties [18]. We can ex-
tend the comparison with usual media by assigning a state of
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motion to the space itself. Masses “swim” in this space and
therefore reflect its movement. Conversely, the fields created
by the masses determine the surrounding space in a fed-back
manner. Both entities cannot be considered independently
from each other.

In Einstein-Cartan-Evans theory, the covariance principle
is the most general description base of physics, indicating that
all laws of nature are independent of the coordinate system
or reference frame. Our physical environment is defined by
the objectively existing structure which is defined by masses,
charges and fields. These are adequately described in an ob-
jective manner by laws of nature being independent from sub-
jective human receptions.

In this article we try to modify Einstein’s axioms of spe-
cial relativity in such a way that constancy of light velocity is
not required to be introduced axiomatically. It will be shown
that this is an artifact of measurement. Instead of this ax-
iom we demand for an absolute frame of reference. As a
consequence, we will arrive at transformation laws similar to
Einstein’s which depend on the absolute reference frame but
change asymptotically to Einstein form in certain important
application cases. In particular we will obtain a different ad-
dition theorem of velocities allowing for superluminal speed.
The well known Lorentz transformation and symmetry will
evolve not to be valid in our new framework. A more gen-
eral four-dimensional affine transformation will take its place
which has mathematical group properties as well. We will
end with a short discussion of the experiments mentioned it
this introduction in the light of the new theory.

2 Problems in experimental proofs of Special Relativity

In the well-known experiment of Michelson and Morley,
which was repeated several times at the beginning of the
twentieth century (see a review in [11]), it was apparently
shown that the velocity of light c is the same in all directions
relative to the earth orbit. This was considered to be a proof
that this velocity is a general constant in nature under all cir-
cumstances. We will critically analyse this in the following.

Firstly we have to comment that this is valid only in spe-
cial relativity, i.e. for unacceletated motion. In general rela-
tivity c depends on the gravitational field (or on all fields in
case of unified field theories). This dependence is well proven
experimentally. Therefore we should state that constancy of
c is only valid in vacuo with neglection of all fields.

Secondly we inspect the way in which measurements of
the speed of light were done. These were carried out by in-
terferometers where the runtime of light rays was compared
between rays having been reflected in different directions. If
there is a directional dependence on propagation speed, a
characteristic interferometric pattern should occur if the ap-
paratus is rotated. Within assumed experimental uncertain-
ties, no such pattern was observed. Since the length of the
apparatus was not changed it was concluded that the velocity

Fig. 1: Length contraction in experiments of Michelson Morley type.

of light was the same in all directions. What not has been
considered in this explanation is the effect of length contrac-
tion. According to Einstein’s special relativity, the measured
length changes with the same factor as the measured time,
if the frame of reference is changed by modifying relative
speed between observer and object. For the experiments of
Michelson-Morley type this means that the run-time of light
as well as the interferometer length change, as soon as the
apparatus is rotated relative to a hypothetical absolute direc-
tion of motion (“ether wind”). The compression factor is the
same for length and time, therefore we obtain for two direc-
tions with length l and l0 and run-time t and t0:

c =
l
t

=
l0
t0 = const: (1)

According to Fig. 1 the number of wave trains is the same
irrespective of the compression factor. No wonder the value
of c is constant. This type of experiments does not prove the
details of the Lorentz transformation.

The re-evaluation of experiments of Michelson-Morley
type by Cahill et al. [10, 11] has revealed that the evaluation
of experimental data was done by erroneously assuming no
length contraction. As explained above, taking length con-
traction into account leads to a meaningless null experiment.
This is the outcome of modern laser interferometer spectro-
scopy in vacuo. However, the older experiments were per-
formed by interferometers in air or helium. Therefore the re-
fraction index is different from unity (although nearby). Do-
ing the evaluation with respection of length contraction as
well as refractive index effects leads indeed to a non-null re-
sult. Surprisingly, all the older experiments, evaluated in this
way, then prove a velocity of the earth orbit relative to the
space background of 365 km/s within error bars, see Fig. 2
taken from [10,11]. This is the most significant experimental
hint for the physical relevance of a background field. How-
ever, it must be added that the most precise value in Fig. 2,
measured from the constant background radiation by the
COBE satellite, is controversial. Robitaille [17] has argued
that the background radiation is an earth-made effect due to
the black body radiation of the oceans. Further satellite mis-
sions will clear this up.

Horst Eckardt. An Alternative Hypothesis for Special Relativity 57



Volume 2 PROGRESS IN PHYSICS April, 2009

Fig. 2: Speed of earth orbit (reproduction from [10]) in km/s, de-
termined from various Michelson interferometer experiments (1)–
(4) and COBE (5): (1) Michelson-Morley (noon observations), (2)
Michelson-Morley (18h observations), (3) Illingworth, (4) Miller,
Mt.Wilson, and finally in (5) the speed from the COBE satellite ob-
servation of the CBR (Constant Background Radiation) microwave
spectrum dipole term.

A third problem concerns the interpretation of length con-
traction and time dilation. Originally Einstein believed that
these changes are virtual, i.e. are only measured values of
an observer moving relative to another system. The scales of
the real objects never change. Later after upcoming of gen-
eral relativity it became clear that scales have to change in
reality because the gravitational field is real in the sense that
it evokes real, measurable forces. So it was implicitly as-
sumed that also the scale changes of special relativity have to
be real. This however is a severe philosophical problem since
two observers measuring the same object would obtain differ-
ent values for identical physical properties of the object. This
discrepancy has not been addressed in literature until today
and reflects inconsistencies in the transition from general to
special relativity.

3 Length contraction

Since length contraction is the central property of this theory
as well as Einstein’s special relativity, we will give an expla-
nation how this can be interpreted as a geometric property of
fast moving circular or spherical objects. We assume a sim-
ple model of matter where atoms are built from an atomic
nucleus and orbiting electrons moving in spherical orbits. An
observer may travel relative to such an atom with velocity
� v, and the orbital tangential velocity of an electron may be
ve (near to speed of light). Then the observer sees the elec-
tron moving on a curve which is a cycloid or trochoid, see
Fig. 3. The form of the curve depends on the ratio of radii
a=b, where a is the radius of the “rolling” circle and b is the
radius of the path of the electron. For the uniform velocity v
we have

v = !a (2)

Fig. 3: Several forms of trochoids, also called common cycloid, cur-
tate cycloid and prolate cycloid [19].

with ! being the angular velocity of angle � rotating in time t:

� = !t : (3)

For the x and y coordinates the parameter form of the
cycloid is given by

x = a�� b sin� ; (4)

y = a� b cos� : (5)

In the rest frame of the atom we have

ve = !b (6)

for the rotating electron. This equation determines the angu-
lar velocity !. The same ! has to be used in formula (2).
The roll radius a is determined then by the relative velocity
v. If an observer tries to measure the diameter of a moving
atom, he will see the reduced thickness of the cycloidal loop.
For v = ve we obtain a = b, the diameter goes to zero. For
v > ve there is only an unharmonic wave left and there is no
measurable diameter of an atomic structure.

The diameter can be calculated quantitatively as follows.
The x values for the diameter are defined by a vertical tangent
of the cycloid, i.e.

dx
d�

= 0 ; (7)

which is according to Eq. (4):

a� b cos�0 = 0 (8)
or

�0 = arccos
�a
b

�
: (9)

Inserting �0 into (4) gives for the x values where the di-
ameter is being measured

x0 = a arccos
�a
b

�� b r1� a2

b2
: (10)

Since we have
x(� = 0) = 0 (11)
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the value x0 describes the radius of the atom measured from
an observer frame with relative speed v. The well-known
square root term is contained in this expression. To obtain
this term exclusively we have to tentatatively modify Eq. (4)
by replacing a by another parameter a1. Then we obtain from
(10):

x0 = a1 arccos
�a
b

�� b r1� a2

b2
(12)

and in the limit a1 ! 0 the observed radius of the atom be-
comes

r = jx0j = b
r

1� a2

b2
; (13)

which with help of (2) and (6) can be rewritten to

r = b

s
1� v2

v2
e
; (14)

which is the experimentally found expression for length con-
traction. So at least qualitatively we can explain length con-
traction from the geometric effect of relative circular motion.

4 Special Relativity according to Einstein

We describe shortly the axiomatic foundation of special rel-
ativity as given by H. Ruder [1]. All physical conclusions
follow from the Lorentz transformation. This can be derived
from three postulates or axioms:

1. Homogeneity and isotropy of space;
2. Principle of relativity;
3. Constancy of light velocity.

The first axiom is foundational for all physics. The three-
dimensional space free of masses has no places which are sin-
gled out from others and all directions are equivalent. From
classical mechanics we know that these properties lead to the
conservation laws of energy and angular momentum. Both
statements are equivalent. Therefore axiom 1 is unsurrend-
able.

The relativity principle states that all inertial frames are
equivalent for describing the laws of physics. A difference
by measurement is not detectable. The prerequisite is that
a global, absolute reference frame does not exist. This is at
variance with general relativity as well as newer experiments
explained in section 2. The relativity principle would be valid
only if space were exactly homogeneous, i.e. free of matter.
Then, according to general relativity and Mach’s principle,
the space would not exist at all. Therefore the relativity prin-
ciple is a simplifying assumption which we will abandon in
the following.

In the same way we do not claim absolute constancy of
light velocity (c) in all reference frames. From general rela-
tivity it follows that this velocity is not constant but dependent
on the strength of the gravitational and other fields. One has

to negate this assumption even in special relativity as soon as
optical refraction plays a role where the transmission speed
of waves is v = c=n with n being the index of refraction.
c can only be considered to be a value of light propagation
in vacuo with absence of fields of every kind. Another way
of circumventing the a priori assumption of a constant c is
to measure the transformation law for the proper time of fast
moving systems. In this way the well-known Myon experi-
ment can be interpreted for example [1]. It comes out that the
transformation law can be cast in a mathematical form con-
taining a constant c which “may have something to do” with
light propagation in vacuo. We conclude that only the first
axiom has withstood a critical analysis.

5 Modified Special Relativity according to this hypo-
thesis

We will derive now the alternative theory resting upon the
three fundamental assumptions:

1. Homogeneity and isotropy of space;
2. Existence of an absolute frame of reference;
3. Physical length contraction.
The first axiom has already been discussed. The second

can be constituted by the fact that a more general theory,
which does not presuppose inertial systems, allows a refer-
encing system bound to the masses of the universe. Therefore
it makes no sense to ignore this fact. If an absolute frame of
reference is of physical relevance, it will have an effect. This
is not so obvious from general relativity, because the gravi-
tational field is no more effective outside the range of galax-
ies. It would be more plausible to have a principle of close-
ranging or local interaction. In this class of principles belong
the ether theories. Already Einstein talked of an “ether space”
which was immaterial to his opinion. Sometimes new ether
theories come up as for example by Schmelzer [2] where the
ether has the property of mediating the principle “actio = re-
actio”. An absolute frame of reference can be related to this
ether. It is analogous to a medium for sound waves and the
concept of non-homogeneity and the refraction index of wave
propagation are applicable. This shows that an ether concept
can be added to general relativity, if not already existing in it.
An attempt to incorporate it into technical applications was
made by Meyl [3].

The ether concept is not necessary when we base our
considerations on a unified field theory like Einstein-Cartan-
Evans theory [18]. Then space itself is a medium which
shows optical properties and a local structure which is de-
fined by the vacuum or background potential. The new in-
terpretation of Michelson-Morley experiments is compatible
with this concept.

As a third prerequisite we assume length contraction first
introduced by Fitzgerald and Lorentz. As explained above
this contraction is required to give consistent results of the

Horst Eckardt. An Alternative Hypothesis for Special Relativity 59



Volume 2 PROGRESS IN PHYSICS April, 2009

Fig. 4: Reference frames at rest (K) and with relative motion (K 0).

interferometric experiments. If a body moves with velocity
v relative to the background, all lengths are shortened by a
factor of

 =
r

1� v2

c2
: (15)

This contraction is real and not an artifact of measurement.
According to the considerations above this is an effect of rel-
ative motion. This factor also appears in electrodynamics
where it describes the transformation law between electro-
magnetic fields. Matter exists on an electromagnetic basis.
Consequently, this factor also appears in relativistic quan-
tum mechanics. We will see in the next section that length
contraction has an effect on time measurements so that local
(“proper”) times of moving systems are impacted in the same
way.

6 Derivation of the alternative theory

6.1 The transformation equations

In the following we will derive the transformation law be-
tween different reference frames. We will first give the trans-
formation law of special relativity in the most general case as
described in [1]. The result of the first axiom can be used di-
rectly because it is identical in Einstein’s and our theory. We
define a coordinate system K at rest and a system K 0 moving
with velocity v relative to K. The system K is the absolute
rest frame as for example measured by experiment. Coordi-
nate axes are chosen so that all axes between K and K 0 are
in parallel, and motion is in x direction of system K. Then
we can restrict consideration to one dimension. According
to [1] the transformation law between K and K 0 then has the
general form

x0 = b(v)(x� vt) (16)

x = b0(v0)(x0 + v0t0) (17)

where b(v) and b0(v0) are functions of the velocity. The
second axiom has already been respected by assuming K to
be at absolute rest. It should be noted that v is not an arbitrary
relative velocity between any two frames but the velocity be-
tween the rest frame and another one.

Since the relativity principle is not valid it makes a differ-
ence if we transform from the resting to the moving system
or backward. The functions b and b0 therefore are different.
b is defined by length contraction according to the third ax-
iom. Since length contraction is real there is no symmetry
between both systems. All length scales in moving systems
are larger than in the rest system. The length l of a moving
system measured from the rest system then is

l0 = l
r

1� v2

c2
: (18)

All scales are shrinking, i.e. for measuring the same
length (the measured value read from a scale) in K 0 more
scale units have to be used than in K if measurement is done
when K 0 flies by in K. The length �l (in units of K or K 0
respectively) transforms then as

�l0 = �lq
1� v2

c2

(19)

and the function b from (16) is defined by

b =
1q

1� v2

c2

: (20)

By backtransformation from K 0 to K we have to obtain
the original length again, therefore

b0 = b�1 =
r

1� v2

c2
: (21)

If K 0 moves with v, observed from K, then K moves
with �v observed from K 0. This is the only place where
the relativity principle remains valid. The sign of v however
does not play a role in (20). The reversal of the sign of v has
already been taken into account in Eqs. (16, 17). Therefore
we can assume v = v0 in the following.

As already mentioned, the length contraction also leads to
a change in time scales as we can see from insertion of (16)
into (17) (or vice versa) with regard of b and b0:

t0 = bt =
tq

1� v2

c2

: (22)

In total we arrive at the complete non-symmetric set of
transformation equations

x0 = x� vtq
1� v2

c2

; (23)

t0 = tq
1� v2

c2

; (24)
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x = (x0 + vt0)
r

1� v2

c2
; (25)

t = t0
r

1� v2

c2
: (26)

So far we have considered only two inertial frames with
one of them being at (absolute) rest. In case of several frames
moving arbitrary to one another, none of them can be assumed
to be the rest frame. Let us define two frames K 0 and K 00
whose coordinate origins move with speeds v1 and v2 relative
to the rest frame K. then we have for the length contraction
in both frames:

�l0 = �lq
1� v2

1
c2

; (27)

�l00 = �lq
1� v2

2
c2

: (28)

Setting them in relation to each other directly gives

�l0
�l00 =

s
c2 � v2

2

c2 � v2
1

(29)

or

�l00 = �l0
s
c2 � v2

1

c2 � v2
2
: (30)

Only in case v1 << v2 this approximately results in the
expression being know from special relativity:

�l00 = �l0q
1� v2

2
c2

; (31)

where v2 is approximately the relative velocity between fra-
mes K 0 and K 00. To derive the complete transformation law
between K 0 and K 00 we first write the transformation of both
frames from the rest frame:

x0 = x� v1tq
1� v2

1
c2

; (32)

t0 = tq
1� v2

1
c2

; (33)

x00 = x� v2tq
1� v2

2
c2

; (34)

t00 = tq
1� v2

2
c2

: (35)

Mutual insertion then gives the direct transformation

Fig. 5: Reference frames for addition theorem of velocities.

K 0!K 00 as well as the reverse transformation K 00!K 0:

x00 = (x0 � (v2 � v1)t0)
s
c2 � v2

1

c2 � v2
2
; (36)

t00 = t0
s
c2 � v2

1

c2 � v2
2
; (37)

x0 = (x00 + (v2 � v1)t00)
s
c2 � v2

2

c2 � v2
1
; (38)

t0 = t00
s
c2 � v2

2

c2 � v2
1
: (39)

Thus we have arrived at the general transformation laws
between arbitrary frames of reference. For the back trans-
formation the square root terms change to their inverse, and
the sign of the vt term changes. These expressions cannot
be reduced to a simple dependence on the speed difference
v = v2 � v1. They depend on the absolute speeds of the
inertial systems against the rest frame. Space and time coor-
dinates transform with the same factor.

6.2 The addition theorem of velocities

We consider three coordinate systemsK, K 0 andK 00 . Frame
K 0 is moving with velocity v1 relative to the rest frame K
andK 00 with velocity v2 relative toK 0. We will compute now
with which velocity v3 then K 00 moves relative to K (Fig. 5).
At time t = t0 = t00 = 0 all three coordinate origins shall
coincide, so we have

x = v3t ; (40)

x0 = v2t0 : (41)

The transformation equations (25–26) then with (41)
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yield the connection between x(x0; t0) and t(t0):

x = (x0 + v1t0)
r

1� v2
1
c2

= (v2t0 + v1t0)
r

1� v2
1
c2
; (42)

t = t0
r

1� v2
1
c2
: (43)

By applying (40) the resulting velocity of K 00 is

v3 =
x
t

= v1 + v2 : (44)

This is the addition theorem. The velocities add as vectors,
in contrast to special relativity where we have the Einsteinian
addition theorem (see Table 1). According to the latter, the
sum of two velocities cannot exceed velocity of light. In this
theory velocities add as vectors as in the Galilean transforma-
tion. The experimental consequences will be discussed in the
subsequent section.

Now let’s consider how velocities transform between fra-
mes directly. We assume that in K 0 and K 00 the same move-
ment (for example of a mass) is measured locally by the ve-
locities

v0 = x0
t0 (45)

and

v00 = x00
t00 : (46)

By inserting (36, 37) into (46) we find

v00 = v0 � (v2 � v1) : (47)

Velocities transform according to the Galilean transfor-
mation. In particular there is no limiting velocity.

7 Consequences

7.1 Comparison with Special Relativity

Both theories show a high degree of similarity, but there are
some essential differences (see Table 1). In Einsteinian rel-
ativity the transformations are the same in both directions
which is a consequence of the relativity principle. In the al-
ternative theory the contraction factor reverses. This follows
from the fact that this theory is based on an absolute frame of
reference. This will be further discussed below.

There is a principal difference in the time transformations.
In the alternative theory time is stretched by the same factor as
length. In Einstein’s relativity there is an additional term con-
taining the space coordinate. So there is a coupling between
space and time which ensures the basic axiom of constancy
of c. In our theory space and time are decoupled, leading to
a different metric. The coupling between space and time co-
ordinates can be interpreted as follows. Consider two clocks
in the rest frame, one at the coordinate origin and the other at
location x = x0, y = 0, z = 0. In Einstein’s theory clocks

This Theory Special Relativity

Coordinate Transformation

x0 = x� vtq
1� v2

c2

x0 = x� vtq
1� v2

c2

x = (x0 + vt0)
r

1� v2

c2
x = x0 + vt0q

1� v2

c2

y0 = y y0 = y
z0 = z z0 = z

t0 = tq
1� v2

c2

t0 =
t� v

c2 xq
1� v2

c2

t = t0
r

1� v2

c2
t =

t0 + v
c2 x
0q

1� v2

c2

Addition Theorem of Velocities

v3 = v1 + v2 v3 = v1 + v2

1 + v1v2
c2

Table 1: Comparison of theories.

must be synchronized. When the first clock registers an event
at x = 0, t = 0, this will be seen at x0 only after a delay
which for light signals is t0 = x0=c. This delay of the mea-
suring process is “built in” into special relativity and explains
the appearance of the term (v=c2)x0 in the time transforma-
tion t(t0) in Table 1.

In contrast to this, the alternative theory does not make
any assumptions about measuring processes. Since there is
no upper limit of relative velocities, it should be possible to
construct an apparatus which measures a global time without
significant delay. Such experiments have been discussed in
section 1. Alternative methods of clock synchronization have
been introduced by Tangherlini [7–9] who proposed a con-
cept of a preferred frame similar to this work. He based his
work (already done before 1958 [7]) on a partially instanta-
neous synchronization of clocks and arrived at transformation
equations similar, but not identical, to ours. This corrobo-
rates that the measuring term x0=c built into Einstein’s the-
ory is artificial. Tangherlini was not aware at that time of the
anisotropy of c found experimentally in later years, for exam-
ple by Cahill. Therefore he assumed full Lorentz invariance
(i.e. isotropy) in each inertial frame. He defined the special
form of time transformation so that it was consistent with his
assumptions on clock synchronization. This is an essential
difference to our work where the time transformation follows
by calculation from the space transformation. Tangherlini ob-
tained different values of c in each frame and a non-linear, di-
rection dependent formula which relates these values to one
another. In contrast, our calculation gives a vectorial addition
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of all speeds including the signal transmission speed and rel-
ative frame speed. This is because we do not assume Lorentz
invariance in each frame as Tangherlini did. Compared with
the experiments of Cahill, our results are in accordance with
them, but Tangherlini’s are not.

Also in special relativity there is no real need for integrat-
ing signal transmission times into the transformation formu-
las. In addition, there are signal transmission speeds smaller
than c, therefore it cannot be seen why experiments carried
out with transmission velocity c should play a dominant role.
If the space distance between clocks is known (and it can be
measured of course), there is no problem to calculate the time
of events at the other clock positions. This is like introducing
time zones around the globe. We exactly know what time it
is in other parts of the world without making any measure-
ment. Occurrence of events at the same time can be defined
by using the time of the rest frame.

While the Lorentz transformation represents a rotation in
fourdimensional space, the transformation introduced by this
theory has lower symmetry, it can be considered to be an
affine mapping, i.e. a translation with stretching of scales.
The transformation exhibits group properties as does the Lo-
rentz transformation. This is shown in Appendix A in detail.
We therefore conclude that the transformation introduced in
this work can be used similarly to the Lorentz transformation
as a basic property of higher developed theories, for example
general relativity.

7.2 Comparison with known problems of Einsteinian
theory

There are several interpretation problems in conventional spe-
cial relativity. When comparing two frames being in mo-
tion to one another, the length rods of the other system ap-
pear shortened, seen from the system where the observer re-
sides. This follows from the symmetry of the transformation
law (Lorentz transformation). When the speed of one sys-
tem is adopted to that of the other system, the difference in
rod length disappears. At least Einstein has assumed that the
scale change is a measuring artifact and not real.

Time dilation is regarded differently. In the well known
twin paradoxon it is assumed that the integral taken over the
coordinate time is identical to the real elapsed time, the scale
change is considered to be a real effect as is done in general
relativity. There is a contradiction in the interpretation. Con-
trary to this, the alternative theory assumes the scale changes
always to be real. Since all length changes are related to the
rest frame, there is no “symmetry” between measurements
when one moving system measures quantities in another. For
the twin paradoxon this means that the twin having higher
absolute speed ages faster than the other one. Both twins can
calculate the age of the other twin and come to the same re-
sult. All contradictions are removed.

The change of the time coordinate deserves further com-

ments. As is generally known the Lorentz transformation is a
rotation in four dimensions, therefore the length of vectors is
an invariant as can be expressed by

x2 + y2 + z2 � c2t2 = x02 + y02 + z02 � c2t02: (48)

From this the differential invariance condition of the Min-
kowski metric follows:

dx2 +dy2 +dz2�c2dt2 = dx02 +dy02 +dz02�c2dt02: (49)

To the knowledge of the author, experimental tests of spe-
cial relativity, however, are not based on the invariance prin-
ciple but on the coordinate transformations where the proper
time of a moving system is computed by integrating the equa-
tion

d� = dt
r

1� v2

c2
: (50)

Considering the time transformation for special relativity
in Table 1, this equation should generally read

d� =
�
dt� v

c2
dx
� r

1� v2

c2
: (51)

It is questionable if this formula ever has been tested ex-
perimentally. Experimenters always used setups where the
simplified Eq. (50) was sufficient. These types of checks of
special relativity have been made with very high precision.
For testing the Lorentz transformation thoroughly, however,
use of Eq. (51) would be required.

We conclude this section with a hint to relativistic me-
chanics which is also based on Eq. (50). Therefore the alter-
native theory gives the same results as special relativity, as far
as the lab system can be identified within sufficient precision
with the absolutely resting system. When experiments with
light are performed, this is the case. Relativistic mechanics
would look differently if experiments were performed in a
fast moving lab relative to earth.

7.3 Comparison with newer experiments and final re-
marks

As a last point we bring to mind the experiments of Cahill et
al. [10, 11] mentioned in sections 1 and 2. The authors stress
that older experiments of Michelson-Morley type were two-
way experiments, that means the distances in the interferom-
eter were passed twice by light rays, in contrary directions.
Thus a lot of information gets lost, and such experiments in
vacuo are even meaningless as already mentioned. With use
of modern electronics, one-way experiments have been car-
ried out by Cahill et al. It could be shown that light velocity is
indeed different in both directions compared to the motion of
the earth relative to the space background. Even fluctuations
in the background velocity were found. There is a full anal-
ogy to sound waves in media, with effects of speeds relative
to the observer and of the refraction index. Similar experi-
ments were carried out be de Witte [12]. Further independent
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confirmations are required. There are certain measurements
of Marinov [15, 16] which seem not to be consistent with
Cahill’s results, but it is not clear if the evaluation method
of Marinov is compatible with that of Cahill and this work.

The concept of the refraction index can be used to produce
superluminal processes by deploying special optical media
with a refraction index n < 1. Obviously, the experiments of
Nimtz [5, 6], who has transmitted audio data with superlumi-
nal speed, can be explained in this way. Since the input data (a
symphony of Mozart) was recognized as such after the trans-
mission, it is clear that useful signals can be transmitted with
such a speed. The old argument that a “phase velocity” v > c
cannot transport any information no longer holds. Thus our
above statements are corroborated that a global time can be
defined experimentally. Thornhill [14], and later Cahill [13],
have further shown that Maxwell’s equations, which are taken
as an irrevocable proof that the Lorentz transform is incor-
porated in nature, can be formulated Galilei-invariant. Ad-
vanced theories like Einstein-Cartan-Evans theory [18] intro-
duced a background potential and optical properties of space
itself. Einstein’s area is overcome. We conclude with a cita-
tion from Cahill [13]:

“The Special Relativity formalism asserts that only rel-
ative descriptions of phenomena between two or more
observers have any meaning. In fact we now under-
stand that all effects are dynamically and observation-
ally relative to an ontologically real, that is, detectable
dynamical 3-space. Ironically this situation has always
been known as an “absolute effect”. The most extraor-
dinary outcome of recent discoveries is that a dynami-
cal 3-space exists, and that from the beginning of Phys-
ics this has been missed — that a most fundamental
aspect of reality has been completely overlooked”.

Appendix A: Proof of group properties

The transformation equations can be written in vector form with
four-dimensional vectors and a transformation matrix:0B@x00y00z00

t00

1CA =

0B@� 0 0 ���
0 1 0 0
0 0 1 0
0 0 0 �

1CA0B@x0y0z0
t0

1CA (A-1)

with

� :=

r
c2 � v2

1

c2 � v2
2
; � := v2 � v1 : (A-2)

This is — in contrast to the Lorentz transformation — not a rota-
tion in 4-space but a linear transformation (stretching) with a trans-
lation. The determinant is �2, not unity as for the Lorentz transfor-
mation. Straight lines remain in parallel. The inverse transformation
of (A-1) is 0B@x0y0z0

t0

1CA =

0B@��1 0 0 ��1�
0 1 0 0
0 0 1 0
0 0 0 ��1

1CA0B@x00y00z00
t00

1CA (A-3)

as can be verified by multiplication of both matrices. To compare
this with the Lorentz transformation we rewrite above Eqs. (A-1,
A-3) with Minkowski coordinates, i.e. with an imaginary time coor-
dinate: 0B@ x00

y00
z00
ict00

1CA = T

0B@ x0
y0
z0
ict0

1CA (A-4)

with

T =

0B@� 0 0 i��
0 1 0 0
0 0 1 0
0 0 0 �

1CA (A-5)

and

� :=

r
c2 � v2

1

c2 � v2
2
; � := v2 � v1

c
: (A-6)

Then we have in analogy to above:

T�1 =

0B@��1 0 0 �i��1�
0 1 0 0
0 0 1 0
0 0 0 ��1

1CA (A-7)

The set of transformations T (�; �) is a commutative group. This is
proven in the following by examining the group axioms.

1. Completeness
We define

�1 :=

r
c2 � v2

1

c2 � v2
2
; �1 := v2 � v1

c
; (A-8)

�2 :=

r
c2 � v2

3

c2 � v2
4
; �2 := v4 � v3

c
: (A-9)

Then we find for the concatenation of two transformations by
matrix multiplication:

T (�1; �1)T (�2; �2) = T (�1�2; �1 + �2) : (A-10)

2. Neutral element
The neutral element of the group is the unit matrix.

3. Inverse element
For each T (�; �) there is an inverse transformation T�1 =
= T (��1;��).

4. Associativity
The law of associativity for the matrix multiplication holds:

T (�1; �1)
�
T (�2; �2)T (�3; �3)

�
=

=
�
T (�1; �1)T (�2; �2)

�
T (�3; �3) :

(A-11)

5. Commutativity
From Eq. (A-10) directly follows

T (�1; �1)T (�2; �2) = T (�2; �2)T (�1; �1): (A-12)

So the group axioms have been proven.
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5. Nimtz G. Tunneln mit Überlichtgeschwindigkeit. DLR
Nachrichten, 1998, v. 90.

6. Nimtz G. Evanescent modes ar not necessarily Einstein causal.
The European Physical Journal, 1999, v. B7, 523.

7. Tangherlini F.R. The velocity of light in uniformly moving
frame. PhD Thesis, Stanford Univ., Sept. 1958, 135 pages.

8. Tangherlini F.R. An inroduction to the General Theory of Rel-
ativity. Suppl. Nuovo Cim., 1961, Ser. X, v. 20, 1–86.

9. Malykin G.B. Frank Robert Tangherlini — the founder of an
alternative relativistic kinematics (on the occasion of his 85th
birthday). Progress in Physics, 2009, v. 1, L9–L14.

10. Cahill R.T., Kitto K. Michelson-Morley experiments revisited
and the Cosmic Background Radiation preferred frame. Ape-
iron, 2003, v. 10(2), 104–117.

11. Cahill R.T. A new light-speed anisotropy experiment: absolute
motion and gravitational waves detected. Progress in Physics,
2006, v. 4, 73–92.

12. Cahill R.T. The Roland De Witte 1991 experiment (to the mem-
ory of Roland De Witte). Progress in Physics, 2006, v. 3, 60–65.

13. Cahill R.T. Unravelling Lorentz covariance and the spacetime
formalism, Progress in Physics, 2008, v. 4, 19–24.

14. Thornhill C.K. Real and apparent invariants in the transforma-
tion of the equations governing wave-motion in the general flow
of a general fluid. Proc. R. Soc. Lond. A, 1993, 442, 495–504.

15. Marinov S. Measurement of the laboratory’s absolute velocity.
General Relativity and Gravitation, 1980, v. 12(1), 57–66.

16. Marinov S. Repetition of Silvertooth’s experiment for measur-
ing the aether drift. Speculations in Science and Technology,
1989, v. 12(3), 187–179.

17. Robitaille P.-M. On the origins of the CMB: insight from the
COBE, WMAP, and Relikt-1 satellites. Progress in Physics,
2007, v. 1, 19–23.

18. Evans M.W. Generally covariant unified field theory. Abramis,
2005–2009, vols. 1–6; see also http://www.aias.us

19. http://en.wikipedia.org/wiki/Cycloid

Horst Eckardt. An Alternative Hypothesis for Special Relativity 65



Volume 2 PROGRESS IN PHYSICS April, 2009

On the Field of a Stationary Charged Spherical Source

Nikias Stavroulakis

Solomou 35, 15233 Chalandri, Greece
E-mail: nikias.stavroulakis@yahoo.fr

The equations of gravitation related to the field of a spherical charged source imply the
existence of an interdependence between gravitation and electricity [5]. The present
paper deals with the joint action of gravitation and electricity in the case of a stationary
charged spherical source. Let m and " be respectively the mass and the charge of the
source, and let k be the gravitational constant. Then the equations of gravitation need
specific discussion according as j"j < m

p
k (source weakly charged) or j"j = m

p
k

or j"j > m
p
k (source strongly charged). In any case the curvature radius of the sphere

bounding the matter possesses a strictly positive greatest lower hound, so that the source
is necessarily an extended object. Pointwise sources do not exist. In particular, charged
black holes do not exist.

1 Introduction

We recall that the field of an isotropic stationary spherical
charged source is defined by solutions of the Einstein equa-
tions related to the stationary �(4)-invariant metric

ds2 =
�
f (�) dt+ f1 (�) (xdx)

�2�
�
24(l1 (�))2 dx2 +

�
(l (�))2 � (l1 (�))2

�
�2 (xdx)2

35 ; (1.1)

(� = kxk =
p
x2

1 + x2
2 + x2

3, l(0) = l1(0)). The functions
of one variable f(�), f1(�), l1(�), l(�) are supposed to be
C1 with respect to � = kxk on the half-line [0;+1[ (or,
possibly, on the entire real line ] � 1;+1[), but since the
norm kxk is not differentiable at the origin with respect to the
coordinates x1, x2, x3, these functions are not either. So, in
general, the origin will appear as a singularity without physi-
cal meaning. In order to avoid the singularity, the considered
functions must be smooth functions of the norm in the sense
of the following definition.

Definition 1.1. A function of the norm kxk, say f(kxk), will
be called smooth function of the norm, if:

a). f(kxk) is C1 on R3 � f(0; 0; 0)g with respect to the
coordinates x1, x2, x3.

b). Every derivative of f(kxk) with respect to the coordi-
nates x1, x2, x3 at the points x 2 R3�f(0; 0; 0)g tends
to a definite value as x! (0; 0; 0).

Remark 1.1. In [3], [4] a smooth function of the norm is con-
sidered as a function C1 on R. However this last characteri-
sation neglects the fact that the derivatives of the function are
not directly defined at the origin.

The proof of the following theorem appears in [3].

Theorem 1.1. f(kxk) is a smooth function of the norm if and
only if the function of one variable f(u) is C1 on [0;1[ and
its right derivatives of odd order at u = 0 vanish.

This being said, a significant simplification of the problem
results from the introduction of the radial geodesic distance

� =
�Z

0

l(u) du = �(�); (�(0) = 0);

which makes sense in the case of stationary fields.
Since �(�) is a strictly increasing C1 function tending to

+1 as �! +1, the inverse function � = (�) is also a C1
strictly increasing function of � tending to +1 as � ! +1.
So to the distance � there corresponds a transformation of
space coordinates:

yi =
�
�
xi =

�(�)
�

xi; (i = 1; 2; 3);

with inverse

xi =
�

�(�)
yi =

(�)
�

yi; (i = 1; 2; 3):

As shown in [4], these transformations involve smooth
functions of the norm and since

xdx =
3X
i=1

xidxi =
0
�

(ydy) ;

dx2 =
3X
i=1

dx2
i =

�
02
�2 � 2

�4

�
(ydy)2 +

02
�2 dy

2

by setting

F (�) = f((�)); F1(�) = f1((�))
(�)0(�)

�
;

L1(�) = l1((�))
(�)
�
;
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and taking into account that

L(�) = l((�)) 0(�) = 1

we get the transformed metric:

ds2 = (Fdt+ F1 (ydy))2�
�
�
L2

1dy
2 +

1� L2
1

�2 (ydy)2
�
: (1.2)

Then �= kyk and the curvature radius of the spheres �=
= const, is given by the function

G = G(�) = �L1(�) :

Moreover, instead of h= �f1, we have now the function

H = H(�) = �F1(�) :

This being said, we recall [5] that, with respect to (1.1),
the field outside the charged spherical source is defined by the
equations

fl = c
dg
d�
;

dg
d�

= l

s
1� 2�

g
+
�2

g2 = l
p
g2 � 2�g + �2

g
;

(�= km
c2 , �=

p
k

c2 j"j, g2� 2�g+ �2> 0, where k is the grav-
itational constant, m and " being respectively the mass and
the charge of the source).

The function h= �f1 does not appear in these equations.
Every function h= �f1 satisfying the required conditions of
differentiability and such that jhj 6 l is allowable.

We obtain a simpler system of equations if we refer to the
metric (1.2). Then

F = c
dG
d�

= c
r

1� 2�
G

+
�2

G2 ; (1.3)

dG
d�

=
r

1� 2�
G

+
�2

G2 =
p
G2 � 2�G+ �2

G
; (1.4)

jHj 6 1 :

So our problem reduces essentially to the definition of
the curvature radius G(�) by means of the equation (1.4) the
study of which depends on the sign of the difference

�2 � �2 =
k
c4
�
"2 � km2� :

A concise approach to this problem appeared first in the
paper [1].

2 Source weakly charged (�2 < �2 or j"j < m
p
k)

G2� 2�G+ �2 = (G��)2 + �2��2 vanishes for G=
=��p�2� �2 and G=�+

p
�2� �2. Moreover G2�

� 2�G+ �2< 0 if ��p�2� �2<G<�+
p
�2� �2

and G2� 2�G+ �2> 0 if G<��p�2� �2 or G>�+
+
p
�2� �2. Since negative values of G are not allowed

and since the solution must be topologically connected, we
have to consider two cases according as

0 < G 6 �� p�2 � �2

or
�+

p
�2 � �2 6 G < +1:

The first case gives an unphysical solution, because
G cannot be bounded outside the source. So, it remains to
solve the equation (1.4) when G describes the half-line�
� +

p
�2 � �2; +1� . The value � +

p
�2 � �2 is the

greatest lower bound of the values of G and is not reachable
physically, because F vanishes, and hence the metric degen-
erates for this value. However the value �+

p
�2 � �2 must

be taken into account for the definition of the mathematical
solution. So, on account of (1.4) the function G(�) is defined
as an implicit function by the equation

�0 +
GZ

�+
p
�2��2

udup
u2 � 2�u+ �2

= �; (�0 = const);

or, after integration,

�0 +
p
G2 � 2�G+ �2 +

+ � ln
G� �+

p
G2 � 2�G+ �2p
�2 � �2

= � (2.1)

with G > �+
p
�2 � �2.

We see that the solution involves a new constant �0 which
is not defined classically. To given mass and charge there
correspond many possible values of �0 depending probably
on the size of the source as well as on its previous history,
namely on its dynamical states preceding the considered sta-
tionary one. From the mathematical point of view, the deter-
mination of �0 necessitates an initial condition, for instance
the value of the curvature radius of the sphere bounding the
matter.

Let us denote by E(G) the left hand side of (2.1). The
function E(G) is a strictly increasing function of G such that
E(G)!+1 as G!+1. Consequently (2.1) possesses a
unique strictly increasing solution G(�) tending to +1 as
� ! +1

The equation (2.1) allows to obtain two significant rela-
tions:
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a) Since

� �G(�) = E(G)�G =

= �0 + � ln
G� �+

p
G2 � 2�G+ �2p
�2 � �2

+

+
p
G2 � 2�G+ �2 �G =

= �0 + � ln
G� �+

p
G2 � 2�G+ �2p
�2 � �2

+

+
�2�+ �2

G

1 +
q

1� 2�
G + �2

G2

! +1 as G! +1;

it follows that � �G(�)!+1 as �!+1.

b) Since

�
G(�)

=
E(G)
G

=
�0
G

+
r

1� 2�
G

+
�2

G2 +

+ �
lnG
G

+
�
G

ln
1� �

G +
q

1� 2�
G + �2

G2p
�2 � �2

! 1

as G! +1;
it follows that �

G(�)! 1 as �!+1.
Moreover from (2.1), it follows that the greatest lower

bound � +
p
�2 � �2 of the values of G(�) is obtained for

� = �0. The characteristics of the solution depend on the sign
of �0.

Suppose first that �0< 0. Since function G(�) is strictly
increasing, we have G(0) > �+

p
�2 � �2, which is physi-

cally impossible, because the physical solutionG(�) vanishes
for � = 0. Consequently there exists a strictly positive value
�1 (the radius of the sphere bounding the matter) such that the
solution is valid only for � > �1. So, there exists no vacuum
solution inside the ball kxk < �1. In other words, the ball
kxk < �1 lies inside the matter.

Suppose secondly that �0 = 0. Then

G(0) = �+
p
�2 � �2 > 0;

which contradicts also the properties of the globally defined
physical solution. Consequently there exists a strictly positive
value �1 (the radius of the sphere bounding the matter) such
that the solution is valid for � > �1.

Suppose thirdly that �0> 0. Since

G(�0) = �+
p
�2 � �2 ;

the derivative

G0(�0) =

q
(G(�0))2 � 2�G(�0) + �2

G(�0)

Fig. 1: Graph of G in the case where �2<�2.

vanishes, so that F (�0) = cG0(�0) = 0. The vanishing of
F (�0) implies the degeneracy of the spacetime metric for
�= �0 and since degenerate metrics have no physical mean-
ing, there exists a value �1>�0 such that the metric is phys-
ically valid for � > �1. There exists no vacuum solution for
� 6 �0. The ball kxk6 �0 lies inside the matter.

From the preceding considerations it follows, in particu-
lar, that, whatever the case may be, a weakly charged source
cannot be reduced to a point.

3 Source with �2 = �2 (or j"j = m
p
k)

Since �2 = �2, we have G2� 2�G+ �2 = (G��)2, so that
the equation (1.4) is written as

dG
d�

=
jG� �j
G

:

Consider first the case where G<�. Then

dG
d�

=
G� �
G

or
�

1� �
��G

�
dG = � d� ;

whence

a0 +G+ � ln
�

1� G
�

�
= � � ; (a0 = const) :

If G!�, then �!+1, thus introducing a sphere with
infinite radius and finite measure. This solution is unphysical.
It remains to examine the case where G>�. Then�

1 +
�

G� �
�
dG = d� ;

whence

a0 +G+ � ln
�
G
�
� 1
�

= � ; (a0 = const) :

To the infinity of values of a0 there correspond an infinity
of solutions which results from one of them, for instance from
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Fig. 2: Graph of G in the case where �2 =�2.

the solution obtained for a0 = 0, by means of translations
parallel to �-axis.

For each value of a0, we have �!+1 as G!�. The
value � is the unreachable greatest lower bound of the values
of the corresponding solution G(�) which is mathematically
defined on the entire real line. If �1 > 0 is the radius of the
sphere bounding the matter, only the restriction of the solu-
tion to the half-line [�1;+1[ is physically valid. In order to
define the solution, we need the value of the corresponding
constant a0, the determination of which necessitates an ini-
tial condition, for instance the value G(�1). In any case, the
values of G(�) for � 6 0 are unphysical.

Finally we remark that

� �G(�)! +1 and
�

G(�)
! 1 as � ! +1:

4 Source strongly charged (�2 > �2 or j"j > m
p
k)

Since G2 � 2�G + �2 = (G � �)2 + �2 � �2, we have
G2 � 2�G + �2 > 0 for every value of G. Regarding the
function

�(G) = 1� 2�
G

+
�2

G2 =
G2 � 2�G+ �2

G2 ;

we have

�(G)! +1 as G! 0 and �(G)! 1 as G! +1:
On the other hand the derivative

�0(G) =
2
G2

�
�� �2

G

�
;

vanishes for

G =
�2

�
=

"2

mc2

and moreover

�0(G) < 0 for G <
�2

�
;

�0(G) > 0 for G >
�2

�
:

It follows that the function �(G) is strictly decreasing
on the interval ] 0; �

2

� [, strictly increasing on the half-line

[ �
2

� ;+1[, so that

�
�
�2

�

�
= 1� �2

�2 = 1�
�
m
p
k

"

�2

is the minimum of �(G).
The behaviour of the solution on the half-line [ �

2

� ;+1[
is quite different from that on the interval ] 0; �

2

� [. Several
arguments suggest that only the restriction of the solution to
the half-line [ �

2

� ;+1[ is physically valid.
a) Let �0 be the radius of the spherical source. In order to
prove that the restriction of the solution to ] 0; �

2

� [ is unphysi-

cal, we have only to prove that G(�0)> �
2

� . We argue by con-

tradiction assuming thatG(�0)< �2

� . SinceG(�) is unbound-

ed, there exists a value �1>�0 such that G(�1) = �2

� . On the
other hand, since G(�) satisfies the equation (1.4), namely

dG
d�

=
r

1� 2�
G

+
�2

G2 =
p

�(G);

the function
F = c

dG
d�

= c
p

�(G)

is strictly decreasing on the interval ] 0; �
2

� [, and strictly in-

creasing on the half-line [ �
2

� ;+1[. Such a behaviour of the
important function F , which is involved in the law of prop-
agation of light, is unexplained. We cannot indicate a cause
compelling the function F first to decrease and then to in-
crease outside the spherical source. The solution cannot be
valid physically in both intervals ] 0; �

2

� [ and [ �
2

� ;+1[, and
since the great values of G are necessarily involved in the
solution, it follows that only the half-line [ �

2

� ;+1[ must be

taken into account. The assumption that G(�0) < �2

� is to be
rejected.
b) The non-Euclidean (or, more precisely, non-pseudo-Eucli-
dean) properties of the spacetime metric are induced by the
matter, and this is why they become more and more apparent
in the neighbourhood of the spherical source. On the contrary,
when � (or G) increases the spacetime metric tends progres-
sively to a pseudo-Euclidean form. This situation is expressed
by the solution itself. In order to see this, we choose a posi-
tive value b1 and integrate the equation (1.4) in the half-line
[b1;+1[,

b0 +
GZ
b1

udup
u2 � 2�u+ �2

= � ; (b0 = const);

and then writing down the explicit expression resulting from
the integration, we find, as previously, that

� �G(�)! +1 and
�

G(�)
! 1 as � ! +1:
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But, since

L1(�) =
G(�)
�
! 1 and F = c

p
�(G(�))! c

as � ! +1, the metric (1.2) tends effectively to a pseudo-
Euclidean form as � ! +1. Now, if � decreases, the non-
Euclidean properties become more and more apparent, so that

the minimum c
q

1� �2

�2 of F , obtained for G = �2

� , is re-
lated to the ”strongest non-Euclidean character of the metric”.
For values of G less than �2

� , the behaviour of the mathemat-
ical solution becomes unphysical. In fact, the metric loses
progressively its non-Euclidean properties, and, in particular,
for G = �2

2� , we have

�
�
�2

2�

�
= 1� 4�2

�2 +
4�2

�2 = 1;

hence F
�
�2

2�

�
= c and dG

d� = 1.
On account of G = �L1, the last condition implies

1 =
dG
d�

= L1 + �
dL1

d�
and since we have to do physically with very small values of
� (in the neighbourhood of the origin), we conclude that

L1

�
�2

2�

�
� 1:

and since F
�
�2

2�

�
= c, the metric is almost pseudo-Eucli-

dean, a phenomenon inadmissible physically in the neigh-
bourhood of the source. So we are led to reject the restric-
tion of the mathematical solution to the interval [ �

2

2� ;
�2

� [. For

values less than �2

2� , the function F (G) increases rapidly and
tends to +1 as G decreases, so that the restriction of the
mathematical solution to the interval ] 0; �

2

2� [ is also physically
inadmissible. It follows that the restriction of the solution to
the entire interval ] 0; �

2

� [ is unphysical.

c) Another argument supporting the above assertion is given
in [2].

Let �1 be the radius of the spherical source and assume
thatG(�1) > �2

� . A radiation emitted radially from the sphere
bounding the matter is redshifted, and its redshift at the points
of a sphere kxk = � with � > �1 is given by the formula

Z(�; �1) = �1 +
F (G(�))
F (G(�1))

= �1 +

s
�(G(�))
�(G(�1))

:

Suppose � fixed and let us examine the variation of
Z(�; �1) considered as function of �1. If �1 (or G(�1)) de-
creases, Z(�; �1) increases and tends to its maximum, ob-
tained for G(�1) = �2

� ,

maxZ(�; �1) = �1 +

s
�(G(�))
1� �2

�2

:

Fig. 3: Graph of G in the case where �2 > �2.

If G(�1) takes values less than �2

� , the phenomenon is
inverted: The redshift first decreases and then vanishes for a
unique value G(�1) 2 ] �

2

2� ;
�2

� [ with �(G(�1)) = �(G(�)).
If G(�1) decreases further, instead of a redshift, we have a
blueshift. This situation seems quite unphysical, inasmuch
as the vanishing of the redshift depends on the position of
the observer. In order to observe constantly a redshift, the
condition G(�1) > �2

� is necessary.
From the preceding considerations we conclude that the

value
�2

�
=

"2

mc2

is the greatest lower bound of the curvature radius G(�) out-
side the spherical strongly charged source. In particular, the
curvature radius of the sphere bounding the matter is > "2

mc2 ,
so that a strongly charged source cannot be reduced to a point.
Our study does not exclude the case where the solution G(�)
attains its greatest lower bound, namely the case where the
curvature radius of the sphere bounding the matter is exactly
equal to "2

mc2 . So, in order to take into account all possible
cases, the equation (1.4) must be integrated as follows

a0 +
GZ

�2=�

udup
u2 � 2�u+ �2

= � ; (a0 = const) :

If a0 6 0, there exists a value �1> 0 such that the solution
is valid only for � > �1.

If a0> 0, the solution is valid for � > a0, only if the sphere
bounding the matter has the curvature radius �2

� . Otherwise
there exists a value �1>a0 such that the solution is valid for
� > �1.

The expression "2
mc2 is also known in classical electrody-

namics, but in the present situation it appears on the basis
of new principles and with a different signification. Con-
sider, for instance, the case of the electron. Then j"j

m
p
k

=
= 2:02�1021, so that the electron is strongly charged, and,
from the point of view of the classical electrodynamics, is a
spherical object with radius "2

mc2 = 2:75�10�13 cm.
Regarding the present theory, we can only assert that, if
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the electron is a stationary spherical object, then it is a non-
Euclidean ball such that the value 2:75�10�13 cm is the great-
est lower bound of the possible values of the curvature radius
of the sphere bounding it. The radius of the electron cannot
be deduced from the present theory.

The proton is also strongly charged with j"j
m
p
k
=1:1�1018.

The corresponding value "2
mc2 = 1:5�10�16 cm is less than

that related to the electron by a factor of the order 10�3. So,
if the proton is assumed to be spherical and stationary, it is
not reasonable to accept that this value represents its radius.
This last is not definable by the present theory.
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générale. Annales Fond. Louis de Broglie, 1991, v. 16(2), 129–
175.
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Fractal Scaling Models of Resonant Oscillations in Chain Systems
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Logarithmic scaling invariance is a wide distributed natural phenomenon and was
proved in the distributions of physical properties of various processes — in high en-
ergy physics, chemistry, seismicity, biology, geology and technology. Based on the
Gantmacher-Krein continued fraction method the present paper introduces fractal scal-
ing models of resonant oscillations in chain systems of harmonic oscillators. These
models generate logarithmic scaling spectra. The introduced models are not based on
any statements about the nature of the link or interaction between the elements of the
oscillating system. Therefore the model statements are quite generally, what opens a
wide field of possible applications.

1 Introduction

Within the past 40 years many articles were published which
show that logarithmic scaling invariance (“Scaling”) is a wide
distributed natural phenomenon.

In 1967/68 Feynman and Bjorken [1] discovered the scal-
ing phenomenon in high energy physics, concrete in hadron
collisions.

Simon E. Shnoll [2] found scaling in the distributions of
macroscopic fluctuations of nuclear decay rates. Since 1967
his team discovers fractal scaling in the fluctuation distribu-
tions of different physical and chemical processes, as well as
in the distributions of macroscopic fluctuations of different
noise processes.

Within the fifties Beno Gutenberg and Charles Richter [3]
have shown, that exists a logarithmic invariant (scaling) rela-
tionship between the energy (magnitude) and the total number
of earthquakes in any given region and time period.

In 1981, Leonid L. Čislenko [4] published his extensive
work on logarithmic invariance of the distribution of biologi-
cal species, dependent on body size and weight of the organ-
isms. By introducing a logarithmic scale for biologically sig-
nificant parameters, such as mean body weight and size, Čis-
lenko was able to prove that sections of increased specie rep-
resentation repeat themselves in equal logarithmic intervals.

Knut Schmidt-Nielsen [5] (1984) was able to prove scal-
ing in biological metabolic processes.

Alexey Zhirmunsky and Viktor Kuzmin [6] (1982) dis-
covered process-independent scaling in the development
stages of embryo-, morpho- and ontogenesis and in geologi-
cal history.

In 1987–1989 we [7] have shown, that fractal scaling dis-
tributions of physical process properties can be understood
as a consequence of resonant oscillations of matter. Based
on a fractal scaling proton resonance model, we developed
methods of optimization and prognostication of technical pro-
cesses, which have got european and international patents [8].

Fig. 1:

In the following we will show that Scaling is a funda-
mental property of any natural oscillation process. Therefore
one can suspect, that natural oscillations of matter generate
scaling distributions of physical properties in very different
processes.

2 Fractal scaling as a fundamental property of resonant
oscillations

A standing wave [9] in a homogeneous space arises only if in
the direction of the wave penetration the space is finite and if
the half wave length is equal to an integer part of the medium
size L.

As a consequence we can find for any low enough reso-
nant oscillation mode frequency f0 a higher mode frequency
f1 with an integer relationship n= f1=f0. The frequencies of
such resonant oscillation modes generate exponential series:

fn;p = f0 � np: (1)

Fig. 1 illustrates the situation with n= 3 and p= 0; 1;
2; : : : for transversal oscillations.

Therefore, the complete resonant oscillation frequency
spectrum can be represented as a set of logarithmic fractal
spectra (1) with natural n= 2; 3; 5; : : : In this representation
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the generation of the complete resonant oscillation frequency
spectrum can be understood as an arithmetical task, what can
be reduced to the fundamental theorem of arithmetic, that ev-
ery natural number greater than 1 can be written as a unique
product of prime numbers.

In the oscillation nodes of the logarithmic fractal oscilla-
tion modes the spectral density is maximum. Where the am-
plitudes of the oscillation modes are maximum, the medium
particles have maximum kinetic energy, but near the oscil-
lation nodes the kinetic energy is minimum. The distance
between the ranges with maximum particle density (nodes) is
the half of the oscillation mode wave length. As consequence,
the distribution of the medium particle density will be fractal
and exactly the same (isomorphism) as the distribution of the
spectral density.

In the phases of spectral compression, where the spec-
tral density increases, in the case of approach to any node
arises a particle fusion trend, but in the phases of spectral de-
compression, where the spectral density decreases, in the case
of distance from any node arises a particle dispersion trend.
Logarithmic fractal change of spectral compression and de-
compression generates a logarithmic fractal change of high
and low density structure areas inside the medium.

Resonant oscillations can be understood as the most
probable forming-mechanism of fractal structures in nature,
because the energy efficiency of resonant oscillations is very
high.

In the works “About continued fractions” (1737) and
“About oscillations of a string” (1748) Leonhard Euler [10]
formulated tasks, the solution employed several generations
of mathematicians the following 200 years. Euler investi-
gated natural oscillations, based on a model of a massless
flexible string with a finite or infinite set of similar pearls.
Based on this task d’Alembert developed an intergration
method of linear differencial equation systems. Daniel Ber-
noulli formulated the theorem, that the solution of the prob-
lem of the natural oscillations of a string can be represented as
trigonometric series, what starts a discussion between Euler,
d’Alembert and Bernoulli, and continued several decades.

Later Lagrange showed how can be realised the transition
from the solution of the problem of the set with pearls string
oscillations to the solution of the oscillations of a homoge-
neous string. In 1822 Fourier solved this task completely.

Though, big problems arisen with oscillations of strings
with a finite set of different pearls. This task leads to functions
with gaps. After 1893 Stieltjes [11] investigated such func-
tions and found an integration method, what leads to contin-
ued fractions. But only in 1950 Gantmacher and Krein found
the general solution of Euler’s task about natural oscillations
of a set with pearls string. Gantmacher and Krein interpreted
the stretched string between the pearls as a broken line, what
opened them a fractal vision of the problem. In the work
,,Oscillation matrixes, oscillation cores and low oscillations
of mechanical systems” Gantmacher and Krein [12] showed

that Stieltjes continued fractions are solutions of the Euler-
Lagrange equation for low amplitude oscillations of chain
systems. These continued fractions generate fractal spec-
tra. Within the fifties and sixties the development of con-
tinued fraction analysis methods of oscillation processes in
chain systems reaches a highlight. In 1950 Oskar Perron [13]
publicated the book “The continued fraction theory”. Achie-
ser [14] investigated continued fractions in the work “The
classic problem of moments and some questions of analysis”
(1961). In the book “The continued fraction method” (1955)
Terskich [15] generalized this method for analysis of oscilla-
tions of branched chain systems. In 1964 Khinchine [16] ex-
plained the importance of continued fractions in arithmetics
and algebra. The works of Khintchine, Markov, Skorobo-
gatko [17] and other mathematicians allowed the develop-
ment of efficient addition and multiplication methods for con-
tinued fractions.

Based on the continued fraction method, in the following
we will show, how one can generate scaling spectral models
of natural oscillation processes which are not based on any
statements about the nature of the link or interaction between
the elements of the oscillating system.

3 Fractal scaling spectral models

Based on the continued fraction method we search the natu-
ral oscillation frequencies of a chain system of many similar
harmonic oscillators in this form:

f = f0 exp(S) ; (2)

where f is a natural frequency of a chain system of simi-
lar harmonic oscillators, f0 is the natural frequency of one
isolated harmonic oscillator, S is a continued fraction with
integer elements:

S =
n0

z
+

z

n1 + z
n2 + : : : + z

ni

: (3)

The partial numerator z, the free link n0 and all partial de-
nominators n1, n2, . . . , ni are integer numbers: z; n0; ni 2
Z; i = 1;1. The present paper follows the Terskich defini-
tion of a chain system (Terskich, p. 8) where the interaction
between the elements proceeds only in their movement di-
rection. In this connection we understand the concept “spec-
trum” as a discrete distribution or set of natural oscillation
frequencies.

Spectra (2) are not only logarithmic-invariant, but also
fractal, because the discrete hyperbolic distribution of natural
frequencies repeats itself on each spectral level i= 1; 2; : : :

Every continued fraction (3) with a partial numerator
z , 1 can be changed into a continued fraction with z = 1.
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Fig. 2:

For this one can use the Euler equivalent transformation (Sko-
robogatko, p. 12) and present continued fractions (3) in the
canonical form. With the help of the Lagrange [18] trans-
formation (Perron, §40) every continued fraction with inte-
ger partial denominators can be represented as a continued
fraction with natural partial denominators, what is allways
convergent (Khintchine, §4). In this paper we will investi-
gate spectra (2) which are generated by convergent continued
fractions (3).

Every infinite continued fraction is irrational, and every
irrational number can be represented in precisely one way
as an infinite continued fraction (Khintchine, §5). An infi-
nite continued fraction representation for an irrational number
is useful because its initial segments provide the best possi-
ble rational approximations to the number (Khintchine, §6).
These rational numbers are called the convergents of the con-
tinued fraction. This last property is quite important, and is
not true of the decimal representation. The convergents are
rational and therefore they generate a discrete spectrum. Fur-
thermore we investigate continued fractions (3) with a finite
quantity of layers i = 1; k which generate discrete spectra.
In the logarithmic representation each natural oscillation fre-
quency can be written down as a finite set of integer elements
of the continued fraction (3):

ln(f=f0) =
n0

z
+

z

n1 + z
n2 + : : : + z

nk

=

=
�
z; n0; n1; n2; : : : ; nk

�
: (4)

Figure 2 shows the generation process of such fractal
spectrum for z = 1 on the first layer i = k = 1 for jn1j=
= 1; 2; 3; : : : and n0 = 0 (logarithmic representation).

The partial denominators n1 run through positive and
negative integer values. Maximum spectral density ranges au-
tomatically arise on the distance of 1 logarithmic units, where

n0 = 0; 1; 2; : : : and jn1j ! 1. Figure 3 shows the spec-
trum on the first layer i = k = 1 for jn1j = 1; 2; 3; : : : and
jn0j = 0; 1; 2; : : : (logarithmic representation):

Fig. 3:

The more layers i = 1; 2; 3; : : : are calculated, the more
spectral details will be visible. In addition to the first spectral
layer, Figure 4 shows the second layer i = k = 2 for jn2j=
= 1; 2; 3; : : : and jn1j = 2 (logarithmic representation):

Fig. 4:

On each spectral layer i one can select ranges of rela-
tive low spectral density (spectral gaps) and ranges of relative
high spectral density (spectral nodes). The highest spectral
density corresponds to the nodes on the layer i = 0, where
jn1j ! 1. The next (lower) spectral density level corre-
sponds to the nodes on the layer i = 1, where jn2j ! 1, and
so on. The largest spectral gaps are between the spectral node
ranges on the layer n0. On the spectral layers i = 1; 2; 3; : : :
the gaps are corresponding smaller.

In 1795 Karl Friedrich Gauss discovered logarithmic scal-
ing invariance of the distribution of prime numbers. Gauss
proved, that the quantity of prime numbers p(n) until the nat-
ural number n follows the law p(n) � n= ln(n). The equality
symbol is correct for the limit n!1. The logarithmic scal-
ing distribution is the one and only nontrivial property of all
prime numbers.

The free link n0 and all partial denominators n1, n2, n3,
. . . , nk are integer numbers and therefore they can be rep-
resented as unique products of prime factors. On this base
we distinguish spectral classes in dependence on the divisi-
bility of the partial denominators by prime numbers. In ad-
dition, we will investigate continued fractions which corre-
spond to the Markov [19] convergence requirement (Skorobo-
gatko, p. 15):

jnij > jzij+ 1 : (5)

Continued fractions (3) with z = 1 and partial denomi-
nators divisible by 2 don’t generate empty spectral gaps, be-
cause the alternating continued fraction [1, 0; +2, �2, +2,
�2, . . . ] approximates the number 1 and [1, 0; �2, +2, �2,
+2, . . . ] approximates the integer number �1.

Divisible by 3 partial denominators with z = 2 build the
class of continued fractions (3) what generates the spectrum
(4) with the smallest empty spectral gaps. Figure 5 shows
fragments of spectra, which were generated by continued
fractions (3) with divisible by 2, 3, 4, . . . partial denomi-
nators and corresponding partial numerators z = 1; 2; 3; : : :
on the first layer i= 1 for n0 = 0 (logarithmic represen-
tation):
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Fig. 5:

Figure 5 shows the spectral nodes on the first layer i = 1
and also the borders of the spectral node ranges, so the spec-
tral gaps are visible clearly. The borders of the spectral empty
gaps are determined by the following alternating continued
fractions (z > 1):

�1 =
z

�z � 1 +
z

z + 1 +
z

�z � 1 + : : :

1 =
z

z + 1 +
z

�z � 1 +
z

z + 1 + : : :

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
: (6)

More detailled we will investigate the second spectrum of
the figure 5, what was generated by the continued fraction (3)
with divisible by 3 partial denominators and the correspond-
ing partial numerator z = 2. This spectrum is the most inter-
esting one, because with z = 2 and ni mod 3 = 0 starts the
generation process of empty gaps. Possibly, that the spectral
ranges of these gaps are connected to fundamental properties
of oscillation processes.

The partial denominators n1 run through positive and
negative integer values. The maximum spectral density areas
arise automatically on the distance of 3/2 logarithmic units,
where n0 = 3j, (j = 0; 1; 2; : : : ) and jn1j ! 1. Fig-
ure 6 shows the spectrum on the first layer i = k = 1 for
jn1j = 3; 6; 9; : : : and jn0j = 0; 3; 6; : : : (logarithmic repre-
sentation):

Fig. 6:

The alternating continued fraction [2, 0; +3,�3, +3,�3,
. . . ] approximates the number 1, but the alternating contin-
ued fraction [2, 0; �3, +3, �3, +3, . . . ] approximates the
number �1. In the consequence the spectral ranges between
jn1j= 3� 1 and jn1j= 3 + 1 are double occupied. The more
layers i= 1; 2; 3; : : : are calculated, the more spectral details
are visible (see Figure 7).

Fig. 7:

Divisible by three free links jn0j= 3j, (j= 0; 1; 2; : : : )
of the continued fraction (3) mark the main spectral nodes,
partial denominators divisible by three jni>0j= 3j, (j=
= 1; 2; : : : ) mark spectral subnodes. All the other partial de-
nominators jnij , 3j mark borders of spectral gaps (see Fig-
ure 8):

Fig. 8:

4 Local features of fractal scaling spectra and corres-
ponding properties of oscillation processes

In the spectral node ranges, where the spectral density reachs
local maximum, the resonance frequencies are distributed
maximum densely, so that near a spectral node almost each
frequency is a resonance frequency. The energy efficiency of
resonant oscillations is very high. Therefore, if a frequency
of an oscillation process is located near a node of the frac-
tal spectrum (4), the process energy efficiency (degree of ef-
fectiveness) should be relative high. The highest process en-
ergy efficiency corresponds to the nodes on the layer i = 0.
Near the spectral nodes on the layers i = 1; 2; : : : the pro-
cess energy efficiency should be corresponding lower. On the
other hand, if a frequency of an oscillation process is located
in a gap of the fractal spectrum (4), the process energy effi-
ciency should be relative low. In the centre of a spectral node
the spectral compression changes to spectral decompression
(or reversed). Therefore the probability of the process trend
change increases near a spectral node.

5 Fractal scaling spectral analysis

Based on the fractal scaling model (2) of resonant oscilla-
tions of chain systems one can execute fractal scaling spectral
analyses of composite oscillation processes, if the connected
oscillators are quite similar.

Corresponding to the logarithmic representation (5)
the fractal scaling spectral analysis consists of the following
steps:

a). Divide the lowest measured frequency fmin and the
highest measured frequency fmax of an oscillating
chain system by the resonance frequency f0 of one
isolated element of the chain system and calculate the
natural logarithms Xmin = ln (fmin=f0) and Xmax =
= ln (fmax=f0);
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b). Use the Euclid’s algorithm to find the free links n0 and
partial denominators n1, n2, . . . of the corresponding
to Xmin and Xmin continued fractions and determine
the location of Xmin and Xmin in the spectrum (5);

c). Determine the highest/lowest spectral density ranges of
the spectrum (5) between Xmin and Xmin which cor-
respond to important properties of the composite oscil-
lation processes;

d). Use the formula (4) to calculate the corresponding fre-
quency ranges.

The fractal scaling spectral analysis is able to define fol-
lowing properties of of composite oscillation processes: tur-
bulence probability, fluctuation probability, resonance proba-
bility, stability and sensibility.

6 Resume

The presented model is not based on any statements about
the nature of the link or interaction between the elements of
the oscillating chain system. Therefore the model statements
are quite generally, what opens a wide field of possible ap-
plications. Based on the presented model one can use scaling
spectral analyses of composite oscillation processes to find
out spectral ranges where the process energy efficiency is rel-
ative high or low. Possibly, the scaling spectral analysis could
be usefull not only in mechanical engineering, but also in nu-
clear physics and astrophysics.

The author is deeply grateful to O. M. Kalinin, A. I. Polo-
vinkin, V. A. Kamaev and A. V. Petrukhin for valuable discus-
sions. I wish to thank S. E. Shnoll, V. A. Panchelyuga and
V. A. Kolombet for invaluable support.
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At present the expanding universe is observed to be dominated by the not fully under-
stood concepts of dark energy and matter, in a conceived almost flat Euclidian geometry.
As one of the possible efforts to understand the global behaviour of the expanding uni-
verse, the present paper attempts to explain these concepts in terms of the pressure force
and gravity of a spherical photon gas cloud of zero point energy, in a flat geometry. A
difficult point of the conventional theory concerns the frequency distribution of the zero
point energy oscillations which leads to the unacceptable result of an infinite total en-
ergy per unit volume. A modification of this distribution is therefore proposed which
results in finite energy density. A corresponding equilibrium state is investigated, as
well as small dynamic deviations from it, to form a basis for a model of the expanding
universe. Provided that the crucial points of the present approach hold true, the model
satisfies the requirements of cosmic linear dimensions, results in an estimated accelera-
tion of the expansion being of the order of the observed one, presents a possible solution
of the coincidence problem of dark energy and matter, and provides one of the possible
explanations of the observed excess of high-energy electrons and positrons in recent
balloon and satellite experiments.

1 Introduction

From being a speculative subject of discussion, the features of
the universe have during recent years become more of an area
of strict scientific analysis. After Hubble’s discovery of the
cosmic expansion and the Big Bang hypothesis by Gamow,
astronomical observations and associated theoretical work
have resulted in a number of new points of view, as sum-
marized in recent reviews such as those by Linde [1], Hogan,
Kirshner and Suntzeff [2], Luminet, Starkman and Weeks [3],
Turner [4], Perlmutter [5], Riess and Turner [6], Crease [7]
and Linder and Perlmutter [8]. In particular, this includes the
concepts of dark energy and dark matter as well as the newly
discovered accelerated expansion of the universe and its pos-
sible theoretical explanation.

The Hubble redshift has not only been interpreted as the
result of a real cosmic expansion. Recently Rabounski [9] has
reconsidered the Hubble redshift in terms of General Relativ-
ity, thereby finding that a photon loses its proper energy due
to the work against the field of the space non-holonomity.

There have so far been reported a number of efforts to
understand the global behaviour of the universe. This paper
presents one of the alternatives to be investigated for such a
purpose. Here an investigation is made on the possible rôle of
the zero point energy of quantum mechanical vacuum fluctua-
tions as an origin of dark energy and matter. A summary of re-
cent observations of the expanding universe is first presented
in Section 2, with corresponding theoretical so far made con-
siderations in Section 3, followed by a description of the basic
reasons for the present approach in Section 4. The frequency
distribution of the zero point energy is then reconsidered in
Section 5, the cosmic equilibrium of a zero point energy pho-
ton gas is elaborated in Section 6, and the acceleration of the

expansion is estimated in Section 7. The implications of the
present approach are finally given in Section 8, as well as in
the summary and conlusions of Section 9.

2 Observations of an expanding universe

As early as in 1900 Schwarzschild [10] considered the pos-
sible non-Euclidian structure of space. For a closed elliptical
configuration the lower limit of its permissible radius of cur-
vature was found to be about 6�1017 meters. At present it is
often stated that observations indicate the universe just to be
about flat on a scale of R0 = 1026 meters which is the radius
of its observable parts [1], but the radius of the universe could
be larger. With Hubble’s discovery and the Big Bang model,
a finite and growing radius can also form the basis of an ex-
pansion until the present time. Conventional wisdom says
the universe is infinite, but it could be finite, merely giving
the illusion of infinity [3]. On the other hand, a closed finite
universe of curved space is certainly attractive from the con-
ceptual point of view, but does not become reconcilable with
an observed nearly flat geometry. The idea of a finite and flat
universe runs then into its own obstacle of the apparent need
for the “cut-off” at an edge defined by a radius R > R0. Still
these questions have not been settled, and will not be further
touched upon in this paper.

In the 1990s it was realized that supernovae were promis-
ing candidates for measuring the cosmic expansion. This
came out to be particularly fruitful when one kind of super-
nova, the type Ia, turned out to have the property of a “stan-
dard candle” [2, 5, 6, 8]. The method of surveying space-time
with supernovae then became accurate enough even to mea-
sure the rate of change in the cosmic expansion. Many cos-
mologists had anticipated that the rate of expansion should
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slow down due to the attractive force of the mass of the uni-
verse. It therefore became a news of utmost interest when the
supernova measurements indicated that the expansion was in
fact accelerating [2, 5, 6, 8].

The acceleration of the radius R0 of the observable uni-
verse can be determined from the measurements of redshift,
relative intensity of light, and relative distance [2,5]. Here we
consider very distant supernovae, near the radius of visibility
where the redshift z= ��=�� 1, �� is the shift in wave-
length, and � stands for the wavelength of the light emitted
by the supernova at its position. For a given intensity of light,
the diagrams of the observations [2, 5] then yield a redshift
za � 0:8 for an accelerated expansion instead of z0 � 1 for a
constant one. This shows that high-redshift supernovae are
fainter than would be expected for a constant expansion [5].
The deviation of the redshift due to the acceleration thus cor-
responds to an additional increment �v = (z0�za)c in veloc-
ity where c is the velocity of light. With a linear scale ofR0=2
relative to the universe of today [5], the corresponding time
of passage becomes �t�R0=2c. This yields an acceleration
�v=�t= 2(z0�za)c2=R0 � 4�10�10 m/s2 of the radius R0.

Recent experiments with high-altitude balloons and satel-
lites [11, 12] have further spotted an excess of high-energy
electrons and positrons. These can become a possible signa-
ture of a decay of dark matter.

3 Theories on the present expansion

The period of acceleration has not prevailed during the entire
expansion of the universe, but appears to have started about
5 billion years ago [8]. In order to account for the present
acceleration, about 75 percent of the mass-energy content is
then considered to be made of some weird gravitationally re-
pulsive substance called dark energy [8], i.e. a “cosmologi-
cal antigravity” which can drive the universe apart [2]. The
remaining 25 percent has attractive gravitational interaction,
but 5=6 of this is not even normal matter but rather some ad-
ditional unknown substance called dark matter [5].

An alternative description of the global behaviour of the
universe has been presented by Rabounski [9]. In this the-
ory the empirical Hubble law is explained in a static uni-
verse, as being due to the redshift produced by the global
non-holonomity of the isotropic space in which a propagating
photon loses its energy. Also the nonlinearity of the Hubble
law which is observed at large distances is explained by the
deduced form of the redshift.

A candidate to explain the effect of dark energy is fur-
ther the vacuum energy which is mathematically equivalent
to the cosmological constant introduced by Einstein in 1917.
However, it appears to be a remarkable and implausible co-
incidence that the mass density, just in the present epoch, is
within a factor of two of the vacuum energy density. This
would need some kind of accelerating dark energy that, unlike
the cosmological constant, does not become constant [5]. In

addition, there are problems with the zero-point vacuum en-
ergy of the quantum fluctuations. Thus the standard model of
particle physics has no place for a vacuum energy density of
the modest magnitude required by astrophysical data, because
the simplest estimates predict a vacuum energy being 10120

times greater [5]. We shall later return to this crucial point.

4 Exposition of reasons for the present approach

The investigation in this paper on the optional and possible
rôle of the zero point energy as an origin of dark energy and
matter, in particular during the later stages of the expansion,
can be justified as follows:

• The concept of an expanding universe is accepted as
a working hypothesis.

• The mass-energy content is mainly due to dark energy
in the form of antigravity and to dark matter account-
ing for the attractive gravitational interaction, thereby
dominating the general dynamics of the universe.

• From the observations the universe is here interpreted
to have a nearly flat geometry. This supports a simple
Euclidian approach in a first approximation, without
the introduction of the curved space effects of General
Relativity. This would not only hold for a strictly flat
space, but also as an approximation for the limited ob-
servable part of a closed elliptical or spherical universe
with a very large radius of curvature.

• The zero point energy represents the lowest quantum
mechanical state. This is a “dark state” having no line
radiation.

5 The zero point energy and its frequency distribution

We now turn to the zero point vibrational energy, as discussed
by Terletskii [13], Milonni [14] and Loudon [15] among
others. This energy can hardly be discarded since its effects
have been revealed experimentally. Its infinite total amount
per unit volume, as obtained from conventional theory, is on
the other hand unacceptable and presents a so far unsolved
dilemma.

5.1 Conventional deductions

It is known from quantum mechanics that the energy of a lin-
ear harmonic oscillator with the frequency � only assumes the
values [13–15]

Ek = h�
�
k +

1
2

�
k = 0; 1; 2; : : : (1)

Utilizing the partition function and the Gibbs-Helmholtz
equation [13], the mean energy of the ensemble of oscillators
of all k-values, also including k = 0, then becomes

�E =
1
2
h� +

h�
exp(h�=kT )� 1

; (2)
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where kT is the mean energy of a classical oscillator in ther-
mal equilibrium at the temperature T .

The number of virtual field oscillators per unit volume
with frequencies in the range (�; � + d�) further becomes

dn(�) = (8�=c3)�2 d� : (3)

On the average the oscillators then have the energy den-
sity

du(�) = �E dn(�) = (8� �E=c3)�2 d� (4)

in the same range. The total energy density then becomes

u = u0 + up (5)
where

u0 =
Z 1

0
(4�h=c3)�3 d� ; (6)

up =
Z 1

0
(8�h=c3)

�3

exp(h�=kT )� 1
d� ; (7)

(here u0 is the infinite zero point energy contribution, and the
finite contribution up originates from Planck’s radiation law).

To obtain a finite total zero point energy, it has sometimes
been suggested that the integral (6) should be truncated at a
cut-off frequency corresponding either to the Planck length or
to a high energy of 100 GeV. As compared to the magnitude
of astrophysical data, this still leads to an excessive vacuum
energy density being about 10120 or 1055 times greater than
that which is required. The choice of cut-off also appears not
to be rigorously motivated.

Even if the integral (6) leads to a physically unacceptable
result, a straightforward illustration of vacuum effects can
be obtained from a cavity configuration. In the latter a finite
change in energy is obtained from the difference between two
infinite integrals of forms being similar to that of equation
(6). Thus, in 1948 a theoretical analysis was reported by
Casimir [16] in which it was shown that two metal plates
at narrow distance will attract each other slightly, due to
the electromagnetic quantum fluctuations of the zero point
energy. This force is due to the low-frequency part of the zero
point energy pressure, because only the small high-frequency
modes are allowed to squeeze in between the plates. Later,
in 1997, the theory was experimentally confirmed within 5
percent accuracy by Lamoreaux [17] who used a torsional
pendulum to measure the corresponding Casimir force
between a spherical and a plane metal surface. He found that
this generated a force up to about 10�9 N on a plate having
a diameter of 2:54 centimetres, and at separation distances
in the range 0:6 to 6 �m. The corresponding energy density
was up to about 6�10�6 J/m3. An experimental confirmation
of Casimir’s theory for parallel metal plates was further re-
ported by Bressi et al. [18] who measured the force between
a cantilever and a rigid surface. From data of the oscillating
cantilever they obtained agreement with the calculated
Casimir force with 15 percent accuracy for separation dis-
tances in the 0:5 to 3 �m range. Other experimental attempts
to verify Casimir’s prediction have also been reviewed by the

same authors.
Consequently, the low-frequency part of the zero point

frequency distribution has to be accepted as an experimental
fact, whereas there arises a crucial problem with the high-
frequency part.

5.2 A revised form of the high-frequency distribution

Several investigators have thrown doubt upon the conven-
tional theory of vacuum energy and its related frequency dis-
tribution [6,19]. Here the following points can be taken as an
indication that some fundamental part of the theory may be
lacking:

• In the conventional analysis the probability that an os-
cillator is excited to its k-th state is given by a Boltz-
mann factor. In this factor, however, the zero point
energy cancels and disappears when expression (1) is
substituted into the deductions [15];

• The energy values which an oscillator can assume at
a given frequency � are determined by expression (1),
whereas expression (2) represents the mean energy val-
ues which an oscillator adopts in thermal equilibrium.
Here �E differs from Ek for k> 1 of the Planck radia-
tion part which adapts itself to a probability distribu-
tion being in thermodynamic equilibrium at a tempera-
ture T . For the zero point energy part k= 0, however,
conventional theory yields �E0 =E0 = 1

2 h�, which cor-
responds to the same probability for all frequencies �.
Such a distribution could be questioned and requires
further investigation and explanation;

• In the conventional deduction of Planck’s law, a finite
mean energy kT of the oscillators is introduced as a
given and independent parameter, as well as the result-
ing finite total energy. In the case of the zero point
energy, a corresponding introduction becomes unclear
in terms of the conventional theory. In other words, the
Planck law part of equation (2) includes the disposable
and independent parameter kT of the photon mean en-
ergy. However, for the zero point energy part of the
same equation, the analogous situation is not fully de-
termined because there is no corresponding and inde-
pendent parameter which determines the average pho-
ton energy;

• In the limiting case T = 0 of a pure zero point energy
photon gas, one would thus have to study an ensem-
ble of continuous states, to search for the most proba-
ble distribution of frequency among the oscillators at a
given total and finite energy per unit volume.

With these points in mind, it is here concluded that the
zero point energy requires a separate statistical treatment. We
thus limit the analysis to a state of zero temperature, in which
there is an ensemble of photons, each having an energy E0
of equation (1). The number of possible states of oscillation
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is as before given by equation (3) in the range (�; � + d�).
Here the population of zero point energy photons due to the
conventional theory is on the other hand put in question, as
well as their corresponding average energy.

A simple proposal is now made to find a distribution in
statistical equilibrium which results in a finite average photon
energy. Following Kennard [20], the probability of any state
of energyE0(�) = 1

2 h� becomes proportional to a Boltzmann
factor

PB = exp(�E0= �E) = exp(��=��) (8)
where

�E =
1
2
h�� (9)

now stands for a finite average energy of a photon, and �� is
the corresponding average frequency. With this proposal the
revised form of the density (4) of the zero point energy be-
comes

du(�) = (4�h=c3)�3 exp(��=��) d� (10)

It results in a finite total energy density

u = 24�h��4=c3 (11)

where the frequency �� is a so far undetermined quantity, like
the arbitrary mean energy kT of the states for k > 1.

It is desirable to extend the studies on the Casimir effect
also on the experimental side. Investigations on smaller plate
distances do not become an easy task, and may involve ad-
vanced nanotechnological methods. Here we can only specu-
late about the possibility of deposing an extremely thin layer
of insulating material on a flat metal plate, and placing an-
other such plate on top of it. With layer thicknesses being
much smaller than the so far studied plate distances in ex-
periments, considerable mutual forces are expected to arise,
as long as equation (4) applies. Observed deviations from
this which reveal a smaller or even a saturated force, could
provide a test of various theoretical approaches, also that of
equations (10) and (11).

6 Equilibrium of a photon gas in its gravitational field

In a gas cloud of photons of zero point energy, there is an
antigravity force due to the photon gas pressure gradient, and
a gravitation force due to the intrinsic mass of the same pho-
tons as determined by the total energy according to Einstein’s
mass-energy relation. We now proceed to the steady-state
balance of an isotropic photon gas of zero point energy, in
which the pressure force is balanced by the gravitational force.
A restriction is made to spherical symmetry in a flat space, as
supported by the points given in Section 4, and based on the
proposed model of frequency distribution given in Section 5.

With the radial coordinate r in a spherical frame of ref-
erence, the energy density u of equation (11) and the corre-
sponding average photon energy �E and frequency �� of equa-
tion (9) then become functions of r only. The radially out-

ward directed pressure force is given by

fp = �dp
dr

= �1
3
du
dr

: (12)

With an average total mass �E=c2 of each photon, the in-
tegrated mass of the photon gas within the radius r becomes

M(r) =
Z r

0
4�r2(u=c2) dr = (4�=c2)

Z r

0
r2udr : (13)

This leads to a radially inward directed gravitational force

fg = �GMnmp=r2 = �GMu=c2r2 (14)

where G = 6:673�10�11 m3/kg�s2 is the Newtonian constant
of gravitation.

A steady equilibrium is now determined by fp + fg = 0
which results in

�1
3
du
dr

=
4�G
c4r2 u

Z r

0
r2udr : (15)

This equation is normalized by introducing � = r=rc
where rc is a characteristic radius, and u = ucU(�) with
uc as a characteristic photon energy density. Multiplying
eq. (15) by r2=u and taking the derivative with respect to r,

d2U
d�2 +

2
�
dU
d�
� 1
U

�
dU
d�

�2

+ 2C0U2 = 0 : (16)

This relation includes the dimensionless characteristic pa-
rameter

C0 = 6�Gucr2
c=c

4 = 3�ncr2
cL

2
p=�� : (17)

Here Lp = (Gh=c3)1=2 is the Planck length, nc = uc= �E
a characteristic photon density, and �� = c=��.

A particular solution of eq. (16) can be found by means
of the ansatz U = ��� which leads to 2C0 = ����2 and
becomes satisfied when � = 2. This yields C0 = 1 and

u(r) = uc (rc=r)
2 : (18)

The equilibrium condition C0 = 1 corresponds to a char-
acteristic radius

rc =
�
c4=6�Guc

�1=2 : (19)

The integrated mass at the distance r further becomes

M(r) = 2c2r=3G (20)

from combination of relations (13), (18), and (19). The ob-
tained results are now discussed as follows:

• In some respects the present analysis also applies to the
equilibrium of a photon gas in the regime of Planck’s
radiation law at nonzero temperature;

• When being observed from the Earth, the surrounding
parts of the universe appear on the average to be rather
uniformly distributed over the sky. This is here taken
as an indication that the position of the Earth and of an
observer is deep inside the cloud of the universe, i.e. far
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away from its “boundary”. Consequently we take r=rc
as the position of the Earth where the energy density
has the characteristic value uc, and have r = R0 � rc
as the radius of the observable parts of the universe.
Due to relation (18) this implies that the energy density
u(r) decreases from uc at r= rc to uc(rc=R0)2�uc
at r=R0. A “halo” extending beyond the radius R0
can also exist, as introduced in many cosmological ver-
sions [1];

• The Planck length Lp � 4:05�10�35 m is the smallest
length appearing as a basic parameter in physics. To
satisfy the equilibrium conditionC0 = 1, it is seen from
eq. (17) that the characteristic radius rc of eq. (19) has
to be of cosmic dimensions for moderate values of uc;

• Equation (19) further shows that a high energy density
uc requires a small radius rc for a state being close
to equilibrium, and does not lead to excessively large
cloud dimensions;

• At the origin r = 0 the total mass (20) vanishes. The
divergence at r = 0 of the energy density u in equation
(18) can here be taken as a remnant of the earliest stage
of a Big Bang. Further, even if each of the forces (12)
and (14) diverges at r = 0, the total force vanishes at
the origin in equilibrium;

• The mass (20) increases linearly with r, to M(R0) =
= 2c2R0=3G at the radius of the observable universe.
This value is analogous to the solution by Einstein [21]
for a steady quasi-Euclidian universe.

The parameter C0 represents the ratio j fg=fp j between
the gravitation and pressure forces. Here fg is proportional to
u2, and fp to u. Small deviations from an equilibrium can in a
first approximation be represented by values of C0 which dif-
fer slightly from unity. This implies that C0 < 1 corresponds
to pressure-dominated accelerated expansion, and C0 > 1 to
gravitation-dominated accelerated compression. The devia-
tions of C0 from unity can therefore be used to identify the
acceleration without considering a detailed equation of state
as discussed elsewhere [4, 8]. This has some resemblance to
the energy principle in fluid dynamics, where stability is stud-
ied in terms of virtual changes in energy, without analysing
the dynamics of the corresponding normal modes in detail.

7 A simple discussion on the dynamics of the expansion

During the later stages of the expansion the equilibrium so-
lution of Section 6 could provide a starting point also for a
simple discussion on the related dynamics. As a working hy-
pothesis we here adopt the often accepted view of a balance
between the dark energy and matter forces corresponding to
a constant expansion rate, whereas a force unbalance leads to
an accelerated or retarded expansion. Only a crude estimation
is made here of the order of the acceleration in the case of a
slight deviation from the equilibrium treated in Section 6.

For this purpose we consider a volume element of thick-
ness dr at the radius r = R0. With the local force densities
(12) and (14) the total forces on the layer become

(dFp; dFg) = 4�R2
0(fg; fp) dr : (21)

From equations (12), (18) and (19)

fp � 2ucr2
c=3R

3
0 � c

4=9�GR3
0 (22)

for small deviations from the equilibrium defined by dF =
= dFp + dFg = 0 and where

dF = (2� � 1) dFp : (23)

Here the fraction � of the total mass-energy content is due
to the pressure force dFp, and � is not far from the equilib-
rium value � = 1=2. The mass of the volume element further
becomes

dM � (2c2=3G) dr (24)

due to equation (20). The acceleration of the radiusR0 is then
roughly given by

d2R0=dt2 � (2��1) dFp=dM � (2��1)(2c2=3R0) : (25)

In a rigorous dynamical approach the question would
arise whether the photon gas cloud can be considered as a
closed system or not, i.e. if the region r >R0 of an undis-
turbed “background” has to be included in the analysis.

8 Implications of present approach

An attempt has been made here to understand at least part
of the features of the expanding universe at its later stage.
Among the obtained results, the order of magnitude of the
characteristic radius (19) should first be mentioned. The ex-
periments by Lamoreaux indicate that the possible “satura-
tion” at a finite average frequency �� of equations (9)–(11)
would at least take place above an energy density of the or-
der of 6�10�6 J/m3. With uc > 6�10�6 J/m3 at the position
r= rc of the Earth, we then have rc . 1024 m = 0:01R0 with
R0 as the radius of the observable universe. Provided that
there is not an excessively large average frequency �� as com-
pared to the frequency range in the experiments by Lamore-
aux, and that the form (11) holds true, the linear dimensions
of the present photon gas model should thus be consistent
with cosmical dimensions. Since fp is proportional to u and
fg to u2, very large energy densities result in very small radii,
and not in very large ones.

Concerning the present stage of an accelerated expansion,
the radius of the outermost parts of the universe has been ob-
served to expand at an acceleration of about 4�10�10 m/s2 for
a fraction �= 0:75, as described in Sections 2 and 3. The cor-
responding estimation (25) yields an acceleration of the order
of 3�10�10 m/s2, being of the same order as the observed
value.
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The generally discussed coincidence problem may have a
solution in terms of the present theory. The vacuum energy
density (dark energy) and its mass density (dark matter) are
coupled here, because they originate from the same photon
cloud. This coupling both exists in an equilibrium state, and
in an accelerated state where the acceleration of the expansion
is of the order of the ratio between the net pressure force and
the mass of the cloud.

The spotted excess of high-energy electrons and positrons
in recent balloon and satellite experiments [11, 12] may,
among other possible explanations, also be due to electron-
positron pair formation through the decay of energetic zero
point energy photons. The latter then belong to the high-
frequency part of the distribution, even in the proposed case
of expression (10). The photon decay could be caused by im-
pacts with other charged particles [22].

9 Summary and conlusions

The present expansion of the universe is dominated by the so
far not fully understood concepts of dark energy and matter.
An attempt has been made in this paper to explain these con-
cepts in terms of the pressure force and gravity of a spherical
photon gas cloud of zero point energy, treated in flat quasi-
Euclidian geometry. Such an analysis requires a reconsider-
ation to be made of the conventional concept of zero point
energy and its frequency distribution, because this leads to
an unacceptable infinite energy density. For this purpose a
modified statistical approach has been proposed which results
in a finite energy density. An equilibrium solution has then
been found for a zero point energy photon gas confined in its
own gravitational field. This also outlines the main behaviour
of small dynamic deviations from an equilibrium, i.e. from a
constant to an accelerated expansion of the universe.

A crucial point of the present analysis is the required finite
energy density of the vacuum field. Provided that the present
approach holds true, it would lead to the following features:

• The obtained linear dimensions seem to be consistent
with observed cosmical ones;

• The observed and estimated values obtained for the ac-
celeration of the present expansion are of the same or-
der of magnitude;

• The generally discussed coincidence problem of dark
energy and dark matter appears to have a solution, be-
cause these concepts originate from the same photon
cloud in the present model;

• The observed excess of high-energy electrons and po-
sitrons in balloon and satellite experiments have one
possible explanation in the decay of high-energy pho-
tons of the vacuum field.
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As was shown in the works of 1951–1983, the fine structure of distributions of the re-
sults of measurements of processes of diverse nature is not casual. The changes in the
shape of histograms corresponding to the distributions were called “macroscopic fluctu-
ations”. The universal character of the phenomenon and its independence of the nature
of the process studied were demonstrated for various processes: biochemical and chem-
ical reactions, movement of latex particles in the electric field, proton transverse relax-
ation in the inhomogeneous magnetic field, discharge in the neon-tube RC-generator
and radioactive decay of various �- and �-isotopes. Since 1982, the main object chosen
to study macroscopic fluctuations has been �-decay. The choice was based on the pro-
cess being a priori independent of trivial factors and the possibility to conduct continu-
ous long-term automatic measurements while storing the results in a computer archive
(database). Started in 1982, these measurements have been carrying on, as unceasingly
as possible, until now. Since July 2000, the measurements are conducted using devices
designed by one of the coauthors of this review, I. A. Rubinstein. Application of these
devices (especially, detectors with collimators which isolate beams of �-particles fly-
ing at certain directions), along with the use of Edwin Pozharsky’s computer program,
which eases histogram comparing by the expert, has allowed us to reveal a number of
fundamentally new regularities. In the review, we describe these regularities, device
constructions, and the methods of measurement and analysis of the results obtained.

1 Devices, measurement methods, and data analysis

The methods of histogram construction and analysis were de-
scribed many times in our previous works [11–15]. We ana-
lyze the shape of “inconsistent” histograms [33, 34] — distri-
butions of the results of consecutive measurements, the num-
ber of which is comparable with the selected number of dig-
its (bins). Usually we cut the sequence of a time series of
the results of measurements to equal, non-overlapping seg-
ments (60–100 segments in a series), with approximately the
same number of bins. In the histograms constructed from
such segments of time series, the number of results per bin
will vary from 0 to 5. We analyze changes in the distribu-
tion of the number of results within a single bin depending
on the position (order number) of the bin in the series, and
the regularities become more evident (visible) after smooth-
ing of the initially inconsistent histograms by moving sum-
mation. All the operations: registration of the quantities mea-
sured, their storing and sorting, histogram construction and
processing (smoothing, superpositioning, mirroring) — are
performed with the aid of a very handy program written by
Edwin Pozharsky (see [12]). A weakness of our methodol-
ogy is visual comparing of histogram shapes: the decision

“similar/non-similar” is made by an expert, after evaluating a
pair of histograms drawn on the computer monitor. There is a
“radical” way to overcome subjectivity of expert’s judgments:
comparing histograms after randomization of their sequence.
In this case, the expert knows nothing about the histograms
compared. Using this approach, we checked all the principal
results of our investigations. However, the approach is ex-
tremely laborious; the volume of work to do increases greatly.
Another way to avoid expert’s subjectivity, which was used
in most cases, is pairwise comparing — ceteris paribus —
of two series of measurements, “control” and “experiment”,
differing only in a single factor (e.g., comparing histograms
constructed from the “direct” and “inverse” sequences of the
same time series). This method, which has been conventional
in science for 300 years, was used to obtain the results of last
years.

It would be good to replace the expert with a computer
program. We started such attempts about 20 years ago. This
task turned out unexpectedly difficult for yet. The pattern-
recognition specialists usually give it up, because what seems
obvious for the expert appears vague for the computer pro-
gram. Recently, however, some progress has been achieved.
V. V. Strelkov has made a computer program which reprodu-
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Fig. 1: — Fig. 1a: Collimator. Fig. 1b: Device assembly (radioactive
sample, collimator, photodiode).

ces one of the main phenomena we study, namely, the
“near-zone effect” [31, 32]. The effect means that the his-
tograms constructed from the neighbor (non-overlapping!)
segments of a time series are more probable to be similar
than random far-apart histograms. Unfortunately, the pro-
gram lacks user interface and is still accessible only by the
author.

Despite the absence of a computer program and the labo-
riousness of visual histogram comparing, we have obtained
much information on the phenomena studied, which is based
on the “control-experiment” comparisons. Among those data,
of special interest are the results of experiments, in which �-
radioactivity was measured using a collimator-based setup.

Designing a collimator which would yield a narrow beam
of �-particles (angle, 610�) represents a known difficulty.
Since the mean range of 5-MeV �-particles in air is about
32 mm, the length of the collimator can be about 10 mm —
then the particle’s energy loss after passing the collimator will
be about 20%. In this case, one can be sure that all the �-
particles passed through the collimator will be registered, and
no vacuumization of the “source-collimator-detector” system
would be necessary.

With the collimator length 10 mm, the diameter of the
hole for obtaining a narrow beam should not be more than
1 mm. The number of �-particles emitted by the radioactive
source from a 1-mm spot cannot be substantially increased

by raising the thickness of the 239Pu layer. Hence, one can
achieve a particle flux through a single collimator hole of 5–8
particles per second.

To enhance statistical significance of the experiment, we
had to design a collimator in the form of a 120-hole grid
(Fig. 1a), and use a larger-area detector.

The radioactive source itself is a grid with hollows filled
up with 239Pu. The centers of hollows are strictly coaxial
with the centers of collimator holes. Fig. 1b shows the po-
sitional relationship between the source, collimator and de-
tector, the latter being a photodiode with the area of sensor
surface 400 mm2.

2 Regular changes of the histogram shape with time

Regular changes with time is one of the main proofs of non-
randomness of the fine structure of histograms obtained upon
measuring processes of diverse nature. These regularities
gradually emerged in the series of systematic many-year mea-
surements of the rates of enzymatic and chemical reactions
and the processes of radioactive decay [1–6]. The main re-
sults of those studies were reproduced and substantially ex-
tended in the experiments on �-activity measured using a line
of new devices.

2.1 The “near-zone effect”

As shown in many our papers published earlier, changes in
the histogram shape reveal an “effect of near zone”, which
states for a high probability of the histograms constructed
from the non-overlapping neighbor segments of a time series
to be similar. The nature of this effect remains mysterious,
much because of its fractality: the effect manifests itself on
different time scales, when histograms are constructed from
hour, minute, second and 0.01-second segments of a time se-
ries [12, 14, 15].

2.2 Daily periods

The high quality of experimental setups and accurate deter-
mination of time intervals (and most of all, independence of
the histogram shape of time series trends!) enabled us to see
that the periods of appearance of a certain histogram shape
split to the “sidereal” and “solar” ones. Now, with histograms
constructed for 1-min segments, the daily period split to the
“sidereal” (1436 min) and “solar” (1440 min) days. Deter-
mination of the yearly periods with the accuracy of 1 h also
yielded two peaks: one equal to 365 average solar days (cal-
endar year) and another equal to 365 days plus 6 h (side-
real year). When yearly periods were determined with the
accuracy of 1 min (!), the calendar and sidereal periods, as
expected from calculations, turned out to be 525599-525600
and 525969 min respectively. The calendar period seems to
mean the recurring orientation of the laboratory relatively to
the Sun, whereas the sidereal period reflects orientation in re-
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Fig. 2: A typical dependence of the probability of reappearance of histograms of a certain shape
on the interval between them. The “near-zone” effect and the near-daily period of reappearance
of similar 1-hour histograms in the measurements of 239Pu �-activity at Novolazarevskaya
station (Antarctic) on March 1–2, 2003. The measurements were made by A. V. Makarevich.
In the figure, the number of similar histogram pairs (Y -axis) is plotted vs. the corresponding
interval between histograms (X-axis, h) [20].

Fig. 3: When 239Pu �-activity is measured with the detectors ori-
ented in a plane parallel to the celestial equator, two distinct periods
of the appearance of similar histograms can be seen: one equal to
the sidereal day (1436 min) and another corresponding to the solar
day (1440 min). The measurements were made in Pushchino on
June–October, 2004. Axis legends as in Fig. 2 [22, 25].

Fig. 4: Similar 1-hour histograms appear in the measurements of
239Pu�-activity with the interval of exactly a year (“calendar year”)
and a year plus 6 hours (“sidereal year”). In the figure, the number
of similar histogram pairs (Y -axis) is plotted vs. the corresponding
interval between histograms minus the number of hours in a year
(8760 h) (X-axis, h) [22, 25].

Fig. 5: With the accuracy of 1 min, similar histograms reappear
after a year with two main periods: the double (split!) calendar
(with 525599- and 525600-min peaks) and the sidereal, equal to
525969 min. The measurements of 239Pu �-activity were made on
November 24, 2001 and 2002. In the figure, the number of similar
histogram pairs (Y -axis) is plotted vs. the corresponding interval
between histograms (X-axis, min) [22, 25].

Fig. 6: With the accuracy of 1 h, similar histograms reappear with
two periods: exactly 2 years and 2 years plus 12 h. The measure-
ments of 239Pu �-activity were made on August–September, 2000–
2002. In the figure, the number of similar histogram pairs (Y -axis)
is plotted vs. the corresponding interval between histograms minus
the number of hours in two years (X-axis, h) [22, 25].
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Fig. 7: When 239Pu �-activity is measured with a 1-min resolu-
tion, similar histograms reappear with two main periods: calen-
dar and sidereal. The calendar period consists of two subperiods:
one is equal to the theoretical value (1051200 min) and another is
2 min shorter (1051198 min). The sidereal period exactly meets
the theoretical value of 1051938 min. The measurements of 239Pu
�-activity were made on April 20, 2001–2003. In the figure, the
number of similar histogram pairs (Y -axis) is plotted vs. the corre-
sponding interval between histograms (X-axis, min) [22, 25].

Fig. 8: With the accuracy of 1 h, similar histograms reappear ex-
actly after 3 years and 3 years plus 18 h. The measurements of
239Pu �-activity were made on August–October, 2000–2003. In
the figure, the number of similar histogram pairs (Y -axis) is plot-
ted vs. the corresponding interval between histograms minus the
number of hours in three years (X-axis, h).

Fig. 9: When compared are histograms with a 3-year interval be-
tween them, the calendar period of reappearance of similar his-
tograms is 3 min shorter than the theoretical value. The measure-
ments of 239Pu �-activity were made on the same dates of October
(A) or August and November (B), 2000–2003. In the figure, the
number of similar histogram pairs (Y -axis) is plotted vs. the corre-
sponding interval between histograms minus the number of minutes
in three years (1576800 min) (X-axis, h).

Fig. 10: When compared are histograms with a 3-year (1576800-
min) interval between them, the sidereal period of reappearance of
similar histograms is realized with a triple “leap shift”, i.e. 369�3
= 1107 min later of the calculated calendar time. In the figure, the
number of similar histogram pairs (Y -axis) is plotted vs. the corre-
sponding interval between histograms minus the number of minutes
in three years (1576800 min) (X-axis, h).
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Fig. 11-1: The distribution of intervals between similar histograms
depends on the direction that �-particles fly in upon 239Pu radioac-
tive decay. The measurements of 239Pu �-activity were made on
January–June, 2002. (A) �-Particles emitted by a flat sample are
registered with a flat detector without collimator; (B) before reg-
istered by a detector, �-particles pass through a narrow collimator
directed at the Pole Star. In the figure, the number of similar his-
togram pairs (Y -axis) is plotted vs. the corresponding interval be-
tween histograms (X-axis, h) [23, 26].

lation to the sphere of fixed stars.
Apparently, the phenomenon of period splitting is under-

lain by the spatial anisotropy of factors that determine the
shape of histograms. All the aforesaid is illustrated by Fig. 2–
Fig. 9.

Fig. 2 shows a typical picture: a high probability of ap-
pearance of similar 1-h histograms in the nearest, neighbor
intervals (the near-zone effect) and the increase of this prob-
ability after 24 h. We obtained analogous distributions with a
pronounced near-zone effect and 24-h period many times —
for processes of diverse nature measured at various geograph-
ical points.

Fig. 3. More accurate determination of the daily period in
the appearance of similar histograms (with the 1-min resolu-
tion), undertaken on Yu. I. Galperin’s advice, showed that the
daily period is distinctly resolved to two peaks: the “sidereal
day” (1436 min) and the “solar day” (1440 min).

2.3 Yearly periods

Fig. 4 shows that determined with the accuracy of 1 h, yearly
periods split — like do daily periods determined with the 1-
min accuracy — to two peaks: the “solar” (calendar) peak
and the “star” (sidereal) one.

With the results of 1-s measurements collected for many
years, yearly periods were determined with a 1-min accuracy.
Then, apart from resolving the solar and sidereal yearly peri-
ods, we were able to see a surprising shift of the solar period

Fig. 11-2: Distribution of intervals between similar 1-hour his-
tograms in the experiments with collimators aimed at the Pole Star
(A) and directed west (B). The measurements of 239Pu �-activity
were made in Pushchino (at a latitude 54� north) on February–May,
2003 [23, 26].

by a minute per year: by one minute in the first, by two min-
utes in the second, and by three minutes in the third year.
Strangely enough, the sidereal period did not shift; and since
both observations were made in the same experiments, the
shift of the solar period looked more reliable.

Constructing 1-h histograms after 3 years, we again ob-
tained two periods: the “calendar” period, which was equal
to the number of hours passed for 3 years, and the “sidereal”
one, differing from the first by 18 h, i.e. by three “leap shifts”.
This can be seen in Fig. 8.

To obtain statistically significant values of the duration of
“calendar period” after 3 year with a 1-min resolution, we
compared about 200000 histogram pairs. The results are rep-
resented in Fig. 9.

It is also important that the 2nd “sidereal” period corre-
sponds exactly to the leap shift and is equal to 369�3 = 1107
min (i.e., 1576800 + 1107 = 1577907 min) — see Fig. 10.
Analogous results were obtained time and again.

3 Dependence of the histogram shape on the direction
in space

The use of collimators, isolating directed �-particle beams,
allowed us to start studies on the spatial regularities in the
change of the histogram shape.
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3.1 The collimator is directed at the Pole Star [23, 26]

In 2002 we started measurements with collimators, which
isolate directed beams of �-particles flying at different direc-
tions upon radioactive decay. The devices were constructed
by I. A. Rubinstein. It was already in the first experiments,
when we found that the histogram shape depended on the di-
rection of �-particles escape. With the collimator directed
North (at the Pole Star), we saw disappearance of the daily
periods in the change of the histogram shape. The control
measurements were conducted either without collimators or
with a collimator directed west or east. These measurements
lasted several months in 2002 and were repeated in 2003 and
2004 [23].

The dependence of the histogram shape on the direction
of �-particles escape upon radioactive decay has quite a deep
significance. The measurements were carried out in Pushchi-
no laboratory (at the latitude 54� north and longitude 37�
east), and the result was similar to that observed near the
North Pole (at the latitude 80–82� north) [20]. In the air,
�-Particles (239Pu) will run a distance of �4 cm. Hence,
the matter does not concern any factors of the Earth Pole re-
gion affecting the shape of histograms. Evidently, a sugges-
tion of radioactive �-decay being influenced by something
is out of consideration too. The measure of radioactive de-
cay intensity (the number of decay events per time unit) is
independent of the conditions of measurements and did not
change in our experiments. The fluctuations of the radioac-
tive decay intensity we observed were well-correspondent,
according to the conventional criteria, to Poisson statistics.
The only thing dependent on the orientation of the collimator
was the change of the histogram shape in time, or rather the
change associated with the daily rotation of the Earth. Con-
sidering the disappearance of that dependence in the experi-
ments conducted near the North Pole, one could assume an
interference of some local environmental factors. For the re-
sults of Pushchino experiments, when the collimator was di-
rected at the Pole Star, no such explanation is possible, as
daily periods did not disappear in the control, ceteris paribus,
measurements. There remains only one conclusion: the phe-
nomenon is a manifestation of sharp anisotropy of the space-
time continuum. It should be noted here that this anisotropy
reveals itself at the moment of �-particles escaping the nu-
cleus. Given the nucleus diameter to be �10�13 cm, the spa-
tial anisotropy should be of the same scale. With the energy
of �-particles being several MeV, the fluctuations of the Earth
magnetic field and its influence on the direction of �-particles
run, let alone on the fine structure of histograms, may well be
neglected.

3.2 Rotation of collimators [26, 27]

Following the experiments discussed above, we started, in
2004, measurements with collimators that were being ro-
tated clockwise or counterclockwise with a special apparatus.

Fig. 12: When 239Pu �-activity was measured with collimators be-
ing rotated counterclockwise in a plane parallel to the celestial equa-
tor, the probability of similar histograms to reappear periodically
increased. These “artificial” periods turned out to be split to the
sidereal and solar peaks too.

When the collimator was rotating counterclockwise (i.e., co-
rotating with the Earth), the shape of histograms was chang-
ing with periods equal to the number of collimator rotations
per day plus one rotation made by the Earth itself. We ob-
served periods of 12, 8, 6, 4, 8, 3 and 1 h. When the colli-
mator made one clockwise rotation a day, the Earth’s rotation
got compensated for, and the daily period in the change of
histogram shape disappeared. All these results confirmed the
conclusion on the dependence of histogram shape changes
on “scanning” of the surrounding, sharply anisotropic, space.
And again, we found that these “artificial” periods split to the
“solar” and “sidereal” ones (Fig. 12) [26, 27].

Fig. 12 shows the results of an experiment, in which a col-
limator made three rotations per day counterclockwise. To-
gether with one counterclockwise rotation made by the Earth
itself, this amounts to four rotations per day, i.e., a period
equal to 6 h (360 min). It can be seen that after the first ro-
tation, the extremum consists of two unresolved peaks (359
and 360 min). After the second rotation, two distinct extrema
(718 and 720 min) are visible, and they get to 1077 and 1080
min after the third rotation. After the forth rotation we fi-
nally see two extrema corresponding to the “normal” solar
and sidereal day.

Analogous splitting was observed in the case of other “ar-
tificial” periods.

3.3 Collimators are directed west and east [27, 28]

The experiments, in which collimators were directed west
and east, confirmed the main conclusions made before and
revealed two new phenomena:

a). Simultaneous measurements with two collimators
placed at the same point but counter-directed, aiming
east and west, showed disappearance of similarity be-
tween histogram shapes. It was important, since earlier
we considered similarity of histograms obtained at the
same place and time as the main argument in favor of
nonrandomness of the histogram shape;

b). Not less important was another phenomenon: there was
a 12-hour difference in the appearance of similar his-
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Fig. 13: With the collimators aimed at opposite directions, the prob-
ability of similar histograms to reappear sharply decreases. The his-
tograms of a certain shape appear “in the west” exactly half a day
later than “in the east”. The measurements of 239Pu �-activity were
made in Pushchino on June 22 and October 13, 2003.

tograms in the series obtained with the “eastern” and
“western” collimators. Essentially, this result was anal-
ogous to that obtained in the experiments with rotat-
ing collimators. Indeed, as the Earth rotates, the sur-
rounding space is being scanned, and there should be
a correspondence between histograms of a particular
shape and certain directions in the space, which will
consecutively appear in the collimator’s “field of view”
(Fig. 13).

3.4 A strange 1444-minute period emerging when the
collimator is always aimed at the Sun

In the spring of 2004, we started continuous, 24/7 registration
of 239Pu �-activity with a collimator, which made one clock-
wise rotation per day — that is, it was always aimed at the
Sun. The objective was to distinguish between changes de-
pendent on the Earth’s revolution around the Sun and changes
caused by the Earth’s movement in relation to the sphere of
fixed stars. As expected, no daily periods was revealed in
those measurements. The changes of the histogram shape
seen under such conditions could, therefore, be only attribut-
ed to the Earth’s movement along the circumsolar orbit. So
it was even more surprising when in the second half of July
2005, we found a strange period equal to 1444 min. The sim-
ilarity between histograms gradually grew, the peak became
more distinct and reached its maximum on July 24–29, this
followed by its rapid decline until complete disappearance by
August. This phenomenon is illustrated in Fig. 14–Fig. 16.

Fig. 14 shows the distribution of the number of histogram
pair matches for measurements with a “solar” collimator on
July 25 and August 10, 2005. It can be seen that there are
no distinct daily periods on August 10 — as well as on any
other day, which is typical for measurements with the “solar”
collimator. There is an exception though: on July 25 the prob-
ability of similar histograms to reappear jumped, the period

Fig. 14: The figure illustrates emergence of an “anomalous” period
of similar histogram reappearance (July 25, 2005), which is equal to
1444 min. Usually, there are no marked daily periods in the exper-
iments with the “solar” collimator — as can be seen on August 10,
2005.

Fig. 15: The period of 1444 min emerges in the measurements with
the “solar” collimator and is absent in the ceteris paribus measure-
ments with the “western” collimator. In the experiments with a solar
collimator, there is also no 1436- and 1440-min periods, which can
be seen when a western collimator is used. The measurements of
239Pu �-activity were made on July 24, 2005.

of appearance being 1444 min. Such a period does not corre-
spond to any cosmophysical process we are aware of, and the
fact of its emergence seems very strange.

It was important to ascertain that this period would em-
erge only in the experiments with the “solar” collimator. So
we compared these data with the results obtained in parallel
experiments with a “western” collimator. An example of the
comparison is given in Fig. 15. The figure shows distributions
of the number of histogram matches; compared are the re-
sults of simultaneous “solar” and “western” collimator-based
measurements on July 24, 2005. It can be seen that in the
“western collimator” measurements, there are distinct 1436-
min and 1440-min periods and no 1444-min period. In the
experiments with the “solar” collimator there is, vice versa,
the 1444-min period and no the solar and sidereal daily pe-
riods. Thus, the phenomenon should be somehow related to
the situation of �-particles running towards the Sun.

We tried to seek for this period on other days of the year,
yet the search yielded no results — at first. We continued
to register the period on the same July days in 2006 (incom-
plete data) and then in 2007 and 2008. Finally, a key step was
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Fig. 16: In the experiments with a collimator directed at the Sun, the
1444-min period reappeared on the same dates of July and January,
2005–2008.

made: we found an analogous period in January, with the in-
terval between the July and January peaks being exactly half
a year, which meant they were right at the opposite points of
a diameter of the circumsolar orbit.

As can be seen in Fig. 16, the July and January waves of
the 1444-min period are quite synchronized to each other and
also self-synchronized in different years (2005, 2007, 2008).

These results indicate that moving along the circumsolar
orbit, the Earth will enter — at least twice a year — a spa-
tial region with “anomalous characteristics”, which change
with a period of 1444 min. This spatial region represents an
“anomalous band”, crossing the center of the circumsolar or-
bit and stretched along the “July-January” line. It is remark-
able that the characteristics of this anomaly are not shielded
by the Sun, i.e., manifest themselves equally on both sides of
the orbit. No analogy with the Doppler effect was revealed:
the 1444-min period emerges “suddenly”, does not change
for several days (while the Earth is moving), and “suddenly”
disappear. It should be stressed that the phenomenon is not
observed in the parallel experiments without collimators or
with collimators not aimed at the Sun. The “anomalous direc-
tion” crossed by the Earth on its way along the circumsolar
orbit roughly corresponds to the direction from the constella-
tion Cancer (July 21 — August 11) to the constellation Capri-
corn (January 19 — February 16). The nature of this period
is enigmatic. The 1444-min period is 4 min longer than the
daily period and, thus, cannot be explained by influence of
any factors within the Solar system.

3.5 Effects of “half-day” and “half-year” palindromes
[35, 36]

As follows from the data presented above, changes in the his-
togram shape depend on changes of the object’s orientation
in the space-time continuum. If we look in more detail at the
path that the “laboratory” (the place where the measurements
are performed) moves along over a day, we can see that dur-
ing the “astronomical night” (i.e., from 18:00 to 6:00 by local
time), the laboratory speeds up, since the Earth adds revolu-
tion about its own axis to the movement along the circumsolar
orbit. From 6:00 to 18:00 (during the “astronomical day”),

the laboratory, correspondingly, slows down, as the Earth’s
spinning is subtracted from its revolution around the Sun. In
relation to the sphere of fixed stars, the objects studied will,
correspondingly, move in the reverse order. Our investiga-
tions with V. A. Pancheluga showed that these circumstances
would give rise to the “effect of half-day palindromes”, which
is a high probability of a series of “night histograms” to be
similar with the inverted series of the correspondent “day his-
tograms” [35]. As supposed by M. N. Kondrashova [39], an
analogous palindrome effect should exist for the histogram
series obtained from measurements at the “opposite sides” of
the circumsolar orbit [2]. Subsequent studies confirmed this
supposition. Indeed, in addition to the “half-day palindrome
effect” we found the effect of “half-year palindromes”. The
half-year palindromes can be revealed when one takes into
account the direction of night and day movement in relation
to the sphere of fixed stars. At the opposite sides of the cir-
cumsolar orbit, the movement is counter-directional at day
and night. That is, on vernal equinox the series of day his-
tograms will be inverse to the day and similar to the night se-
ries on autumnal equinox. This proved valid for any opposite
points of the circumsolar orbit. Therefore, the spatial char-
acteristics that determine histogram shape must not change
markedly over the year (the same being indicated by the ex-
istence of yearly periods). Holding true is also the converse:
histograms are a stable, regular characteristic of a direction
(domain) of the space-time continuum [36]. The aforesaid is
illustrated by Fig. 17.

3.6 Collimators and the phenomenon of half-day and
half-year palindromes

The effects of half-day and half-year palindromes are one of
the most illustrative piece of evidence for the dependence of
the phenomena under discussion on the movement of the ob-
jects studied in the space-time continuum. Of special inter-
est is, thereby, palindromes that were revealed under the use
of collimators. At the beginning of those experiments, we
encountered an unexplainable irreproducibility of the results.
In the experiments with a fixed west-oriented collimator, the
half-day palindromes might either be seen quite clearly or be
almost absent. Further studies with two collimators directed
west and east correspondingly revealed a more complicated
picture.

It turned out that this two-collimator setup yielded data
series in which the orders of “day-night” and “night-day”
were not equivalent. In the measurements with the eastern
collimator, a clear palindrome was observed at comparing a
sequence of day histograms with the inverted sequence of the
follow-up night histograms. On the contrary, the western col-
limator gave series in which the inverted sequence of the pre-
ceding night histogram was a palindrome to the sequence of
the follow-up day histograms.

The eastern collimator “faces the stream of time”, the
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Fig. 17: A scheme illustrating the “palindrome effects”. With the Sun in the center, the scheme shows four positions of the Earth on
the circumsolar orbit. Both the Earth and the Sun are rotating counterclockwise; movement of the Earth along the circumsolar orbit is
counterclockwise as well. As seen in the figure, the Earth’s rotational movement in the nighttime is co-directional to its movement along
the circumsolar orbit and to rotation of the Sun. In the daytime, the direction of these movements is opposite. Hence, in the case of
“backward” movement (in the daytime), the object measured passes in the inverse order the same spatial regions that it has passed in the
direct order in the nighttime. The effect of the “half-day palindrome” consists in the high probability of a “nighttime” histogram sequence
to be similar to the inverted “daytime” sequence taken on the same day. Equally, the “daytime” sequence will be similar to the inverted
“nighttime” one. For example, the 1–2–3–4–5 sequence of nighttime histograms is similar to the 5–4–3–2–1 sequence of the daytime ones.
The effect of the “half-year” palindrome is determined by the fact that at the opposite points of the circumsolar orbit, the movements during
the same halves of the day are opposite to each other. The effect consists in the high probability of a “nighttime” histogram sequence taken
on one side of the circumsolar orbit to be similar to the “daytime” (not inverted) sequence taken on the opposite side. Correspondingly,
nighttime (daytime) sequences on one side of the orbit will be similar to the inverted nighttime (daytime) sequences on the opposite
side [36].

western one “looks after its flowing away”. . .
This strange effect still needs to be reproduced once and

again, and many circumstances are to be clarified. We re-
port it here due to its mysteriousness and, apparently, deep
meaning.

3.7 The phenomenon of absolute-time synchronism in
the measurements with collimators directed at the
Pole Star and the Sun

The appearance of similar histograms in measurements at dif-
ferent geographical points at the same local time — the “local-
time effect” — is quite regular. Sometimes, however, we ob-
tained similar histograms at different geographical points not
only at the same local but also at the same absolute time. The
clearest observations of such an absolute-time synchronism
were made during solar eclipses and new moons [37, 38]. At

these moments, histograms of a certain shape appear simul-
taneously (with the accuracy of a few minutes) at different
geographical points. We also observed absolute-time syn-
chronism during the Antarctic expedition of 2001 (S. N. Sha-
povalov’s measurements). Recently, we have compared the
occurrences of absolute-time synchronism in the experiments
without collimators and with collimators directed at the Sun
and the Pole Star. Compared were data of simultaneous mea-
surements made by S. N. Shapovalov in the Antarctic (No-
volazarevskaya station) and data of Pushchino measurements.
The results of comparison was unexpected: the extent of the
“local-time effect” and absolute-time synchronism depended
on the type of the measuring setup used. The local-time syn-
chronism was clearly seen in the experiments without col-
limators or in the data obtained using the western Pushchino
collimator; the absolute-time synchronism was almost absent.
On the contrary, the measurements with Pushchino collima-
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tors directed at the Pole Star or the Sun showed no local-time
but good absolute-time synchronism (Fig. 18–20). This phe-
nomenon also needs to be confirmed.

4 Discussion

Proving that the histograms obtained by measuring processes
of diverse nature change regularly and in relation to the char-
acteristics of the space-time continuum is the reason to pose
questions on the nature of this relation. To answer these ques-
tions, additional studies are necessary.

The phenomena discovered are quite unusual and require
alteration of conventional views. First of all, it applies to es-
tablishing the regular, non-casual character of the fine struc-
ture of amplitude fluctuation spectrum (histogram shape) for
“quite stochastic”, according to conventional criteria, proces-
ses. In fact, there is no contradiction here: the processes that
are quite stochastic X-directionally can be absolutely non-
stochastic Y -directionally. There is not — in principle —
any determinate connection between the time course of a pro-
cess and the spectrum of its amplitude fluctuations: the same
histogram shape may correspond to many variations of time
series.

Collecting the results of once-a-second measurements of
239Pu �-activity for many years, which became possible af-
ter application of perfect enough detectors, and the use, upon
necessity, of collimators — fixed or rotated by different ways
— was extremely valuable for discovering and studying the
phenomena discussed. The nature of many (most of) these
phenomena is far from comprehension.

First of all, this is the near-zone effect. The statistically
significant similarity of histograms constructed for different,
independent segments of time series of the results of measure-
ments is one of convincing indications of nonrandomness of
the histogram shape. It seemed logical that the similarity of
the nearest neighbor histograms should be the result of action
of a common external “force” (cause). This cause changes in
time, and while these changes are not significant, histograms
remain similar. In other words, it would be natural to think
that there is a “lifespan” of a certain “shape idea” [29]. How-
ever, the numerous attempts to determine even the order of
magnitude of this “lifespan” were unsuccessful. Until now
we failed to find such a small interval that the shape of his-
tograms would not change (intervals were varied from min-
utes to tens of milliseconds).

The next mysterious phenomenon is the splitting of the
daily period in change of the histogram shape to two peaks:
the sidereal and solar days. Should only one of them be re-
vealed, we would conclude that the shape of histograms is
determined by the exposition (vector) of the object studied
in relation to the Sun or the sphere of fixed stars. However,
the fact that we observe two highly resolved extrema, with
the periods of 1436 and 1440 min, seems quite unusual. The

Fig. 18: Comparison of histograms corresponding to the paral-
lel measurements of 239Pu �-activity at Novolazarevskaya sta-
tion (Antarctic) and in Pushchino shows that the effect of “local-
time synchronism” is well-expressed when Pushchino measure-
ments were performed with a west-directed collimator and it is weak
when the collimator was directed at the Pole Star. The measure-
ments were made by S. N. Shapovalov (in the Antarctic) and K.I.
Zenchenko (in Pushchino) on March 19, 2003. The calculated dif-
ference in local time is 103 min. In the figure, the number of similar
histogram pairs (Y -axis) is plotted vs. the corresponding interval
between histograms (X-axis, min).

Fig. 19: In the Antarctic and Pushchino measurements, the absolute-
time synchronism is more evident when measurements in Pushchino
were made with a collimator aimed at the Pole Star, rather than
a west-directed collimator. The measurements of 239Pu �-activity
were made on March 19, 2003.

Fig. 20: In the Antarctic and Pushchino measurements, the absolute-
time synchronism is more evident when measurements in Pushchino
were made with a collimator aimed at the Sun, rather than a west-
directed collimator. The measurements of 239Pu �-activity were
made on July 16, 2005.
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time resolution of 1 min corresponds to the coelosphere res-
olution of 0.25� (15 angular minutes). And we can see this
effect not only in the experiments with collimators but also
in the measurements made with flat detectors, without colli-
mators. This should be investigated in more details, yet even
by now we have repeatedly registered the dependence of peak
resolution on the orientation of the detectors. When flat de-
tectors are positioned in the horizontal plane, one of the ex-
trema (as a rule, the solar day) may not be seen. A good
resolution was achieved when a flat detector was oriented in
the plane of celestial equator. Also, we saw well-resolved
sidereal and solar periods in the experiments with collima-
tors, both fixed (directed east and west) and rotated counter-
clockwise. Phenomenology of these effects is far from being
complete, and additional studies are necessary. The problem
became more enigmatic after V. A. Pancheluga’s experiments
[40–43]. When measuring noise fluctuations in electronic
circuits with frequency band up to 100 kHz, he determined
the periods of reappearance of histograms of a certain shape.
The splitting of extrema to the sidereal and solar days was
found at a distance between the objects studied about several
kilometers. The splitting corresponded to the period differ-
ence of several milliseconds, which in terms of angular units
would mean an incredibly high resolution. Thus, the prob-
lem of period splitting grew even more paradoxical. This
paradoxicality had long been noted by D. P. Kharakoz, who
drew our attention to the fact that the collimator aperture al-
lowed one to resolve coelosphere segments of approximately
5� (20 minutes), while we spoke about a second-order resolu-
tion (“Kharakoz’s paradox” [44])! This paradox is, probably,
seeming, as we use not single collimators but a setup in which
120 collimators are arranged on a small area. Perhaps, this is
the cause of such a sharp “focusing”.

All that was said about splitting of daily periods can be re-
ferred to the splitting of yearly periods as well. Now, what we
see here are the same effects of discriminate orientation rela-
tive to the Sun and stars. And the same problems. Plus, what
appears impossible at first glance — an extremely precise de-
termination of yearly periods: with the accuracy of a minute,
we determine the yearly period as equal to 525600 min! The
accuracy is so high that we are able to register the diminish-
ing of the “calendar” (solar) period by a minute (!) per year.
One of possible explanations may be the movement of the
solar system through the Galaxy. Any explanation, however,
would still lack solid grounds.

It is necessary to emphasize that the largest puzzle, un-
derlying all the observed phenomena, is the nature of the his-
togram shape. As follows from all our results in total, the
shape is independent of the nature of the processes studied.
The only cause common for all these processes can be the
features of space-time. However, the nature of the relation be-
tween the shape of the histogram, i.e., the spectrum of ampli-
tude fluctuations of the quantity measured, and the space-time
fluctuations is absolutely unclear. What magnitude should

these fluctuations be to affect the results of measurements?
Why the sensitivity of different processes to these fluctuations
ranges so much: the “scatter of the results of measurements”
in piezoelectric quartz has an order of 10�6 of the measured
magnitude, in chemical reactions the order is 10�2, and in
radioactive processes the scatter is proportional to

p
N?

Discovering the effect of daily and yearly palindromes
substantially complements the mosaic of facts assembled ear-
lier. The main conclusion, which can be drawn from the anal-
ysis of these effects, is that peculiarities of each region of the
space-time continuum are rather stable; they keep unchanged
for years, and the shape of histograms is, correspondingly, a
stable characteristic of these peculiarities. It should be noted,
however, that this stability is relative. The basic “local pecu-
liarities” of the space-time continuum are overlaid with pat-
terns of second, third etc. order: rotation of the Sun about its
axis (near-27-day periods), revolution of the Moon round the
Earth, changes in the relative positions of the Earth, Moon
and Sun, effects of new moons, solar and lunar eclipses, solar
flares etc. Perhaps, these “overlays” manifest themselves in
the effect of absolute-time synchronism. For many years, we
have mainly paid attention to the effect of local-time synchro-
nism. The observations of a more distinct absolute synchro-
nism in the experiments with collimators aimed at the Pole
Star and the Sun bring hope that these questions will be an-
swered.

The effects of daily and yearly palindromes essentially
clarify the overall picture. Nevertheless, there remains a lot
of work to do. The simplified picture of daily palindromes
does not take into account the shift by 4 min per day in the
course of the Earth’s movement along the circumsolar orbit.
Fig. 17 depicts movement of the Earth as a circle. It is still
unclear how the picture would change with the “sidereal day”
taken into consideration.

Finally, the recently found effect of palindrome’s time-
vector asymmetry in the measurements with the western and
eastern collimators may happen to be — when reproduced
and detailed — highly interesting.

Our works of the last years almost do not consider an
important feature of “macroscopic fluctuations”, which was
found several decades ago: the shape, fine structure, of his-
tograms and the average amplitude of fluctuations change
independently of each other. The same “shape idea” may
emerge in “narrow” and “wide” histograms. Comparing such
histograms, we normalize them by abscissa. Regularities in
the change of the average amplitude would also be very in-
teresting to study, yet it is still in the future. A lot of work
should be done to sort out all these problems.

Nevertheless, there is one conclusion we are certain of:
the apparently casual shape of histograms and its change
over time are determined by the natural movement of the ob-
ject studied through quite a complex space-time continuum.

As for the nature of anisotropy and inhomogeneity of the
space-time continuum, it is a matter of future research. Now
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we may just adopt a notion of “interference pattern” resulting
from the influence of numerous moving celestial bodies and
radiant fluxes, whose effects are summed up in each point of
the space.
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All 4X1-matrix square integrable functions with restricted domain obey slightly gen-
eralized Dirac’s equations. These equations give formulas similar to some gluon and
gravity ones.

1 Significations

Denote:

12 :=
�

1 0
0 1

�
, 02 :=

�
0 0
0 0

�
,

�[0] := �
�

12 02
02 12

�
= �14,

the Pauli matrices:

�1 =
�

0 1
1 0

�
, �2 =

�
0 �i
i 0

�
, �3 =

�
1 0
0 �1

�
.

I call a set eC of complex n� n matrices a Clifford set of
rank n [1] if the following conditions are fulfilled:

— if �k 2 eC and �r 2 eC then �k�r + �r�k = 2�k;r;

— if �k�r + �r�k = 2�k;r for all elements �r of set eC
then �k 2 eC.

If n = 4 then the Clifford set either contains 3 (Clifford
triplet) or 5 matrices (Clifford pentad).

Here exist only six Clifford pentads [1]: one which I call
� light pentad �:

�[1] :=
�
�1 02
02 ��1

�
, �[2] :=

�
�2 02
02 ��2

�
,

�[3] :=
�
�3 02
02 ��3

�
,

(1)

[0] :=
�

02 12
12 02

�
, (2)

�[4] := i �
�

02 12�12 02

�
; (3)

three coloured pentads:
� the red pentad �:

� [1] =
� ��1 02

02 �1

�
; � [2] =

�
�2 02
02 �2

�
; (4)

� [3] =
� ��3 02

02 ��3

�
,

[0]
� =

�
02 ��1��1 02

�
, � [4] = i

�
02 �1��1 02

�
; (5)

� the green pentad �:

�[1] =
� ��1 02

02 ��1

�
; �[2] =

� ��2 02
02 �2

�
; (6)

�[3] =
�
�3 02
02 �3

�
,

[0]
� =

�
02 ��2��2 02

�
, �[4] = i

�
02 �2��2 02

�
; (7)

� the blue pentad �:

�[1] =
�
�1 02
02 �1

�
; �[2] =

� ��2 02
02 ��2

�
; (8)

�[3] =
� ��3 02

02 �3

�
,

[0]
� =

�
02 ��3��3 02

�
; �[4] = i

�
02 �3��3 02

�
; (9)

� two gustatory pentads: the sweet pentad �:

�[1] =
�

02 ��1��1 02

�
; �[2] =

�
02 ��2��2 02

�
;

�[3] =
�

02 ��3��3 02

�
;

�[0] =
� �12 02

02 12

�
; �[4] = i

�
02 12�12 02

�
.

� the bitter pentad �:

�[1] = i
�

02 ��1
�1 02

�
; �[2] = i

�
02 ��2
�2 02

�
;

�[3] = i
�

02 ��3
�3 02

�
;

�[0] =
� �12 02

02 12

�
; �[4] =

�
02 12
12 02

�
.

If A is a 2� 2 matrix then

A14 :=
�
A 02
02 A

�
and 14A :=

�
A 02
02 A

�
.
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And if B is a 4� 4 matrix then

A+B := A14 +B, AB := A14B

etc.

x := hx0;xi := hx0; x1; x2; x3i ,
x0 := ct,

with c = 299792458.

2 Planck’s functions

Let h = 6:6260755�10�34 and 
 (
� R1+3) be a domain
such that if x 2 
 then jxrj < c�

h for r 2 f0; 1; 2; 3g.
Let <
 be a set of functions such that for each element

� (x) of this set: if x < 
 then � (x) = 0.
Hence: Z

(
)
dx � � (x) =

=
Z c�

h

� c�
h

dx0

Z c�
h

� c�
h

dx1

Z c�
h

� c�
h

dx2

Z c�
h

� c�
h

dx3 � � (x) ,

and let for each element � (x) of <
 exist a number J� such
that

J� =
Z

(
)
dx � �� (x)� (x) .

Therefore, <
 is unitary space with the following scalar
product: eu � ev :=

Z
(
)

dx � eu� (x) ev (x) : (10)

This space has an orthonormalised basis with the follow-
ing elements:

&w;p (t;x) :=

:=

8>>><>>>:
� h

2�c

�2 exp (ihwt) exp
��ih

c px
�

if

��c
h 6 xk 6

�c
h ;

0, otherwise.

���������
(11)

with k 2 f0; 1; 2; 3g and x0 := ct, and with natural w; p1,
p2, p3 (here: p hp1; p2; p3i and px = p1x1 + p2x2 + p3x3).

I call elements of the space with this basis Planck’s func-
tions.

Let j 2 f1; 2; 3; 4g, k 2 f1; 2; 3; 4g and denote:X
k

:=
1X

k1=�1

1X
k2=�1

1X
k3=�1

.

Let a Fourier series for 'j (t;x) have the following form:

'j (t;x) =
1X

w=�1

X
p

cj;w;p&w;p (t;x) . (12)

If denote: 'j;w;p (t;x) := cj;w;p&w;p (t;x) then a Fourier
series for 'j (t;x) has the following form:

'j (t;x) =
1X

w=�1

X
p

'j;w;p (t;x) . (13)

Let ht;xi be any space-time point.
Let us denote:

Ak := 'k;w;pjht;xi (14)

the value of function 'k;w;p in this point, and by

Cj :=

 
1
c
@t'j;w;p �

4X
s=1

3X
�=1

�[�]
j;s@�'s;w;p

!�����ht;xi (15)

the value of function 
1
c
@t'j;w;p �

4X
s=1

3X
�=1

�[�]
j;s@�'s;w;p

!
:

Here Ak and Cj are complex numbers. Hence, the fol-
lowing set of equations:( P4

k=1 zj;k;w;pAk = Cj ,

z�j;k;w;p = �zk;j;w;p

����� (16)

is a system of 14 algebraic equations with complex unknowns
zj;k;w;p.

Because

@t'j;w;p = @tcj;w;p&w;p = ihwcj;w;p&w;p = ihw'j;w;p

and for k , 0:

@k'j;w;p = �i
h
c
pk'j;w;p.

then

Cj = i
h
c

 
w'j;w;p +

4X
s=1

3X
�=1

�[�]
j;s p�'s;w;p

!�����ht;xi.
Therefore, this system (16) has got the following form:

z1;1;w;pA1 + z1;2;w;pA2 + z1;3;w;pA3 + z1;4;w;pA4 =

= i
h
c

(w + p3)A1 + i
h
c

(p1 � ip2)A2 ,

z2;1;w;pA1 + z2;2;w;pA2 + z2;3;w;pA3 + z2;4;w;pA4 =

= i
h
c

(w � p3)A2 + i
h
c

(p1 + ip2)A1 ,

z3;1;w;pA1 + z3;2;w;pA2 + z3;3;w;pA3 + z3;4;w;pA4 =

= i
h
c

(w � p3)A3 � i
h
c

(p1 � ip2)A4 ,

z4;1;w;pA1 + z4;2;w;pA2 + z4;3;w;pA3 + z4;4A4;w;p =

= i
h
c

(w + p3)A4 � i
h
c

(p1 + ip2)A3 ,
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z�1;1;w;p = �z1;1;w;p ,

z�1;2;w;p = �z2;1;w;p ,

z�1;3;w;p = �z3;1;w;p ,

z�1;4;w;p = �z4;1;w;p ,

z�2;2;w;p = �z2;2;w;p ,

z�2;3;w;p = �z3;2;w;p ,

z�2;4;w;p = �z4;2;w;p ,

z�3;3;w;p = �z3;3;w;p ,

z�3;4;w;p = �z4;3;w;p ,

z�4;4;w;p = �z4;4;w;p .

This system can be transformed into a system of 8 linear
real equations with 16 real unknowns xs;k := Re (zs;k;w;p)
for s < k and ys;k := Im (zs;k;w;p) for s 6 k:

� y1;1b1 + x1;2a2 � y1;2b2 + x1;3a3�
� y1;3b3 + x1;4a4 � y1;4b4 =

= �h
c
wb1 � h

c
p3b1 � h

c
p1b2 +

h
c
p2a2 ;

y1;1a1 + x1;2b2 + y1;2a2 + x1;3b3 +
+ y1;3a3 + x1;4b4 + y1;4a4 =

=
h
c
wa1 + hp3a1 +

h
c
p1a2 + hp2b2 ;

�x1;2a1 � y1;2b1 � y2;2b2 + x2;3a3�
� y2;3b3 + x2;4a4 � y2;4b4 =

= �h
c
wb2 � h

c
p1b1 � h

c
p2a1 +

h
c
p3b2 ;

�x1;2b1 + y1;2a1 + y2;2a2 + x2;3b3 +
+ y2;3a3 + x2;4b4 + y2;4a4 =

=
h
c
wa2 +

h
c
p1a1 � h

c
p2b1 � h

c
p3a2 ;

�x1;3a1 � y1;3b1 � x2;3a2 � y2;3b2�
� y3;3b3 + x3;4a4 � y3;4b4 =

= �h
c
wb3 +

h
c
p3b3 +

h
c
p1b4 � h

c
p2a4 ;

�x1;3b1 + y1;3a1 � x2;3b2 + y2;3a2 +
+ y3;3a3 + x3;4b4 + y3;4a4 =

=
h
c
wa3 � h

c
p3a3 � h

c
p1a4 � h

c
p2b4 ;

�x1;4a1 � y1;4b1 � x2;4a2 � y2;4b2�
�x3;4a3 � y3;4b3 � y4;4b4 =

= �h
c
wb4 +

h
c
p1b3 +

h
c
p2a3 � h

c
p3b4 ;

�x1;4b1 + y1;4a1 � x2;4b2 + y2;4a2�
�x3;4b3 + y3;4a3 + y4;4a4 =

=
h
c
wa4 � h

c
p1a3 +

h
c
p2b3 +

h
c
p3a4 ;

(here ak := ReAk and bk := ImAk).
This system has solutions according to the Kronecker-

Capelli theorem (rank of this system augmented matrix and
rank of this system basic matrix equal to 7). Hence, such
complex numbers zj;k;w;pjht;xi exist in all points ht;xi.

From (16), (14), (15):

4X
k=1

zj;k;w;p'k;w;pjht;xi =

=

 
1
c
@t'j;w;p �

4X
s=1

3X
�=1

�[�]
j;s@�'s;w;p

!
jht;xi,

in every point ht;xi.
Therefore, from (16, 15, 14):

1
c
@t'j;w;p =

=
4X
k=1

 
3X

�=1

�[�]
j;k@�'k;w;p + zj;k;w;p'k;w;p

!
(17)

in every point ht;xi.
Let �w;p be linear operators on linear space, spanned of

basic functions &w;p (t;x), such that

�w;p&w0;p0 :=

(
&w0;p0 , if w = w0, p = p0;
0, if w , w0 and/or p , p0.

�����
Let

Qj;kjht;xi :=
X
w;p

�
zj;k;w;pjht;xi��w;p

in every point ht;xi.
Therefore, from (13) and (17), for every function 'j here

exists an operator Qj;k such that dependence of 'j on t is
described by the following differential equations:

@t'j = c
4X
k=1

�
�[1]
j;k@1 + �[2]

j;k@2 + �[3]
j;k@3 +Qj;k

�
'k. (18)

and

Q�j;k =
X
w;p

�
z�j;k;w;p

�
�w;p =

=
X
w;p

��z�k;j;w;p��w;p = �Qk;j .

Matrix form of formula (18) is the following:

@t' = c
�
�[1]@1 + �[2]@2 + �[3]@3 + bQ�' (19)

with

' =

2664 '1
'2
'3
'4

3775
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and

bQ :=

26664
i#1;1 Q1;2 Q1;3 Q1;4

�Q�1;2 i#2;2 Q2;3 Q2;4

�Q�1;3 �Q�2;3 i#3;3 Q3;4

�Q�1;4 �Q�2;4 �Q�3;4 i#4;4

37775 (20)

with Qk;s :=i#k;s�$k;s if k,s, and with $s;k :=Re (Qs;k)
and #s;k := Im (Qs;k).

Let #s;k and $s;k be terms of bQ (20) and let �0, �3, �0
and �3 be the solution of the following sets of equations:8>>><>>>:

��0 + �3 ��0 + �3= #1;1;
��0 ��3 ��0 ��3= #2;2;
��0 ��3 + �0 + �3= #3;3;
��0 + �3 + �0 ��3= #4;4

��������� ,
and �1, �1, �2, �2,M0,M4,M�;0,M�;4,M�;0,M�;4,M�;0,
M�;4 be the solutions of the following sets of equations:(

�1 + �1= #1;2;
��1 + �1= #3;4;

�����( ��2 ��2= $1;2;
�2 ��2= $3;4;

�����(
M0 +M�;0= #1;3;
M0 �M�;0= #2;4;

�����( M4 +M�;4= $1;3;
M4 �M�;4= $2;4;

�����(
M�;0 �M�;4= #1;4;
M�;0 +M�;4= #2;3;

�����( M�;4 �M�;0= $1;4;
M�;4 +M�;0= $2;3

����� .
Thus the columns of bQ are the following:
— the first and the second columns:

�i�0 + i�3 � i�0 + i�3

i�1 + i�1 ��2 ��2

iM0 + iM�;0 +M4 +M�;4

iM�;0 � iM�;4 +M�;4 �M�;0

i�1 + i�1 + �2 + �2

�i�0 � i�3 � i�0 � i�3

iM�;0 + iM�;4 +M�;4 +M�;0

iM0 � iM�;0 +M4 �M�;4

— the third and the fourth columns:

iM0 + iM�;0 �M4 �M�;4

iM�;0 + iM�;4 �M�;4 �M�;0

�i�0 � i�3 + i�0 + i�3

�i�1 + i�1 + �2 ��2

iM�;0 � iM�;4 �M�;4 +M�;0

iM0 � iM�;0 �M4 +M�;4

�i�1 + i�1 ��2 + �2

�i�0 + i�3 + i�0 � i�3

Hence bQ = i�0�[0] + i�0�[0][5] +

+ i�1�[1] + i�1�[1][5] +

+ i�2�[2] + i�2�[2][5] +

+ i�3�[3] + i�3�[3][5] +

+ iM0[0] + iM4�[4] �
� iM�;0

[0]
� + iM�;4� [4] �

� iM�;0[0]
� � iM�;4�[4] +

+ iM�;0
[0]
� + iM�;4�[4].

From (19) the following equation is received:
3X
k=0

�[k]
�
@k + i�k + i�k[5]

�
'+

+

0BBBB@
+ iM0[0] + iM4�[4]�
� iM�;0

[0]
� + iM�;4� [4]�

� iM�;0
[0]
� � iM�;4�[4] +

+ iM�;0
[0]
� + iM�;4�[4]

1CCCCA' = 0

(21)

with real �k, �k, M0, M4, M�;0, M�;4, M�;0, M�;4, M�;0,
M�;4and with

[5] :=
�

12 02
02 �12

�
. (22)

Because
� [k] + �[k] + �[k] = ��[k]

with k 2 f1; 2; 3g then from (21):0BB@ � �@0 + i�0 + i�0[5]�+
3P
k=1

�[k] �@k + i�k + i�k[5]�
+2
�
iM0[0] + iM4�[4]�

1CCA'+

+

0BBB@
� �@0 + i�0 + i�0[5]�

� 3P
k=1

� [k] �@k + i�k + i�k[5]�
+2
��iM�;0

[0]
� + iM�;4� [4]

�
1CCCA'+

+

0BBB@
�
@0 + i�0 + i�0[5]�

� 3P
k=1

�[k] �@k + i�k + i�k[5]�
+2
��iM�;0

[0]
� � iM�;4�[4]

�
1CCCA'+

+

0BBB@
� �@0 + i�0 + i�0[5]�

� 3P
k=1

�[k] �@k + i�k + i�k[5]�
+2
�

iM�;0
[0]
� + iM�;4�[4]

�
1CCCA' = 0.
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It is a generalization of the Dirac equation with gauge
field A: 
� (@0 + ieA0) +

3X
k=1

�[k] (@k + ieAk) + im[0]

!
' = 0.

Therefore, all Planck’s functions obey to Dirac’s type
equations.

I call matrices [0], �[4], [0]
� , � [4], [0]

� , �[4], [0]
� , �[4] mass

elements of pentads.

3 Colored equation

I call the following part of (21):0BBBBBBBBBBB@

�[0] ��i@0 + �0 + �0[5]�+
�[1] ��i@1 + �1 + �1[5]�+
�[2] ��i@2 + �2 + �2[5]�+
�[3] ��i@3 + �3 + �3[5]��
�M�;0

[0]
� +M�;4� [4] +

�M�;0
[0]
� �M�;4�[4] +

+M�;0
[0]
� +M�;4�[4]

1CCCCCCCCCCCA
' = 0. (23)

a coloured moving equation.
Here (5), (7), (9):

[0]
� = �

2664 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3775 ; � [4] =

2664 0 0 0 i
0 0 i 0
0 �i 0 0
�i 0 0 0

3775
are mass elements of red pentad;

[0]
� =

2664 0 0 0 i
0 0 �i 0
0 i 0 0
�i 0 0 0

3775 ; �[4] =

2664 0 0 0 1
0 0 �1 0
0 �1 0 0
1 0 0 0

3775
are mass elements of green pentad;

[0]
� =

2664 0 0 �1 0
0 0 0 1
�1 0 0 0
0 1 0 0

3775 ; �[4] =

2664 0 0 �i 0
0 0 0 i
�i 0 0 0
0 i 0 0

3775
are mass elements of blue pentad.

I call:
• M�;0, M�;4 red lower and upper mass members;
• M�;0, M�;4 green lower and upper mass members;
• M�;0, M�;4 blue lower and upper mass members.
The mass members of this equation form the following

matrix sum:

cM :=

0BB@ �M�;0
[0]
� +M�;4� [4]�

�M�;0
[0]
� �M�;4�[4] +

+M�;0
[0]
� +M�;4�[4]

1CCA =

=

26664
0 0 �M�;0 M�;�;0

0 0 M��;�;0 M�;0

�M�;0 M�;�;0 0 0
M��;�;0 M�;0 0 0

37775+

+ i

26664
0 0 �M�;4 M��;�;4
0 0 M�;�;4 M�;4

�M�;4 �M��;�;4 0 0
�M�;�;4 M�;4 0 0

37775
with M�;�;0 := M�;0 � iM�;0 and M�;�;4 := M�;4 � iM�;4.

Elements of these matrices can be turned by formula of
shape [2]: 

cos �2 i sin �
2

i sin �
2 cos �2

! 
Z X � iY

X + iY �Z
!
�

�
 

cos �2 �i sin �
2

�i sin �
2 cos �2

!
=

=

0BB@ Z cos � � Y sin � X � i
�

Y cos �
+Z sin �

�
X + i

�
Y cos �

+Z sin �

�
�Z cos � + Y sin �

1CCA .

Hence, if:

U2;3 (�) :=

2664 cos� i sin� 0 0
i sin� cos� 0 0

0 0 cos� i sin�
0 0 i sin� cos�

3775
and

cM 0 :=
0BB@�M 0�;0

[0]
� +M 0�;4� [4]�

�M 0�;0[0]
� �M 0�;4�[4]+

+M 0�;0
[0]
� +M 0�;4�[4]

1CCA := Uy2;3 (�) cMU2;3 (�)

then

M 0�;0 = M�;0 ;
M 0�;0 = M�;0 cos 2�+M�;0 sin 2� ;
M 0�;0 = M�;0 cos 2��M�;0 sin 2� ;
M 0�;4 = M�;4 ;
M 0�;4 = M�;4 cos 2�+M�;4 sin 2� ;
M 0�;4 = M�;4 cos 2��M�;4 sin 2� :

Therefore, matrix U2;3 (�) makes an oscillation between
green and blue colours.

Let us consider equation (21) under transformation
U2;3 (�) where � is an arbitrary real function of time-space
variables (� = � (t; x1; x2; x3)):

Uy2;3 (�)
�

1
c
@t + i�0 + i�0[5]

�
U2;3 (�)' =
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= Uy2;3 (�)

0BBBB@
�[1] �@1 + i�1 + i�1[5]�+

+�[2] �@2 + i�2 + i�2[5]�+
+�[3] �@3 + i�3 + i�3[5]�+

+ iM0[0] + iM4�[4] + cM
1CCCCAU2;3 (�)' .

Because
Uy2;3 (�)U2;3 (�) = 14 ;

Uy2;3 (�) [5]U2;3 (�) = [5] ;

Uy2;3 (�) [0]U2;3 (�) = [0] ;

Uy2;3 (�)�[4]U2;3 (�) = �[4] ;

Uy2;3 (�)�[1] = �[1]Uy2;3 (�) ;

Uy2;3 (�)�[2] =
�
�[2] cos 2�+ �[3] sin 2�

�
Uy2;3 (�) ;

Uy2;3 (�)�[3] =
�
�[3] cos 2�� �[2] sin 2�

�
Uy2;3 (�) ;

then�
1
c
@t + Uy2;3 (�)

1
c
@tU2;3 (�) + i�0 + i�0[5]

�
' =

=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�[1]

 
@1 + Uy2;3 (�) @1U2;3 (�)

+ i�1 + i�1[5]

!
+ �[2]�

�

0BBBBBB@
(cos 2� � @2 � sin 2� � @3)

+Uy2;3 (�)

 
cos 2� � @2

� sin 2� � @3

!
U2;3 (�)

+ i (�2 cos 2���3 sin 2�)
+ i
�
�2[5] cos 2���3[5] sin 2�

�

1CCCCCCA
+�[3]�

�

0BBBBBB@
(cos 2� � @3 + sin 2� � @2)

+Uy2;3 (�)

 
cos 2� � @3

+ sin 2� � @2

!
U2;3 (�)

+ i (�2 sin 2�+ �3 cos 2�)
+ i
�
�3[5] cos 2�+ �2[5] sin 2�

�

1CCCCCCA
+ iM0[0] + iM4�[4] + cM 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

' . (24)

Let x02 and x03 be elements of other coordinate system
such that:

@x2

@x02
= cos 2�,

@x3

@x02
= � sin 2�,

@x2

@x03
= sin 2�.

@x3

@x03
= cos 2�,

@x0

@x02
=
@x1

@x02
=
@x0

@x03
=
@x1

@x03
= 0.

Hence:

@02 :=
@
@x02

=

=
@
@x0

@x0

@x02
+

@
@x1

@x1

@x02
+

@
@x2

@x2

@x02
+

@
@x3

@x3

@x02
=

= cos 2� � @
@x2
� sin 2� � @

@x3
=

= cos 2� � @2 � sin 2� � @3 ,

@03 :=
@
@x03

=

=
@
@x0

@x0

@x03
+

@
@x1

@x1

@x03
+

@
@x2

@x2

@x03
+

@
@x3

@x3

@x03
=

= cos 2� � @
@x3

+ sin 2� � @
@x2

=

= cos 2� � @3 + sin 2� � @2 :

Therefore, from (24):�
1
c
@t + Uy2;3 (�)

1
c
@tU2;3 (�) + i�0 + i�0[5]

�
' =

=

0BBBBBBBBBBBBBB@

�[1]

 
@1 + Uy2;3 (�) @1U2;3 (�)

+i�1 + i�1[5]

!
+�[2]

 
@02 + Uy2;3 (�) @02U2;3 (�)

+i�02 + i�02[5]

!
+�[3]

 
@03 + Uy2;3 (�) @03U2;3 (�)

+i�03 + i�03[5]

!
+ iM0[0] + iM4�[4] + cM 0

1CCCCCCCCCCCCCCA
' :

with
�02 := �2 cos 2���3 sin 2� ,

�03 := �2 sin 2�+ �3 cos 2� ,

�02 := �2 cos 2���3 sin 2� ,

�03 := �3 cos 2�+ �2 sin 2� .

Therefore, the oscillation between blue and green colours
curves the space in the x2, x3 directions.

Similarly, matrix

U1;3 (#) :=

2664 cos# sin# 0 0
� sin# cos# 0 0

0 0 cos# sin#
0 0 � sin# cos#

3775
with an arbitrary real function # (t; x1; x2; x3) describes
the oscillation between blue and red colours which curves the
space in the x1, x3 directions. And matrix

U1;2 (&) :=

2664 e�i& 0 0 0
0 ei& 0 0
0 0 e�i& 0
0 0 0 ei&

3775
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Volume 2 PROGRESS IN PHYSICS April, 2009

with an arbitrary real function & (t; x1; x2; x3) describes the
oscillation between green and red colours which curves the
space in the x1, x2 directions.

Now, let

U0;1 (�) :=

2664 cosh� � sinh� 0 0
� sinh� cosh� 0 0

0 0 cosh� sinh�
0 0 sinh� cosh�

3775 .

and

cM 00 :=0B@�M 00�;0[0]
� +M 00�;4� [4]�

�M 00�;0[0]
� �M 00�;4�[4]+

+M 00�;0
[0]
� +M 00�;4�[4]

1CA := Uy0;1 (�) cMU0;1 (�)

then:
M 00�;0 = M�;0 ;

M 00�;0 = (M�;0 cosh 2� �M�;4 sinh 2�) ;

M 00�;0 = M�;0 cosh 2� +M�;4 sinh 2� ;

M 00�;4 = M�;4 ;

M 00�;4 = M�;4 cosh 2� +M�;0 sinh 2� ;

M 00�;4 = M�;4 cosh 2� �M�;0 sinh 2� :

Therefore, matrix U0;1 (�) makes an oscillation between
green and blue colours with an oscillation between upper and
lower mass members.

Let us consider equation (21) under transformation
U0;1 (�) where � is an arbitrary real function of time-space
variables (� = � (t; x1; x2; x3)):

Uy0;1 (�)
�

1
c
@t + i�0 + i�0[5]

�
U0;1 (�)' =

= Uy0;1 (�)

0BBBB@
�[1] �@1 + i�1 + i�1[5]�+

+�[2] �@2 + i�2 + i�2[5]�+
+�[3] �@3 + i�3 + i�3[5]�+

+ iM0[0] + iM4�[4] + cM
1CCCCAU0;1 (�)' :

Since:

Uy0;1 (�)U0;1 (�) =
�

cosh 2� � �[1] sinh 2�
�

,

Uy0;1 (�) =
�

cosh 2� + �[1] sinh 2�
�
U�1

0;1 (�) ,

Uy0;1 (�)�[1] =
�
�[1] cosh 2� � sinh 2�

�
U�1

0;1 (�) ,

Uy0;1 (�)�[2] = �[2]U�1
0;1 (�) ,

Uy0;1 (�)�[3] = �[3]U�1
0;1 (�) ,

Uy0;1 (�) [0]U0;1 (�) = [0],

Uy0;1 (�)�[4]U0;1 (�) = �[4],

U�1
0;1 (�)U0;1 (�) = 14 ,

U�1
0;1 (�) [5]U0;1 (�) = [5] ,

Uy0;1 (�) [5]U0;1 (�) = [5]
�

cosh 2� � �[1] sinh 2�
�
;

then0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

U�1
0;1 (�)

 
cosh 2� � 1

c @t
+ sinh 2� � @1

!
U0;1 (�)

+
�
cosh 2� � 1

c @t + sinh 2� � @1
�

+ i (�0 cosh 2� + �1 sinh 2�)
+ i (�0 cosh 2� + sinh 2� ��1) [5]�

��[1]�

�

0BBBBBB@
U�1

0;1 (�)

 
cosh 2� � @1+
sinh 2� � 1

c @t

!
U0;1 (�)

+
�
cosh 2� � @1 + sinh 2� � 1

c@t
�

+ i (�1 cosh 2� + �0 sinh 2�)
+ i (�1 cosh 2� + �0 sinh 2�) [5]

1CCCCCCA
��[2]

 
@2 + U�1

0;1 (�) (@2U0;1 (�))
+ i�2 + i�2[5]

!
��[3]

 
@3 + U�1

0;1 (�) (@3U0;1 (�))
+ i�3 + i�3[5]

!
� iM0[0] � iM4�[4] � cM 00

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

' = 0 : (25)

Let t0 and x01 be elements of other coordinate system such
that:

@x1

@x01
= cosh 2�

@t
@x01

=
1
c

sinh 2�

@x1

@t0 = c sinh 2�

@t
@t0 = cosh 2�

@x2

@t0 =
@x3

@t0 =
@x2

@x01
=
@x3

@x01
= 0

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
: (26)

Hence:

@0t :=
@
@t0 =

@
@t
@t
@t0 +

@
@x1

@x1

@t0 +
@
@x2

@x2

@t0 +
@
@x3

@x3

@t0 =

= cosh 2� � @
@t

+ c sinh 2� � @
@x1

=

= cosh 2� � @t + c sinh 2� � @1 ;

that is
1
c
@0t =

1
c

cosh 2� � @t + sinh 2� � @1
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and

@01 :=
@
@x01

=

=
@
@t

@t
@x01

+
@
@x1

@x1

@x01
+

@
@x2

@x2

@x01
+

@
@x3

@x3

@x01
=

= cosh 2� � @
@x1

+ sinh 2� � 1
c
@
@t

=

= cosh 2� � @1 + sinh 2� � 1
c
@t :

Therefore, from (25):0BBBBBBBBBBBBBBBBBBB@

�[0]

 
1
c @
0
t + U�1

0;1 (�) 1
c @
0
tU0;1 (�)

+ i�000 + i�000[5]

!
+�[1]

 
@01 + U�1

0;1 (�) @01U0;1 (�)
+ i�001 + i�001[5]

!
+�[2]

 
@2 + U�1

0;1 (�) @2U0;1 (�)
+ i�2 + i�2[5]

!
+�[3]

 
@3 + U�1

0;1 (�) @3U0;1 (�)
+ i�3 + i�3[5]

!
+ iM0[0] + iM4�[4] + cM 00

1CCCCCCCCCCCCCCCCCCCA
' = 0

with
�000 := �0 cosh 2� + �1 sinh 2� ;
�001 := �1 cosh 2� + �0 sinh 2� ;
�000 := �0 cosh 2� + sinh 2� ��1 ;
�001 := �1 cosh 2� + �0 sinh 2� :

Therefore, the oscillation between blue and green colours
with the oscillation between upper and lower mass members
curves the space in the t, x1 directions.

Similarly, matrix

U0;2 (�) :=

2664 cosh� i sinh� 0 0
�i sinh� cosh� 0 0

0 0 cosh� �i sinh�
0 0 i sinh� cosh�

3775
with an arbitrary real function � (t; x1; x2; x3) describes the
oscillation between blue and red colours with the oscillation
between upper and lower mass members curves the space in
the t, x2 directions. And matrix

U0;3 (�) :=

2664 e� 0 0 0
0 e�� 0 0
0 0 e�� 0
0 0 0 e�

3775
with an arbitrary real function � (t; x1; x2; x3) describes the
oscillation between green and red colours with the oscillation
between upper and lower mass members curves the space in
the t, x3 directions.

Fig. 1: It is dependency of v(t; x1) from x1.

From (26):
@x1

@t0 = c sinh 2� ;

@t
@t0 = cosh 2� :

Because

sinh 2� =
vq

1� v2

c2

;

cosh 2� =
1q

1� v2

c2

with v is a velocity of system ft0; x01g as respects to system
ft; x1g then

v = tanh 2� :

Let
2� := ! (x1)

t
x1

with
! (x1) =

�
jx1j ;

where � is a real constant bearing positive numerical value.
In that case

v (t; x1) = tanh
�
! (x1)

t
x1

�
and if g is an acceleration of system ft0; x01g as respects to
system ft; x1g then

g (t; x1) =
@v
@t

=
! (x1)�

cosh2 ! (x1) t
x1

�
x1

.

Figure 1 shows the dependency of a system ft0; x01g ve-
locity v (t; x1) on x1 in system ft; x1g.

This velocity in point A is not equal to one in point B.
Hence, an oscillator, placed in B, has a nonzero velocity in
respect to an observer, placed in point A. Therefore, from
the Lorentz transformations, this oscillator frequency for ob-
server, placed in point A, is less than own frequency of this
oscillator (red shift).
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Fig. 2: It is dependency of g(t; x1) from x1.

Figure 2 shows a dependency of a system ft0; x01g accel-
eration g (t; x1) on x1 in system ft; x1g.

If an object immovable in system ft; x1g is placed in
point K then in system ft0; x01g this object must move to the
left with acceleration g and g ' �

x2
1

.
I call:

• interval from S to1 the Newton Gravity Zone,
• interval fromB toC the the Asymptotic Freedom Zone,
• and interval from C to D the Confinement Force Zone.

Now let

eU (�) :=

2664 ei� 0 0 0
0 ei� 0 0
0 0 e2i� 0
0 0 0 e2i�

3775
and

cM 0 :=
0BB@ �M 0�;0

[0]
� +M 0�;4� [4]�

�M 0�;0[0]
� �M 0�;4�[4] +

+M 0�;0
[0]
� +M 0�;4�[4]

1CCA := eUy (�) cM eU (�)

then:

M 0�;0 = (M�;0 cos��M�;4 sin�) ,

M 0�;4 = (M�;4 cos�+M�;0 sin�) ,

M 0�;4 = (M�;4 cos��M�;0 sin�) ,

M 0�;0 = (M�;0 cos�+M�;4 sin�) ,

M 0�;0 = (M�;0 cos�+M�;4 sin�) ,

M 0�;4 = (M�;4 cos��M�;0 sin�) .

Therefore, matrix eU (�) makes an oscillation between up-
per and lower mass members.

Let us consider equation (23) under transformation eU (�)
where � is an arbitrary real function of time-space variables
(� = � (t; x1; x2; x3)):eUy (�)

�
1
c
@t + i�0 + i�0[5]

� eU (�)' =

= eUy (�)

0BBBB@
�[1] �@1 + i�1 + i�1[5]� +
+�[2] �@2 + i�2 + i�2[5]� +
+�[3] �@3 + i�3 + i�3[5]� +

+ cM
1CCCCA eU (�)' :

Because

[5] eU (�) = eU (�) [5] ;

�[1] eU (�) = eU (�)�[1] ;

�[2] eU (�) = eU (�)�[2] ;

�[3] eU (�) = eU (�)�[3] ;eUy (�) eU (�) = 14 ;
then�

1
c
@t +

1
c
eUy (�)

�
@t eU (�)

�
+ i�0 + i�0[5]

�
' =

=

0BBBBBBBBBBBBB@

�[1]

 
@1 + eUy (�)

�
@1 eU (�)

�
+ i�1 + i�1[5]

!
+

+�[2]

 
@2 + eUy (�)

�
@2 eU (�)

�
+ i�2 + i�2[5]

!
+

+�[3]

 
@3 + eUy (�)

�
@3 eU (�)

�
+i�3 + i�3[5]

!
+

+ eUy (�) cM eU (�)

1CCCCCCCCCCCCCA
' :

Now let:

bU (�) :=

2664 e� 0 0 0
0 e� 0 0
0 0 e2� 0
0 0 0 e2�

3775
and

cM 0 :=
0BB@ �M 0�;0

[0]
� +M 0�;4� [4]�

�M 0�;0[0]
� �M 0�;4�[4]+

+M 0�;0
[0]
� +M 0�;4�[4]

1CCA := bU�1 (�) cM bU (�)

then:
M 0�;0 = (M�;0 cosh�� iM�;4 sinh�) ,

M 0�;4 = (M�;4 cosh�+ iM�;0 sinh�) ,

M 0�;0 = (M�;0 cosh�� iM�;4 sinh�) ,

M 0�;4 = (M�;4 cosh�+ iM�;0 sinh�) ,

M 0�;0 = (M�;0 cosh�+ iM�;4 sinh�) ,

M 0�;4 = (M�;4 cosh�� iM�;0 sinh�) .

Therefore, matrix bU (�) makes an oscillation between up-
per and lower mass members, too.
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Let us consider equation (23) under transformation bU (�)
where � is an arbitrary real function of time-space variables
(� = � (t; x1; x2; x3)):

bU�1 (�)
�

1
c
@t + i�0 + i�0[5]

� bU (�)' =

= bU�1 (�)

0BBBB@
�[1] �@1 + i�1 + i�1[5]�+

+�[2] �@2 + i�2 + i�2[5]�+
+�[3] �@3 + i�3 + i�3[5]�+

+ cM
1CCCCA bU (�)'

Because

[5] bU (�) = bU (�) [5] ;bU�1 (�)�[1] = �[1] bU�1 (�) ;bU�1 (�)�[2] = �[2] bU�1 (�) ;bU�1 (�)�[3] = �[3] bU�1 (�) ;bU�1 (�) bU (�) = 14 ;

then�
1
c
@t + bU�1 (�)

�
1
c
@t bU (�)

�
+ i�0 + i�0[5]

�
' =

=

0BBBBBBBBBBBBBB@

�[1]

 
@1 + bU�1 (�)

�
@1 bU (�)

�
+ i�1 + i�1[5]

!
+

+�[2]

 
@2 + bU�1 (�)

�
@2 bU (�)

�
+ i�2 + i�2[5]

!
+

+�[3]

 
@3 + bU�1 (�)

�
@3 bU (�)

�
+ i�3 + i�3[5]

!
+

+ bU�1 (�) cM bU (�)

1CCCCCCCCCCCCCCA
' :

If denote:

�1 :=

2664 0 �1 0 0
�1 0 0 0
0 0 0 1
0 0 1 0

3775 ,

�2 :=

2664 0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

3775 ,

�3 :=

2664 0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

3775 ,

�4 :=

2664 0 i 0 0
�i 0 0 0
0 0 0 �i
0 0 i 0

3775 ,

�5 :=

2664 �i 0 0 0
0 i 0 0
0 0 �i 0
0 0 0 i

3775 ,

�6 :=

2664 1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

3775 ,

�7 :=

2664 1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

3775 ,

�8 :=

2664 i 0 0 0
0 i 0 0
0 0 2i 0
0 0 0 2i

3775 ,

then

U�1
0;1 (�)

�
@sU0;1 (�)

�
= �1@s� ,

U�1
2;3 (�)

�
@sU2;3 (�)

�
= �2@s� ,

U�1
1;3 (#)

�
@sU1;3 (#)

�
= �3@s# ,

U�1
0;2 (�)

�
@sU0;2 (�)

�
= �4@s� ,

U�1
1;2 (&)

�
@sU1;2 (&)

�
= �5@s& ,

U�1
0;3 (�)

�
@sU0;3 (�)

�
= �6@s� ,bU�1 (�)

�
@s bU (�)

�
= �7@s� ,eU�1 (�)

�
@s eU (�)

�
= �8@s� .

Let �U be the following set:

�U :=
n
U0;1; U2;3; U1;3; U0;2; U1;2; U0;3; bU; eUo .

Because

U�1
2;3 (�) �1U2;3 (�) = �1

U�1
1;3 (#) �1U1;3 (#) = (�1 cos 2#+ �6 sin 2#)

U�1
0;2 (�) �1U0;2 (�) = (�1 cosh 2�� �5 sinh 2�)

U�1
1;2 (&) �1U1;2 (&) = �1 cos 2& � �4 sin 2&

U�1
0;3 (�) �1U0;3 (�) = �1 cosh 2�+ �3 sinh 2�bU�1 (�) �1 bU (�) = �1eU�1 (�) �1 eU (�) = �1

========
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eU�1 (�) �2 eU (�) = �2bU�1 (�) �2 bU (�) = �2

U�1
0;3 (�) �2U0;3 (�) = �2 cosh 2�� �4 sinh 2�

U�1
1;2 (&) �2U1;2 (&) = �2 cos 2& � �3 sin 2&

U�1
0;2 (�) �2U0;2 (�) = �2 cosh 2�+ �6 sinh 2�

U�1
1;3 (#) �2U1;3 (#) = �2 cos 2#+ �5 sin 2#

U�1
0;1 (�) �2U0;1 (�) = �2

=========

U�1
0;1 (�) �3U0;1 (�) = �3 cosh 2� � �6 sinh 2�

U�1
2;3 (�) �3U2;3 (�) = �3 cos 2�� �5 sin 2�

U�1
0;2 (�) �3U0;2 (�) = �3

U�1
1;2 (&) �3U1;2 (&) = �3 cos 2& + �2 sin 2&

U�1
0;3 (�) �3U0;3 (�) = �3 cosh 2�+ �1 sinh 2�bU�1 (�) �3 bU (�) = �3eU�1 (�) �3 eU (�) = �3

==========eU�1 (�) �4 eU (�) = �4bU�1 (�) �4 bU (�) = �4

U�1
0;3 (�) �4U0;3 (�) = �4 cosh 2�� �2 sinh 2�

U�1
1;2 (&) �4U1;2 (&) = �4 cos 2& + �1 sin 2&

U�1
1;3 (#) �4U1;3 (#) = �4

U�1
2;3 (�) �4U2;3 (�) = �4 cos 2�� �6 sin 2�

U�1
0;1 (�) �4U0;1 (�) = �4 cosh 2� + �5 sinh 2�

==========

U�1
0;1 (�) �5U0;1 (�) = �5 cosh 2� + �4 sinh 2�

U�1
2;3 (�) �5U2;3 (�) = �5 cos 2�+ �3 sin 2�

U�1
1;3 (#) �5U1;3 (#) = (�5 cos 2#� �2 sin 2#)

U�1
0;2 (�) �5U0;2 (�) = �5 cosh 2�� �1 sinh 2�

U�1
0;3 (�) �5U0;3 (�) = �5bU�1 (�) �5 bU (�) = �5eU�1 (�) �5 eU (�) = �5

===========eU�1 (�) �6 eU (�) = �6bU�1 (�) �6 bU (�) = �6

U�1
1;2 (&) �6U1;2 (&) = �6

U�1
0;2 (�) �6U0;2 (�) = �6 cosh 2�+ �2 sinh 2�

U�1
1;3 (#) �6U1;3 (#) = �6 cos 2#� �1 sin 2#

U�1
2;3 (�) �6U2;3 (�) = �6 cos 2�+ �4 sin 2�

U�1
0;1 (�) �6U0;1 (�) = �6 cosh 2� � �3 sinh 2�

========eU�1 (�) �7 eU (�) = �7

U�1
0;3 (�) �7U0;3 (�) = �7

U�1
1;2 (&) �7U1;2 (&) = �7

U�1
0;2 (�) �7U0;2 (�) = �7

U�1
1;3 (#) �7U1;3 (#) = �7

U�1
2;3 (�) �7U2;3 (�) = �7

U�1
0;1 (�) �7U0;1 (�) = �7

=========

U�1
0;1 (�) �8U0;1 (�) = �8

U�1
2;3 (�) �8U2;3 (�) = �8

U�1
1;3 (#) �8U1;3 (#) = �8

U�1
0;2 (�) �8U0;2 (�) = �8

U�1
1;2 (&) �8U1;2 (&) = �8

U�1
0;3 (�) �8U0;3 (�) = �8bU�1 (�) �8 bU (�) = �8

then for every product U of �U ’s elements real functions
Grs (t; x1; x2; x3) exist such that

U�1 (@sU) =
g3

2

8X
r=1

�rGrs

with some real constant g3 (similar to 8 gluons).

4 Conclusion

Therefore, unessential restrictions on 4X1 matrix functions
give Dirac’s equations, and it seems that some gluon and
gravity phenomena can be explained with the help of these
equations.
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Key Notes on a Geometric Theory of Fields
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The role of potentials and sources in electromagnetic and gravitational fields is investi-
gated. A critical analysis leads to the result that sources have to be replaced by integra-
tion constants. The existence of spatial boundaries gives reasons for this step. Potentials
gain physical relevance first with it. The common view, that fields are “generated” by
sources, appears as not tenable. Fields do exist by their own. These insights as well as
results from numerical simulations force the conclusion that a Riemannian-geometrical
background of electromagnetism and even quantum phenomena cannot be excluded.
Nature could differ from abstract geometry in a way that distances and intervals never
become infinitesimally small.

1 Introduction

In Physics a unified theory including all phenomena of nature
is considered as the greatest challenge. All attempts founded
on the present definition of matter have manifested to fail. It
will require a redefinition of this term.

The traditional view consists on the assumption that mat-
ter “generates” fields. All effort aims at the description of
this matter, detached from fields, at least from gravitation.
This single-edged view led to the known problems and cannot
bring more than stagnation. One had to unify different meth-
ods being used for handling of different physical situations.
Also new mathematical procedures cannot help to master this
unsolvable problem.

The traditional mathematical description puts the matter
on the right-hand-side of partial differential equations, while
the left-hand-side contains differential terms of the field quan-
tities. However, practice demonstrates that only field quanti-
ties are measurable, never any form of matter terms. If we
consider the practice impartially, the right-hand-sides of the
field equations have to become zero. That means, there are
no sources of fields.

There are severe caveats in physics against this conclu-
sion. However, it will be demonstrated that any infinities like
singular points are physically irrelevant. Connecting electro-
magnetism to gravitation without obstacles is only possible
avoiding sources.

In this paper, solutions of known linear field equations
(electromagnetism and gravitation) with and without sources
are compared, in which, integration constants from source-
free equations take the role of sources. Mass, spin, charge,
magnetic momentum are first integration constants. The non-
linear case will validate the linear basic approach. Bound-
aries, introduced to solve linear source-free equations, reveal
to be geometric limits in the space-time, described by non-
linear equations. This fact makes any artifacts unnecessary.
The theory can be managed with exclusively classical mathe-
matical methods.

These insights are not familiar in physics, because the
present standard is the Quantum Field Theory [1,2], in which
the most known part, the Standard Model, is told to be very
successful and precise [3,4]. The existence of subatomic par-
ticles has been deduced from scattering experiments [3]. The
field term, used in these theories, differs considerably from
the classical field term. Actually, these theories are founded
on building block models which more seem to aim at a phe-
nomenology of a “particle zoo” than a description of nature
based on first principles. In order to describe the interactions
between particles respectively sub-particles, it needs the in-
troduction of virtual particles like the Higgs, which have not
been experimentally verified to date.� By principle, the sub-
atomic particles cannot be observed directly. — Are the limits
of classical methods really so narrow, that they would justify
these less strict methods of natural philosophy?

The mathematical methods are more and more advanced
(for example introducing several “gauge fields”) according to
the requirements by the building block models. However,
these methods approach to limits [3, 4]. Gravitation must
be handled external to the model and appears as an external
force. The deeper reason is that the standard model is based
on Special Relativity while gravitation is the principal item
of General Relativity. These differences are inherent and do
not lead to a comprehensive model which reflects the fact that
gravitation and electromagnetism have analogous properties.
Pursuing theories like string theory (quoted by [4]) do not re-
ally close this gap. Any predictions or conjectures are not
validated, as demonstrated for example in [6].

The central question of modern physics is: How to quan-
tize field theory? [4] In view of the looming limits, another
question is proposed instead: Which quantities have discrete
values? — In order to answer this alternative question, we
�Manfred Geilhaupt claims to “provide” a kind of “Higgs field” in his

theory, called GR+QTD (General Relativity + Quantum Thermodynamics)
by him [5]. It were a step beyond virtual particles “because they possess
restmass itself due to TD principles. Second it also seems to be obvious that
the fine structure constant of space fundamentally can be derived by GR but
not without precursor extended by QTD” [5].
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have to go back to the roots. That are Maxwell’s theory
and General Theory of Relativity as Einstein himself taught
in his Four Lectures [7]. The simple approach of these ba-
sics should be a specific benefit, and a low standard by no
means. We have to take notice of any proportions of forces
(how extreme these may ever be), and to accept the direct con-
sequences like the non-existence of sources (as explained in
this paper) and the non-applicability of building block mod-
els. We have to compare not forces but the fields with respect
to metrics.� The following lines will make General Relativity
provide the basis which can describe all real forces of nature.

2 Electromagnetism

As known, electromagnetic fields in the vacuum can be de-
scribed by Maxwell’s equations, with tensor notationy

Fij;k + Fjk;i + Fki;j = 0 ; (1)

F ia;a = Si (2)

where S is the vector of source terms. With Eq. (1), the field
tensor is identically representable from a vector potential A
with

Fik = Ai;k � Ak;i : (3)

The six independent components of the field tensor are
reduced to four components of the vector potential. These
four components can be put in the four equations (2).

If one changes the vector potential for the gradient of an
arbitrary scalar

Ai =) Ai +  ;i ; (4)

field tensor and source S (currents and charges) do not
change. These quantities are told to be gauge-invariant [9]z.

The vector potential has been introduced to solve equa-
tions (2). It is at first an auxiliary quantity. Reasons for pos-
sible physical relevance are mentioned later. However, the
Aharonov-Bohm effect (for example) does not give evidence
for the physical relevance of vector potential and gauge, as
Bruhn [10] demonstrated.

2.1 The Poisson equation

In order to get more close solutions, one can apply the Lorenz
convention (see [9])

Ai;i = 0 : (5)

One may not confuse the Lorenz convention with a gauge,
because it is an arbitrary condition.x This condition could
reduce the possible set of solutions.

�See more Section 6.1
yThe tensor equations have been normalized, see Kästner [8] and ap-

pendix.
zBruhn explains these basics with traditional notation.
xThis condition is mostly met, but it is not ensured.

Simplified equations result with Cartesian coordinates

�A = �S ; (6)

with the retarded potential

A =
1

4�

Z S(r0; ct� jr� r0j)
jr� r0j dV0 (7)

as solution (without spatial boundaries).
Time-independent solutions

A =
1

4�

Z S(r0)
jr� r0j dV0 (8)

can be decomposed into several multipoles. As well, the term
1=jr � r0j is developed in series. The vector potential re-
sults in

A =
1

4�

1X
i=0

1
ri+1

Z
r0
i Pi

�
r � r0

r r0

�
� S(r0) dV0 (9)

with r= jrj, r0 = jr0j. Pi are Legendre’s polynoms (Wunsch
[11]).

Introducing spherical coordinates with

x = r sin# sin' ; y = r sin# cos' ; z = r cos# ; (10)

in which

x1 = r ; x2 = # ; x3 = ' ; x4 = jct (11)

(with j2 = �1 ), the argument is

r � r0

r r0
= sin# sin#0 cos('� '0) + cos# cos#0 : (12)

By this, the fixed volume integrals become functions of #
and '. Rotationally symmetric ansatzes

�(r0; #0; '0) = �(r0; #0) (13)

(charge density), and{

J'(r0; #0; '0) = J'(r0; #0; ') � cos('� '0) (14)

(current density) lead to momenta that will be compared with
the solutions from wave equations. The calculation of the first
momenta, i.e. charge and magnetic momentum, is demon-
strated in [12]. As well, the charge follows directly as a
first approximation of the volume integral from Eq. (8). The
magnetic momentum is calculated with a current loop model,
see [12].

2.2 The wave equation

The wave equation follows from the Poisson equation if the
sources vanish, i.e.

�A = 0 : (15)
{Condition (14) excludes the existence of magnetic monopoles.
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2.2.1 The plane wave

A known solution is the plane wave, for propagation in direc-
tion of x1 (with Cartesian coordinates, without gravitation)

A2 = A2(ct� x1) : (16)

One can take A3 instead of A2. However, A1 and A4 are
irrelevant for the Lorenz convention, because this takes

A4
0 = jA1

0 ; (17)

in which the apostrophe means the total derivative with re-
spect to ct � x1. The component F41 is always zero for that
reason, and F23 vanishes anyway. It is the reason for the
very fact that longitudinal electromagnetic waves (also called
scalar waves) do not exist. The Lorenz convention is the pre-
requisite of the wave equation.

This solution is not physical, and has to be discussed in
context with gravitation. A special kind of boundary could
make plane waves physical. A possible context with Planck’s
constant is discussed in [17].

2.2.2 The spherical wave

The central symmetrical ansatz can be written for any scalar
potential, and components treated by this means,

c2
@2

@r2 (r�) =
@2

@t2
(r�) (18)

with the solution
r� = Z(ct� r) (19)

(Reichardt [13]), in which only the minus sign might be rele-
vant here.

Transforming to the potential itself becomes problemati-
cal at r = 0. We shall see that this critical point proves to be
physically irrelevant. Aware of this, one could take this solu-
tion as element of the retarded potential according to Eq. (7).

A spherical boundary around r = 0 does not change this
solution at and outside of the boundary, and eliminates the
mathematical problem. The solution is linked with the poten-
tial of the boundary then.

Since the boundary is part of the field, the question for
cause and effect becomes irrelevant.

2.2.3 Time-independent solutions

Static solutions of the wave equation require the existence of
spatial boundaries. That may be ideal conductors in electric
fields, or hard bodies in sound fields. These problems are
known as “marginal-problems” (for example [14, 15]). The
values of integration constants in the solutions are linked with
the potentials of the boundaries against infinity�. That may

�as long as we have to do with a quasi flat space-time

grant certain physical relevance to potentials. Of course, the
wave equation is valid only out of the boundary. We shall see
that regions within close boundaries are physically irrelevant.y

Let us confine the problem to a close boundary around
r = 0 . This restriction allows development of series (see
[12, 16]), which were otherwise singular just at this point.

The wave equations for several components become for
rotational symmetry with spherical coordinates

@2A4

@r2 +
2
r
@A4

@r
+

1
r2
@2A4

@#2 +
1
r2
@A4

@#
cot# = 0 (20)

(electric potential) and

@2A3

@r2 +
1
r2
@2A3

@#2 � 1
r2
@A3

@#
cot# = 0 (21)

(magnetic vector potential). The magnetic vector potential
consists of only one component in direction of the azimuth

A3 = A' r sin# ; (22)

in which A' means the physical component.z
The differently looking equations (20) and (21) follow

from coordinate transformation.
Developments of series with ansatzes

A4 =
X
i;k

a[4]i;kri cosk # ;

A3 =
X
i;k

a[3]i;kri sink # (23)

lead, by means of comparison of the coëfficients, to the per-
forming laws

0 = a[4]i;k � [i(i+1)�k (k+1)]+a[4]i;k+2 � (k+1)(k+2) ;

0 = a[3]i;k � [i(i�1)�k (k�1)]+a[3]i;k+2 �k(k+2) : (24)

Physically meaningful are only the cases i< 0 and k> 0 .
With this, the series become

A4 =
a[4]�1;0

r
+
a[4]�2;1

r2 � cos#+

+
a[4]�3;2

r3 �
�
�1

3
+ cos2 #

�
+ : : : ;

A' = sin# �
�
a[3]�1;2

r2 +
a[3]�2;3

r3 � sin#+

+
a[3]�3;4

r4 �
�
�4

5
+ sin2 #

�
+ : : :

�
: (25)

yWho insists on sources may take these regions as source. Lastly the
connection of electromagnetism with gravitation will show, that this step is
illogical.
zOn physical components see Kästner [8].
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A comparison of these solutions with static solutions of
the Poisson equation results for the first integration con-
stants in

a[4]�1;0 = �j
�0

1
2 Q

4�
(26)

(charge) and

a[3]�1;2 = � "0
1
2 M
4�

(27)

(magnetic momentum).
Integration constants take the role of the sources. In more

complex solutions, the 1=r field from point charges (for ex-
ample) is assumed only for a large radius.

3 Gravitation

Another kind of potential can be derived from Einstein’s [7]
gravitation equations

Rik � 1
2
gik R = �� Tik ; (28)

or
Rik = �� (Tik � 1

2
gik T ) = �� Tik� (29)

with T = Taa. These equations indicate the relations of the
Ricci tensor with energy and momentum components. The
Ricci tensor is a purely geometrical quantity of the space-
time. It contains differential terms of metrics components.

One can approximate metrics, with Cartesian coordina-
tes, as

gik = �(ik) + (ik) with j(ik)j � 1 : (30)

The (ik) are “physical components” of metrics and have
the character of a potential.

The arbitrary conditions

0 =
@(ia)

@xa
� 1

2
@(aa)

@xi
(31)

may be the analogy of the Lorenz convention. These lead to
Poisson equations

�(ik) = 2� Tik� ; (32)

with retarded potentials as solution

(ik) = � �
2�

Z
Tik�(r0; ct� jr� r0j)

jr� r0j dV0 : (33)

Using the energy-momentum tensor of the distributed
mass

T ik = �
dxi

ds
dxk

ds
; (34)

in which � be the mass density, static solutions result approx-
imately in

(11) = (22) = (33) = +
�
4�

Z
�(r0)
jr� r0j dV0 ; (35)

(44) = � �
4�

Z
�(r0)
jr� r0j dV0 ; (36)

the rest zero (Einstein [7]). This approximation is not more
sufficient for the calculation of the spin.

The actual field quantity might be the curvature vector
(Eisenhart [19]) of the world-line described by the test body

ki =
dxa

ds

�
dxi

ds

�
;a

=
d2xi

ds2 + f a i b g dxa

ds
dxb

ds
; (37)

because it acts as a force to the body by its mass.
With distributed mass, the force density becomes

Ki = T ia;a = �ki : (38)

The force balance� is given only with �= 0, unless one
uses discrete masses. These are integration constants from
�(44) = 0. In this case, force balance is obtained with the
equations of geodesics [19]

ki = 0 : (39)

The curvature vector also contains accelerated motion,
this is the most simple interpretation of the equivalence prin-
ciple. The equations of geodesics become equations of mo-
tion with it.

The wave equations are analogous to those of electromag-
netism, that means also analogous series and analogous inte-
gration constants (using spherical coordinates)

a[44]�1;0 = � � m
4�

(40)

(mass) and
a[34]�1;2 = j

� s
4�c

(41)

(spin). The analogy of the current loop is a spinning torus
[12]. It must be explicitly pointed out that this model is not
sufficient to represent the known proportions between mass
and spin, or charge and magnetic momentum, respectively.
This inconsistency is removed by integration constants.

Another derivation tries to omit boundaries [16], however,
it is not supported by numerical simulations. The boundaries
will have a direct geometrical meaning.

4 Connection of electromagnetism with gravitation

Electromagnetism can be connected with gravitation via the
energy-momentum tensor of the electromagnetic field

Tik = FiaFka � 1
4
gikFabF ab ; (42)

with the force density

Ki = T ia;a = F iaSa : (43)
�Respectively energy conservation, mathematically expressed with the

Bianchi identities [19] in Einstein’s equations.
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Fig. 1: Tests with parameters around the Helium nucleus

Force balance is only given with Si = 0. Using this energy-
momentum tensor means, there is no choice: The sources
must vanish, with them the divergences of the field tensor

F ia;a = 0 : (44)

Einstein stated this already in his Four Lectures [7]. This step
is possible, as explained.

The necessity of this energy-momentum tensor to have
just this form is also derived by Montesinos and Flores [21]
based on Noether’s theorem [22], but only without sources.

Numerical simulations according to source-free Einstein-
Maxwell equations [18] demonstrate that the areas around
possible formal singularities do not exist at all. Also known
analytic solutions of Einstein’s equations like the isotropic
Schwarzschild solution [7], [19] indicate this. The event hori-
zon here is the boundary. In general, a geometric boundary
is given when physical components of metrics take an abso-
lute value of 1. It is a kind of horizon in any case. We have
to suppose it at the conjectural radius of the particle respec-
tively nucleus, for chaos from the non-linear field equations
(see next section).

However, any additional terms or extended methods can-
not really repair the inconsistencies from the sources.

For T = 0 and R= 0, Einstein’s equations now result in

Rik = �
�

1
4
gikFabF ab � FiaFka

�
: (45)

Equations (1), (44), and (45) involve a special Rieman-
nian geometry of the space-time, as explained in [12] and
[20]. The field tensor becomes a curve parameter of the
world-lines like the curvature vector.

5 On numerical simulations

The precedingly explained insights are supported by numer-
ical simulations according to equations (3), (44), and (45).

Fig. 2: Tests with parameters around the electron

Recent robust results can be seen at [23], including the Pascal
code of the used program, and a program visualizing these
results.

Algorithms and simulation techniques are discussed in
[18], as well as the method of approximating the partial dif-
ferential equations by discrete ones. The principle consists in
going from the known (e.g. the distant field of a point charge)
to the unknown. In this paper, two visualized samples are
shown.

The particle quantities like mass, spin, charge, magnetic
momentum are integration constants from mentioned tensor
equations, and are inserted as parameters into the initial con-
ditions. The initial conditions start from point charges, or
analogous functions for the other integration constants re-
spectively, and are assumed only for great radius.� The non-
linearities are absolutely negligible at this place.

The number of iterations during the computation up to
terminating the actual test means a degree of stability of the
solution, and is marked in the graphs as a more or less fat
“point”. The reference point (according to literature [24]) is
displayed as small circle.

In tests only with mass and charge (remaining parame-
ters zero), masses of preferably small nuclei emerge signifi-
cantly, together with the right charge at the Helium nucleus,
Figure 1.y Unfortunately, the procedure is too inaccurate for
the electron mass. In return, the other parameters emerge very
significantly, see Figure 2.

Above mentioned stability could have to do with chaos.
The author had to take notice of the fact, that the numerical
solutions are fundamentally different from analytic solutions.
Any singularities from analytic solutions are always replaced
by boundaries, which can be interpreted as geometrical limits.

The non-linear equations (which behave chaotically) lead

�Concrete initial conditions see [23], also [18].
yThe masses of proton and deuteron are in a sense an add-on of the

Helium nucleus tests.
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always to these geometrical boundaries, which are 1) finite
and 2) outside of possible singular points. Areas with singular
points do not exist, i.e. are irrelevant.

One could understand this fundamental contrast by the
fact that the differences in time and length are never made
zero in a numerical way. The results, exclusively achieved
this way, support the view that one has to assume a discrete
space-time that does not give reasons for action at a distance.
The continuum is only defined with action from point to
point, independently on distance or interval between adjacent
points.

In order to correctly depict nature, it is apparently nec-
essary to take into consideration the deviations, appearing
during the calculation with finite differences. In nature ap-
parently these deviations do not vanish with the transition to
very small differences.

Konrad Zuse asked the question, if the possibility to ar-
bitrarily subdivide quantities is “conceivable at all” in na-
ture [25]. Common imagination of a consequent quantization
leads to the problem of privileged coordinates, or a privileged
frame [25]. Nature has never indicated it. However, it is suc-
cessful practice in electrical engineering to adapt the coordi-
nates to the actual problem (Wunsch [11]). Linear equations
showed to be insensitive to the selection of coordinates. It re-
quires intense research work to prove the chaotic behaviour of
the non-linear equations dependent on the coordinates. The
author was so fortunate to see the mentioned correlations
with spherical coordinates. As well, the correlations became
highly significant when the raster distances were the same
tangentially as well as radially (dr= r d#) just at the conjec-
tural particle radius.

6 Concluding remarks

If the obtained insights are right, all quantum phenomena
should be understandable by them. At this place, tunnel ef-
fects are mentioned. This example is supplemented with very
brief but essential remarks on causality.

6.1 On tunnel effects

Equations (1), (44), and (45) allow structures, in which a fi-
nite distance (as the outer observer sees it) can locally become
zero, but metrics does not become singular. That were a real
tunnel with an “inner” length of zero. An event at the one side
is “instantaneously” seen at the other side. A known effect,
that could be interpreted this way, is the EPR effect [26, 27].
Such tunnels might arise by accident.�

This view is supported with changes of metrics by electro-
magnetism. Distances are locally shortened (at electric fields
in direction of the field strength), what can lead to a feedback.
Trump and van de Graaf have measured the flashover in the
vacuum, dependent on the distance of the electrodes (Kapcov
�See also the joke with Mozart’s Fortieth symphony by Nimtz.

[28]). As well, the product of voltage and field strength was
nearly constant

U � E � 1013V2 m�1 : (46)

That means
@g11

@r
� �2�10�41 m�1 : (47)

One will not see these tiny changes, but they are appar-
ently enough to release lightning etc.

On the whole, the influence of gravitation prevails, so that
the space-time is macroscopically stable. Table 1 shows the
arithmetical deviations of metrics at a radius of 10�15 m, that
is roughly the conjectural radius of nuclei.

proton free electron

(11)(�(44)) from mass 2:48�10�39 1:30�10�42

(11) from charge �1:85�10�42 �1:85�10�42

(34) from spin j 2:60�10�40 j 2:60�10�40

(34) from charge times
magn. momentum �j 5:57�10�43 �j 3:6�10�40

(33) from magn. momen-
tum (ambiguous) �1:64�10�43 �6:84�10�38

Table 1: The arithmetical deviations of metrics at 10�15 m.

The influence by mass decreases with 1=r, however, that
by charge and spin with 1=r2, and that by magnetic momen-
tum with 1=r4.

6.2 On causality

Firstly, equations (3), (44), and (45) provide 10 independent
equations for 14 components gik ; Ai . With it, causality is
not given in principle. It is false to claim, a geometric ap-
proach would imply causality. Geometry has nothing to do
with causality, because causality has not been geometrically
defined at all.

If we see something causal, it comes from approximations
by wave equations, as precedingly explained. These provide
close solutions.

Appendix

“Classical” electric and magnetic fields in the vacuum are
joined to an antisymmetric tensor of 2nd rank

D = "0E = j�0
� 1

2

0@ F(14)
F(24)
F(34)

1A ;

B = �0H = "0
� 1

2

0@ F(23)
F(31)
F(12)

1A : (48)
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Current density and charge density result in a source vec-
tor S
J = c�0

� 1
2

0@ S(1)
S(2)
S(3)

1A ; � = �j�0
� 1

2S(4) : (49)

The indices in parentheses stand for physical components.
See also Kästner [8].
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Zeitung, v. 72, Nr. 148 vom 30.06.1999.

28. Kapcov S. Elektrische Vorgänge in Gasen und im Vakuum. Ver-
lag der Wissenschaften, Berlin, 1955.

Ulrich E. Bruchholz. Key Notes on a Geometric Theory of Fields 113



Volume 2 PROGRESS IN PHYSICS April, 2009

Numerical Solution of Quantum Cosmological Model
Simulating Boson and Fermion Creation

Vic Christianto� and Florentin Smarandachey
�Present address: Institute of Gravitation and Cosmology, PFUR, Moscow, 117198

E-mail: vxianto@yahoo.com, admin@sciprint.org
yChair of Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu

A numerical solution of Wheeler-De Witt equation for a quantum cosmological model
simulating boson and fermion creation in the early Universe evolution is presented. This
solution is based on a Wheeler-De Witt equation obtained by Krechet, Fil’chenkov, and
Shikin, in the framework of quantum geometrodynamics for a Bianchi-I metric.

1 Introduction

It is generally aserted that in the early stage of Universe evo-
lution, the quantum phase predominated the era. Therefore
there are numerous solutions have been found corresponding
to the Wheeler-DeWitt equation which governs this phase [2].
In the present paper we present another numerical solution of
Wheeler-De Witt equation for a quantum cosmological model
simulating boson and fermion creation in the early Universe
evolution for a Bianchi-type I metric [1].

The solution is based on Wheeler-De Witt equation for
a Bianchi-I metric obtained by Krechet, Fil’chenkov, and
Shikin [1], in the framework of quantum geometrodynamics.
Albeit the essence of the solution is quite similar from the so-
lution given in [1] using Bessel function, in the present paper
we present numerical result using Maxima. For comparison
with other solutions of 1-d hydrogen problem, see [3] and [4].

2 Solution of Wheeler-DeWitt equation for boson and
fermion creation

In the evolution of the Universe after inflation, a scalar field
describing de Sitter vacuum was supposed to decay and its
energy is converted into the energy of fermions and heavy
vector-particles (the so-called X and Y bosons) [2].

In the framework of quantum geometrodynamics, and for
a Bianchi-I metric, the Wheeler-De Witt equation has been
obtained by Krechet, Fil’chenkov, and Shikin, which reduces
to become (Eq. 23 in [1]):

T 00 � 2iC
3�

T 0 � (E � V )T = 0: (1)

where T 00 and T 0 represent second and first differentiation of
T with respect to r. The resulting equation appears quite
similar to radial 1-dimensional Schrödinger equation for a
hydrogen-like atom [3], with the potential energy is given
by [1]:

U(r) =
�
�

+
"o
� 4=3 ; (2)

E =
8
3
�
�

�
�
� M2

2�

�
(3)

has here a continuous spectrum.
The solution of equation (1) has been presented in [1]

based on modified Bessel function. Its interpretation is that
in this quantum cosmological model an initial singularity is
absent.

As an alternative to the method presented in [1], the nu-
merical solution can be found using Maxima software pack-
age, as follows. All solutions are given in terms of E as con-
stant described by (3).

(a) Condition where V = 0

’diff(y,r,2)�E*y�(2*%i*C/3/t)*y=0; ode2(%o1,y,r); (4)

The result is given by:

y=K1 sin (a)+K2 cos (a) ; (5)

where:
a=(r/

p
3)
p�3E�2iC/t : (6)

(b) Condition where V ≶ 0

’diff(y,r,2)�E*y�(2*%i*C/3/t)*y�(b/t+e/t4=3)*y=0;
ode2(%o2,y,r); (7)

The result is given by:

y=K1 sin (d)+K2 cos (d) ; (8)
where:

d=(r/(
p

3 t2=3)
p�3Et4=3�2iCt1=3�3e�3bt1=3 : (9)

As a result, the solution given above looks a bit different
compared to the solution obtained in [1] based on the modi-
fied Bessel function.
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3 A few implications

For the purpose of stimulating further discussions, a few im-
plications of the above solution of Wheeler-DeWitt equation
(in the form of 1-d Schrödinger equation) are pointed as fol-
lows:

(a) Considering that the Schrödinger equation can be used
to solve the Casimir effect (see for instance Silva [5],
Alvarez & Mazzitelli [6]), therefore one may expect
that there exists some effects of Casimir effect in cos-
mological scale, in a sense that perhaps quite similar to
Unruh radiation which can be derived from the Casimir
effective temperature. Interestingly, Anosov [7] has
pointed out a plausible deep link between Casimir ef-
fect and the fine structure constant by virtue of the en-
tropy of coin-tossing problem. However apparently he
did not mention yet another plausible link between the
Casimir effective temperature and other phenomena at
cosmological scale;

(b) Other implication may be related to the Earth scale ef-
fects, considering the fact that Schrödinger equation
corresponds to the infinite dimensional Hilbert space.
In other words one may expect some effects with re-
spect to Earth eigen oscillation spectrum, which is re-
lated to the Earth’s inner core interior. This is part of
gravitational geophysical effects, as discussed by Gr-
ishchuk et al. [8]. Furthermore, this effect may corre-
spond to the so-called Love numbers. Other phenom-
ena related to variation to gravitational field is caused
by the Earth inner core oscillation, which yields oscil-
lation period T � 3–7 hours. Interestingly, a recent re-
port by Cahill [9] based on the Optical fibre gravita-
tional wave detector gave result which suggests oscil-
lation period of around 5hours. Cahill concluded that
this observed variation can be attributed to Dynami-
cal 3-space. Nonetheless, the Figure 6c in [9] may be
attributed to Earth inner core oscillation instead. Of
course, further experiment can be done to verify which
interpretation is more consistent.
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According to the experimental analysis conducted by P.-M. Robitaille, the 2.7 K mi-
crowave background, first detected by Penzias and Wilson, is not of cosmic origin, but
originates from the Earth, and is generated by oceanic water. In examining this problem
two fields must be considered: (1) the Earth Microwave Background, the EMB, present
with the 2.7 K monopole and 3.35 mK dipole components; (2) the weak Intergalactic
Microwave Background, the IMB, which is connected to the entire Metagalaxy. This
conclusion meets our theoretical considerations. First, the field density of the EMB,
being inversely proportional to the field volume, should decrease with the cube of the
distance from the Earth’s surface, while its dipole anisotropy, which is due to the motion
of the entire field in common with the Earth, is independent from altitude. Therefore,
the EMB monopole should not be found at the 2nd Lagrange point (1.5 mln km from
the Earth), while the dipole anisotropy should remain the same as near the Earth. Sec-
ond, according to General Relativity, the motion through the IMB in a referred direction
manifests the three-dimensional rotation of the entire space of the Metagalaxy.

According to the experimental and observational analysis
conducted by Pierre-Marie Robitaille, an expert in magnetic
resonance imaging (MRI) [1], the 2.7 K monopole microwave
background, first detected by Penzias and Wilson [2], is not
of cosmic origin, but of the Earth, and is generated by the
hydrogen bonds� in oceanic water.

Robitaille first advanced his concept in an open letter pub-
lished in The New York Times in 2002 [3]. In the years which
followed, he provided a detailed explanation in a series of
journal publications [4–10].

Rabounski [11] then showed that the anisotropy of the
Penzias-Wilson microwave background, observed through
the 3.35 mK dipole componenty, is due to the rapid motion of
the whole field in common with its source, the Earth, with a
velocity of 365�18 km/sec through a weak intergalactic fore-
ground, which is assignated to the Metagalaxy as a whole. So
the anisotropy of the observed microwave background has a
purely relativistic origin.

This conclusion is based on developments in the Special
Theory of Relativity [12, 13]. Given a local (moving) inertial
reference frame, the clocks of which are synchronized to the
“preferred” (resting) intertial reference frame assigned to the
Universe as a wholez, an observer located in this local (mov-
�The vibration of a hydrogen atom in water weakly linked to an oxygen

atom on another molecule.
yThe 3.35 mK dipole (anisotropic) component of the Penzias-Wilson mi-

crowave background was first observed in 1969 by Conklin [14] in a ground-
based observation. Then it was studied by Henry [15], Corey [16], and also
Smoot, Gorenstein, and Muller (the latest team organized a stratosphere ob-
servation on board of a U2 aeroplane [17]). The history of the discovery and
all the observations is given in detail in Lineweaver’s paper of 1996 [18].
The weak anisotropic intergalactic field was found later, in the COBE space
mission then verified by the WMAP space mission [19–23].
zSuch a synchronization can be done due to the “light-spot synchroniza-

ing) reference frame, should register an inverse
�
1 + v

c cos �
�

effect on the physically observed velocity of the light signals
(photons) assigned to his (moving) reference frame, while the
world-invariant of the velocity of light remains unchanged.
This effect, directed toward the velocity v of the observer’s
(moving) reference frame, is manifested in the Tangherlini
transformations in the Special Theory of Relativity [12, 13].

We assume that the photon source of an earthly micro-
wave background moves in common the field’s source, the
Earth, with the velocity v = 365�18 km/sec relative to the
weak intergalactic microwave background, assigned to the
Metagalaxy. In this case, according to the Tangherlini trans-
formations, the spherical distribution of the velocities of the
earthly origin microwave signals, being registered from the
Earth or in an Earth-connected reference frame (such as the
reference frame of a space mission moving in common with
the Earth) should experience an anisotropy in the direction of
the motion with respect to the weak intergalactic background.
At the same time, the world-invariant of the velocity of light
remains unchanged. Also, the distribution is still spherical
if observed from the vewpoint of an observer connected to
the Metagalaxy’s background (i.e. in the “preferred” refer-
ence frame, which is resting with respect to the Metagalaxy
as a whole). This anisotropic effect has the same formulation
in temperature, T =T0=

�
1 + v

c cos �
�
, as the Doppler-effect,

despite being generated by a different cause. We therefore
refer to this effect as the Doppler-like anisotropy. Assume
that the source of the earthly origin microwave photons, the
Earth, moves through the weak intergalactic background with

tion”, which is by means of a phase-speed light spot, or due to the so-called
“external synchronization”. See [12, 13] or any encyclopaedic source, ex-
plaining the Tangherlini trasformations, for detail.
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v = 365�18 km/sec. We calculate the relative deviation of
the temperature in the Earth’s microwave background which
is expected, due to the anisotropy, to be observed by an Earth-
connected observer

�Tcal
Tcal

=
v
c

= 0:122%� 0:006% :

According to the observations on board of the COBE
satellite, the temperature of the Penzias-Wilson microwave
background measured from the monopole component of it, is
Texp= 2:730�0:001 K. The dipole anisotropy, registered by
the COBE satellite, is 3.353�0.024 mK. The WMAP satel-
lite gives approximately the same: 3.346�0.017 mK. The an-
isotropic direction, in the Galactic longitude l and latitude
b, is: l= 264:26��0:33�, b= 48:22��0:13� as measured
by COBE, a result confirmed by WMAP, l= 263:85��0:1�,
b= 48:25��0:04� [23]. So, the experimentally registered
relative deviation of the temperature of the microwave back-
ground in the direction of the anisotropy is

�Texp
Texp

= 0:123%� 0:001% ;

which is small number, but is significantly not zero due to the
high precision of measurement. This is a systematic deviation
with many years of observation.

In addition to this result, COBE initially registered a sys-
tematical deviation between the temperature of the monopole
component of the microwave background, 2:730�0:001 K,
obtained by the direct measurements, and the temperature of
the monopole 2:717�0:003 K obtained from the 1st deriva-
tive of the monopole [24] (the 1st derivative was interpreted
as the actual dipole component of the field). The average
deviation �Texp= 0:013�0:003 K between these two results
is a small number but is significantly not zero (this is due
to the high precision of measurement). Thus, we obtain a
minimal relative deviation between the temperature of the
Penzias-Wilson microwave background from the monopole
and from the 1st derivative of the monopole

�Texp
Texp

= 0:33% at 1�;
�Texp
Texp

= 0:18% at 2�:

The aforementioned experimental results meet our theo-
retical calculation, 0:122%� 0:006%. Therefore, our sug-
gestion of the relativistic lowering of the temperature of the
Penzias-Wilson microwave background due to the Doppler-
like anisotropic effect on it [11], is in good agreement with
that observed in the COBE and WMAP space missions.

With these, we have to suggest a model, in the framework
of which two fields are under consideration (this classification
meets the scenario suggested by Robitaille in [7]):

a). The Earth Microwave Background, the EMB, present
with the 2.7 K monopole component and 3.35 mK di-
pole component. The EMB dipole anisotropy is ex-
plained due to the Tangherlini transformations in the
Special Theory of Relativity: the spherical distribution

of the earthly origin photons assigned to the EMB ex-
periences the Doppler-like anisotropy toward the rapid
motion of the Earth, with a velocity of 365�18 km/sec,
through the weak intergalactic background associated
to the Metagalaxy as a whole (so the weak intergalactic
background manifests the “preferred” reference frame
connected to the entire Metagalaxy, and resting with
respect to it). Such an anisotropy can be observed by
an Earth-bound observer and any observer whose ref-
erence frame is connected to the Earth (for instance the
observers located on board of the COBE satellite or the
WMAP satellite), but the distribution of the earthly ori-
gin photons remains spherical being registered by an
observer whose location is the reference frame resting
with respect to the Metagalaxy as a whole;

b). A weak Intergalactic Microwave Background (IMB)
exists. It is associated to the entire Metagalaxy, and is
present with its monopole and dipole components. The
dipole anisotropy of the IMB is explained due to the
Doppler-effect on the IMB photons: the Earth moves
through the IMB with a velocity of 365�18 km/sec,
so the IMB photons registered by an Earth-bound ob-
server (or any observer who is connected to the refer-
ence frame of the Earth such as the observers on board
of the COBE satellite or the WMAP satellite) bear dif-
ferent energies/frequencies toward and backward this
motion that is manifest as the IMB anisotropy in this
direction.

Our further considerations are focused on the additional
theoretical proof in support to this conclusion.

Briefly, our theoretical considerations first suggest that, if
the Penzias-Wilson microwave background is of earthly ori-
gin, it is approximated as a spherical field, distributed from
the Earth into the outer space. In such a case, according to
both classical and relativistic theory of fields, the density of
the EMB is inversely proportional to the field volume

� � 1
V
� 1
R3 ;

so it should decrease with the cube of the distance R from
the field’s sources, which are located on the surface of the
Earth. In other word, the density of the EMB should decrease
with the cube of the altitude from the Earth’s surface. On the
other hand, the dipole anisotropy of the EMB, being a purely
relativistic effect due to the rapid motion of the field’s source,
the Earth, through the weak intergalactic field, is independent
from altitude.

This conclusion provides an opportunity to simply verify
the aforementioned theoretical suggestions. Naturally, if the
Penzias-Wilson microwave background is the earthly origin,
the monopole component should not be found at large dis-
tances from the Earth, while the dipole anisotropy remains
the same as near the Earth.

The ground-bound measurements of the Penzias-Wilson
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microwave background and the orbital measurements made
with the COBE satellite, whose orbit is located at an alti-
tude of 900 km, were obtained very near the oceans which are
not point-like sources. Consequently, these observations were
unable to manifest changes of the field density with altitude.
However the 2nd Lagrange point is located 1.5 mln km from
the Earth. It is the position of the WMAP satellite and the
planned PLANCK satellite. Unfortunately, WMAP has only
differential instruments on board: such an instrument regis-
ters only the difference between the number of photons in the
channels. WMAP can therefore target measurements of the
anisotropy of the field, but is unable to measure the field den-
sity. PLANCK is equipped with absolute instruments. Hence
PLANCK will be able to measure the field density.

WMAP showed that the anisotropy of the Penzias-Wilson
microwave background at the 2nd Lagrange point is the same
as that measured by COBE, near the Earth. This agrees with
our theory, but can occur if the background is of cosmic ori-
gin. Therefore the key probe, experimentum crucis, will be
PLANCK, which targets the density of the field at the 2nd
Lagrange point.

According to our theory, when PLANCK will arrive at the
2nd Lagrange point and start measurements, it shall manifest
almost no photons associated to the Penzias-Wilson micro-
wave background (at least a very small number of the pho-
tons), which is in very contrast to that was registered in
the ground-based observations and in the COBE observa-
tions. This result should manifest the earthly origin of the
Penzias-Wilson microwave background, and verify both Ro-
bitaille’s phenomenological analysis and our theoretical con-
siderations.

The second portion of our theory is specific to the Gen-
eral Theory of Relativity. Assume that the space of the Meta-
galaxy is a pseudo-Riemannian space with spherical geom-
etry. Such a space is the surface of a hypersphere with the
radius r (the curvature radius of the space). Now, suppose
all the bodies located in the hyperspere’s surface, have to
travel, commonly, somewhere in a three-dimensional direc-
tion on the surface. This refers to the average common mo-
tion, because they all experience different motions with re-
sect to each one, having however to travel on the average in
the direction. Such an average “drift” of all bodies located
in the hypersphere’s surface manifests the three-dimensional
rotation of the hypersphere. Therefore, in the framework of
the views specific to the General Theory of Relativity, the
presence of the weak Intergalactic Microwave Background,
the IMB, which is associated to the Metagalaxy as a whole,
through which the Earth moves, in common with the other
space bodies (at different velocities, having however the av-
erage common velocity and direction in the space), manifests
the three-dimensional rotation of the entire space of the Meta-
galaxy. The linear velocity of the rotation — the average ve-
locity of all space bodies in the preferred direction, which is
obviously different from the velocity 365�18 km/sec specific

to the Earth only — should arrive from observational astron-
omy, and be a world-invariant in the entire space (space-time)
of the Metagalaxy.
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In this work, the properties of the water are briefly revisited. Though liquid water has a
fleeting structure, it displays an astonishingly stable network of hydrogen bonds. Thus,
even as a liquid, water possesses a local lattice with short range order. The presence
of hydroxyl (O�H) and hydrogen (H � � �OH2) bonds within water, indicate that it can
simultaneously maintain two separate energy systems. These can be viewed as two
very different temperatures. The analysis presented uses results from vibrational spec-
troscopy, extracting the force constant for the hydrogen bonded dimer. By idealizing
this species as a simple diatomic structure, it is shown that hydrogen bonds within wa-
ter should be able to produce thermal spectra in the far infrared and microwave regions
of the electromagnetic spectrum. This simple analysis reveals that the oceans have a
physical mechanism at their disposal, which is capable of generating the microwave
background.

While water is the best studied molecule on Earth [1],
it remains one of the most mysterious. The unusual prop-
erties of this solvent are generated by its hydrogen bonding
network [1–4]. In the condensed state, these relatively weak
bonds (H � � �OH2) interlink water into a local intermolecular
lattice. Conversely, the robust intramolecular hydroxyl bond
(O�H) permits water to be treated as a rigid unit. Water,
in the solid state, can take up to one dozen possible crystal
structures. Through hydrogen bonding, each molecule is in-
corporated into a structure wherein the oxygen atoms assume
tetrahedral coordination as illustrated in Figure 1 [1]. As for
the O�H � � �O bond angle, it deviates only slightly from lin-
earity in ordinary ice, or ice Ih [1; p. 200].

Yet, it is the nature of liquid water which has largely cap-
tivated the interest of physical chemists. It has been said that:
“the H-bond network of liquid water is, in the average, the
same as that of ice” [1; p. 223]. In liquid water, the aver-
age tetrahedral geometry of the oxygen is maintained, but at
the expense of tremendous dynamic bending of the hydrogen
bonds [1; p. 223]. Nonetheless, to a first approximation, and
for the purposes of the discussion which is to follow, the av-
erage O�H � � �O bond angle will not be considered to deviate
substantially from linear. The energetic dynamic bending of
hydrogen bonds will be neglected.

Liquid water has been tenacious in withholding its se-
crets. Still, scientists have not relented in the study of this
universal solvent. Some of our knowledge has come from
the study of the simple water dimer [5–9], the gaseous adduct
of two molecules linked by a single hydrogen bond (see Fig-
ure 2). The structure of the dimer was first elucidated in 1977
by Dyke, Mack, and Muenter [7]. In its most stable form, the
water dimer displays a trans-linear arrangement [7], where
the O�H � � �O linkage deviates only slightly from a linear

configuration. The stability of the trans-linear form has been
confirmed repeatedly for this adduct, using both experimental
and ab initio evaluations [5–9]. The energy of its hydrogen
bond is �5 kcal/mol (�21 kJ/mol; [6]).

Since the water molecules making up the dimer are some-
what rigid due to their strong hydroxyl bonds (�119 kcal/mol
or �497 kJ/mol [10; p. 9–74]), it is possible to treat this
adduct as a monomer-monomer system. It is true that the
dimer can undergo significant tunneling and rearrangements
[5–9], but the resultant conformations do not produce the low-
est energy species. As such, one can solely consider the trans-
linear form [7] and treat each water molecule as a single, rigid
unit. Under this scenario, the water dimer can be modeled as a
harmonic oscillator [11–12] about the hydrogen bond. Dyke,
Mack, and Muenter [7] have determined that the fundamental
stretching frequency of the dimer corresponds to �143 cm�1

[7]. This frequency lies in the far infrared. It might be re-
called, for instance, that NASA’s COBE FIRAS (Far Infrared
Absolute Spectrophotometer) instrument scanned the sky in a
frequency range from 2 to 95 cm�1 [13].

Given a fundamental frequency at 143 cm�1, it is possi-
ble to infer the force constant for the hydrogen bond in the
water dimer [11–12]. The reduced mass, �r, of the dimer is
equal to 1.495�10�23 g/molecule: �r = 18�18

36�(6:02�1023) . The
fundamental frequency of oscillation is related to the force
constant, k, and reduced mass, �r, as follows:

! [cm�1] =
1

2�c

�
k
�r

�1=2

;

therefore, the force constant for the dimer corresponds to a
very small 0.108�105 dyn/cm. The force constant for the hy-
droxyl (O�H) bond within each molecule can be obtained
from the literature [10]. It corresponds to 8.45 N/cm, which

Pierre-Marie Robitaille. Water, Hydrogen Bonding, and the Microwave Background L5



Volume 2 PROGRESS IN PHYSICS April, 2009

Fig. 1: Schematic representation of the water lattice. Each water
molecule acts to accept and donate a total of four hydrogen bonds.
Note the essentially linear O�H � � �O subunit.

is equivalent to 8.45�105 dyn/cm [10; p. 9–99].
In the ideal case, it should be possible to calculate the en-

ergy of each of these systems by considering the expression
E= 1

2 kx
2, where k is the force constant and x is the infinites-

imal displacement of the fundamental oscillation. The latter
will be treated as an undetermined variable for each of these
two subsystems.

Within the local water lattice, one can observe that the
fundamental subunit of the dimer is also present (see Fig-
ure 1). That is, the linear O�H � � �O structure found within
the trans-linear water dimer is constantly repeated. Indeed, if
this were not the case, there would be little interest in studying
the water dimer [5–9]. In this configuration, two bonds link
every hydrogen atom to the adjacent oxygens (O�H � � �O):
the hydrogen bond with a force constant of � 0.108�105

dyn/cm and the hydroxyl linkage with a force constant of
�8.45�105 dyn/cm. Since the grouping is a linear one, the
displacement of the hydrogen atom must occur in the line
linking the two oxygen atoms. If one isolates the hydrogen
bonding system from this short range lattice, its energy will
be roughly equal toE1 = 1

2 k1(x1)2. Similarly, the energy for
the hydroxyl system will be given by E2 = 1

2 k2(x2)2. Thus,
as there is a single hydrogen atom involved in the oscillation,
it is immediately clear that jx1j= jx2j and to a first approxi-
mation, E2=E1 = k2=k1.

Water should then be capable of sustaining thermal emis-
sions over two very distinct regions of the electromagnetic
spectrum. The first of these regions occurs in the infrared
and is generated by the hydroxyl bond. A second thermal
emission region exists in the far infrared or microwave re-
gion. These emissions are produced by the hydrogen bond.
They represent energies which are a factor of about 80 times
(k2=k1 = 78) lower than the frequencies observed for the hy-
droxyl bonds. Although knowledge of emission frequen-
cies cannot be easily correlated with temperatures, this result
implies that the thermal photons produced by the hydrogen
bonding network might be detectable at apparent tempera-
tures which are 80 fold below the real temperatures of the
water system.

Fig. 2: Schematic representation of the trans-linear water dimer.
Note the essentially linear O�H � � �O unit.

The thermodynamics of hydrogen bond rearrangements
in the liquid phase have recently been examined [14]. This
work gives a value of 1.5� 0.5 kcal/mol (�6.3 kJ/mol) for
the rearrangement energy. As these energies are directly as-
sociated with the formation and breaking of hydrogen bonds,
it implies that the true energy of these bonds is closer to
1.5� 0.5 kcal/mol in the liquid state, not the 5 kcal/mol ob-
tained from dimer studies [6]. Therefore, the appropriate
force constant for the hydrogen bond in liquid water could
be nearly 3 fold lower, yielding a ratio of force constants
(k2=k1) in a range of 80–240. Consequently, the hydrogen
bonding system in water could produce a thermal spectrum
reporting a temperature which is 80–240 fold lower than the
true temperature of the water system.

An analysis of the hydrogen bonding system within water
helps to explain how the oceans of the Earth could produce a
thermal spectrum with an apparent temperature much lower
than their physical temperature [15, 16]. This occurs despite
the fact that sea water contains cations and anions [17, 18].
Note that the molar concentration and the physical influence
of the salts in sea water (mostly NaCl at � 0.12 M) does not
interfere significantly with the H-bonding network of �110
M hydrogen atoms [17, 18]. For instance, studies of the ef-
fects of cations and anions on the water system, tend to utilize
ion concentrations which are more than 10 times those found
in sea water [17, 18]. It is interesting however, that while the
lifetimes of the first excited state for the hydroxyl (O�H � � � )
stretch in liquid water is on the order of �1 psec, this value
increases to �2.6 psec in the vicinity of chloride ions [19,
20]. Nonetheless, it is unlikely that the presence of ions in the
oceans will dramatically alter the conclusions reached herein,
even though the presence of ions can produce small changes
in the first solvation shell [17, 18].

Maréchal [1; p. 220] illustrates how liquid water displays
strong hydroxyl absorption bands at 1644 cm�1 (H�O�H
bending) and 3400 cm�1 (hydrogen bonded O�H stretch).
Importantly, the spectra also revealed broad and powerful li-
bration bands (hindered rotations about the hydrogen bond;
O � � �H) at�700 cm�1 and hydrogen bond stretches (O � � �H)
centered at �200 cm�1 which extend to lower frequencies.
Since water is a good absorber in the far infrared, these stud-
ies were executed on samples which were only 1-�m thick.
Consequently, it would not be unexpected that the support-
ing matrix and a small sample thickness could alter both the
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position and amplitude of the hydrogen bonding stretching
and libration bands. The findings reported by Maréchal [1;
p. 220] are interesting, but inconclusive as related to the hy-
drogen bond itself.

Reflecting on the paucity of supportive data, in this very
difficult experimental region of the far infrared, it seems that
much more needs to be learned about the emissions due to
hydrogen bonds in nature. In particular, the lack of a signal
specifically assigned to hydrogen bonds from water on Earth
gives cause for concern. This is because the microwave back-
ground [21] was assigned to the universe [22] when virtually
nothing was known about the spectroscopic signature of the
hydrogen bond.

Consideration of these findings reveals why the author has
advanced [15, 16] that the microwave background [21] does
not correspond to an astrophysical signal [22], but instead is
generated by the oceans [15, 16, 23]. Water has the means to
generate thermal emissions in the far infrared and microwave
regions. The fundamental oscillator involved is best repre-
sented by the dimer subunit and its associated hydrogen bond
within liquid water itself. In the gas phase, the dimer is known
to have a fundamental frequency in the far infrared [7], very
close to the region sampled by the COBE FIRAS instrument
[13]. It is quite reasonable to expect that the emissions from
the oceans occur in the same region.

In summary, the microwave background can be under-
stood as follows: photons are being produced by the oceans
and they are then scattered in the atmosphere such that a com-
pletely isotropic signal is observed [15]. The isotropy of the
microwave background was first reported by Penzias and Wil-
son [21]. The signal is independent of temperature variations
on the globe, since the hydrogen bonding energy system is
already fully occupied at earthly temperatures. This explains
why the microwave background is independent of seasonal
changes [21]. Satellite data obtained by COBE strengthen the
idea that the Earth does produce the microwave background
[24, 25]. This hypothesis has not been refuted either by the
three year [26] or five year WMAP findings.
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In the work, the importance of assigning the microwave background to the Earth is ad-
dressed while emphasizing the consequences for global climate change. Climate mod-
els can only produce meaningful forecasts when they consider the real magnitude of
all radiative processes. The oceans and continents both contribute to terrestrial emis-
sions. However, the extent of oceanic radiation, particularly in the microwave region,
raises concerns. This is not only since the globe is covered with water, but because
the oceans themselves are likely to be weaker emitters than currently believed. Should
the microwave background truly be generated by the oceans of the Earth, our planet
would be a much less efficient emitter of radiation in this region of the electromagnetic
spectrum. Furthermore, the oceans would appear unable to increase their emissions in
the microwave in response to temperature elevation, as predicted by Stefan’s law. The
results are significant relative to the modeling of global warming.

While controversy exits as to whether or not mankind has
been an agent of global climate change, there is little dispute
in the scientific community that the Earth is indeed warm-
ing [1–4]. Global warming may substantially alter the agri-
cultural capacity and water cycles of our planet with dramatic
human ramifications. With this in mind, if global warming is
to be both understood and forecasted, climate modeling [5,6]
must be based on proper physical foundations. Through this
letter, I wish to highlight that the modeling of the Earth’s en-
ergy balance [5, 6] requires re-evaluation first of Kirchhoff’s
law of thermal emission [7–11] and its associated consequen-
ces for the application of Stefan’s law [12], and second of
the assignment of the microwave background [13, 14] to the
oceans of the Earth [15, 16].

Regarding Kirchhoff’s law [7], it is difficult to conceive
that a central pillar of physics could be the subject of concern,
both in its experimental formulation [8,11] and in its theoret-
ical proof [9,10]. For those who have followed the arguments
these past few years [8–11], it seems that a reconsideration of
universality in blackbody radiation is in order. In short, there
is no universality [9, 10] and each physical system must be
treated with individualized care. The generalized application
of Stefan’s 4th power law [12] is unjustified in the analysis of
global warming.

Relative to the microwave background, the reassignment
is both unexpected and profound. Ever since its discovery
[13] and assignment to the universe in 1965 [14], the mi-
crowave background has been considered a cornerstone of
modern astrophysics. As such, the attributing of this back-
ground to the Earth brings consequences for physics [17].
Nonetheless, the global warming issue is of sufficient impor-
tance that its proper modeling [5, 6] should not be delayed
by the continued misassignment of the true origin of the mi-

crowave background.
At the same time, it remains true that these are complex

problems [1–21]. Kirchhoff’s law of thermal emission has
been in existence for nearly 150 years [7]. To question a
fundamental law after many years [8–11] seems contrary to
scientific logic, as scientists cannot be expected to verify the
tenets of physics before any new advancement can be pur-
sued. In this regard, the incorrect assignment of the micro-
wave background to the universe [14] can be understood, al-
though the accurate determination of temperatures from ther-
mal emission spectra has always required thermal equilibrium
with an enclosure [7–11]. This is something which could
never be met in a cosmological origin for the microwave
background, as I previously stated [18]. In the end, each
signal requires a realistic physical origin [8, 9]. For the mi-
crowave background, the responsible physical entity will be
the weak hydrogen bond between water molecules [15, 17].

With respect to the energy balance of the Earth [5, 6], its
elucidation requires the determination of the relationship be-
tween absorbed (solar) and emitted (earthly) radiation. Usu-
ally, one is concerned with radiation in the infrared. How-
ever, substantial contributions can be made in the radio and
microwave bands. While these energies are lower, their ag-
gregate sums are non-negligible. Thus, in order to model cli-
mate change, the radiation balance of the Earth must be de-
termined as a function of all frequencies from radio through
the infrared.

In some climate models [5, 6], the radiation which the
Earth emits is deduced by applying Stefan’s law [12], at a
given effective temperature, thereby treating the globe as a
uniform blackbody source. In such an approach, oceanic con-
tributions are undifferentiated from continental radiation. Yet,
the thermal emission profiles of solid materials are dramat-
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ically different from one another [20]. Few solids, if any,
adhere to Stefan’s law. Even various forms of graphite [20]
differ in their ability to emit radiation as a function of the
4th power of the temperature [12]. Stefan’s law simply does
not apply to most materials [20] and certainly will not apply
to land masses which are covered with extensive vegetation.
The thermal emission from liquids, especially water, is even
more complicated and much less understood. While Stefan’s
law might appear to hold over narrow spectral ranges within
the infrared, such band-like emissions fall far short of produc-
ing the emissive power expected at all frequencies, through
the application of the 4th power relationship.

Since there is no universality [8, 9], it is implausible that
the Earth can be modeled as emitting at a single effective tem-
perature. The oceans cannot be treated as simple blackbody
emitters, producing Planckian thermal spectra reflecting an
effective temperature near 300 K [5, 6]. In fact, while wa-
ter can provide strong emission bands in the infrared, further
study will reveal that the entire spectrum is far from black-
body or Planckian at 300 K. This is particularly important in
the microwave region.

If the oceans had been able to emit with an effective tem-
perature near 300 K, they would be expected to produce an
extensive radiation in the microwave region of the electro-
magnetic spectrum. In actuality, the oceans mimic a 3K
blackbody in this frequency range [13, 15]. The oceans re-
main powerful emitters of thermal radiation at these frequen-
cies, but much less powerful than would have been predicted
if they could be treated as 300 K sources. Note, in this regard,
that Stefan’s law invokes a 4th power temperature depen-
dence [12]. As a result, the oceans, while still emitting am-
ple radiation in the microwave region [13], are actually poor
emitters in this spectral range. This is true, if one compares
their actual emission [13] with the emission corresponding
to an effective temperature of 300 K [12], as is currently ex-
pected. The lower than expected efficiency of the oceans to
emit thermal radiation, particularly in the microwave region,
appears to have dire consequences for global warming.

It is well known that global warming models invoke nega-
tive feedback mechanisms [5, pp.352–354]. The first of these
predicts that, as the Earth warms, it becomes an even better
emitter of radiation, because the use of Stefan’s law [12] now
applies a fourth power exponential to an even higher tem-
perature. As a result, the production of even more thermal
photons is expected. In practice, approximately 70% of the
Earth is covered with water, and its thermal emissions in the
microwave regions are not expected to increase in the slight-
est as a response to temperature elevation. Should the hy-
drogen bonding system within water actually be the oscilla-
tor responsible for the microwave background [15, 21], then
this system cannot easily respond to increases in temperature,
since the associated energy levels are already full at Earthly
temperatures. This explains why the microwave background
has always been observed to be independent of seasonal vari-

ations. For nearly 70% of the planet, the negative feedback
mechanisms, brought by the application of Stefan’s law, will
not hold, at least in the microwave region of the spectrum.

It is well established that the inability of water bodies
to efficiently emit radiation results in considerable retention
of thermal energy within oceanic systems. Unable to dis-
sipate heat through emission, the oceans turn to convection
currents. This provides a driving force for oceanic currents
and for hurricanes. Importantly, the secret to understanding
oceanic behavior rests in large part with the microwave back-
ground. Its lack of seasonal variation constitutes a key param-
eter for modelers of global climate change and for the study
of oceanic systems.

Given the centrality of global warming to human prog-
ress, it may be prudent to fully ascertain the Earth’s emis-
sion profile, by using an array of satellites which continu-
ally monitor spectral emissions from the radio range through
the infrared. Such an array, positioned in fixed orbit around
the globe should be able to continuously monitor outgoing
Earthly emissions. Using a satellite array, it should be possi-
ble to observe the ebb and flow of infrared radiation from the
Earth in association with the diurnal cycle. In addition, the
relative stability of microwave emission will once again be
affirmed. Indeed, the latter has already been established long
ago, by Penzias and Wilson [13]. Only when such findings
are combined with increased direct solar, atmospheric, con-
tinental, and oceanic monitoring as a function of depth and
global position, will scientists gain the insight required for
the accurate analysis of climate change.

Dedication

This work is dedicated to my youngest sister, Mireille.

Submitted on November 21, 2008 / Accepted on December 05, 2008
First published online on December 08, 2008

References

1. Levitus S., Antonov J.I, Wang J., Delworth T.L., Dixon K.W.,
Broccoli A.J. Anthropogenic warming of Earth’s climate sys-
tem. Science, 2007, v. 292, 267–270.

2. Hansen J., Nazarenko L., Ruedy R., Sato M., Willis J., Ge-
nio A.D., Koch D., Lacis A., Lo K., Menon S., Novakov T.,
Perlwitz J., Russell G., Schmidt G.A, Tausnev N. Earth’s en-
ergy imbalance: confirmation and implications. Science, 2005,
v. 308, 1431–1435.

3. Levitus S., Antonov J.I., Boyer T.P., Stephens C. Warming of
the world ocean. Science, 2000, v. 287, 2225–2229.

4. Gregory J.M., Banks H.T., Stott P.A., Lowe J.A., Palmer M.D.
Simulated and observed decadal variability in ocean heat con-
tent. Geophys. Res. Letters, 2004, v. 31, L15312.

5. Kiehl J.T., Ramanathan V. Frontiers of climate modeling. Cam-
bridge University Press, Cambridge, UK, 2006.

L10 Pierre-Marie Robitaille. Global Warming and the Microwave Background



April, 2009 PROGRESS IN PHYSICS Volume 2

6. McGuffie K., Henderson-Sellers A. A climate modeling primer
(2nd edition). John Wiley and Sons, New York, 1997.
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On the Upper Limit (Heaviest Element) in the Periodic Table of Elements,
and the Periodic Table of Anti-Substances
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On the basis of the method involving equilateral hyperbolas developed by us with ref-
erence to the Periodic Table, its Top Limit has been established. It is the last element
with atomic mass 411.66 and serial number 155. The great value, according to our
calculation, has adjacent hyperbolas whose center is the point (0; 1). With the method,
it has been possible to find just one element in the Periodic Table — Rhodium, which
does not demand additional calculations involving the definition of the valid axes. Cal-
culations towards updating the charge of a nucleus and the quantity of neutrons in end
N-Z part of the diagram by means of the serial number 155 are herein executed. The
variant of the Periodic Table of Elements with the eighth period is recommended. On
the basis of symmetry, with the application of the Hyperbolic Law in the Periodic Table
of Elements, the existence of Anti-Substances is herein indirectly proved.

In the Periodic Table, elements are in a static condition, which
until now has not allowed us to reveal the dynamics of their
contents in various chemical compounds. The regularity es-
tablished by us represents equilateral hyperbolas Y =K=X ,
where Y is the content of any element K and X is the molec-
ular mass of compounds taken according to one gram-atom of
the defined element. The extreme conditions of the equation
are attained when Y 6 1, K 6X . Mathematically speaking,
if, for such hyperbolas, the peak is defined as

p
K, accord-

ing to the theorem of Lagrange, on the basis of which the
calculated factor of scaling (M = 20.2895) is applied, it shall
allow us to pass from one system of coordinates to another.
The square of this number (411.66) is equal to the maximal
atomic mass of the last element, which is the crossing point
of the valid axis of all hyperbolas whose ordinate is given by
Y = 1. Its serial number is 155 [1].

Calculations of adjacent hyperbolas of the kind Y =
= (X �K)=X whose center is the point 0; 1 have a simulta-
neous effect. Both versions of hyperbolas serve as additions
with respect to each other. When in one curve Y decreases,
in the second it increases. Each pair of hyperbolas of one ele-
ment is crossed at the point (X = 2K, Y = 0.5) through which
passes the axis of symmetry. Direct and adjacent hyperbolas
of all elements are crossed among themselves. The hyperbo-
las of the last element are the right boundaries of existence
for the compounds, and, at the left, they are bounded by the
coordinate axes [2].

As a result of graphical constructions and voluminous cal-
culations, it has been found that in the Periodic Table there is
the element rhodium (Rh) to which it is not required to ap-
ply theorem Lagrange and the factor of scaling. On the basis
of direct tabular data and adjacent hyperbolas, at a point of
their crossing (205.811; 0.5), the valid axes which, on the
X axis and along the line Y = 1, cut apiece with abscissa

411.622, are under construction. The divergence from the
data described above is a few thousandths of percent. This
fact manifests the validity of our theory [3].

It is thereby proved that the Top Limit of the Periodic
Table is the element no. 155 with atomic mass 411.66. At
present it is known that no. 118-th has been synthesized —
last element of the seventh period (no. 117 does not exist yet).
And, the above the serial number suggests that it is somehow
difficult for the Table to receive a new element. So, accord-
ingly, in nuclear reactions involving the synthesis of elements
nos. 114, 115, 116, and 118, events 60, 24, 9 and 3 have been
registered. In the known neutron-proton diagram of the nu-
cleus (nearby 2500) which finishes with the element no. 114,
it is seen that, in the end, its quantity of artificial isotopes
sharply decreases [4]. To the number of the element with
atomic mass 298, scientists have assigned special hopes as
here isotopes should possess raised stability [5]. However,
with the addition of the nucleus no. 155 to the diagram, a
general line of new trends shows that the predicted element
no. 114 should have 179 neutrons, instead of 175. Also ex-
pected by scientists are the twice-magic nucleus with a charge
number 114 and atomic mass 298, which, according to our
data, has a lack of 2 protons or, in other words, a surplus of
5 neutrons. The existing disorder in the parameters of the
elements is caused by the fact that there enters a more long-
living isotope into the table. Therefore the element no. 155
should be a reference point in nuclear reactions. It is neces-
sary to consider it in new quantum theory calculations for the
sake of filling the Periodic Table. There are different points
of view on the quantity of elements in it: from 120 up to
218 and more. For example, G. Seaborg and V. Goldanskii
have suggested adding 8-th and 9-th periods to 50 elements
[6, 7]. But in constructing the total dependence of isotopes
(more than 2500) on the charge of a nucleus, it is possible to
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see that it has the parabolic form, and, in the end, its account
goes by the units of the seventh period. It is also necessary to
acknowledge that elements with numbers 94–103 have been
discovered over the last 20 years, and 104–113–for 40.

In the world, hundreds of variants of the Periodic Table
have been created, but no one never has been able to answer
the question, whether it has a limit [8, 9]. We, for the first
time, have given the parameters of the last element as belong-
ing to the eighth period, the first group, having no. 155 and
atomic mass 411.66 [10].

It is necessary to note that while our theory has been con-
sidered with reference to the first quadrant, the position of the
second branches of equilateral hyperbolas in the third quad-
rant (where K> 0) has not been analyzed. However, it has
appeared that they possess similar properties (similar to those
in the first quadrant). Here too it is necessary to enter the
factor for reduction of coordinate axes by one scale. If now
around an imaginary axis we allow the overlapping of the
third and the first quadrants, it is possible to see practically
the full concurrence of curves, coordinates, and valid axes.
However, it concerns only the central part of the hyperbolas,
and their edges, observing a direction, fall outside the lim-
its. Hence, here the principle of symmetry does not work. At
K< 0 it is established, in the second and the fourth quadrants
of the hyperbolas, that there is similar regularity which has
been established by us for the first and the third quadrants. It
is caused by equilateral hyperbolas having equal parameters
with respect to the module, but with an opposite sign; namely,
being mutually interfaced, they possess identical properties.
Therefore, proceeding from the chemical concepts, they can
be symmetric only after the change of scale of the X and Y
axes. As in the third and fourth quadrants a negative ordi-
nate (a degree of transformation of substance) is not allow-
able in Nature, we shall analyze only quadrants 1 and 2, in
which K> 0 and K< 0. Here there is a full symmetry: the
hyperbolas are congruent and all axes coincide. Hence, the
Hyperbolic Law in the Periodic Table shall be applied to the
second quadrant. At a positive value of Y , a negative value
X , and K< 0, it is possible to assert that in it there are sub-
stances with a minus sign, i.e., Anti-Substances. Furnished
with the analysis above, there arises the opportunity of con-
structing the Periodic Table of Anti-Substances similar to the
one considered above.

Submitted on December 12, 2008 / Accepted on January 23, 2009
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This short letter contains some additional information and actual corrections to the bi-
ography of Frank Robert Tangherlini, published by the author of the letter, Gregory B.
Malykin, in Progress in Physics, v. 1, 2009.

Dear sir,

My recent publication [1] spent on the biography of Frank
Robert Tangherlini (on the occasion of his 85th birthday) con-
tained a minor lack of information in the field of mainly his
family life, details of his military service during the World
War II, and his private communications with some famous
physicists of the 20th century. Due to the exceptional cour-
tesy of Prof. Tangherlini who has read my recent paper [1],
I would like to improve these, and also add several details,
which could be interesting to a reader. Therefore I provide
below some extractions from the comments made by Prof.
Tangherlini himself on my topic in his private correspondence
with me [2].

1. “. . . Thus: my maternal grandfather did not settle in
New York, but in Chelsea, Massachusetts, a suburb of Boston,
and later moved to Philadelphia. . . . My oldest son Arne died
in 1998 at the age of 37. However, he left me a wonderful
granddaughter who will turn 18 in August.”

2. “. . . Actually, I was not “set free” of military service,
but rather, as with so many other engineering students, I re-
ceived a “draft deferment”, that enables the student to com-
pleter his technical education subject to government wishes.
However, the engineering program I was enrolled in at Boston
College (although it is a Jesuit institution, its name is just
Boston College, not Boston Jesuit College) closed down, and
I volunteered to be drafted in July 1943. After processing at
Fort Devens in Ayer, Massachusetts, I was sent to Fort Ben-
ning, Georgia, to receive Basic Training. But I did not stay
there a year. I had been placed in the Army Specialized Train-
ing Program (ASTP), and after completing my basic training,
I along with others was sent to the University of Cincinnati,
perhaps in early January of 1944. I completed two quarters of
training there, and sometime in May, I arranged to be trans-
ferred to the regular ground forces that were preparing to be
sent overseas. I received more infantry training in the sum-
mer of 1944 in Kentucky, and then volunteered to be sent to
Fort Meade, Maryland to be shipped overseas. I was finally
sent overseas on the Mauretania, perhaps in September 1944,
and it was on board the ship that I met James Barlow and Joe
Rhiley, who had been airforce cadets but were transferred to

the infantry. After we arrived in Liverpool, we volunteered to
join the 101st Airborne Division (only volunteers were in the
Airborne, no one was forced to become a paratrooper, even
when jumping, if someone didn’t want to jump, they were
asked to step aside, and let the next man jump; they then had
to leave the Airborne). I made five training jumps in Hunger-
ford before being flown over to Mourmelon, France, where
we stayed for several weeks, before being sent to Bastogne,
Belgium in TRUCKS, becasuse there was not enough time
to arrange for a parachute jump. So I never parachuted into
combat. If I had, I probably wouldn’t be around today writ-
ing to you. The Germans had broken through in the Ardennes,
and we were sent to halt their taking the key city of Bastogne,
which we did. We eventually were surrounded, and the Ger-
man commander asked our acting commander, Brig. Gen.
MacAuliffe to surrender. He replied: nuts!� This became one
of the famous stories from the Battle of the Bulge. At the end
of the war, sometime late in August, I made another training
jump, this time in France. It was part of our training for the
so-called “Jump on Tokyo”. The training jump took place
even though the war had ended. It was the smoothest (and
last!) parachute jump I ever made. I should also note that al-
though I was a non-commissioned officer with the equivalent
rank of a sergeant, the army designation of my rank was T-4
(i.e. technician 4th grade).”

3. “. . . I received a bronze medal in American history not
world history. Incidentally, I still remember what the compe-
tition essay was about: It was about a comparison of Thomas
Jefferson with Alexander Hamilton. . . . Also, in colleges we
do not speak of grade, so Robert F. Kennedy was in the same
graduation class as myself, i.e., the class of 1948, but not
“grade”. I should emphasize that I never met him person-
ally, and indeed only learned he was in my class many years
later. I attended 60th reunion of the class of 1948 in June
2008. . . . Skipping now to my post-doc training in Naples,
I should mention that although Francis Halpern and Susum
Okubo were there, Gell-Mann was not there. I think you may

�“Nuts” in the context MacAuliffe used it is not foul language, but rather
an expression of contempt or derision as in “nuts to you”, or “you must be
crazy”. It is also slang for testicles, but it was not being used in that sense.
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have been confused by my reference to the Gell-Mann-Okubo
elementary particle mass relations. . . . I did not discuss the
superluminal problem with Hermann Weyl, but wrote to him
sometime in 1951–1952, but did not save his reply. See a
comment he made in the letter I am sending you. Also, I did
not discuss the problem with Pauli, although I did attend two
colloquia he gave on Heisenberg’s theory of elementary par-
ticles, the first at Berkeley, and the second at Stanford where
I managed to ask him a question about Heisenberg’s theory.
Earlier, in 1994, while I was at Convair-General Dynamics,
I corresponded with Feynman about my theory. Although he
was very helpful (regretfully I didn’t save his letters to me),
he, as with Wentzel and Weyl, did not agree with my super-
luminal theory, which I eventually put aside after receiving
further negative comments while I was at Stanford. as de-
scribed in the enclosed letter to Fröman. One might say the
TT represents an attempt to understand more deeply special
relativity and the Lorentz Transformation rather than to re-
place it. I believe the concept of external synchronization
helps enormously in this regard.”

4. “. . . I should emphasize my marathon runs were not in
California but in Boston, and on one occasion in New Mex-
ico. I am a very, very slow marathoner. My last Boston
Marathon was in 2006, and it took me 8 hrs and 35 min-
utes. This was an improved statement over my 2001 Boston
Marathon which took me 9 hrs and 15 minutes. My first
marathon was in 1989 while on sabbatical leave at Harvard,
I ran it to celebrate my 65th birthday. It took me 9 hrs and
45 minutes. My best run was in the year I retired, 1994; it
took me 7 hrs and 35 minutes.”

In conclusion, I thank Frank Robert Tangherlini for his
useful corrections to my biographic topic [1], which were em-
phasized by him in his private letter to me [2] after the topic
has been published. I also thank Dr. Dmitri Rabounski, the
Editor-in-Chief, for his courtesy agreement to publish the cor-
rections (seem valuable to me), and also Edward G. Malykin
who helped me in the preparation of this letter. This work was
partly supported by the Council on President’s Grants of the
Russian Federation for Leading Scientific Schools (project
no. NSh. 1931.2008.2).

Submitted on January 28, 2009 / Accepted on February 30, 2009
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A new cosmological model called black hole universe is proposed. According to this
model, the universe originated from a hot star-like black hole with several solar masses,
and gradually grew up through a supermassive black hole with billion solar masses to
the present state with hundred billion-trillion solar masses by accreting ambient mate-
rials and merging with other black holes. The entire space is structured with infinite
layers hierarchically. The innermost three layers are the universe that we are living, the
outside called mother universe, and the inside star-like and supermassive black holes
called child universes. The outermost layer is infinite in radius and limits to zero for
both the mass density and absolute temperature. The relationships among all layers or
universes can be connected by the universe family tree. Mathematically, the entire space
can be represented as a set of all universes. A black hole universe is a subset of the en-
tire space or a subspace. The child universes are null sets or empty spaces. All layers
or universes are governed by the same physics - the Einstein general theory of relativity
with the Robertson-walker metric of spacetime - and tend to expand outward physically.
The evolution of the space structure is iterative. When one universe expands out, a new
similar universe grows up from its inside. The entire life of a universe begins from the
birth as a hot star-like or supermassive black hole, passes through the growth and cools
down, and expands to the death with infinite large and zero mass density and absolute
temperature. The black hole universe model is consistent with the Mach principle, the
observations of the universe, and the Einstein general theory of relativity. Its various
aspects can be understood with the well-developed physics without any difficulty. The
dark energy is not required for the universe to accelerate its expansion. The inflation is
not necessary because the black hole universe does not exist the horizon problem.

1 Introduction

In 1929, Edwin Hubble, when he analyzed the light spectra of
galaxies, found that light rays from galaxies were all shifted
toward the red [1, 2]. The more distant a galaxy is, the greater
the light rays are shifted. According to the Doppler’s effect,
all the galaxies should be generally receding from us. The
more distant a galaxy is, the faster it moves away from our
Milky Way. This finding implies that our universe is expand-
ing and thus had a beginning or an origin.

To explain the origin and evolution of the universe, Le-
maitre [3–4] suggested that the universe began an explosion
of a primeval atom. Around two decades later, George Ga-
mow and his collaborators [5–9], when they synthesized ele-
ments in an expanding universe, devised the initial primordial
fireball or big bang model based on the Lemaitre’s superatom
idea. To salvage the big bang model from some of its theo-
retical problems (e.g., flatness, relic particles, and event hori-
zon), Guth [10] proposed the inflationary hypothesis based
on the grand unification theory. The big bang model with
an inflationary epoch has been widely accepted as the stan-
dard cosmological model because this model is the only one
that can explain the three fundamental observations: the ex-
pansion of the universe, the 2.7�K cosmic microwave back-
ground radiation, and the abundances of helium and other

light elements [11–15].
Although it has been declared to have successfully ex-

plained the three basic observations, the big bang theory is
neither simple nor perfect because the explanations of the ob-
servations sensitively rely on many adjustable parameters and
hypothesis that have not been or may never be tested [16–17].
In addition, the big bang theory has not yet told us a whole
story for the origin and evolution of the universe with ninety-
eight percent uncertainties of its composition. The past before
10�43 seconds, the outside, and the future of the universe are
still unknown. As astronomers are able to observe the space
deeper and deeper, the big bang theory may meet more and
more severe difficulties with new evidences. In fact, that the
newly observed distant quasars with a high fraction of heavy
elements [18] has already brought the big bang model in a
rather difficult situation. Cosmologists have being tried to
mend this model for more than several decades. It is time for
astronomers to open their minds to think the universe in dif-
ferent ways and develop a new model that is more convinced
and competitive.

When the author was reading a paper [19] about the Mach
principle and Brans-Dicke theory of gravity to develop his el-
ectric redshift mechanism in accord with the five-dimensional
fully covariant Kaluza-Klein theory with a scalar field [20],
an idea that the universe is a black hole came to his mind [21].
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Upon this idea, a new cosmological model called black hole
universe is then developed, which is consistent with the fun-
damental observations of the universe, the Mach principle,
and the Einstein general theory of relativity. This new model
provides us a simple and reasonable explanation for the ori-
gin, evolution, structure, and expansion of the universe. It
also gives a better understanding of the 2.7�K cosmic mi-
crowave background radiation, the element abundances, and
the high fraction of heavy elements in distant known quasars.
Especially, the black hole universe model does not require
new physics because the matter of the black hole universe
would not be too dense and hot. Dark energy is not necessary
for the universe to have an acceleration expansion. Inflation
is not needed because there does not exist the horizon prob-
lem. Monopoles should not be created because it is not hot
enough. Comparing to the standard big bang theory, the black
hole universe model is more elegant, simple, and complete.
The entire space is well structured hierarchically without out-
side, evolve iteratively forever without beginning and end, is
governed by the simple well-developed physics, and does not
exist other unable explained difficulties. The author has re-
cently presented this new cosmological model on the 211th
AAS meeting hold on January 7–11, 2008 at Austin, Texas
[22] and the 213th AAS meeting hold on January 4–8, 2009
at Long Beach, California [23].

This paper gives a detail description of this new cosmo-
logical model. We will fully address why the universe be-
haves like a black hole, where the black hole universe origi-
nates from, how the entire space is structured, how the black
hole universe evolves, why the black hole universe expands
and accelerates, and what physics governs the black hole uni-
verse. Next studies will address how to explain the cosmic
microwave background radiation, how quasars to form and
release huge amount of energy, and how nuclear elements to
synthesize, and so on.

2 Black hole universe

According to the Mach principle, the inertia of an object re-
sults as the interaction by the rest of the universe. A body
experiences an inertial force when it accelerates relative to
the center of mass of the entire universe. In short, mass there
affects inertia here. In [24], Sciama developed a theoret-
ical model to incorporate the Mach principle and obtained
GMEF=(c2REF)� 1, where MEF and REF are the effective
mass and radius of the universe (see also [19, 25]). Later
on, it was shown by [26] that the Einstein general theory
of relativity is fully consistent with the Sciama interpreta-
tion of the Mach principle and the relation between the ef-
fective mass and radius of the universe should be modified as
2GMEF=(c2REF)� 1.

According to the observations of the universe, the den-
sity of the present universe �0 is about the critical density
�0� �c = 3H2

0=(8�G)� 9� 10�30 g=cm3 and the radius of

the present universe is aboutR0 � 13:7 billion light years (or
� 1:3� 1026 m). Here G= 6:67� 10�11 N m2 kg�2 is the
gravitational constant and H0� 70 km=s=Mpc is the Hubble
constant. Using the observed density (or the Hubble constant)
and radius of the present universe, we have the total mass
M0� 8�1052 kg and the mass-radius relation 2GM0=(c2R0)
= (H0R0=c)2� 1 for the present universe.

According to the Schwarzschild solution of the Einstein
general theory of relativity [27], the radius of a black hole
with mass MBH is given by RBH = 2GMBH=c2 or by the
relation 2GMBH=(c2RBH) = 1. For a black hole with mass
equal to the mass of the present universe (MBH =M0), the ra-
dius of the black hole should be about the radius of the present
universe (RBH�R0).

The results described above in terms of the Mach princi-
ple, the observations of the universe, and the Einstein gen-
eral theory of relativity strongly imply that the universe is
a Schwarzschild black hole, which is an extremely super-
massive fully expanded black hole with a very big size and
thus a very low density and temperature. The boundary of
the universe is the Schwarzschild absolute event horizon de-
scribed by

2GM
c2R

= 1: (1)

For convenience, this mass-radius relation (1) is named
by Mach M-R relation. The black hole universe does not ex-
ist the horizon problem, so that it does not need an inflation
epoch.

It is seen from equation (1) that the mass of a black hole
including the universe is proportional to its radius (M / R).
For a star-like black hole with 3 solar masses, its radius is
about 9 km. For a supermassive black hole with 3 billion
solar masses, its radius is about 9 � 109 km. For the present
black hole universe with hundred billion-trillion solar masses,
its radius is about 1023 km. Therefore, modeling the universe
as a black hole is supported by the Mach principle, the ob-
servations of the universe, and the Einstein general theory of
relativity.

The density of a black hole including the black hole uni-
verse can be determined as

� � M
V

=
3c6

32�G3M2 =
3c2

8�GR2 ; (2)

i.e., �R2 = constant or �M2 = constant. Here, we have
used the Mach M-R relation (1) and V = 4�R3=3. It is seen
that the density of a black hole including the black hole uni-
verse is inversely proportional to the square of the mass
(�/M�2) or to the square of the radius (�/R�2). In other
words, the mass of the black hole universe is proportional to
its radius.

Figure 1 plots the density of a black hole as a function
of its mass in the unit of the solar mass (the solid line) or a
function of its radius in the unit of 3 kilometers (the same
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Fig. 1: The density of the black hole universe versus its mass or
radius (solid line). The dotted line refers to � = �0, so that the
intersection of the two lines represents the density, radius, and mass
of the present universe.

line). The dotted line marks the density of the present uni-
verse (�0) and its intersection with the solid line shows the
mass (M0), density (�0), and radius (R0) of the present uni-
verse. Therefore, the black hole universe is not an isolated
system because its mass increases as it expands. The density
decreases by inversely proportional to the square of the radius
(or the mass) of the black hole universe. Considering that
matter can enter but cannot exit a black hole, we can suggest
that the black hole universe is a semi-open system surrounded
by outer space and matter.

In the black hole universe model, we have that the effec-
tive radius of the universe is about the actual radius of the uni-
verse (or REF=R � 1) at all time. In the big bang theory, we
have REF=R = [c2R=(2GM)]1=2 because �R3 = constant.
This ratio REF=R increases as the universe expands and is
equal to 1 only at the present time because the observation
shows 2GM0=(c2R0) � 1. In the past, the effective of radius
is less than the radius of the universe (REF < R). While,
in future, the effective radius will be greater than the radius
of the universe REF > R, which is not physical, so that the
Mach principle will lose its validity in future according to the
big bang theory.

3 Origin, structure, and evolution of the black hole uni-
verse

In the black hole universe model, it is reasonable to suggest
that the universe originated from a star-like black hole. Ac-
cording to the Einstein general theory of relativity, a star, if
big enough, can form a star-like black hole when the inside
thermonuclear fusion has completed. Once a star-like black
hole is formed, an individual spacetime is created. The space-
time inside the event horizon is different from the outside, so
that the densities and temperatures on both inside and outside
are different. This origin of the universe is somewhat sim-
ilar to the big bang model, in which the universe exploded
from a singular point at the beginning, but the physics is

quite different. Here, the star-like black hole with several
solar masses (or several kilometers in radius) slowly grows
up when it accretes materials from the outside and merges
or packs with other black holes, rather than impulsively ex-
plodes from nothing to something in the big bang theory. It
is also different from the Hoyle model, in which the universe
expands due to continuous creation of matter inside the uni-
verse [28].

The star-like black hole gradually grows up to be a super-
massive black hole as a milestone with billion solar masses
and then further grows up to be one like the present universe,
which has around hundred billion-trillion solar masses. It is
generally believed that the center of an active galaxy exists
a massive or supermassive black hole [29–32]. The present
universe is still growing up or expanding due to continuously
inhaling the matter from the outside called mother or parent
universe. The star-like black hole may have a net angular
momentum, an inhomogeneous and anisotropic matter dis-
tribution, and a net electric charge, etc., but all these effects
become small and negligible when it sufficiently grows up.

The present universe is a fully-grown adult universe,
which has many child universes such as the star-like and su-
permassive black holes as observed and one parent (or the
mother universe). It may also have sister universes (some
universes that are parallel to that we are living), aunt uni-
verses, grandmother universes, grand-grandmother universes,
etc. based on how vast the entire space is. If the matter in the
entire space is finite, then our universe will merge or swal-
low all the outside matter including its sisters, mother, aunts,
grandmothers, and so on, and finally stop its growing. In the
same way, our universe will also be finally swallowed by its
children and thus die out. If the matter in the entire space is
infinite, then the black hole universe will expand to infinitely
large in size (R!1), and infinitely low in both the mass
density (�! 0) and absolute temperature (T ! 0 K). In this
case, the entire space has infinite size and does not have an
edge. For completeness, we prefer the entire space to be infi-
nite without boundary and hence without surroundings.

The entire space is structured with infinite layers hier-
archically. The innermost three layers as plotted in Figure
2 include the universe that we are living, the outside called
mother universe, and the inside star-like and supermassive
black holes called child universes. In Figure 2, we have only
plotted three child universes and did not plot the sister uni-
verses. There should have a number of child universes and
may also have many sister universes.

The evolution of the space structure is iterative. In each
iteration the matter reconfigures and the universe is renewed
rather than a simple repeat or bouncing back. Figure 3 shows
a series of sketches for the cartoon of the universe evolution
in a single iteration from the present universe to the next sim-
ilar one. This whole spacetime evolution process does not
have the end and the beginning, which is similar to the Hawk-
ing’s view of the spacetime [33]. As our universe expands,
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Fig. 2: The innermost three layers of the entire space that is struc-
tured hierarchically.

Fig. 3: A series of sketches (or a cartoon, from left to right and then
top row to bottom row) for the black hole universe to evolve in a sin-
gle iteration from the present universe to the next similar one. This
is an irreversible process, in which matter and spacetime reconfig-
ure rather than a simple repeat or bouncing back. One universe is
expanded to die out and a new universe is born from inside.

the child universes (i.e., the inside star-like and supermas-
sive black holes) grow and merge each other into a new uni-
verse. Therefore, when one universe expands out, a new sim-
ilar universe is born from inside. As like the naturally living
things, the universe passes through its own birth, growth, and
death process and iterates this process endlessly. Its structure
evolves iteratively forever without beginning and end.

To see the multi-layer structure of the space in a larger
(or more complicate) view, we plot in Figure 4 the innermost
four-layers of the black hole universe up to the grandmother
universe. Parallel to the mother universe, there are aunt uni-
verses. Parallel to our universe, there are sister universes,
which have their own child universes. Here again for simplic-
ity, we have only plotted a few of universes for each layer. If
the entire space is finite, then the number of layers is finite.
Otherwise, it has infinite layers and the outermost layer cor-
responds to zero degree in the absolute temperature, zero in
the density, and infinite in radius.

Fig. 4: A sketch of the innermost four layers of the black hole uni-
verse including grandmother universe, aunt universes, mother uni-
verse, sister universes, cousin universes, niece universes, and child
universes.

This four generation universe family shown in Figure 4
can also be represented by a universe family tree (see Fig-
ure 5). The mother and aunt universes are children of the
grandmother universe. The cousin universes are children of
the aunt universes. Both our universe and the cousin universe
have their own children, which are the star-like or supermas-
sive black holes.

It is more natural to consider that the space is infinite large
without an edge and has infinite number of layers. For the
outermost layer, the radius tends to infinity, while the density
and absolute temperature both tend to zero. We call this outer-
most layer as the entire space universe because it contains all
universes. To represent this infinite layer structure of the en-
tire space, we use the mathematical set concept (see Figure 6).
We let the entire space universe be the set (denoted by U ) of
all universes; the child universes (also the niece universes)
are null sets (C = fg or N = fg); our universe is a set of the
child universes (O = fC;C;C; : : : ; Cg); the sister universes
are sets of the niece universes S = fN;N;N; : : : ; Ng); the
mother universe is a set of our universe and the sister uni-
verses (M = fS; S; S; : : : ; Og); the aunt universes are sets
of the cousin universes; the grandmother universe is a set of
the aunt universes and the mother universe; and so on. The
black hole universe model gives a fantastic picture of the en-
tire space. All universes are self similar and governed by the
same physics (the Einstein general theory of relativity with
the Robertson-Walker metric) as shown later.

As a black hole grows up, it becomes nonviolent because
its density and thus the gravitational field decrease. Matter
being swallowed by a star-like black hole is extremely com-
pressed and split into particles by the intense gravitational
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Fig. 5: A family tree for the youngest four generations of the uni-
verse family. The generation one includes the child and niece uni-
verses; the generation two includes our universe itself and the sister
universes; the generation three includes the mother and aunt uni-
verses; and the generation four includes the grandmother universe.

Fig. 6: Mathematical representation of sets of universes for an infi-
nite large and layered space. An inner layer universe set is a subset
of the outer layer universe set. The niece and child universes are null
sets because they do not contain any sub-spacetime.

field; while that being swallowed by an extremely supermas-
sive black hole (e.g., our universe) may not be compressed
and even keeps the same state when it enters through the
Schwarzschild absolute event horizon, because the gravita-
tional field is very weak. To see more specifically on this
aspect, we show, in Table 1, mass (M ), radius (R), density
(�), and gravitational field at surfaces (gR) of some typical
objects including the Earth, the Sun, a neutron star, a star-
like black hole, a supermassive black hole, and the black
hole universe. It is seen that the density of a star-like black
hole is about that of a neutron star and 1014 times denser
than the Sun and the Earth, while the density of supermas-
sive black is less than or about that of water. The density
of the black hole universe is only about 10�28 of supermas-
sive black hole. The gravitational field of the supermassive
black hole is only 10�8 of a star-like black hole. The gravita-
tional field of the present universe at the surface is very weak
(gR = c2=(2R0) � 3� 10�10N).

Fig. 7: The gravitational field of the present black hole universe.
Inside the black hole universe, the gravity increases with the radial
distance linearly from zero at the geometric center to the maximum
value at the surface. While outside the black hole universe, the grav-
ity decreases inversely with the square of the radial distance.

The total number of universes in the entire space is given
by

n =
i=LX
i=1

ni (3)

where the subscript i is the layer number, ni is the number
of universes in the ith layer, and L refers to the number of
layers in the entire space. For the four layer (or generation)
black hole universe sketched in Figure 4 or 5, we have L = 4
and n = 27 + 9 + 3 + 1 = 40. If the entire space includes
infinite number of layers (i.e., L =1), then the total number
of universes is infinity.

The gravitational field of the black hole universe can be
given by

g =

(
c2r=(2R2

0) if r 6 R0

c2R0=(2r2) if r > R0
; (4)

where r is the distance to the geometric center of the black
hole universe. The gravity of the black hole universe in-
creases linearly with r from zero at the center to the maxi-
mum (gR) at the surface and then decreases inversely with r2

(see Figure 7). In the present extremely expanded universe,
the gravity is negligible (or about zero) everywhere, so that,
physically, there is no special point (or center) in the black
hole universe, which is equivalent to say that any point can be
considered as the center. A frame that does not accelerate rel-
ative to the center of the universe is very like an inertial frame.
The present universe appears homogeneous and isotropic.

4 The steady state and expansion of the black hole uni-
verse

In the black hole universe model, the physics of each uni-
verse is governed by the Einstein general theory of relativ-
ity. The matter density of each universe is inversely propor-
tional to the square of the radius or, in other words, the mass
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Object M (kg) R (m) � (kg/m3) gR (m/s2)

Earth 6� 1024 6:4� 106 5:5� 103 9.8
Sun 2� 1030 7� 108 1:4� 103 270
Neutron Star 3� 1030 104 7:2� 1017 2� 1012

Starlike BH 1031 3� 103 8:8� 1019 7:4� 1013

Supermassive BH 1039 3� 1012 22 7:4� 103

Universe 1053 1:4� 1026 8:7� 10�27 3:4� 10�10

Table 1: Mass, radius, density, and gravitational field at the surface of some typical objects.

is linearly proportional to the radius. The three dimensional
space curvature of the black hole universe is positive, i.e.,
k = 1. The spacetime of each universe is described by the
Robertson-Walker metric

ds2 = c2dt2 � a2(t)�
�
�

1
1� r2 dr

2 + r2d�2 + r2 sin2� d�2
�
; (5)

where ds is the line element and a(t) is the scale (or expan-
sion) factor, which is proportional to the universe radiusR(t),
and t is the time.

Substituting this metric into the field equation of the Ein-
stein general relativity, we have the Friedmann equation [34]

H2(t) �
�

1
R(t)

dR(t)
dt

�2

=
8�G�(t)

3
� c2

R2(t)
; (6)

where H(t) is the Hubble parameter (or the universe expan-
sion rate) and �(t) is the density of the universe. It should be
noted that equation (6) can also be derived from the energy
conservation in the classical Newton theory [35]. All layers
or universes are governed by the same physics, i.e., the Ein-
stein general theory of relativity with the Robertson-Walker
metric, the Mach M-R relation, and the positive space curva-
ture.

Substituting the density given by equation (2) into (6), we
obtain

dR(t)
dt

= 0 ; (7)

or H(t) = 0. Therefore, the black hole universe is usually in
a steady state, although it has a positive curvature in the three
dimensional space. The black hole universe is balanced when
the mass and radius satisfy equation (1), or when the universe
density is given by equation (2). The Einstein static universe
model corresponds to a special case of the black hole universe
model. The steady state remains until the black hole universe
is disturbed externally, e.g., entering matter. In other words,
when the universe is in a steady state, the Friedmann equa-
tion (6) reduces to the Mach M-R relation (1) or the density
formula (2).

When the black hole universe inhales matter with an

amount dM from the outside, we have

2G(M + dM)
c2R

> 1 : (8)

In this case, the black hole universe is not balanced. It will
expand its size fromR toR+dR, where the radius increment
dR can be determined by

2G(M + dM)
c2(R+ dR)

= 1; (9)

or
2G
c2
dM
dR

= 1 : (10)

Therefore, the black hole universe expands when it in-
hales matter from the outside. From equation (10), the expan-
sion rate (or the rate of change in the radius of the universe)
is obtained as

dR(t)
dt

=
2G
c2
dM(t)
dt

; (11)

and the Hubble parameter is given by

H(t) =
1

R(t)
dR(t)
dt

=
1

M(t)
dM(t)
dt

: (12)

Equation (11) or (12) indicates that the rate at which a
black hole including the black hole universe expands is pro-
portional to the rate at which it inhales matter from its out-
side. Considering a black hole with three solar masses ac-
creting 10�5 solar masses per year from its outside [36], we
have dR(t)=dt� 10�1 m/years and H(t)� 107 km/s/Mpc.
Considering a supermassive black hole with one billion so-
lar masses, which swallows one thousand solar masses in one
year to run a quasar, we have dR(t)=dt� 3� 103 km/years
and H(t)� 106 km=s=Mpc. When the black hole merges
with other black holes, the growth rate should be larger. For
our universe at the present state, the value of the Hubble pa-
rameter is measured as H(t0)� 70 km=s=Mpc. If the radius
of the universe is chosen as 13.7 billion light years, we have
dR(t0)=dt� c, which implies that our universe is expanding
in about the light speed at present. To have such fast expan-
sion, the universe must inhale about 105 solar masses in one
second or swallows a supermassive black hole in about a few
hours.
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Fig. 8: A schematic sketch for the possible evolution of radius or
mass of our black hole universe (solid line): R or M versus time.
The two dashed vertical lines divide the plot into three regions, I:
child universe, II: adult universe, and III: elder universe.

The whole life of our universe can be roughly divided into
three time periods: I, II, and III (Figure 8). During the period
I, the universe was a child (e.g., star-like or suppermassive
black hole), which did not eat much and thus grew up slowly.
During the period II, the universe is an adult (e.g., the present
universe), which expands in the fastest speed. During the
period III, the universe will become elder (e.g., the mother
universe) and slow down the expansion till the end with an
infinite radius, zero mass density, and zero absolute temper-
ature. Figure 8 shows a possible variation of radius or mass
of a black hole universe in its entire life. Since dR(t)=dt < c
in average, the age of the present universe must be greater
than R(t0)=c. The Hubble parameter represents the relative
expansion rate, which decreases as the universe grows up.

The acceleration parameter is given by

q(t) � 1
R2(t)

d2R(t)
dt2

=
1

M2(t)
d2M(t)
dt2

; (13)

therefore, if the universe inhales matter in an increasing rate
(d2M(t)=dt2> 0), the universe accelerates its expansion.
Otherwise, it expands in a constant rate (d2M(t)=dt2 = 0) or
expands in a decreasing rate (d2M(t)=dt2< 0) or is at rest
(dM(t)=dt= 0). In the black hole universe model, the dark
energy is not required for the universe to accelerate. The
black hole universe does not have the dark energy problem
that exists in the big bang cosmological theory.

5 Discussions and conclusions

The black hole universe grows its space up by taking its
mother’s space as it inhales matter and radiation rather than
by stretching the space of itself geometrically. As the black
hole universe increases its size, the matter of the universe ex-
pands because its density must decrease according to equa-
tion (2). Since the planets are bound together with the Sun by

the gravity, the solar system (also for galaxies and clusters)
does not expand as the universe grows up. This is similar to
that gases expand when its volume increases, but the atoms
and molecules of the gases do not enlarge. Therefore, the
expansion of the black hole universe is physical, not geomet-
rical.

Conventionally, it has been suggested that, once a black
hole is formed, the matter will further collapse into the center
of the black hole, where the matter is crushed to infinitely
dense and the pull of gravity is infinitely strong. The in-
terior structure of the black hole consists of the singularity
core (point-like) and the vacuum mantle (from the singularity
core to the absolute even horizon). In the black hole uni-
verse model, our universe originated from a star-like black
hole and grew up through a supermassive black hole. A star-
like or supermassive black hole is just a child universe (or a
mini spacetime). Physical laws and theories are generally ap-
plicable to all spacetimes or universes such as our universe,
the mother universe, and the child universes (i.e., the star-like
or supermassive black holes). The matter inside a black hole
can also be governed by the Friedmann equation which is de-
rived from the Einstein general relativity with the Robertson-
Walker metric. Therefore, if a black hole does not inhale
matter from its outside, it is in a steady state as described
by equation (7). The matter inside a black hole distributes
uniformly with a density given by equation (2). The highly
curved spacetime of a black hole sustains its enormous grav-
ity produced by the highly dense matter. If the black hole
inhales the matter from its outside, it grows up and hence ex-
pands with a rate that depends on how fast it eats as described
by equation (11) or (12).

A black hole, no matter how big it is, is an individual
spacetime. From the view of us, a star-like black hole within
our universe is a singularity sphere, from which the matter
and radiation except for the Hawking radiation (a black body
spectrum) cannot go out. Although it is not measurable by
us, the temperature inside a star-like black hole should be
higher than about that of a neutron star because the density
of a star-like black hole is greater than about that of a neu-
tron star, which may have a temperature as high as thousand
billion degrees at the moment of its birth by following the
explosion of a supernova and then be quickly cooled to hun-
dred million degrees because of radiation [37]. A black hole
can hold such high temperature because it does not radiate
significantly. When a star-like black hole inhales the matter
and radiation from its outside (i.e., the mother universe), it
expands and cools down. From a star-like black hole to grow
up to one as big as our universe, it is possible for the tem-
perature to be decreased from thousand billion degrees (1012

K) to about 3 K. Therefore, in the black hole universe model,
the cosmic microwave background radiation is the black body
radiation of the black hole universe. In future study, we will
explain the cosmic microwave background radiation in detail.
We will analyze the nucleosynthesis of elements taken place
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in the early (or child) black hole universe, which is dense and
hot, grows slowly, and dominates by matter. The early black
hole universe is hot enough for elements to synthesize, but
not enough to create monopoles.

According to the Einstein general relativity, a main se-
quence star will, in terms of its mass, form a dwarf, a neutron
star, or a black hole. After many stars in a normal galaxy
have run out their fuels and formed dwarfs, neutron stars, and
black holes, the galaxy will eventually shrink its size and col-
lapse towards the center by gravity to form a supermassive
black hole with billions of solar masses. This collapse leads
to that extremely hot stellar black holes merge each other and
further into the massive black hole at the center and mean-
time release intense radiation energies that can be as great as
a quasar emits. Therefore, when the stellar black holes of a
galaxy collapse and merge into a supermassive black hole, the
galaxy is activated and a quasar is born. In the black hole uni-
verse model, the observed distant quasars can be understood
as donuts from the mother universe. The observed distant
quasars were formed in the mother universe as little sisters
of our universe. When quasars entered our universe, they be-
came children of our universe. The nearby galaxies are quiet
at present because they are still very young. They will be
activated with an active galactic nuclei and further evolve to
quasars after billions of years. In future study, we will give
a possible explanation for quasars to ignite and release huge
amount of energy.

The black hole universe does not exist other significant
difficulties. The dark energy is not necessary for the universe
to accelerate its expansion. The expansion rate depends on
the rate that the universe inhales matter from outside. When
the black hole universe inhales the outside matter in an in-
creasing rate, it accelerates its expansion. The boundary of
the black hole universe is the Schwarzschild absolute event
horizon, so that the black hole universe does not have the hori-
zon problem. The inflation epoch is not required. The star-
like or supermassive black holes are not hot enough to create
monopoles. The present universe has been fully expanded
and thus behaved as flat, homogeneous, and isotropic. The
evolution and physical properties of the early universe are not
critical to the present universe because matter and radiation
of the present universe are mainly from the mother universe.

As a conclusion, we have proposed a new cosmological
model, which is consistent with the Mach principle, the Ein-
stein general theory of relativity, and the observations of the
universe. The new model suggests that our universe is an ex-
tremely supermassive expanding black hole with a boundary
to be the Schwarzschild absolute event horizon as described
by the Mach M-R relation, 2GM=c2R = 1. The black hole
universe originated from a hot star-like black hole with sev-
eral solar masses, and gradually grew up (thus cooled down)
through a supermassive black hole with billion solar masses
as a milestone up to the present state with hundred billion-
trillion solar masses due to continuously inhaling matter from

its outside — the mother universe. The structure and evolu-
tion of the black hole universe are spatially hierarchical (or
family like) and temporarily iterative. In each of iteration a
universe passes through birth, growth, and death. The en-
tire evolution of universe can be roughly divided into three
periods with different expanding rates. The whole space is
structured similarly and all layers of space (or universes) are
governed by the same physics — the Einstein general relativ-
ity with the Robertson-Walker metric, the Mach M-R relation,
and the positive space curvature. This new model brings us a
natural, easily understandable, and reasonably expanding uni-
verse; thereby may greatly impact on the big bang cosmology.
The universe expands physically due to inhaling matter like
a balloon expands when gases are blown into instead of ge-
ometrically stretching. New physics is not required because
the matter of the black hole universe does not go to infinitely
dense and hot. The dark energy is not necessary for the uni-
verse to accelerate. There is not the horizon problem and thus
not need an inflation epoch. The black hole universe is not hot
enough to create monopoles. The black hole universe model
is elegant, simple, and complete because the entire space is
well structured, governed by the same physics, and evolved
iteratively without beginning, end, and outside.
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Based on Maxwell-Cattaneo convection equation, the thermoelasticity problem is in-
vestigated in this paper. The analytic solution of a boundary value problem for a semi-
infinite medium with traction free surface heated by a high-speed laser-pulses have
Dirac temporal profile is solved. The temperature, the displacement and the stresses
distributions are obtained analytically using the Laplace transformation, and discussed
at small time duration of the laser pulses. A numerical study for Cu as a target is
performed. The results are presented graphically. The obtained results indicate that the
small time duration of the laser pulses has no effect on the finite velocity of the heat con-
ductivity, but the behavior of the stress and the displacement distribution are affected
due to the pulsed heating process and due to the structure of the governing equations.

1 Introduction

The induced thermoelastic waves in the material as a response
to the pulsed laser heating becomes of great interest due to its
wide applications inwelding, cutting, drilling surface harden-
ing and machining of brittle materials. The classical linear
theory of thermoelasticity [1] based on Fourier relation

q = �k @T
@x

(1)

together with the energy conservation produces the parabolic
heat conduction equation;

@T
@t

=
k
c
@T
@x2 : (2)

Although this model solved some problems on the macro-
scale where the length and time scales are relatively large,
but it have been proved to be unsuccessful in the microscales
(< 10�12 s) applications involving high heating rates by a
short-pulse laser because Fourier’s model implies an infinite
speed for heat propagation and infinite thermal flux on the
boundaries. To circumvent the deficiencies of Fourier’s law in
describing such problems involving high rate of temperature
change; the concept of wave nature of heat transformation
had been introduced [2, 3]. Beside the coupled thermoelas-
ticity theory formulated by Biot [4], thermoelasticity theory
with one relaxation time introduced by Lord and Shulman [5]
and the two-temperature theory of thermoelasticity [6] which
introduced to improve the classical thermoelasticity, there is
the Maxwell-Cattaneo model of heat convection [9].

In the Maxwell-Cattaneo model the linkage between the
heat conduction equation

q + �
@q
@t

= �k @T
@x

(3)

and the energy conservation introduces the hyperbolic equa-

tion
�
@2T
@t2

+
@T
@t

=
k
c
@2T
@x2 (4)

which describes a heat propagation with finite speed. The
finiteness of heat propagation speed provided by the gener-
alized thermoelasticity theories based on Maxwell- Cattaneo
model of convection are supposed to be more realistic than
the conventional theory to deal with practical problems with
very large heat fluxes and/or short time duration.

Biot [4] formulated the theory of coupled thermoelastic-
ity to eliminate the shortcoming of the classical uncoupled
theory. In this theory, the equation of motion is a hyperbolic
partial differential equation while the equation of energy is
parabolic. Thermal disturbances of a hyperbolic nature have
been derived using various approaches. Most of these ap-
proaches are based on the general notion of relaxing the heat
flux in the classical Fourier heat conduction equation, thereby,
introducing a non Fourier effect.

The first theory, known as theory of generalized thermoe-
lasticity with one relaxation time, was introduced by Lord and
Shulman [5] for the special case of an isotropic body. The ex-
tension of this theory to include the case of anisotropic body
was developed by Dhaliwal and Sherief [7]. Recently, the
author and co-workers investigated the problem of thermoe-
lasticity, based on the theory of Lord and Shulman with one
relaxation time, is used to solve a boundary value problem of
one dimensional semiinfinite medium heated by a laser beam
having a temporal Dirac distribution [8].

The purpose of the present work is to study the thermoe-
lastic interaction caused by heating a homogeneous and iso-
tropic thermoelastic semi-infinite body induced by a Dirac
pulse having a homogeneous infinite cross-section by em-
ploying the theory of thermoelasticity with one relaxation
time. The problem is solved by using the Laplace transform
technique. Approximate small time analytical solutions to
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stress, displacement and temperature are obtained. The con-
volution theorem is applied to get the spatial and temporal
temperature distribution induced by laser radiation having a
temporal Gaussian distribution. At the end of this work a nu-
merical study for Cu as a target is performed and presented
graphically and concluding remarks are given.

2 Formulation of the problem

We consider one-dimensional heating situation thermoelastic,
homogeneous, isotropic semi-infinite target occupying the re-
gion z > 0, and initially at uniform temperature T0. The
surface of the target z = 0 is heated homogeneously by a
leaser beam and assumed to be traction free. The Cartesian
coordinates (x; y; z) are considered in the solution and z-axis
pointing vertically into the medium. The governing equations
are: The equation of motion in the absence of body forces

�ji;j = � �ui ; i; j = x; y; z (5)

where �ij is the components of stress tensor, ui’s are the dis-
placement vector components and � is the mass density.

The Maxwell-Cattaneo convection equation

@�
@t

+ �
@2�
@t2

=
k
�cE

@2�
@z2 (6)

where cE is the specific heat at constant strain, � is the relax-
ation time and k is the thermal conductivity.

The constitutive equation

�ij = (�divu�  �) �ij + 2��ij (7)

where �ij is the delta Kronecker,  = �t(3� + 2�), �, � are
Lame’s constants and � is the thermal expansion coefficient.

The strain-displacement relation

�ij =
1
2

(ui;j + uj;i) ; i; j = x; y; z (8)

The boundary conditions:

�zz = 0 ; at z = 0 ; (9)

�k d�
dz

= A0 q0 �(t) ; at z = 0 ; (10)

�zz = 0 ; w = 0 ; � = 0 ; as z !1 ; (11)

whereA0 is an absorption coefficient of the material, q0 is the
intensity of the laser beam and �(t) is the Dirac delta function
[10]. The initial conditions:

�(z; 0) = �0 ; w(z; 0) = 0 ; �ij(z; 0) = 0

@�
@t

=
@2�
@t2

=
@w
@t

=
@2w
@t2

=
@�ij
@t

=
@2�ij
@t2

= 0

at t = 0 ; 8z

9>>>>=>>>>; : (12)

Due to the symmetry of the problem and the external ap-
plied thermal field, the displacement vector u has the compo-
nents:

ux = 0 ; uy = 0 ; uz = w(z; t) : (13)

From equation (12) the strain components �ij , read;

�xx = �yy = �xy = �xz = �yz = 0

�zz =
@w
@z

�ij =
1
2

(ui;j + uj;i) ; i; j = x; y; z

9>>>>>=>>>>>; : (14)

The volume dilation e takes the form

e = �xx + �yy + �zz =
@w
@z

: (15)

The stress components in (8) can be written as:

�xx = �yy = �
@w
@z
�  �

�zz = (2�+ �)
@w
@z
�  �

9>>=>>; ; (16)

where
�xy = 0
�xz = 0
�yz = 0

9>=>; : (17)

The equation of motion (5) will be reduce to

�xz;x + �yz;y + �zz;z = ��uz : (18)

Substituting from the constitutive equation (8) into the
above equation and using � = T � T0 we get,

(2�+ �)
@2w
@z2 �  @�@z = �

@2w
@t2

(19)

where � is the temperature change above a reference tempera-
ture T0. Differentiating (19) with respect to z and using (15),
we obtain

(2�+ �)
@2e
@z2 �  @

2�
@z2 = �

@2e
@t2

(20)

after using (6) the energy equation can be written in the form:

(2�+ �)
@2e
@z2 � � @

2e
@t2

=
�cE
k

�
@
@t

+ �
@2

@t2

�
� (21)

by this equation one can determine the dilatation function e
after determining � which can be obtained by solving (6) us-
ing Laplace transformation; �f(z; s) =

R1
0 e�stf(z; t)dt.

3 Analytic solution

In this section we introduce the analytical solutions of the
system of equations (6), (16) and (19) based on the Laplace
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transformation. Equation (6) after applying the Laplace trans-
formation it will be;

d2��
dz2 � �s (1 + �s) �� = 0 (22)

where � = �cE
k . By solving the above equation and using the

boundary and the initial conditions (9)-(12); one can write the
solution of equation (22) as

�� =
A0q0
kf(s)

e�f(s)z; Re (f(s)) > 0 : (23)

Similarly the solution of equation (19) after Laplace trans-
formation read;

�w(z; s) = B (s) e�asz � �
(f2(s)� a2s2)

e�f(s)z (24)

where

a2 =
�

(2�+ �)
; f(s) =

p
�s (1 + �s) ; � =

A0q0
k(2�+ �)

;

B(s) =
�f(s)

sa (2�+ �) (f2(s)� a2s2)
� �
asf(s)

:

Since we can use the Maclaurin series to writep
s(1 + �s) =

s
s2
�
� +

1
s

�
� sp� +

1
2
p
�
: (25)

Then the solution of the temperature distribution ��, and
the displacement �w can be written as

��(z; s) =
�
C1

s
� C2

s2 +
C3

s3

�
e�z(s

p
��+ 1

2

p
�
� ) ; (26)

�w(z; s) =
�
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s
+

w2
�
b + s

+
w3

s+ 1
�

�
e�asz �

�
�
w4

s
+
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�
b + s

�
e�z(s

p
��+ 1

2

p
�
� ) ;

(27)

therefore the stresses ��zz and ��xx = ��yy are obtained by ap-
plying the Laplace transformation to equation (16) and sub-
stituting by (26) and (27). Then using the inverse Laplace
transformation, we obtain: the temperature �

�(z; t) =
h
C1 � C2(t� p��z) +

+
C3

2
(t� p��z)2

i
H(t� p��z)e� z2

p
�
� ; (28)

the displacement w

w(z; t)=
h
w1 +

w2

b
e��b (t�az)+w3 e�

t�az
�

i
H(t�az)�

� hw4 +
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b
e��b (t�p��z)iH(t� p�� z)e�

p
�
� z ; (29)

the stresses �xx = �yy

�xx(z; t) = �a�hL1�(t�az)�L2H(t�az)e��b (t�az) �
� L3H(t� az)e� 1

� (t�az)i+

+ e� z2
p

�
�

h
L4�(t� p�� ) +H(t� p��z)�

� (L5 + L6e�
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i� hC1 � C2(t� p��z) +

+
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p
�
� ; (30)

the stress �zz

�zz(z; t) = �a(2�+ �)
h
L1�(t� az)�

� L2H(t� az)e��b (t�az) � L3H(t� az)e� 1
� (t�az)i+

+ e� z2
p

�
�

h
L4�(t� p�� ) +H(t� p��z)�

� (L5 + L6 e�
�
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i� hC1 � C2(t� p��z) +

+
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2
(t� p��z)2

i
H(t� p��z)e� z2

p
�
� ; (31)

�(x) is Dirac delta function, and H(x) is Heaviside unit step
functions.

4 Results and discussions

We have calculated the spatial temperature, displacement and
stress �, w, �xx, �yy and �zz with the time as a parameter
for a heated target with a spatial homogeneous laser radiation
having a temporally Dirac distributed intensity with a width
of (10�3 s). We have performed the computation for the phys-
ical parameters T0 = 293 K, �= 8954 Kg/m3, A0 = 0:01,
cE = 383:1 J/kgK, �t = 1:78�10�5 K�1, k= 386 W/mK,
�= 7:76�1010 kg/m sec2, �= 3:86�1010 kg/m sec2 and
� = 0:02 sec for Cu as a target. Therefore the coefficients
in the expressions (28)–(31)are

C1 = 1676:0 ; C2 = �83800:2

C3 = 1:57125� 106

w1 = �5760:28 ; w2 = 44906:0
w2

b
= 63506:0 ; w3 = 1:5589� 106

w4 = 0:1039 ; w5 = �0:7348
�
b

= 1256:77 ; L1 = �3:0172� 1013

L2 = 1:4896� 105; L3 = 1:4547� 105

L4 = 2:7708 ; L5 = 34:6344

L6 = 1:7065� 103;
w5

b
= 0:103916

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

: (32)
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Fig. 1: The temperature distribution � per unit intensity versus z
with the time as a parameter.

Fig. 2: The displacement distribution w per unit intensity versus z
at different values of time as a parameter.

Fig. 3: The stress �zz distribution per unit intensity versus z with
the time as a parameter.

Fig. 4: The stress distribution �xx = �yy per unit intensity versus z
with the time as a parameter.
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The obtained results are shown in the following figures.
Figure 1 illustrates the calculated spatial temperature dis-

tribution per unit intensity at different values of the time as a
parameter t= 0:005, 0:007, 0:01 and 0:015. From the curves
it is evident that the temperature has a finite velocity express-
ed through the strong gradient of the temperature at different
locations which moves deeper in the target as the time in-
creases.

Figure 2 represents the calculated spatial displacement
per unit intensity for different values of time as a parameter.
The displacement increases monotonically with increasing z.
It Shows a smaller gradient with increasing z this behavior
occurs at smaller z values than that of the temperature calcu-
lated at the corresponding time when it tends to zero. Both
effects can be attributed to the temperature behavior and the
finite velocity of the expansion which is smaller than that of
the heat conduction. The negative displacement indicate the
direction of the material expandion where the co-ordinate sys-
tem is located at the front surface with positive direction of
the z�axis pointing in the semi-infinite medium.

Figure 3 shows the calculated spatial stress �zz per unit
intensity calculated at different times. It is given by �zz =
=�e � �1�. For small z values and at the time t= 0:005
the temperature attains greater values than the gradient of the
displacement, thus the stress in z direction becomes negative.
After attaining z greater values both the temperature and the
gradient of the displacement become smaller such that �zz
takes greater values tending to zero. For t= 0:007 the ef-
fect of the temperature is dominant more than that of the gra-
dient of the displacement this is leading to a more negative
stress values shifted toward greater values of z. As the value
t= 0:01 the effect of the gradient of the displacement over
compensates that of the temperature leading to positive stress
values lasting up to locations at which the gradient of the dis-
placement and the temperature are practically equal. At this
point the stress becomes maximum. As z takes greater val-
ues the gradient of the displacement decreases and the tem-
perature becomes the upper hand leading to negative stress
values. These behavior remains up to z values at which the
temperature is practically zero where the stress tends also be
zero. As t takes greater values the effect of the gradient will
by more pronounced and thus the maximum of the stress be-
comes greater and shifts towards the greater z values.

Figure 4 depicts the calculated spatial stress distributions
�xx =�yy per unit intensity at different values of the time
parameter. the same behavior as �zz . This is due to the same
dependent relation of �ij on the strain and temperature except
that the coefficient of the strain is different.

5 Conclusions

The thermoelastic waves in a semi infinite solid material in-
dused by a Dirac pulsed laser heating are derived for non-
Fourier effect based on the Maxwell-Cattaneo hyperbolic

convection equation. Analytical solution for the temperature,
the displacement and the stresses fields inside the material are
derived using the Laplace transformation. The carried calcu-
lations enable us to model the thrmoelastic waves induced by
a high speed Dirac laser pulse. From the figures it is evident
that the temperature firstly increases with increasing the time
this can be attributed to the increased absorbed energy which
over compensates the heat losses given by the heat conductiv-
ity inside the material. As the absorbed power equals the con-
ducted one inside the material the temperature attains its max-
imum value. the maximum of the temperature occurs at later
time than the maximum of the radiation this is the result of
the heat conductivity of Cu and the relatively small gradient
of the temperature in the vicinity of z= 0. After the radiation
becomes week enough such that it can not compensate the
diffused power inside the material the temperature decreases
monotonically with increasing time. Considering surface ab-
sorption the obtained results in Figure 1 shows the tempera-
ture �, Figure 2 shows the displacement w, Figure 3 shows
the the stress �zz , and Figure 4 shows the stresses �xx =�yy
respectively versus z. The solution of any of the considered
function for this model vanishes identically to zero outside a
bounded region. The response to the thermal effects by pulsed
Laser heating does not reach infinity instantaneously but re-
mains in a bounded region of z given by 0 < z < z�(t) where
t is the duration of the laser pulse used for heating. The stress
exhibits like step-wise changes at the wave front. The stresses
vanish quickly due to the dissipation of the thermal waves.
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General Relativistic metric tensors for gravitational fields exterior to homogeneous
spherical mass distributions rotating with constant angular velocity about a fixed di-
ameter are constructed. The coefficients of affine connection for the gravitational field
are used to derive equations of motion for test particles. The laws of conservation of
energy and angular momentum are deduced using the generalized Lagrangian. The law
of conservation of angular momentum is found to be equal to that in Schwarzschild’s
gravitational field. The planetary equation of motion and the equation of motion for a
photon in the vicinity of the rotating spherical mass distribution have rotational terms
not found in Schwarzschild’s field.

1 Introduction

General Relativity is the geometrical theory of gravitation
published by Albert Einstein in 1915/1916 [1–3]. It unifies
Special Relativity and Sir Isaac Newton’s law of universal
gravitation with the insight that gravitation is not due to a
force but rather a manifestation of curved space and time,
with the curvature being produced by the mass-energy and
momentum content of the space time. After the publication
of Einstein’s geometrical field equations in 1915, the search
for their exact and analytical solutions for all the gravitational
fields in nature began [3].

The first method of approach to the construction of ex-
act analytical solutions of Einstein’s geometrical gravitational
field equations was to find a mapping under which the metric
tensor assumed a simple form, such as the vanishing of the
off-diagonal elements. This method led to the first analyti-
cal solution — the famous Schwarzschild’s solution [3]. The
second method was to assume that the metric tensor contains
symmetries — assumed forms of the associated Killing vec-
tors. The assumption of axially asymmetric metric tensor led
to the solution found by Weyl and Levi-Civita [4–11]. The
fourth method was to seek Taylor series expansion of some
initial value hyper surface, subject to consistent initial value
data. This method has not proved successful in generating
solutions [4–11].

We now introduce our method and approach to the con-
struction of exact analytical solutions of Einstein’s geomet-
rical gravitational field equations [12, 13] as an extension of
Schwarzschild analytical solution of Einstein’s gravitational
field equations. Schwarzschild’s metric is well known to be
the metric due to a static spherically symmetric body situated

in empty space such as the Sun or a star [3, 12, 13]. Schwarz-
schild’s metric is well known to be given as

g00 = 1� 2GM
c2r

; (1.1)

g11 = �
�
1� 2GM

c2r

��1

; (1.2)

g22 = �r2; (1.3)

g33 = �r2 sin2� ; (1.4)

g�� = 0 otherwise; (1.5)

where r >R, the radius of the static spherical mass, G is the
universal gravitational constant, M is the total mass of the
distribution and c is the speed of light in vacuum. It can be
easily recognized [12, 13] that the above metric can be writ-
ten as

g00 = 1 +
2f(r)
c2

; (1.6)

g11 = �
�
1 +

2f(r)
c2

��1

; (1.7)

g22 = �r2; (1.8)

g33 = �r2 sin2� ; (1.9)

g�� = 0 otherwise; (1.10)

18 Chifu E. N., Howusu S. X. K., Lumbi L. W. Relativistic Mechanics in Fields Exterior to Rotating Homogeneous Mass



July, 2009 PROGRESS IN PHYSICS Volume 3

where

f(r) = �GM
r

: (1.11)

We thus deduce that generally, f(r) is an arbitrary func-
tion determined by the distribution. In this case, it is a func-
tion of the radial coordinate r only; since the distribution and
hence its exterior gravitational field possess spherical symme-
try. From the condition that these metric components should
reduce to the field of a point mass located at the origin and
contain Newton’s equations of motion in the field of the
spherical body, it follows that generally, f(r) is approximate-
ly equal to the Newtonian gravitational scalar potential in the
exterior region of the body, �(r) [12, 13].

Hence, we postulate that the arbitrary function f is solely
determined by the mass or pressure distribution and hence
possesses all the symmetries of the latter, a priori. Thus, by
substituting the generalized arbitrary function possessing all
the symmetries of the distribution in to Einstein’s gravitation-
al field equations in spherical polar coordinates, explicit equa-
tions satisfied by the single arbitrary function, f(t; r; �; �),
can be obtained. These equations can then be integrated ex-
actly to obtain the exact expressions for the arbitrary func-
tion. Also, a sound and satisfactory approximate expression
can be obtained from the well known fact of General Relativ-
ity [12,13] that in the gravitational field of any distribution of
mass;

g00 � 1 +
2
c2

�(t; r; �; �) : (1.12)

It therefore follows that:

f(t; r; �; �) � �(t; r; �; �) : (1.13)

In a recent article [13], we studied spherical mass distri-
butions in which the material inside the sphere experiences
a spherically symmetric radial displacement. In this article,
we now study general relativistic mechanics in gravitational
fields produced by homogeneous mass distributions rotating
with constant angular velocity about a fixed diameter within
a static sphere placed in empty space.

2 Coefficients of affine connection

Consider a static sphere of total mass M and density �. Also,
suppose the mass or pressure distribution within the sphere
is homogeneous and rotating with uniform angular velocity
about a fixed diameter. More concisely, suppose we have
a static spherical object filled with a gas say and the gas is
made to rotate with a constant velocity about a fixed diame-
ter. In otherwords, the material inside the sphere is rotating
uniformly but the sphere is static. Such a mass distribution
might be hypothetical or exist physically or exist astrophys-
ically. For this mass distribution, it is eminent that our arbi-
trary function will be independent of the coordinate time and

azimuthal angle. Thus, the covariant metric for this gravita-
tional field is given as

g00 = 1 +
2f(r; �)
c2

; (2.1)

g11 = �
�
1 +

2f(r; �)
c2

��1

; (2.2)

g22 = �r2; (2.3)

g33 = �r2 sin2� ; (2.4)

g�� = 0 otherwise; (2.5)

where f(r; �) is an arbitrary function determined by the mass
distribution within the sphere. It is instructive to note that
our generalized metric tensor satisfy Einstein’s field equa-
tions and the invariance of the line element; by virtue of their
construction [1, 12]. An outstanding theoretical and astro-
physical consequence of this metric tensor is that the resul-
tant Einstein’s field equations have only one unknown func-
tion, f(r; �). Solutions to these field equations give explicit
expressions for the function f(r; �). In approximate gravita-
tional fields, f(r; �) can be conveniently equated to the grav-
itational scalar potential exterior to the homogeneous spher-
ical mass distribution [1, 12–14]. It is most interesting and
instructive to note that the rotation of the homogeneous mass
distribution within the static sphere about a fixed diameter is
taken care of by polar angle, � in the function f(r; �). Also, if
the sphere is made to rotate about a fixed diameter, there will
be additional off diagonal components to the metric tensor.
Thus, in this analysis, the static nature of the sphere results in
the vanishing of the off diagonal components of the metric.

The contravariant metric tensor for the gravitational field,
obtained using the Quotient Theorem of tensor analysis [15]
is given as

g00 =
�
1 +

2f(r; �)
c2

��1

; (2.6)

g11 = �
�
1 +

2f(r; �)
c2

�
; (2.7)

g22 = �r�2; (2.8)

g33 = � �r2 sin2�
��1

; (2.9)

g�� = 0 otherwise; (2.10)

It is well known that the coefficients of affine connection
for any gravitational field are defined in terms of the metric
tensor [14, 15] as;

���� =
1
2
g�� (g��;� + g��;� � g��;�) ; (2.11)
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�r +
�
1 +

2
c2
f(r; �)

�
@f(r; �)
@r

_t2 � 1
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

_r2 � 2
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@�

_r _��

� r
�
1 +

2
c2
f(r; �)

�
_�2 � r sin2�

�
1 +

2
c2
f(r; �)

��2 @f(r; �)
@�

_�2 = 0

(3.5)

where the comma as in usual notation designates partial dif-
ferentiation with respect to x�; x� and x� . Thus, we construct
the explicit expressions for the coefficients of affine connec-
tion in this gravitational field as;

�0
01 � �0

10 =
1
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

; (2.12)

�0
02 � �0

20 =
1
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@�

; (2.13)

�1
00 =

1
c2

�
1 +

2
c2
f(r; �)

�
@f(r; �)
@r

; (2.14)

�1
11 = � 1

c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

; (2.15)

�1
12 � �1

21 = � 1
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@�

; (2.16)

�1
22 = �r

�
1 +

2
c2
f(r; �)

�
; (2.17)

�1
33 = �r sin2 �

�
1 +

2
c2
f(r; �)

��2 @f(r; �)
@�

; (2.18)

�2
00 =

1
r2c2

@f(r; �)
@�

; (2.19)

�2
11 =

1
r2c2

�
1 +

2
c2
f(r; �)

��2 @f(r; �)
@�

; (2.20)

�2
12 � �2

21 � �3
13 � �3

31 = �1
r
; (2.21)

�2
33 = �1

2
sin 2� ; (2.22)

�3
23 � �3

32 = cot � ; (2.23)

���� = 0 otherwise; (2.24)

Thus, the gravitational field exterior to a homogeneous
rotating mass distribution within regions of spherical geome-
try has twelve distinct non zero affine connection coefficients.
These coefficients are very instrumental in the construction of
general relativistic equations of motion for particles of non-
zero rest mass.

3 Motion of test particles

A test mass is one which is so small that the gravitational field
produced by it is so negligible that it doesn’t have any effect
on the space metric. A test mass is a continuous body, which
is approximated by its geometrical centre; it has nothing in
common with a point mass whose density should obviously
be infinite [16].

The general relativistic equation of motion for particles of
non-zero rest masses is given [1, 12–14, 17] as

d2x�

d� 2 + ����

�
dx�

d�

��
dx�

d�

�
= 0 ; (3.1)

where � is the proper time. To construct the equations of
motion for test particles, we proceed as follows

Setting � = 0 in equation (3.1) and substituting equations
(2.12) and (2.13) gives the time equation of motion as

�t+
2
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

_t _r+

+
2
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@�

_t _� = 0 ;

(3.2)

where the dot denotes differentiation with respect to proper
time. Equation (3.2) is the time equation of motion for parti-
cles of non-zero rest masses in this gravitational field. It re-
duces to Schwarzschild’s time equation when f(r; �) reduces
to f(r). The third term in equation (3.2) is the contribution
of the rotation of the mass within the sphere; it does not ap-
pear in Schwarzschild’s time equation of motion for test par-
ticles [1, 12–14, 17]. It is interesting and instructive to realize
that equation (3.2) can be written equally as

d
d�
�
ln _t
�

+
d
d�

�
ln
�

1 +
2
c2
f(r; �)

��
= 0 : (3.3)

Integrating equation (3.3) yields

_t = A
�

1 +
2
c2
f(r; �)

��1

; (3.4)

where A is the constant of integration (as t! � , f(r; �)! 0
and thus the constantA is equivalent to unity). Equation (3.4)
is the expression for the variation of the time on a clock mov-
ing in this gravitational field. It is of same form as that in
Schwarzschild’s gravitational field [1, 12–14, 17].

Similarly, setting � = 1 in equation (3.1) gives the radial
equation of motion as formula (3.5) on the top of this page.
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For pure radial motion _� � _� = 0 and hence equation
(3.5) reduces to

�r +
�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

�
1� 1

c2
_r2
�

= 0 : (3.6)

The instantaneous speed of a particle of non-zero rest
mass in this gravitational field can be obtained from equa-
tions (3.5) and (3.6).

Also, setting � = 2 and � = 3 in equation (3.1) gives the
respective polar and azimuthal equations of motion as

�� +
1
r2
@f(r; �)
@�

_t2 +
1
r2c2

�
1 +

2
c2
f(r; �)

��2

�

� @f(r; �)
@�

_r2 +
2
r

_r _� � 1
2

( _�)2 sin 2� = 0

(3.7)

and
��+

2
r

_r _�+ 2 _� _� cot � = 0 : (3.8)

It is instructive to note that equation (3.7) reduces satis-
factorily to the polar equation of motion in Schwarzschild’s
gravitational field when f(r; �) reduces to f(r). Equation
(3.8) is equal to the azimuthal equation of motion for parti-
cles of non-zero rest masses in Schwarzschild’s field. Thus,
the instantaneous azimuthal angular velocity from our field
is exactly the same as that obtained from Newton’s theory of
gravitation [14] and Schwarzschild’s metric [1, 12, 13, 17].

4 Orbits

The Lagrangian in the space time exterior to any mass or pres-
sure distribution is defined as [17]

L =
1
c

�
� g�� dx

�

d�
dx�

d�

�1
2

= 0 : (4.1)

Thus, in our gravitational field, the Lagrangian can be
written as

L =
1
c

"
� g00

�
dt
d�

�2
� g11

�
dr
d�

�2# 1
2

�

� 1
c

"
g22

�
d�
d�

�2
� g33

�
d�
d�

�2# 1
2

= 0 :

(4.2)

Considering motion confined to the equatorial plane of
the homogeneous spherical body, � = �

2 and hence d� = 0.
Thus, in the equatorial plane, equation (4.2) reduces to

L =
1
c

"
� g00

�
dt
d�

�2
�

� g11

�
dr
d�

�2
� g33

�
d�
d�

�2 # 1
2

= 0 :

(4.3)

Substituting the explicit expressions for the components
of the metric tensor in the equatorial plane of the spherical
body yields

L =
1
c

�
�
�

1 +
2
c2
f(r; �)

�
_t2
� 1

2

+

+
1
c

"�
1 +

2
c2
f(r; �)

��1

_r2 + r2 _�2

# 1
2

;

(4.4)

where the dot as in usual notation denotes differentiation with
respect to proper time.

It is well known that the gravitational field is a conserva-
tive field. The Euler-lagrange equations of motion for a con-
servative system in which the potential energy is independent
of the generalized velocities is written as [17]

@L
@x�

=
d
d�

�
@L
@ _x�

�
; (4.5)

but
@L
@x0 � @L

@t
= 0 ; (4.6)

by the time homogeneity of the field and thus from equation
(4.5), we deduce that

@L
@ _t

= constant: (4.7)

From equation (4.4), it can be shown using equation (4.7)
that �

1 +
2
c2
f(r; �)

�
_t = k ; _k = 0 (4.8)

where k is a constant. This the law of conservation of en-
ergy in the equatorial plane of the gravitational field [17]. It
is of same form as that in Schwarzschild’s field. Also, the La-
grangian for this gravitational field is invariant to azimuthal
angular rotation (space is isotropic) and hence angular mo-
mentum is conserved, thus

@L
@�

= 0 ; (4.9)

and from Lagrange’s equation of motion and equation (4.4) it
can be shown that

r2 _� = l ; _l = 0 ; (4.10)

where l is a constant. This is the law of conservation of an-
gular momentum in the equatorial plane of our gravitational
field. It is equivalent to that obtained in Schwarzschild’s grav-
itational field. Thus, we deduce that the laws of conservation
of total energy and angular momentum are invariant in form
in the two gravitational fields.

To describe orbits in Schwarzschild’s space time, the La-
grangian for permanent orbits in the equatorial plane [17] is
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given as;

L =

(�
1� 2GM

c2r

��
dt
d�

�2
�

� 1
c2

"�
1� 2GM

c2r

��1� dr
d�

�2
+ r2

�
d�
d�

�2#) 1
2

:

(4.11)

For time-like orbits, the Lagrangian gives the planetary
equation of motion in Schwarzschild’s space time as

d2u
d�2 + u =

GM
h2 + 3

GM
c2

u2; (4.12)

where u = 1
r and h is a constant of motion. The solution

to equation (4.12) depicts the famous perihelion precession
of planetary orbits [1, 14, 17]. For null orbits, the equation
of motion of a photon in the vicinity of a massive sphere in
Schwarzschild’s field is obtained as

d2u
d�2 + u = 3

GM
c2

u2: (4.13)

A satisfactory theoretical explanation for the deflection of
light in the vicinity of a massive sphere in Schwarzschild’s
space time is obtained from the solution of equation (4.13).

It is well known [17] that the LagrangianL= �, with �= 1
for time like orbits and �= 0 for null orbits. Setting L= �
in equation (4.4) and squaring yields the Lagrangian in the
equatorial plane of the gravitational field exterior to a rotating
mass distribution within regions of spherical geometry as

�2 =
1
c2

�
�
�

1 +
2
c2
f(r; �)

�
_t2
�

+

+
1
c2

"�
1 +

2
c2
f(r; �)

��1

_r2 + r2 _�2

#
:

(4.14)

Substituting equations (4.8) and (4.10) into equation
(4.14) and simplifying yields

_r2 +
�

1 +
2
c2
f(r; �)

�
l2

r2 �
� 2�2f(r; �) = c2�2 + k2:

(4.15)

In most applications of general relativity, we are more in-
terested in the shape of orbits (that is, as a function of the
azimuthal angle) than in their time history [1, 14, 17]. Hence,
it is instructive to transform equation (4.15) into an equation
in terms of the azimuthal angle �. Now, let us consider the
following standard transformation

r = r(�) and u(�) =
1

r(�)
; (4.16)

then
_r = � l

1 + u2
du
d�

: (4.17)

Imposing the transformation equations (4.16) and (4.17)
on (4.15) and simplifying yields�

l
1 + u2

dt
d�

�2

+
�

1 +
2
c2
f(u; �)

�
u2�

� 2�2
f(u; �)
l2

=
c2�2 + k2

l2
:

(4.18)

Equation (4.18) can be integrated immediately, but it
leads to elliptical integrals, which are awkward to handle [14].
We thus differentiate this equation to obtain:

d2u
d�2 � 2u

�
1 + u2� du

d�
+ u

�
1 + u2�2�

�
�

1+
2
c2
f(u; �)

�
=
�

2�2

l2
�u2

c2

��
1+u2�2 @f

@u
:

(4.19)

For time like orbits, equation (4.19) reduces to;

d2u
d�2 � 2u

�
1 + u2� du

d�
+ u

�
1 + u2�2�

�
�

1+
2
c2
f(u; �)

�
=
�

2
l2
�u2

c2

��
1+u2�2 @f

@u
:

(4.20)

This is the planetary equation of motion in the equato-
rial plane of this gravitational field. It can be solved to ob-
tain the perihelion precision of planetary orbits. This equa-
tion has additional terms (resulting from the rotation of the
mass distribution), not found in the corresponding equation
in Schwarzschild’s field. Light rays travel on null geodesics
and thus equation (4.19) yields;

d2u
d�2 � 2u

�
1 + u2� du

d�
+ u

�
1 + u2�2�

�
�

1+
2
c2
f(u; �)

�
=�u2

c2
�
1+u2�2 @f

@u
:

(4.21)

as the photon equation of motion in the vicinity of the ho-
mogeneous rotating mass distribution within a static sphere.
The equation contains additional terms not found in the cor-
responding equation in Schwarzschild’s field. In the limit of
special relativity, some terms in equation (4.21) vanish and
the equation becomes

d2u
d�2 � 2u

�
1 + u2� du

d�
+ u

�
1 + u2�2 = 0 : (4.22)

The solution of the special relativistic equation, (4.22),
can be used to solve the general relativistic equation, (4.21).
This can be done by taking the general solution of equation
(4.21) to be a perturbation of the solution of equation (4.22).
The immediate consequence of this analysis is that it will pro-
duce an expression for the total deflection of light grazing the
massive sphere.
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5 Conclusion

The equations of motion for test particles in the gravitational
field exterior to a homogeneous rotating mass distribution
within a static sphere were obtained as equations (3.2), (3.5),
(3.7) and (3.8). Expressions for the conservation of energy
and angular momentum were obtained as equations (4.8) and
(4.10) respectively. The planetary equation of motion and the
photon equation of motion in the vicinity of the mass where
obtained as equations (4.19) and (4.20). The immediate theo-
retical, physical and astrophysical consequences of the results
obtained in this article are three fold.

Firstly, the planetary equation of motion and the pho-
ton equation have additional rotational terms not found in
Schwarzschild’s gravitational field. These equations are
opened up for further research work and astrophysical inter-
pretations.

Secondly, in approximate gravitational fields, the arbi-
trary function f(r; �) can be conveniently equated to the grav-
itational scalar potential exterior to the body. Thus, in approx-
imate fields, the complete solutions for the derived equations
of motion can be constructed.

Thirdly, Einstein’s field equations constructed using our
metric tensor have only one unknown function, f(r; �). So-
lution to these field equations give explicit expressions for
the function, f(r; �), which can then be interpreted physically
and used in our equations of motion. Thus, our method places
Einstein’s geometrical gravitational field theory on the same
footing with Newton’s dynamical gravitational field theory;
as our method introduces the dependence of the field on one
and only one dependent variable, f(r; �), comparable to one
and only one gravitational scalar potential function in New-
ton’s theory [12, 13].
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Experimental Verification of a Classical Model of Gravitation
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A previously proposed model of gravitation is evaluated according to recent tests of
higher order gravitational effects such as for gravito-electromagnetic phenomena and
the properties of binary pulsars. It is shown that the model complies with all the tests.

1 Introduction

In previous articles [1–3] in this journal we presented a model
of gravitation, which also led to a unified model of electro-
magnetism and the nuclear force. The model is based on a
Lagrangian,

L = �m0(c2 + v2) expR=r; (1)

where
m0 = gravitational rest mass of a test body mov-

ing at velocity v in the vicinity of a mas-
sive, central body of mass M ,

 = 1=
p

1� v2=c2,
R = 2GM=c2 is the Schwarzschild radius of the

central body.

The following conservation equations follow:

E = mc2eR=r = total energy = constant ; (2)
L = eR=rM = constant; (3)
Lz = MzeR=r = eR=rm0r2 sin2� _�; (4)

= z-component of L = constant;

where
m = m0=2 (5)

and
M = (r�m0v); (6)

is the total angular momentum of the test body.
It was shown that the tests for perihelion precession and

the bending of light by a massive body are satisfied by the
equations of motion derived from the conservation equations.

The kinematics of the system is determined by assuming
the local and instantaneous validity of special relativity (SR).
This leads to an expression for gravitational redshift,

� = �0e�R=2r (�0 = constant), (7)

which agrees with observation.
The model is further confirmed by confirmation of its

electromagnetic and nuclear results.
Details of all calculations appear in the doctoral thesis of

the author [4].

1.1 Lorentz-type force

Applying the associated Euler-Lagrange equations to the La-
grangian gives the following Lorentz-type force:

_p = Em+m0v �H ; (8)

where
p = m0 _r = m0v ; (9)

E = � r̂
GM
r2 ; (10)

H =
GM(v � r)

c2r3 : (11)

1.2 Metric formulation

The above equations can also be derived from a metric,

ds2= e�R=rdt2� eR=r(dr2+ r2d�2+ r2sin2� d�2): (12)

Comparing this metric with that of GR,

ds2 =
�

1� R
r

�
dt2 �

� 1
1� R

r

dr2 � r2d�2 � r2 sin2� d�2; (13)

we note that this metric is an approximation to our metric.

2 Higher order gravitational effects

Recent measurements of higher order gravitational effects
have placed stricter constraints on the viability of gravita-
tional theories. We consider some of these.

These effects fall in two categories: (i) Measurements by
earth satellites and (ii) observations of binary pulsars.

2.1 Measurements by earth satellites

These involve the so-called gravito-electromagnetic effects
(GEM) such as frame-dragging, or Coriolis effect, and the ge-
odetic displacement. Surveys of recent research are given by
Ruffini and Sigismondi [5], Soffel [6] and Pascual-Sànchez
et.al. [7] A list of papers on these effects is given by Bini
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and Jantzen [8], but we refer in particular to a survey by
Mashoon. [9]

Mashhoon points out that for a complete GEM theory,
one requires an analogue of the Lorentz force law. Assuming
slowly moving matter (v � c) he derives a spacetime metric
of GR in a GEM form (see (1.4) of reference [9]). Assum-
ing further that measurements are taken far from the source,
(r � R) (see (1.5) of reference [9]), he derives a Lorentz-
type force (see (1.11) of reference [9]),

F = �mE� 2m
v
c
�B; (14)

where m in this case is a constant.
This equation is analogous to (8). The latter equation,

however, is an exact derivation, whereas that of Mashhoon
is an approximate one for weak gravitational fields and for
particles moving at slow velocities. This difference can be
understood by pointing out that GR, as shown above, is an
approximation to our model. This implies that all predictions
of GR in this regard will be accommodated by our model.

2.2 Binary pulsars

Binary pulsars provide accurate laboratories for the determi-
nation of higher order gravitational effects as tests for the vi-
ability of gravitational models. We refer to the surveys by
Esposito-Farese [10] and Damour [11, 12].

The Parametric-Post-Newtonian (PPN) formulation pro-
vides a formulation whereby the predictions of gravitational
models could be verified to second order inR=r. This formu-
lation, initially developed by Eddington [13], was further de-
veloped by especially Will and Nordtvedt [14,15]. According
to this formulation the metric coefficients of a general metric,
ds2 = �g00dt2 + grrdr2 + g��r2d�2 + g��r2 sin2� d�2, can
be represented by the following expansions (see eqs. 1a and
1b of reference [10]):

� g00 = 1� R
r

+ �PPN
1
2

�
R
r

�2

+O
�

1
c6

�
; (15)

gij = �ij
�

1 + PPN
R
r

�
+O

�
1
c4

�
: (16)

Recent observations place the parameters in the above equa-
tions within the limits of [16]:

j�PPN � 1 j < 6�10�4; (17)

and [17]
PPN � 1 = (2:1� 2:3)�10�6: (18)

We note that the coefficients of (12) fall within these limits.
This implies that the predictions of our model will agree with
observations of binary pulsars, or with other sources of higher
order gravitational effects.

3 Other effects

Eqs. (2) and (5) show that gravitational repulsion occurs be-
tween bodies when their masses are increased by converting
radiation energy into mass. We proposed in ref. [1] that this
accounts for the start of the Big Bang and the accelerating ex-
pansion of the universe. It should be possible to demonstrate
this effect in a laboratory.

Conversely, the conversion of matter into radiation energy
(v ! c) as r ! R describes the formation of a black hole
without the mathematical singularity of GR.

4 Conclusion

The proposed model gives a mathematically and conceptually
simple method to verify higher order gravitational effects.
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It is assumed in what follows that the negative-energy Planck vacuum (see the appendix)
is the underlying “space” upon which the spacetime equations of General Relativity
operate. That is, General Relativity deals with the spacetime aspects of the Planck
vacuum (PV). Thus, as the PV appears continuous only down to a certain length (l =
5r� or greater, perhaps), there is a limit to which the differential geometry of the general
theory is valid, that point being where the “graininess” (l � r� > 0) of the vacuum
state begins to dominate. This aspect of the continuity problem is obvious; what the
following deals with is a demonstration that the Einstein equation is tied to the PV, and
that the Schwarzschild line elements derived from this equation may be significantly
limited by the nature of that vacuum state.

A spherical object of mass m and radius r exerts a relative
curvature force

nr =
mc2=r
m�c2=r�

(1)

on the negative-energy PV and the spacetime of General Rel-
ativity, where m� and r� are the Planck particle (PP) mass
and Compton radius respectively. For example: a white dwarf
of mass 9�1032 gm and radius 3�108 cm exerts a curvature
force equal to 2:7�1045 dyne; while a neutron star of mass
3�1033 gm and radius 1�106 cm exerts a force of 2:7�1048

dyne. Dividing these forces by the 1:21�1049 dyne force in
the denominator leads to the n-ratios nr=0:0002 and nr=0:2
at the surface of the white dwarf and neutron star respectively.
As the free PP curvature force m�c2=r� is assumed to be the
maximum such force that can be exerted on spacetime and the
PV, the n-ratio is limited to the range nr < 1.

The numerator in the first of the following two expres-
sions for the Einstein field equation derived in the appendix

G�� =
8�T��
m�c2=r�

and
G��=6
1=r2�

=
T��
��c2

(2)

is normalized by this maximum curvature force. The second
expression ties the Einstein equation to the PPs making up
the degenerate PV, where 1=r2� and ��c2 are the PPs’ Gaus-
sian curvature and mass-energy density respectively. The de-
nominators in the second expression represent the Planck lim-
its for the maximum curvature and the maximum equivalent
mass-energy density respectively, both limits corresponding
to nr = 1. For larger nr, the equations of General Relativ-
ity, derived for a continuum using differential geometry, break
down for the reasons already cited.

The limits on the Einstein equation carry over, of course,
to results derived therefrom. A simple example is the case of
Schwarzschild’s point-mass derivation [1]. Its more general

form [2] for a point mass m at r = 0 consists of the infinite
collection (n = 1; 2; 3; � � �) of Schwarzschild-like equations
with continuous, non-singular metrics for r > 0:

ds2 =
�

1� �
Rn

�
c2dt2 � (r=Rn)2n�2 dr2

1� �=Rn �
�R2

n (d�2 + sin2� d�2);
(3)

where

� =
2mc2

c4=G
= 2

mc2

m�c2=r�
(4)

and

Rn = (rn + �n)1=n = r(1 + 2nnnr )1=n =

= �(1 + 1=2nnnr )1=n ;
(5)

where nr is given by (1) with r in this case being the coor-
dinate radius from the point mass to the field point of inter-
est. The original Schwarzschild solution [1] corresponds to
n = 3. Here again, r is restricted to the range r > r� due to
the previous continuity arguments leading to nr < 1.

The plots of the time metric

g00 = g00(n;nr) = 1� �
Rn

= 1� 2nr
(1 + 2nnnr )1=n (6)

as a function of nr in Figure 1 show its behavior as n in-
creases from 1 to 20. The vertical axis represents g00 from
0 to 1 and the horizontal axis nr over the same range. The
limiting case as n increases without limit yields

g00 = 1� 2nr (7)

for nr 6 0:5. The same limit leads from (3) to the line ele-
ment

ds2 = (1� 2nr) c2dt2 � dr2

(1� 2nr)
�

� r2 (d�2 + sin2� d�2);
(8)

William C. Daywitt. Limits to the Validity of the Einstein Equations from the Viewpoint of the Planck Vacuum State 27



Volume 3 PROGRESS IN PHYSICS July, 2009

Fig. 1: The graph shows the time metric g00 = g00(n;nr) plotted
as a function of the n-ratio nr for various indices n. Both axes run
from 0 to 1. The “dog-leg” in the curves approaches the point (0.5,0)
from above (nr > 0:5) as n increases, the limiting case n ! 1
yielding the metric g00 = 1� 2nr for nr 6 0:5.

for nr 6 0:5. This is the same equation as the standard black-
hole/event-horizon line element [3, p.360] except for the re-
duced range in nr. Mathematically, the metrics in (3) are
non-singular down to any r > 0, but we have already seen
that this latter inequality should be replaced by r > r� > 0
as nr < 1.

As nr increases from 0.5, it is assumed that a point is
reached prior to nr = 1 where the curvature stress on the
PV is sufficient to allow energy to be released from the PV
directly into the visible universe. A related viewpoint can be
found in a closely similar, field-theoretic context:

“[This release of energy] is in agreement with observa-
tional astrophysics, which in respect of high-energy ac-
tivity is all of explosive outbursts, as seen in the QSOs,
the active galactic nuclei, etc. The profusion of sites
where X-ray and -ray activity is occurring are in the
present [quasi-steady-state] theory sites where the cre-
ation of matter is currently taking place” [4, p. 340].

In summary: the obvious restraint on the Einstein field
equations is that their time and space differentials be an order
of magnitude or so greater than r�=c and r� respectively; and
that nr < 1, with some thought being given to the application
of the equations in the region where 0:5 < nr < 1.

Appendix The Planck vacuum

The PV [5] is a uni-polar, omnipresent, degenerate gas of negative-
energy PPs which are characterized by the triad (e�;m�; r�), where

e�, m�, and r� (��=2�) are the PP charge, mass, and Compton ra-
dius respectively. The vacuum is held together by van der Waals
forces. The charge e� is the bare (true) electronic charge common
to all charged elementary particles and is related to the observed
electronic charge e through the fine structure constant � = e2=e2�
which is a manifestation of the PV polarizability. The PP mass and
Compton radius are equal to the Planck mass and length respec-
tively. The particle-PV interaction is the source of the gravitational
(G = e2�=m2�) and Planck (~ = e2�=c ) constants, and the string of
Compton relations

r�m� = � � � = rcm = � � � = e2�=c2 = ~=c (A1)

relating the PV and its PPs to the observed elementary particles,
where the charged elementary particles are characterized by the triad
(e�;m; rc), m and rc being the mass and Compton radius (�c=2�)
of the particle (particle spin is not yet included in the theory). The
zero-point random motion of the PP charges e� about their equilib-
rium positions within the PV, and the PV dynamics, are the source of
the quantum vacuum [6] [7]. Neutrinos appear to be phonon packets
that exist and propagate within the PV [8].

The Compton relations (A1) follow from the fact that an ele-
mentary particle exerts two perturbing forces on the PV, a curvature
force mc2=r and a polarization force e2�=r2:

mc2

r
= e2�
r2 =) rc = e2�

mc2
(A2)

whose magnitudes are equal at the particle’s Compton radius rc.
Equating the first and third expressions in (A1) leads to

r�m� = e2�=c2. Changing this result from Gaussian to MKS units
yields the free-space permittivities

�0 = 1
�0c2

= e2�
4�r�m�c2

[mks] ; (A3)

where �0=4� = r�m�=e2� = rcm=e2� = 10�7 in MKS units. Con-
verting (A3) back into Gaussian units gives

� = 1
�

= e2�
r�m�c2

= 1 (A4)

for the permittivities.
A feedback mechanism in the particle-PV interaction leads to

the Maxwell equations and the Lorentz transformation [5] [9].
General Relativity describes the spacetime-curvature aspects of

the PV. The ultimate curvature force

c4

G
= m�c2

r�
(A5)

that can be exerted on spacetime and the PV is due to a free PP.
An astrophysical object of mass m exerts a curvature force equal
to mc2=r at a coordinate distance r from the center of the mass.
Equation (A5) leads to the ratio

c4

8�G
= 1

6
��c2
1=r2�

; (A6)

where �� � m�=(4�r3�=3) is the PP mass density and 1=r2� is its
Gaussian curvature. The Einstein equation including the cosmolog-
ical constant � can then be expressed as

(G�� + �g��)=6
1=r2�

= T��
��c2

(A7)
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tying the differential geometry of Einstein to the PPs in the negative-
energy PV. In this form both sides of the equation are dimensionless.
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The Planck vacuum (PV) is assumed to be the source of the visible universe [1, 2]. So
under conditions of sufficient stress, there must exist a pathway through which energy
from the PV can travel into this universe. Conversely, the passage of energy from the
visible universe to the PV must also exist under the same stressful conditions. The fol-
lowing examines two versions of the Schwarzschild metric equation for compatability
with this open-pathway idea.

The first version is the general solution to the Einstein field
equations [3, 4] for a point mass m at r = 0 and consists of
the infinite collection (n = 1; 2; 3; � � �) of Schwarzschild-like
equations with continuous, non-singular metrics for all r > 0:

ds2 =
�

1� �
Rn

�
c2dt2 � (r=Rn)2n�2 dr2

1� �=Rn �
�R2

n (d�2 + sin2� d�2);
(1)

where

� =
2mc2

m�c2=r�
= 2rnr ; (2)

Rn = (rn + �n)1=n = r(1 + 2nnnr )1=n =

= �(1 + 1=2nnnr )1=n;
(3)

and

nr =
mc2=r
m�c2=r�

; (4)

where r is the coordinate radius from the point mass to the
field point of interest, and m� and r� are the Planck parti-
cle mass and Compton radius respectively. The n-ratio nr is
the relative stress the point mass exerts on the PV, its allow-
able range being 0<nr < 1 which translates into r > r�. The
original Schwarzschild line element [5] corresponds to n= 3.

The magnitude of the relative coordinate velocity of a
photon approaching or leaving the point mass in a radial di-
rection is calculated from the metrics in (1) (by setting ds= 0,
d�= 0, d�= 0) and leads to

�n(nr) =
���� drc dt ���� =

�
g00

�g11

�1=2

=

= (1 + 2nnnr )(1�1=n)
�

1� 2nr
(1 + 2nnnr )1=n

� (5)

whose plot as a function of nr in Figure 1 shows �n’s behav-
ior as n increases from 1 to 20. The vertical and horizontal
axes run from 0 to 1. The limiting case as n increases without
limit is

�1(nr) =
�

1� 2nr; 0 < nr 6 0:5
0; 0:5 6 nr < 1 . (6)

Fig. 1: The graph shows the relative photon velocity �n(nr) plotted
as a function of the n-ratio nr for various indices n. Both axes run
from 0 to 1. The limiting case n ! 1 yields �n(nr) = 1 � 2nr
for nr 6 0:5.

That is, the photon does not propagate (�1(nr) = 0) in
the region 0:56nr < 1 for the limiting case. So if photon
propagation is expected for nr in this range, i.e., if energy
transfer between the stressed PV and the visible universe is
assumed, then the “n =1” solution must be discarded.

The second version of the Schwarzschild line element [6,
p. 634]

ds2 = (1� 2nr) c2dt2 � dr2

(1� 2nr)
�

� r2 (d�2 + sin2� d�2)
(7)

is the standard black-hole line element universally employed
to interpret various astrophysical observations, where 2nr= 1
leads to the so-called Schwarzschild radius

Rs =
2mc2

m�c2=r�
= 2rnr (8)
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the interior (r < Rs) of which is called the black hole. Within
this black hole is the naked singularity at the coordinate ra-
dius r = 0 where the black-hole mass is assumed to reside—
hiding this singularity is the event-horizon sphere with the
Schwarzschild radius. It should be noted that this version is
the same as the previous version with n ! 1 except that
there the coordinate radius is restricted to r > r� as nr < 1.
Equations (1) and (7) are functionally identical if one assumes
that Rn = r, this being the assumption (for n = 3) that led
to the standard version of the Schwarzschild equation.

The photon velocity calculated from (7) is the same as
(6). That is, there is no energy propagation (� = 0) in the
region 0:5 6 nr < 1; so the standard Schwarzschild solution
to the Einstein equation is not compatible with the assumed
existence of the PV as a source for the visible universe, and
thus must be discarded in the PV scenario.

Submitted on April 18, 2009 / Accepted on April 28, 2009

References

1. Daywitt W. C. The Planck vacuum. Progress in Physics, 2009,
v. 1, 20.

2. Daywitt W. C. The source of the quantum vacuum. Progress in
Physics, 2009, v. 1, 27.

3. Crothers S. J. On the general solution to Einstein’s vacuum
field and its implications for relativistic degeneracy. Progress
in Physics, 2005, v. 1, 68.

4. Daywitt W. C. Limits to the validity of the Einstein field equa-
tions and General Relativity from the viewpoint of the negative-
energy Planck vacuum state. Progress in Physics, 2009, v. 3, 27.
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This is the probabilistic explanation of some laws of physics (gravitation, red shift,
electroweak, confinement, asymptotic freedom phenomenons).

1 Introduction

I do not construct any models because Physics does not need
any strange hypotheses. Electroweak, quark-gluon, and
gravity phenomenons are explained purely logically from
spinor expression of probabilities:

Denote:

12 :=
�

1 0
0 1

�
, 02 :=

�
0 0
0 0

�
,

�[0] := �
�

12 02
02 12

�
= �14,

the Pauli matrices:

�1 =
�

0 1
1 0

�
, �2 =

�
0 �i
i 0

�
, �3 =

�
1 0
0 �1

�
.

A set eC of complex n�nmatrices is called a Clifford set
of rank n if the following conditions are fulfilled [1]:
if �k 2 eC and �r 2 eC then �k�r + �r�k = 2�k;r;
if �k�r + �r�k = 2�k;r for all elements �r of set eC then
�k 2 eC.

If n = 4 then a Clifford set either contains 3 (a Clifford
triplet) or 5 matrices (a Clifford pentad).

Here exist only six Clifford pentads [1]: one which I call
light pentad �:
� light pentad �:

�[1] :=
�
�1 02
02 ��1

�
, �[2] :=

�
�2 02
02 ��2

�
,

�[3] :=
�
�3 02
02 ��3

�
,

(1)

[0] :=
�

02 12
12 02

�
, (2)

�[4] := i �
�

02 12�12 02

�
; (3)

three coloured pentads:
� the red pentad �:

� [1] :=
� ��1 02

02 �1

�
; � [2] :=

�
�2 02
02 �2

�
;

� [3] :=
� ��3 02

02 ��3

�
,

[0]
� :=

�
02 ��1��1 02

�
, � [4] := i

�
02 �1��1 02

�
; (4)

� the green pentad �:

�[1] :=
� ��1 02

02 ��1

�
; �[2] :=

� ��2 02
02 �2

�
;

�[3] :=
�
�3 02
02 �3

�
,

[0]
� :=

�
02 ��2��2 02

�
, �[4] := i

�
02 �2��2 02

�
; (5)

� the blue pentad �:

�[1] :=
�
�1 02
02 �1

�
; �[2] :=

� ��2 02
02 ��2

�
;

�[3] :=
� ��3 02

02 �3

�
,

[0]
� :=

�
02 ��3��3 02

�
; �[4] := i

�
02 �3��3 02

�
; (6)

two gustatory pentads (about these pentads in detail,
please, see in [2]):
� the sweet pentad �:

�[1] :=
�

02 ��1��1 02

�
; �[2] :=

�
02 ��2��2 02

�
;

�[3] :=
�

02 ��3��3 02

�
;

�[0] :=
� �12 02

02 12

�
; �[4] := i

�
02 12�12 02

�
.

� the bitter pentad �:

�[1] := i
�

02 ��1
�1 02

�
; �[2] := i

�
02 ��2
�2 02

�
;

�[3] := i
�

02 ��3
�3 02

�
;

�[0] :=
� �12 02

02 12

�
; �[4] :=

�
02 12
12 02

�
.
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Denote: if A is a 2� 2 matrix then

A14 :=
�
A 02
02 A

�
and 14A :=

�
A 02
02 A

�
.

And if B is a 4� 4 matrix then

A+B := A14 +B, AB := A14B

etc.
x := hx0;xi := hx0; x1; x2; x3i ,
x0 := ct,

with c = 299792458.

2 Probabilities’ movement equations

Let �A (x) be a probability density [4] of a point event A (x).
And let real functions

uA;1 (x) ; uA;2 (x) ; uA;3 (x)

satisfy conditions

u2
A;1 + u2

A;2 + u2
A;3 < c2,

and if jA;s := �AuA;s then

�A ! �0A =
�A � v

c2 jA;kq
1� �vc �2 ,

jA;k ! j0A;k =
jA;k � v�Aq

1� �vc �2 ,

jA;s ! j0A;s = jA;s for s , k

for s 2 f1; 2; 3g and k 2 f1; 2; 3g under the Lorentz trans-
formations:

t ! t0 = t� v
c2xkq

1� v2

c2

,

xk ! x0k =
xk � vtq

1� v2

c2

,

xs ! x0s = xs, if s , k.

In that case uA huA;1; uA;2; uA;3i is called a vector of local
velocity of an event A probability propagation and

jA hjA;1; jA;2; jA;3i
is called a current vector of an event A probability.

Let us consider the following set of four real equations
with eight real unknowns:

b2 with b > 0, �, �, �, �, , �, �:

b2 = �A

b2
 

cos2 (�) sin (2�) cos (� � )
� sin2 (�) sin (2�) cos (� � �)

!
= �jA;1

c

b2
 

cos2 (�) sin (2�) sin (� � )
� sin2 (�) sin (2�) sin (� � �)

!
= �jA;2

c

b2
 

cos2 (�) cos (2�)
� sin2 (�) cos (2�)

!
= �jA;3

c

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
: (7)

This set has solutions for any �A and jA;k. For example,
one of these solutions is placed in [4].

If

'1 := b � exp (i) cos (�) cos (�) ,

'2 := b � exp (i�) sin (�) cos (�) ,

'3 := b � exp (i�) cos (�) sin (�) , (8)

'4 := b � exp (i�) sin (�) sin (�)

then

�A =
4X
s=1

'�s 's, (9)

jA;r
c

= �
4X
k=1

4X
s=1

'�s �
[r]
s;k'k

with r 2 f1; 2; 3g. These functions 's are called functions of
event A state.

If �A (x) = 0 for all x such that jxj > (�c=h) with
h := 6:6260755�10�34 then's (x) are Planck’s functions [3].
And if

' :=

2664 '1
'2
'3
'4

3775
then these functions obey [5] the following equation:

3X
k=0

�[k]
�
@k + i�k + i�k[5]

�
'+

+

0BBBB@
+ iM0[0] + iM4�[4]�
� iM�;0

[0]
� + iM�;4� [4]�

� iM�;0
[0]
� � iM�;4�[4] +

+ iM�;0
[0]
� + iM�;4�[4]

1CCCCA' = 0

(10)

with real �k (x), �k (x), M0 (x), M4 (x), M�;0 (x),
M�;4 (x), M�;0 (x), M�;4 (x), M�;0 (x), M�;4 (x) and with

[5] :=
�

12 02
02 �12

�
. (11)
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2.1 Lepton movement equation

If M�;0 (x) = 0, M�;4 (x) = 0, M�;0 (x) = 0, M�;4 (x) = 0,
M�;0 (x) = 0, M�;4 (x) = 0 then the following equation is
deduced from (10):0BB@ �[0] � 1

c i@t ��0 ��0[5]�
+

3P
�=1

�[�] �i@� ��� ���[5]�
�M0[0] �M4�[4]

1CCA e' = 0 (12)

I call it lepton movement equation [6].
If similar to (9):

jA;5 := �c � 'y[0]' and jA;4 := �c � 'y�[4]'

and:
uA;4 := jA;4=�A and uA;5 := jA;5=�A (13)

then from (8):

�uA;5
c

= sin 2�
�

sin� sin� cos (�� + �)
+ cos� cos� cos ( � �)

�
,

�uA;4
c

= sin 2�
� � sin� sin� sin (�� + �)

+ cos� cos� sin ( � �)

�
.

Hence from (7):

u2A;1 + u2A;2 + u2A;3 + u2A;4 + u2A;5 = c2.

Thus only all five elements of a Clifford pentad provide
an entire set of speed components and, for completeness, yet
two ”space” coordinates x5 and x4 should be added to our
three x1; x2; x3. These additional coordinates can be selected
so that

��c
h
6 x5 6

�c
h
; ��c

h
6 x4 6

�c
h

.

Coordinates x4 and x5 are not coordinates of any events.
Hence, our devices do not detect them as actual space coordi-
nates.

Let us denote:e' (t; x1; x2; x3; x5; x4) := ' (t; x1; x2; x3)�
� (exp (i (x5M0 (t; x1; x2; x3) + x4M4 (t; x1; x2; x3)))) .

In this case a lepton movement equation (12) shape is the
following: 

3X
s=0

�[s]
�

i@s ��s ��s[5]
�� [0]i@5 � �[4]i@4

! e' = 0

This equation can be transformated into the following
form [7]:� P3

s=0 �
[s] (i@s + Fs + 0:5g1Y Bs)�[0]i@5 � �[4]i@4

� e' = 0 (14)

with real Fs, Bs, a real positive constant g1, and with charge
matrix Y :

Y := �
�

12 02
02 2 � 12

�
. (15)

If � (t; x1; x2; x3) is a real function and:

eU (�) :=
�

exp
�
i�2
�

12 02
02 exp (i�) 12

�
. (16)

then equation (14) is invariant under the following transfor-
mations [8]:

x4 ! x04 := x4 cos
�
2
� x5 sin

�
2

;

x5 ! x05 := x5 cos
�
2

+ x4 sin
�
2

;

x� ! x0� := x� for � 2 f0; 1; 2; 3g ; (17)e'! e'0 := eU e',

B� ! B0� := B� � 1
g1
@��,

F� ! F 0� := eUFs eUy.
Therefore, B� are similar to components of the Standard

Model gauge field B.
Further =J is the space spanned by the following

basis [9]:
J :=

* h
2�c

exp
�
�i

h
c

(s0x4)
�
�k; :::

h
2�c

exp
�
�i

h
c

(n0x5)
�
�r; :::

+ (18)

with some integer numbers s0 and n0 and with

�1 :=

2664 1
0
0
0

3775 ; �2 :=

2664 0
1
0
0

3775 ; �3 :=

2664 0
0
1
0

3775 ; �4 :=

2664 0
0
0
1

3775 .

Further in this subsection U is any linear transformation
of space =J so that for every e': if e' 2 =J then:

�c
hZ

� �c
h

dx4

�c
hZ

� �c
h

dx5 � (U e')y (U e') = �A,

�c
hZ

� �c
h

dx4

�c
hZ

� �c
h

dx5 � (U e')y �[s] (U e') = �jA;s
c

(19)

for s 2 f1; 2; 3g.
Matrix U is factorized as the following:

U = exp (i&) eUU (�)U (+)
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with real & , with eU from (16), and with

U (+) :=

26664
12 02 02 02

02 (u+ iv) 12 02 (k + is) 12

02 02 12 02

02 (�k + is) 12 02 (u� iv) 12

37775 (20)

and

U (�) :=

26664
(a+ ib) 12 02 (c+ iq) 12 02

02 12 02 02

(�c+ iq) 12 02 (a� ib) 12 02

02 02 02 12

37775 (21)

with real a, b, c, q, u, v, k, s.
Matrix U (+) refers to antiparticles (About antiparticles in

detail, please, see [10] and about neutrinos - [11]). And trans-
formation U (�) reduces equation (14) to the following shape:0B@ P3

�=0 �
[�]i
�
@� � i0:5g1B�Y
�i1

2g2W� � iF�

�
+[0]i@5 + �[4]i@4

1CA e' = 0. (22)

with a real positive constant g2 and with

W� :=26664
W0;�12 02 (W1;� � iW2;�) 12 02

02 02 02 02

(W1;� + iW2;�) 12 02 �W0;�12 02

02 02 02 02

37775
with real W0;�, W1;� and W2;� .

Equation (22) is invariant under the following transforma-
tion:

'! '0 := U',

x4 ! x04 := (`� + `�) ax4 + (`� � `�)
p

1� a2x5,

x5 ! x05 := (`� + `�) ax5 � (`� � `�)
p

1� a2x4,

x� ! x0� := x�, for � 2 f0; 1; 2; 3g ,

B� ! B0� := B�,

W� !W 0� := UW�Uy � 2i
g2

(@�U)Uy

with

`� :=
1

2
p

(1� a2)
�

�
24 �b+

p
(1� a2)

�
14 (q � ic) 14

(q + ic) 14

�p
(1� a2)� b� 14

35 ,

`� :=
1

2
p

(1� a2)
�

�
24 �p(1� a2)� b� 14 (�q + ic) 14

(�q � ic) 14

�
b+

p
(1� a2)

�
14

35 .

Hence W� behaves the same way as components of the
weak field W of Standard Model.

Field W0;� obeys the following equation [12]: 
� 1

c2 @
2
t +

3X
s=1

@2
s

!
W0;� =

= g2
2

�fW 2
0 �fW 2

1 �fW 2
2 �fW 2

3

�
W0;� + � (23)

with fW� :=

24 W0;�
W1;�
W2;�

35
and � is the action of other components of field W on W0;�.

Equation (23) looks like the Klein-Gordon equation of
field W0;� with mass

m :=
h
c
g2

vuutfW 2
0 �

3X
s=1

fW 2
s (24)

and with additional terms of the W0;� interactions with other
components of fW . Fields W1;� and W2;� have similar equa-
tions.

The ”mass” (24) is invariant under the Lorentz transfor-
mations

fW 00 :=
fW0 � v

c
fWkq

1� �vc �2 , fW 0k :=
fWk � v

c
fW0q

1� �vc �2 ,

fW 0s := fWs, if s , k ,

is invariant under the turns of the
DfW1;fW2;fW3

E
space( fW 0r := fWr cos��fWs sin�fW 0s := fWr sin�+fWs cos�

�����
and invariant under a global weak isospin transformation
U (�):

W� !W 0� := U (�)W�U (�)y,
but is not invariant for a local transformation U (�). But local
transformations for W0;�, W1;� and W2;� are insignificant
since all three particles are very short-lived.

The form (24) can vary in space, but locally acts like mass
- i.e. it does not allow particles of this field to behave the same
way as massless ones.

If
Z� := (W0;� cos��B� sin�) ,

A� := (B� cos�+W0;� sin�)

with
� := arctan

g1

g2
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then masses of Z and W fulfill the following ratio:

mZ =
mW

cos�
.

If
e :=

g1g2p
g2

1 + g2
2

,

andbZ� := Z�
1p

g2
2 + g2

1
�

�
2664
�
g2

2 + g2
1
�

12 02 02 02
02 2g2

112 02 02
02 02

�
g2

2 � g2
1
�

12 02
02 02 02 2g2

112

3775 ;
cW� := g2�

�
2664 02 02 (W1;� � iW2;�) 12 02

02 02 02 02
(W1;� + iW2;�) 12 02 02 02

02 02 02 02

3775 ;
bA� := A�

2664 02 02 02 02
02 12 02 02
02 02 12 02
02 02 02 12

3775 .

then equation (22) has the following form:0B@ P3
�=0 �

[�]i

 
@� + ie bA�

�i0:5
� bZ� +cW�

� !
+[0]i@5 + �[4]i@4

1CA e' = 0: (25)

Here [13] the vector field A� is similar to the electromag-

netic potential and
� bZ� +cW�

�
is similar to the weak poten-

tial.

2.2 Colored equations

The following part of (10) I call colored movement equa-
tion [3]:0BBBB@

P3
k=0 �

[k] ��i@k + �k + �k[5]��
�M�;0

[0]
� +M�;4� [4] +

�M�;0
[0]
� �M�;4�[4] +

+M�;0
[0]
� +M�;4�[4]

1CCCCA' = 0. (26)

Here (4), (5), (6):

[0]
� = �

2664 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3775 ; � [4] =

2664 0 0 0 i
0 0 i 0
0 �i 0 0
�i 0 0 0

3775

are mass elements of red pentad;

[0]
� =

2664 0 0 0 i
0 0 �i 0
0 i 0 0
�i 0 0 0

3775 ; �[4] =

2664 0 0 0 1
0 0 �1 0
0 �1 0 0
1 0 0 0

3775
are mass elements of green pentad;

[0]
� =

2664 0 0 �1 0
0 0 0 1
�1 0 0 0
0 1 0 0

3775 ; �[4] =

2664 0 0 �i 0
0 0 0 i
�i 0 0 0
0 i 0 0

3775
are mass elements of blue pentad.

I call:
• M�;0, M�;4 red lower and upper mass members;
• M�;0, M�;4 green lower and upper mass members;
• M�;0, M�;4 blue lower and upper mass members.
The mass members of this equation form the following

matrix sum:

cM :=

0BB@ �M�;0
[0]
� +M�;4� [4]�

�M�;0
[0]
� �M�;4�[4] +

+M�;0
[0]
� +M�;4�[4]

1CCA =

=

26664
0 0 �M�;0 M�;�;0

0 0 M��;�;0 M�;0

�M�;0 M�;�;0 0 0
M��;�;0 M�;0 0 0

37775+

+ i

26664
0 0 �M�;4 M��;�;4
0 0 M�;�;4 M�;4

�M�;4 �M��;�;4 0 0
�M�;�;4 M�;4 0 0

37775
with M�;�;0 := M�;0 � iM�;0 and M�;�;4 := M�;4 � iM�;4.

Elements of these matrices can be turned by formula of
shape [14]: 

cos �2 i sin �
2

i sin �
2 cos �2

! 
Z X � iY

X + iY �Z
!
�

�
 

cos �2 �i sin �
2

�i sin �
2 cos �2

!
=

=

0BB@ Z cos � � Y sin � X � i
�

Y cos �
+Z sin �

�
X + i

�
Y cos �

+Z sin �

�
�Z cos � + Y sin �

1CCA .

Hence, if:

U2;3 (�) :=

2664 cos� i sin� 0 0
i sin� cos� 0 0

0 0 cos� i sin�
0 0 i sin� cos�

3775
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and

cM 0 :=
0BB@�M 0�;0

[0]
� +M 0�;4� [4]�

�M 0�;0[0]
� �M 0�;4�[4]+

+M 0�;0
[0]
� +M 0�;4�[4]

1CCA := U�1
2;3 (�) cMU2;3 (�)

then

M 0�;0 = M�;0 ;
M 0�;0 = M�;0 cos 2�+M�;0 sin 2� ;
M 0�;0 = M�;0 cos 2��M�;0 sin 2� ;
M 0�;4 = M�;4 ;
M 0�;4 = M�;4 cos 2�+M�;4 sin 2� ;
M 0�;4 = M�;4 cos 2��M�;4 sin 2� :

Therefore, matrix U2;3 (�) makes an oscillation between
green and blue colours.

If � is an arbitrary real function of time-space variables
(� = � (t; x1; x2; x3)) then the following expression is re-
ceived from equation (10) under transformation U2;3 (�) [3]:�

1
c
@t + U�1

2;3 (�)
1
c
@tU2;3 (�) + i�0 + i�0[5]

�
' =

=

0BBBBBBBBBBBBBB@

�[1]

 
@1 + U�1

2;3 (�) @1U2;3 (�)
+i�1 + i�1[5]

!
+�[2]

 
@02 + U�1

2;3 (�) @02U2;3 (�)
+i�02 + i�02[5]

!
+�[3]

 
@03 + U�1

2;3 (�) @03U2;3 (�)
+i�03 + i�03[5]

!
+ iM0[0] + iM4�[4] + cM 0

1CCCCCCCCCCCCCCA
' :

Here
�02 := �2 cos 2���3 sin 2� ,

�03 := �2 sin 2�+ �3 cos 2� ,

�02 := �2 cos 2���3 sin 2� ,

�03 := �3 cos 2�+ �2 sin 2� ,

and x02 and x03 are elements of an another coordinate system
so that:

@x2

@x02
= cos 2� ,

@x3

@x02
= � sin 2� ,

@x2

@x03
= sin 2� ,

@x3

@x03
= cos 2� ,

@x0

@x02
=
@x1

@x02
=
@x0

@x03
=
@x1

@x03
= 0 :

Therefore, the oscillation between blue and green colours
curves the space in the x2, x3 directions.

Similarly, matrix

U1;3 (#) :=

2666664
cos# sin# 0 0

� sin# cos# 0 0

0 0 cos# sin#

0 0 � sin# cos#

3777775
with an arbitrary real function # (t; x1; x2; x3) describes
the oscillation between blue and red colours which curves the
space in the x1, x3 directions. And matrix

U1;2 (&) :=

2666664
e�i& 0 0 0

0 ei& 0 0

0 0 e�i& 0

0 0 0 ei&

3777775
with an arbitrary real function & (t; x1; x2; x3) describes the
oscillation between green and red colours which curves the
space in the x1, x2 directions.

Now, let

U0;1 (�) :=

2666664
cosh� � sinh� 0 0

� sinh� cosh� 0 0

0 0 cosh� sinh�

0 0 sinh� cosh�

3777775 .

and

cM 00 :=
0BBB@
�M 00�;0[0]

� +M 00�;4� [4]�
�M 00�;0[0]

� �M 00�;4�[4]+

+M 00�;0
[0]
� +M 00�;4�[4]

1CCCA := U�1
0;1 (�) cMU0;1 (�)

then:

M 00�;0 = M�;0 ;

M 00�;0 = (M�;0 cosh 2� �M�;4 sinh 2�) ;

M 00�;0 = M�;0 cosh 2� +M�;4 sinh 2� ;

M 00�;4 = M�;4 ;

M 00�;4 = M�;4 cosh 2� +M�;0 sinh 2� ;

M 00�;4 = M�;4 cosh 2� �M�;0 sinh 2� :

Therefore, matrix U0;1 (�) makes an oscillation between
green and blue colours with an oscillation between upper and
lower mass members.
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If � is an arbitrary real function of time-space variables
(� = � (t; x1; x2; x3)) then the following expression is re-
ceived from equation (10) under transformation U0;1 (�) [3]:0BBBBBBBBBBBBBBBBBBBBBBB@

�[0]

0@ 1
c
@0t + U�1

0;1 (�)
1
c
@0tU0;1 (�)

+ i�000 + i�000[5]

1A
+�[1]

 
@01 + U�1

0;1 (�) @01U0;1 (�)

+ i�001 + i�001[5]

!
+�[2]

 
@2 + U�1

0;1 (�) @2U0;1 (�)

+ i�2 + i�2[5]

!
+�[3]

 
@3 + U�1

0;1 (�) @3U0;1 (�)

+ i�3 + i�3[5]

!
+ iM0[0] + iM4�[4] + cM 00

1CCCCCCCCCCCCCCCCCCCCCCCA

' = 0

with
�000 := �0 cosh 2� + �1 sinh 2� ;
�001 := �1 cosh 2� + �0 sinh 2� ;
�000 := �0 cosh 2� + �1 sinh 2� ;
�001 := �1 cosh 2� + �0 sinh 2�

and t0 and x01 are elements of an another coordinate system so
that:

@x1

@x01
= cosh 2�

@t
@x01

=
1
c

sinh 2�

@x1

@t0 = c sinh 2�

@t
@t0 = cosh 2�

@x2

@t0 =
@x3

@t0 =
@x2

@x01
=
@x3

@x01
= 0

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
: (27)

Therefore, the oscillation between blue and green colours
with the oscillation between upper and lower mass members
curves the space in the t, x1 directions.

Similarly, matrix

U0;2 (�) :=

2664 cosh� i sinh� 0 0
�i sinh� cosh� 0 0

0 0 cosh� �i sinh�
0 0 i sinh� cosh�

3775
with an arbitrary real function � (t; x1; x2; x3) describes the
oscillation between blue and red colours with the oscillation
between upper and lower mass members curves the space in

the t, x2 directions. And matrix

U0;3 (�) :=

2664 e� 0 0 0
0 e�� 0 0
0 0 e�� 0
0 0 0 e�

3775
with an arbitrary real function � (t; x1; x2; x3) describes the
oscillation between green and red colours with the oscillation
between upper and lower mass members curves the space in
the t, x3 directions.

From (27):
@x1

@t0 = c sinh 2� ;

@t
@t0 = cosh 2� :

Because

sinh 2� =
vq

1� v2

c2

;

cosh 2� =
1q

1� v2

c2

where v is a velocity of system ft0; x01g as respects system
ft; x1g then

v = tanh 2� :

Let
2� := ! (x1)

t
x1

with
! (x1) :=

�
jx1j ;

where � is a real constant bearing positive numerical value.
In that case

v (t; x1) = tanh
�
! (x1)

t
x1

�
and if g is an acceleration of system ft0; x01g as respects sys-
tem ft; x1g then

g (t; x1) =
@v
@t

=
! (x1)

x1 cosh2
�
! (x1) t

x1

� .

Figure 1 shows the dependency of a system ft0; x01g ve-
locity v (t; x1) on x1 in system ft; x1g.

This velocity in point A is not equal to one in point B.
Hence, an oscillator, placed in B has a nonzero velocity in
respects an observer placed in point A. Therefore, from the
Lorentz transformations this oscillator frequency for observer
placed in point A is less than own frequency of this oscillator
(red shift).

Figure 2 shows the dependency of a system ft0; x01g ac-
celeration g (t; x1) on x1 in system ft; x1g.
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Fig. 1: Dependency of v(t; x1) from x1 [3].

Fig. 2: Dependency of g(t; x1) from x1 [3].

If an object immovable in system ft; x1g is placed in
point K then in system ft0; x01g this object must move to the
left with acceleration g and g ' �=x2

1.
I call:

• interval from S to1: Newton Gravity Zone,

• interval from B to C: Asymptotic Freedom Zone,

• and interval from C to D: Confinement Force Zone.

Now let

eU (�) :=

2664 ei� 0 0 0
0 ei� 0 0
0 0 e2i� 0
0 0 0 e2i�

3775
and

cM 0 :=
0BB@ �M 0�;0

[0]
� +M 0�;4� [4]�

�M 0�;0[0]
� �M 0�;4�[4] +

+M 0�;0
[0]
� +M 0�;4�[4]

1CCA
:= eU�1 (�) cM eU (�)

then:

M 0�;0 = (M�;0 cos��M�;4 sin�) ,

M 0�;4 = (M�;4 cos�+M�;0 sin�) ,

M 0�;4 = (M�;4 cos��M�;0 sin�) ,

M 0�;0 = (M�;0 cos�+M�;4 sin�) ,

M 0�;0 = (M�;0 cos�+M�;4 sin�) ,

M 0�;4 = (M�;4 cos��M�;0 sin�) .

Therefore, matrix eU (�) makes an oscillation between up-
per and lower mass members.

If � is an arbitrary real function of time-space variables
(� = � (t; x1; x2; x3)) then the following expression is re-
ceived from equation (26) under transformation eU (�) [3]:�

1
c
@t +

1
c
eU�1 (�)

�
@t eU (�)

�
+ i�0 + i�0[5]

�
' =

=

0BBB@
3P
k=1

�[k]

0@ @k + eU�1 (�)
�
@k eU (�)

�
+ i�k + i�k[5]

1A+

+ eU�1 (�) cM eU (�)

1CCCA' :

Now let:

bU (�) :=

2664 e� 0 0 0
0 e� 0 0
0 0 e2� 0
0 0 0 e2�

3775
and

cM 0 :=
0BB@ �M 0�;0

[0]
� +M 0�;4� [4]�

�M 0�;0[0]
� �M 0�;4�[4]+

+M 0�;0
[0]
� +M 0�;4�[4]

1CCA := bU�1 (�) cM bU (�)

then:

M 0�;0 = (M�;0 cosh�� iM�;4 sinh�) ,

M 0�;4 = (M�;4 cosh�+ iM�;0 sinh�) ,

M 0�;0 = (M�;0 cosh�� iM�;4 sinh�) ,

M 0�;4 = (M�;4 cosh�+ iM�;0 sinh�) ,

M 0�;0 = (M�;0 cosh�+ iM�;4 sinh�) ,

M 0�;4 = (M�;4 cosh�� iM�;0 sinh�) .

Therefore, matrix bU (�) makes an oscillation between up-
per and lower mass members, too.

If � is an arbitrary real function of time-space variables
(� = � (t; x1; x2; x3)) then the following expression is re-
ceived from equation (26) under transformation bU (�) [3]:�

1
c
@t + bU�1 (�)

�
1
c
@t bU (�)

�
+ i�0 + i�0[5]

�
' =

=

0BBB@
3P
s=1

�[s]

0@ @s + bU�1 (�)
�
@s bU (�)

�
+ i�s + i�s[5]

1A
+ bU�1 (�) cM bU (�)

1CCCA' :
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Denote: U0;1 :=U1, U2;3 :=U2, U1;3 :=U3, U0;2 :=U4,
U1;2 :=U5, U0;3 :=U6, bU :=U7, eU :=U8.

In that case for every natural k (1 6 k 6 8) there a 4 � 4
constant complex matrix �k exists [3] so that:

U�1
k (�) @sUk (�) = �k@s�

and if r , k then for every natural r (1 6 r 6 8) there real
functions ak;rs (�) exist so that:

U�1
k (�) �rUk (�) =

8X
s=1

ak;rs (�) � �s.

Hence, if �U is the following set:

�U :=
n
U0;1; U2;3; U1;3; U0;2; U1;2; U0;3; bU; eUo

then for every product U of �U ’s elements real functions
Grs (t; x1; x2; x3) exist so that

U�1 (@sU) =
g3

2

8X
r=1

�rGrs

with some real constant g3 (similar to 8 gluons).

3 Conclusion

Therefore, higgsless electroweak and quark-gluon theories
and gravity without superstrings can be deduced from prop-
erties of probability.

Submitted on April 14, 2009 / Accepted on April 29, 2009

References

1. For instance, Madelung E. Die Mathematischen Hilfsmittel des
Physikers Springer Verlag, 1957, p. 29.

2. Quznetsov G. Logical foundation of theoretical physics. Nova
Sci. Publ., NY, 2006, p. 107

3. Quznetsov G. Progress in Physics, 2009, v. 2, 96–106
4. Quznetsov G. Probabilistic treatment of gauge theories. In se-

ries Contemporary Fundamental Physics, Nova Sci. Publ., NY,
2007, pp. 29, 40–41.

5. Ibidem, p. 61.
6. Ibidem, p. 62.
7. Ibidem, p. 63.
8. Ibidem, pp. 64–68.
9. Ibidem, pp. 96–100.

10. Ibidem, pp. 91–94.
11. Ibidem, pp. 100–117.
12. Ibidem, p. 127.
13. Ibidem, pp. 130–131.
14. For instance, Ziman J. M. Elements of advanced quantum the-

ory. Cambridge University Press, 1969, formula (6.59).

40 Gunn Alex Quznetsov. Higgsless Glashow’s and Quark-Gluon Theories and Gravity without Superstrings



July, 2009 PROGRESS IN PHYSICS Volume 3

A Heuristic Model for the Active Galactic Nucleus Based
on the Planck Vacuum Theory

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado, USA
E-mail: wcdaywitt@earthlink.net

The standard explanation for an active galactic nucleus (AGN) is a “central engine”
consisting of a hot accretion disk surrounding a supermassive black hole [1, p. 32].
Energy is generated by the gravitational infall of material which is heated to high tem-
peratures in this dissipative accretion disk. What follows is an alternative model for the
AGN based on the Planck vacuum (PV) theory [2, Appendix], where both the energy
of the AGN and its variable luminosity are explained in terms of a variable photon flux
emanating from the PV.

The Einstein field equation

G��=6
1=r2�

=
T��
��c2

(1)

is probably invalid in much of the region of interest
(0:5<nr < 1) to the AGN modeling process, especially as nr
gets closer to unity [2]. Ignoring this concern, though, there is
a non-black-hole Schwarzschild line element for an extended
mass [3, 4] available for consideration. Unfortunately, this
incompressible-fluid model is incompatible with the PV the-
ory (see Appendix B). The following calculations provide a
rough heuristic way around these modeling problems.

The expression to be used to estimate the mass of an AGN
can be derived from the relation between a spherical mass m
and its mass density �0

m =
4�r3

3
�0 =

8�
6
�0r3 (2)

where r (6 r0) is the radius of the sphere and �0 is assumed
to be constant. This can be expressed as

Sr =
mc2

r
=

8�
6
�0c2

1=r2 (3)

in terms of the curvature stress Sr exerted on the PV at the
mass’ surface. The maximum stress S� that can be exerted on
the PV is given by the first ratio in

S� =
m�c2
r�

=
8�
6
��c2
1=r2�

(4)

which can be transformed to the second ratio by recognizing
�� = m�=(4�r3�=3) as the mass density of the individual PPs
making up the degenerate PV. Dividing equation (3) by (4)
leads to

nr(1=r2)
1=r2�

=
�0c2

��c2
(5)

where the n-ratio

nr =
Sr
S�

=
mc2=r
m�c2=r�

< 1 (6)

is the relative stress exerted by m. The curvature stress in (3)
is infinite if r is allowed to vanish, but the PV theory restricts
r to r > r� [2]. The surface of the AGN is at r = r0 where
m = m0.

As an aside, it is interesting to note that the result in (5)
can be made to resemble the Einstein equation in (1)

G00=6
1=r2�

=
T00

��c2
(7)

by defining G00 � 6nr(1=r2) and T00 � �0c2. That G00 is
proportional to the n-ratio nr demonstrates in a simple way
that the Einstein equation is physically related to stresses in
the PV.

The time varying luminosity of an AGN can be used to
estimate the AGN’s radius. A simplified calculation for a typ-
ical AGN [5, p.1110] leads to the radius r0 = 1:1�1014cm.
From (5) with r = r0, this radius can be related to the AGN
mass density �0 via

�0

��
= n0

�
r�
r0

�2

(8)

where n0 = (m0c2=r0)=(m�c2=r�). From previous inves-
tigations [2, 6], a reasonable n-ratio to assume for the AGN
might be n0 = 0:5, leading from (8) to

�0

��
= 0:5

�
1:62�10�33

1:1�1014

�2

= 1:1�10�94 (9)

for the relative mass density. Then the absolute density is

�0 = 1:1�10�94�� =

= 1:1�10�94 1:22�1093 = 0:13 [gm/cm3]
(10)
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which yields

m0 =
4�r3

0 �0

3
=

=
4�(1:1�1014)3(0:13)

3
= 7:2�1041[gm]

(11)

for the mass of the AGN.
The standard calculation uses the black-hole/mass-

accretion paradigm to determine the AGN mass and leads
to the estimate m0> 6:6�1041gm for the typical calculation
referenced above. This result compares favorably with the
7:2�1041gm estimate in (11) and yields the n-ratio nr = 0:44.

Currently there is no generally accepted theory for the
time variability in the luminosity of an AGN [1, 7]. As men-
tioned above, there is also no PV-acceptable line element to
be used in the AGN modeling. As a substitute, the line ele-
ments for the generalized Schwarzschild solution of a point
mass will be used to address the luminosity variability. Fur-
thermore, because the differential geometry of the General
theory is certainly not applicable for r<r�=1:62�10�33 [2],
the point-mass solution will be treated as a model for a “hole”
of radius r� that leads from the visible universe into the PV.

If it assumed that the luminosity of the AGN is due to a
large photon flux from the PV, through the “hole”, and into the
visible universe, then the corresponding luminosity will be
proportional to the coordinate velocity of this flux. If it is fur-
ther assumed that the flux excites material that has collected
between the coordinate radii corresponding to the n-ratios
nr = 0:5 and nr = 1, then both the variable luminosity and
its uniformity at the surface of the AGN can be explained by
the model, the uniformity resulting from the compact nature
of the variable-flux source at the surface r = r�. (The distor-
tion of the PV by the collection of material between 0.5 and
1 is ignored in the rough model being pursued.)

The general solution [8, 9] to the Einstein field equations
leading to the Schwarzschild line elements mentioned above
is given in Appendix A. The magnitude of the relative coor-
dinate velocity of a photon approaching or leaving the area
of the point mass in a radial direction can be calculated from
this solution as (n = 1; 2; 3; : : :)

�n(nr) =
���� drc dt ���� =

�
g00

�g11

�1=2

=

= (1 + 2nnnr )(1�1=n)
�

1� 2nr
(1 + 2nnnr )1=n

� (12)

whose plot as a function of nr in Figure 1 shows �n’s behav-
ior for n = 3; 10; 20. The vertical and horizontal axes run
from 0 to 1. The approximate n-ratios for various astrophys-
ical bodies are labeled on the n = 3 curve and include white
dwarfs, neutron stars, and AGNs. The free Planck particle is
labeled PP.

The existence of multiple solutions (n = 1; 2; 3; : : :) in
the spacetime geometry suggests a dynamic condition imply-
ing the possibility of a variable n or a composite solution “os-
cillating” between various values of n. For example, consider
a solution oscillating between the n = 10 and n = 20 indices
in the figure, where the relative flux velocities at nr = 0:5
are 0.125 and 0.066 respectively. Since the luminosity is pro-
portional to these flux velocities, the variation in luminosity
changes by a factor of 0:125=0:066 � 2 over the period of
the oscillation. Again, as the source of the flux is the com-
pact “hole” leading from the PV, the surface of the AGN is
uniformly brightened by the subsequent flux scattered by the
material intervening between the “hole” and the AGN surface
at nr = 0:5 where from (6)

r0 =
2m0c2

m�c2=r�
(13)

as m = m0 at r = r0.
“Earlier studies of galaxies and their central black holes

in the nearby Universe revealed an intriguing linkage between
the masses of the black holes and of the central ‘bulges’ of
stars and gas in the galaxies.The ratio of the black hole and
the bulge mass is nearly the same for a wide range of galac-
tic sizes and ages. For central black holes from a million to
many billions of times the mass of our sun, the black hole’s
mass is about one one-thousandth of the mass of the sur-
rounding galactic bludge. . . . This constant ratio indicates
that the black hole and the bulge affect each others’ growth
in some sort of interactive relationship. . . . The big ques-
tion has been whether one grows before the other or if they
grow together, maintaining their mass ratio throughout the
entire process.” [10] Recent measurements suggest that the
constant ratio seen in nearby galaxies may not hold in the
early more distant galaxies. The black holes in these young
galaxies are much more massive compared to the bulges in the
nearby galaxies, implying that the black holes started growing
first.

The astrophysical measurements described in the preced-
ing paragraph in terms of black holes could just as well be
described by the PV model of the present paper, suggesting
that the PV is the source of the energy and variability of the
AGN and probably the primary gases (electrons and protons)
of its galactic bulge.
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Appendix A Crothers point mass

The general solution [6,8,9] to the Einstein field equations for a point
mass m at r = 0 consists of the infinite collection (n = 1; 2; 3; : : :)
of Schwarzschild-like equations with continuous, non-singular met-

42 William C. Daywitt. A Heuristic Model for the Active Galactic Nucleus Based on the Planck Vacuum Theory



July, 2009 PROGRESS IN PHYSICS Volume 3

Fig. 1: The graph shows the relative coordinate velocity �n(nr)
plotted as a function of the n-ratio nr for various indices n. Both
axes run from 0 to 1. The approximate n-ratios corresponding to
various astrophysical bodies are labeled on the n = 3 curve and in-
clude white dwarfs (nr�0:0002), neutron stars (�0:2), and AGNs
(the 0.44 value calculated from the black-hole model and the 0.5 as-
sumed by the PV model). The free Planck particle is represented by
PP (1). The intersections of the n = 10 and n = 20 curves with the
0.5 ordinate result in the relative velocities �10(0:5) = 0:125 and
�20(0:5) = 0:066 respectively.

rics for r > 0:

ds2 = g00 c2dt2 + g11 dr2 �R2
n (d�2 + sin2� d�2) (A1)

where

g00 = (1� �=Rn) and g11 = � (r=Rn)2n�2

g00
(A2)

� = 2mc2

m�c2=r�
= 2rnr (A3)

Rn = (rn + �n)1=n = r(1 + 2nnnr )1=n =

= �(1 + 1=2nnnr )1=n
(A4)

and

0 < nr

�
=

mc2=r
m�c2=r�

�
< 1 (A5)

where r is the coordinate radius from the point mass to the field
point of interest, andm� and r� are the PP mass and Compton radius
respectively.

The metrics in (A2) yield

g00 = 1� 2nr
(1 + 2nnnr )1=n �! 1 (A6)

�g11 =
(1 + 2nnnr )(2�2n)=n

g00
�! 1 (A7)

with
Rn = r(1 + 2nnnr )1=n �! r (A8)

where the arrows lead to the far-field results for nr ! 0. As ex-
pected, the n-ratio nr in these equations is the sole variable that
expresses the relative distortion of the PV due to the mass at r = 0.

Appendix B Incompressible fluid

Outside a spherical mass of incompressible fluid (or any static mass
of the same shape), the Schwarzschild line elements [3, 4] are the
same as (A1) and (A2) except that for the fluid model

� =
�

3
��0c2

�1=2

sin3 �0 (B1)

where � = 8�G=c4 = 6(1=r2�)=��c2 [2]

Rn = (rn + �n)1=n (B2)

sin�0 =
�
��0c2

3

�1=2

(r3
0 + �)1=3 (B3)

and �= �(�0; �0) and �= �(�0; �0) are constants, where �0 repre-
sents the constant density of the fluid. The ratios in (B1) and (B3)
can be expressed as

3
��0c2

= ��r2�
2�0

(B4)

where �� (= m�=(4�r3�=3)) is the PP mass density.
Dividing (B1) by (B2) and using (B3) leads to

�
Rn

=
�
��0c2

3

�
r3

0(1 + �=r3
0)

r(1 + �n=rn)1=n : (B5)

Inserting (B4) into (B5) then gives

�
Rn

= 2nr
1 + �=r3

0

(1 + �n=rn)1=n (B6)

after some manipulation, where the n-ratio

nr =
m0c2=r
m�c2=r�

: (B7)

Here m0 is defined in terms of the fluid density �0 and the co-
ordinate radius r0, where m0 = (4�r3

0=3)�0. The radius r0 corre-
sponds to the coordinate radius ra in equation (32) of reference [4].

As pointed out in Appendix A, �=Rn (which is related to the
PV distortion exterior to the mass) should be solely a function of
the variable nr as nr is the only relative stress the static spherical
mass as a whole can exert on the exterior vacuum. Consequently
the variable r can only appear within the variable nr . Therefor the
denominator in (B6), and thus the incompressible-fluid model, are
incompatible with the PV model.

Submitted on May 06, 2009 / Accepted on May 11, 2009

References

1. Peterson B.M. An introduction to active galactic nuclei. Cam-
bridge Univ. Press, Cambridge UK, 1997.

2. Daywitt W.C. Limits to the validity of the Einstein field equa-
tions and General Relativity from the viewpoint of the negative-
energy Planck vacuum state. Progress in Physics, 2009, v. 3, 27.

3. Crothers S.J. On the vacuum field of a sphere of incompressible
fluid. Progress in Physics, 2005, v. 12, 76.

William C. Daywitt. A Heuristic Model for the Active Galactic Nucleus Based on the Planck Vacuum Theory 43



Volume 3 PROGRESS IN PHYSICS July, 2009
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9. Schwarzschild K. Über das Gravitationsfeld eines Massen-
punktes nach der Einsteinschen Theorie. Sitzungsberichte der
Königlich Preussischen Akademie der Wissenschaften, 1916,
189–196 (published in English as: Schwarzschild K. On the
gravitational field of a point mass according to Einstein’s the-
ory. Abraham Zelmanov Journal, 2008, v. 1, 10–19).

10. National Radio Astronomy Observatory: Black holes lead
galaxy growth, new research shows. Socorro, NM 87801, USA,
Jan. 6, 2009.

44 William C. Daywitt. A Heuristic Model for the Active Galactic Nucleus Based on the Planck Vacuum Theory



July, 2009 PROGRESS IN PHYSICS Volume 3

Solution of Einstein’s Geometrical Gravitational Field Equations Exterior
to Astrophysically Real or Hypothetical Time Varying Distributions

of Mass within Regions of Spherical Geometry

Chifu Ebenezer Ndikilar� and Samuel Xede Kofi Howusuy

�Physics Department, Gombe State University, P.M.B. 127, Gombe, Gombe State, Nigeria
E-mail: ebenechifu@yahoo.com

yPhysics Department, Kogi State University, Anyighba, Kogi State, Nigeria
E-mail: sxkhowusu@yahoo.co.uk

Here, we present a profound and complete analytical solution to Einstein’s gravitational
field equations exterior to astrophysically real or hypothetical time varying distribu-
tions of mass or pressure within regions of spherical geometry. The single arbitrary
function f in our proposed exterior metric tensor and constructed field equations makes
our method unique, mathematically less combersome and astrophysically satisfactory.
The obtained solution of Einstein’s gravitational field equations tends out to be a gen-
eralization of Newton’s gravitational scalar potential exterior to the spherical mass or
pressure distribution under consideration.

1 Introduction

After the publication of Einstein’s geometrical gravitational
field equations in 1915, the search for their exact and analyt-
ical solutions for all the gravitational fields in nature began
[1]. In recent publications [2–4], we have presented a stan-
dard generalization of Schwarzschild’s metric to obtain the
mathematically most simple and astrophysically most satis-
factory metric tensors exterior to various mass distributions
within regions of spherical geometry. Our method of gen-
erating metric tensors for gravitational fields is unique as it
introduces the dependence of the field on one and only one
dependent function f and thus the geometrical field equations
for a gravitational field exterior to any astrophysically real or
hypothetical massive spherical body has only one unknown f .

In this article, the equation satisfied by the function f in
the gravitational field produced at an external point by a time
varying spherical mass distribution situated in empty space
is considered and an analytical solution for it proposed. A
possible astrophysical example of such a distribution is when
one considers the vacuum gravitational field produced by a
spherically symmetric star in which the material in the star
experiences radial displacement or explosion.

2 Gravitational radiation and propagation field equa-
tion exterior to a time varying spherical mass distri-
bution

The covariant metric tensor exterior to a homogeneous time
varying distribution of mass within regions of spherical ge-
ometry [2] is

g00 = 1 +
2
c2
f(t; r) ; (2.1)

g11 = �
�
1 +

2
c2
f(t; r)

��1

; (2.2)

g22 = � r2; (2.3)

g33 = � r2 sin2� ; (2.4)

g�� = 0; otherwise: (2.5)

The corresponding contravariant metric tensor for this
field, is then constructed trivially using the Quotient Theorem
of tensor analysis and used to compute the affine coefficients,
given explicitly as

�0
00 =

1
c3

�
1 +

2
c2
f(t; r)

��1 @f(t; r)
@t

; (2.6)

�0
01 � �0

10 =
1
c2

�
1 +

2
c2
f(t; r)

��1 @f(t; r)
@r

; (2.7)

�0
11 = � 1

c3

�
1 +

2
c2
f(t; r)

��3 @f(t; r)
@t

; (2.8)

�1
00 =

1
c2

�
1 +

2
c2
f(t; r)

�
@f(t; r)
@r

; (2.9)

�1
01 � �1

10 = � 1
c3

�
1 +

2
c2
f(t; r)

��1 @f(t; r)
@t

; (2.10)

�1
11 = � 1

c2

�
1 +

2
c2
f(t; r)

��1 @f(t; r)
@r

; (2.11)

�1
22 = �r

�
1 +

2
c2
f(t; r)

�
; (2.12)

�1
33 = �r sin2�

�
1 +

2
c2
f(t; r)

�
; (2.13)
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R00 =
4
c6

�
1 +

2
c2
f(t; r)

��2�@f
@t

�2

� 1
c4

�
1 +

2
c2
f(t; r)

��1 @2f
@t2
�

� 1
c2

�
1 +

2
c2
f(t; r)

�
@2f
@r2 � 2

rc2

�
1 +

2
c2
f(t; r)

�
@f
@r

(2.18)

R11 = � 4
c6

�
1 +

2
c2
f(t; r)

��4�@f
@t

�2

+
1
c4

�
1 +

2
c2
f(t; r)

��3 @2f
@t2

+

+
1
c2

�
1 +

2
c2
f(t; r)

��1 @2f
@r2 +

2
rc2

�
1 +

2
c2
f(t; r)

��1 @f
@r

(2.19)

R22 =
2
c2

�
1 +

2
c2
f(t; r)

�
(2.20)

R33 =
2
c2

sin2�
�
r
@f
@r

+ f(t; r)
�

(2.21)

R�� = 0; otherwise (2.22)

R =
8
c6

�
1 +

2
c2
f(t; r)

��3�@f
@t

�2

� 2
c4

�
1 +

2
c2
f(t; r)

��2 @2f
@t2
� 2
c2
@2f
@r2 � 8

rc2
@f
@r
� 4f(t; r)

r2c2
(2.23)

r2f (t; r) +
@
@t

(
1
c2

�
1 +

2
c2
f (t; r)

��2 @f (t; r)
@t

)
= 0 (2.25)

r2f (t; r) +
1
c2

�
1 +

2
c2
f(t; r)

��2 @2f (t; r)
@t2

� 4
c4

�
1 +

2
c2
f(t; r)

��3�@f (t; r)
@t

�2

= 0 (2.26)

�2
12 � �2

21 � �3
13 � �3

31 = r�1; (2.14)

�2
33 = �1

2
sin 2� ; (2.15)

�3
23 � �3

32 = cot � ; (2.16)

��� = 0; otherwise: (2.17)

The Riemann-Christoffel or curvature tensor for the gravi-
tational field is then constructed and the Ricci tensor obtained
from it as (2.18)–(2.22).

From the Ricci tensor, we construct the curvature scalar
R as (2.23).

Now, with the Ricci tensor and the curvature scalar, Ein-
stein’s gravitational field equations for a region exterior to a
time varying spherical mass distribution is eminent. The field
equations are given generally as

R�� � 1
2
Rg�� = 0 : (2.24)

Substituting the expressions for the Ricci tensor, curva-
ture scalar and the covariant metric tensor; the R22 and R33
equations reduce identically to zero. The R00 and R11 field
equations reduce identically to the single equation (2.25), or

equivalently (2.26).
It is interesting and instructive to note that to the order of

c0, the geometrical wave equation (2.26) reduces to

r2f (t; r) +
@2f (t; r)
@t2

= 0 : (2.27)

Equation (2.27) admits a wave solution with a phase ve-
locity v given as

v = i m s�1; (2.28)

where i =
p�1. Thus, such a wave exists only in imagina-

tion and is not physically or astrophysically real.
It is also worth noting that, to the order of c2, the geo-

metrical wave equation (2.26) reduces, in the limit of weak
gravitational fields, to

r2f (t; r) +
1
c2
@2f (t; r)
@t2

= 0 (2.29)

and equation (2.28) is the wave equation of a wave propagat-
ing with an imaginary speed ic in vacuum.

We now, present a profound and complete analytical so-
lution to the field equation (2.26).
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@2

@r2 f (t; r) +
2
r
@
@r
f (t; r)� 1

c2
@
@t

��
1� 4

c2
f (t; r) +

12
c4
f2 (t; r) + : : :

�
@
@t
f (t; r)

�
= 0 (3.1)

@2

@r2 f (t; r) +
2
r
@
@r
f (t; r)� 1

c2
@2

@t2
f (t; r) +

4
c4
f (t; r)

@2

@t2
f (t; r) +

4
c4

�
@
@t
f (t; r)

�2

+ : : : = 0 (3.2)

@2

@r2 f (t; r) =
1X
n=0

�
R00n (r)� 2ni!

c
R0n (r) +

n2i2!2

c2
Rn (r)

�
expni!

�
t� r

c

�
(3.4)

2
r
@
@r
f (t; r) =

1X
n=0

2
r

�
R0n(r)� ni!

r

�
expni!

�
t� r

c

�
(3.5)

1
c2
@2

@t2
f (t; r) =

1
c2

1X
n=0

n2i2!2Rn exp ni!
�
t� r

c

�
(3.6)

f (t; r)
@2f (t; r)
@t2

= i2!2R0R1 exp i!
�
t� r

c

�
+
�
22i2!2R0R2 + i!2R2

1
�

exp 2i!
�
t� r

c

�
+

+
�
32i2!2R0R3 + 22i2!2R1R2 + i2!2R1R2

�
exp 3i!

�
t� r

c

�
+ : : :

(3.7)

�
@
@t
f (t; r)

�2

=
h
i!R1 (r) exp i!

�
t� r

c

�
+ 2i!R2 (r) exp 2i!

�
t� r

c

�
+ : : :

i2
(3.8)

R002 (r) + 2
�

1
r
� 2i!

c

�
R02 (r)� 4

c

�
i!
r

+
4!
c3
R0

�
R2 (r)� 8!2

c4
R2

1 (r) = 0 : (3.13)

3 Formulation of analytical solution to Einstein’s geo-
metrical gravitational field equation

The field equation for the gravitational field exterior to a time
varying mass distribution within regions of spherical geome-
try are found to be given equally as equation (2.25) or (2.26).

For small gravitational fields (weak fields), the geometri-
cal wave equation (1.1) reduces to (3.1) or equally (3.2).

We now seek a possible solution of equation (3.2) in the
form

f (t; r) =
1X
n=0

Rn (r) exp ni!
�
t� r

c

�
; (3.3)

where Rn are functions of r only. Thus, by evaluating the
first and second partial derivatives of our proposed solution
for f (t; r) in equation (3.3); it can be trivially shown that
the separate terms of our expanded field equation (3.2) can
be written as (3.4), (3.5), (3.6), (3.7), and (3.8), where the
primes on the function R denote differentiation with respect
to r. Now, substituting equations (3.4) to (3.8) into our field
equation (3.2) and equating coefficients on both sides yields
the following:

Equating coefficients of exp(0) gives

R000 +
2
r
R00 = 0 : (3.9)

Thus, we can conveniently choose the best astrophysical

solution for equation (3.9) as

R0 (r) = �k
r

(3.10)

where k = GM0; by deduction from Schwarzschild’s metric
and Newton’s theory of gravitation; with G being the univer-
sal gravitational constant and M0 the total mass of the spher-
ical body. Thus at this level, we note that the field equation
yields a value for the arbitrary function f in our field equal to
that in Schwarzschild’s field. This is profound and interesting
indeed as the link between our solution, Schwarzschild’s so-
lution and Newton’s dynamical theory of gravitation becomes
quite clear and obvious.

Equating coefficients of exp i!
�
t� r

c

�
gives

R001 (r) + 2
�

1
r
� i!

c

�
R01 +

+
2!
c

�
� i
r
� 2!
c3
R0

�
R1 = 0 :

(3.11)

This is our exact differential equation for R1 and it deter-
mines R1 in terms of R0. Thus, the solution admits an exact
wave solution which reduces in the order of c0 to:

f (t; r) � �k
r

exp i!
�
t� r

c

�
: (3.12)

Equating coefficients of exp 2i!
�
t� r

c

�
gives (3.13).
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This is our exact equation for R2 (r) in terms of R0 (r)
and R1 (r). Similarly, all the other unknown functions
Rn (r), n > 2 are determined in terms of R0 (r) by the other
recurrence differential equations. Hence we obtain our unique
astrophysically most satisfactory exterior solution of order c4.

4 Conclusion

Interestingly, we note that the terms of our unique series so-
lution (3.10), (3.11), (3.12) and (3.13) converge everywhere
in the exterior space-time. Similarly, all the solutions of the
other recurrence differential equations will also converge ev-
erywhere in the exterior space-time.

Instructively, we realize that our solution has a unique link
to the pure Newtonian gravitational scalar potential for the
gravitational field and thus puts Einstein’s geometrical gravi-
tational field on same footing with the Newtonian dynamical
theory. This method introduces the dependence of geometri-
cal gravitational field on one and only one dependent function
f , comparable to one and only one gravitational scalar poten-
tial in Newton’s dynamical theory of gravitation [4].

Hence, we have obtained a complete solution of Ein-
stein’s field equations in this gravitational field. Our met-
ric tensor, which is the fundamental parameter in this field is
thus completely defined.The door is thus open for the com-
plete study of the motion of test particles and photons in this
gravitational field introduced in the articles [5] and [6].
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The generalized Lagrangian in general relativistic homogeneous oblate spheroidal grav-
itational fields is constructed and used to study orbits exterior to homogenous oblate
spheroids. Expressions for the conservation of energy and angular momentum for this
gravitational field are obtained. The planetary equation of motion and the equation of
motion of a photon in the vicinity of an oblate spheroid are derived. These equations
have additional terms not found in Schwarzschild’s space time.

1 Introduction

It is well known experimentally that the Sun and planets in the
solar system are more precisely oblate spheroidal in geometry
[1–6]. The oblate spheroidal geometries of these bodies have
corresponding effects on their gravitational fields and hence
the motion of test particles and photons in these fields.

It is also well known that satellite orbits around the Earth
are governed by not only the simple inverse distance squared
gravitational fields due to perfect spherical geometry. They
are also governed by second harmonics (pole of order 3) as
well as fourth harmonics (pole of order 5) of gravitational
scalar potential not due to perfect spherical geometry. There-
fore, towards the more precise explanation and prediction of
satellite orbits around the Earth, Stern [3] and Garfinkel [4]
introduced the method of quadratures for approximating the
second harmonics of the gravitational scalar potential of the
Earth due to its spheroidal Earth. This method was improved
by O’Keefe [5]. Then in 1960, Vinti [6] suggested a gen-
eral mathematical form of the gravitational scalar potential
of the spheroidal Earth and how to estimate some of the pa-
rameters in it for use in the study of satellite orbits. Recently
[1], an expression for the scalar potential exterior to a homo-
geneous oblate spheroidal body was derived. Most recently,
Ioannis and Michael [3] proposed the Sagnac interferometric
technique as a way of detecting corrections to the Newton’s
gravitational scalar potential exterior to an oblate spheroid.

In this article, we formulate the metric tensor for the grav-
itational field exterior to massive homogeneous oblate spher-
oidal bodies as a direct extension of Schwarzschild’s metric.
This metric tensor is then used to study orbits in homoge-
neous oblate spheroidal space time.

2 Metric tensor exterior to a homogeneous oblate
spheroid

The invariant world line element in the exterior region of all
possible static spherical distributions of mass is given [1, 7] as

c2d� 2 = c2
�
1 +

2f(r; �; �)
c2

�
dt2�

�
�
1 +

2f(r; �; �)
c2

��1

dr2 � r2d�2 � r2 sin2� d�2

(2.1)

where f(r; �; �) is a generalized arbitrary function determin-
ed by the distribution of mass or pressure and possess all the
symmetries of the mass distribution. It is a well known fact
of general relativity that f(r; �; �) is approximately equal to
Newton’s gravitational scalar potential in the space-time ex-
terior to the mass or pressure distributions within regions of
spherical geometry [1, 7]. For a static homogeneous spherical
body (“Schwarzschild’s body”) the arbitrary function takes
the form f(r).

Now, let “Schwarzschild’s body” be transformed, by de-
formation, into an oblate spheroidal body in such a way that
its density and total mass remain the same and its surface pa-
rameter is given in oblate spheroidal coordinates [1] as

� = �0 ; constant: (2.2)

The general relativistic field equation exterior to a homo-
geneous static oblate spheroidal body is tensorially equivalent
to that of a static homogeneous spherical body (“Schwarz-
schild’s body”) [1, 7] hence, is related by the transformation
from spherical to oblate spheroidal coordinates. Therefore, to
get the corresponding invariant world line element in the ex-
terior region of a static homogeneous oblate spheroidal mass,
we first replace the arbitrary function in Schwarzschild’s
field, f(r) by the corresponding arbitrary function exterior to
static homogenous oblate spheroidal bodies, f(�; �). Thus,
the function f(�; �) is approximately equal to the gravita-
tional potential exterior to a homogeneous spheroid. The
gravitational scalar potential exterior to a homogeneous static
oblate spheroid [1] is given as

f(�; �) = B0Q0(�i�)P0(�) +B2Q2(�i�)P2(�) (2.3)
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g00 =
�

1 +
2
c2
f(�; �)

�
(2.10)

g11 = � a2

1 + �2 � �2

"
�2
�

1 +
2
c2
f(�; �)

��1

+
�2(1 + �2)
(1� �2)

#
(2.11)

g12 � g21 = � a2��
1 + �2 � �2

"
1�

�
1 +

2
c2
f(�; �)

��1
#

(2.12)

g22 = � a2
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"
�

2
�

1 +
2
c2
f(�; �)

��1

+
�2(1� �2)
(1 + �2)

#
(2.13)

g33 = �a2(1 + �2)(1� �2) (2.14)

g�� = 0; otherwise (2.15)

g00 =
�
1 +

2
c2
f (�; �)

��1

(2.16)

g11 =
� �1� �2� �1 + �2 � �2� h�2 �1� �2�+ �2 �1 + �2� �1 + 2

c2 f (�; �)
��1
i

a2
�
1 + 2

c2 f (�; �)
��1 [�2 (1� �2) + �2 (1 + �2)]2

(2.17)

g12 � g21 =
��� �1� �2� �1 + �2� �1 + �2 � �2� h1� �1 + 2

c2 f (�; �)
��1
i

a2
�
1 + 2

c2 f (�; �)
��1 [�2 (1� �2) + �2 (1 + �2)]2

(2.18)

g22 =
� �1 + �2� �1 + �2 � �2� h�2 �1 + �2�+ �2 �1� �2� �1 + 2

c2 f (�; �)
��1
i

a2
�
1 + 2

c2 f (�; �)
��1 [�2 (1� �2) + �2 (1 + �2)]2

(2.19)

g33 = � �a2 �1 + �2� �1� �2���1
(2.20)

g�� = 0; otherwise (2.21)

where QO and Q2 are the Legendre functions linearly inde-
pendent to the Legendre polynomials P0 and P2 respectively.
B0 and B2 are constants.

Secondly, we transform coordinates from spherical to ob-
late spheroidal coordinates;

(ct; r; �; �)! (ct; �; �; �) (2.4)

on the right hand side of equation (2.1).
From the relation between spherical polar coordinates and

Cartesian coordinates as well as the relation between oblate
spheroidal coordinates and Cartesian coordinates [8] it can be
shown trivially that

r (�; �; �) = a(1 + �2 � �2)
1
2 (2.5)

and

�(�; �; �) = cos�1

"
��

(1 + �2 � �2) 1
2

#
(2.6)

where a is a constant parameter. Therefore,

dr = a(1 + �2 � �2)� 1
2 (�d� � �d�) (2.7)

and

d� = � �(1 + �2) 1
2

(1� �2) 1
2 (1 + �2 � �2)

d��

� �(1� �2) 1
2

(1 + �2) 1
2 (1 + �2 � �2)

d� :
(2.8)

Also,

sin2 � =
(1 + �2)(1� �2)

(1 + �2 � �2)
: (2.9)

Substituting equations (2.5), (2.7), (2.8) and (2.9) into
equation (2.1) and simplifying yields the following compo-
nents of the covariant metric tensor in the region exterior to a
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�g00

�
dt
d�

�2

� g11

�
d�
d�

�2

� 2g12

�
d�
d�

��
d�
d�

�
� g22

�
d�
d�

�2

� g33

�
d�
d�

�2
! 1

2

(3.1)

L =
1
c

"
�
�

1 +
2
c2
f(�; �)

�
_t2 � a2�2

1 + �2

�
1 +

2
c2
f(�; �)

��1
_�2 + a2(1 + �2) _�2

# 1
2

(3.2)

static homogeneous oblate spheroid in oblate spheroidal co-
ordinates (2.10)–(2.15).

The covariant metric tensor, equations (2.10) to (2.15) is
the most fundamental geometric parameter required to study
general relativistic mechanics in static homogeneous oblate
spheroidal gravitational fields. The covariant metric tensor
obtained above for gravitational fields exterior to oblate sphe-
roidal masses has two additional non-zero components g12
and g21 not found in Schwarzschild field [7]. Thus, the exten-
sion from Schwarzschild field to homogeneous oblate spher-
oidal gravitational fields has produced two additional non-
zero tensor components and hence this metric tensor field
is unique. This confirms the assertion that oblate spheroidal
gravitational fields are more complex than spherical fields and
hence general relativistic mechanics in this field is more in-
volved [6].

The contravariant metric tensor for this gravitational field
is found to be given explicitly as (2.16)–(2.21).

It can be shown that the coefficients of affine connection
for the gravitational field exterior to a homogenous oblate
spheroidal mass are given in terms of the metric tensors for
the gravitational field as

�0
01 � �0

10 =
1
2
g00g00;1 ; (2.22)

�0
02 � �0

20 =
1
2
g00g00;2 ; (2.23)

�1
00 = �1

2
g11g00;1 � 1

2
g12g00;2 ; (2.24)

�1
11 =

1
2
g11g11;1 +

1
2
g12 (2g12;1 � g11;2) ; (2.25)

�1
12 � �1

21 =
1
2
g11g11;2 +

1
2
g12g22;1 ; (2.26)

�1
22 =

1
2
g11 (2g12;2 � g22;1) +

1
2
g12g22;2 ; (2.27)

�1
33 = �1

2
g11g33;1 � 1

2
g12g33;2 ; (2.28)

�2
00 = �1

2
g21g00;1 � 1

2
g22g00;2 ; (2.29)

�2
11 =

1
2
g21g11;1 +

1
2
g22 (2g12;1 � g11;2) ; (2.30)

�2
12 � �2

21 =
1
2
g21g11;2 +

1
2
g22g22;1 ; (2.31)

�2
22 =

1
2
g21 (2g12;2 � g22;1) +

1
2
g22g22;2 ; (2.32)

�2
33 = �1

2
g21g33;1 � 1

2
g22g33;2 ; (2.33)

�3
13 � �3

31 =
1
2
g33g33;1 ; (2.34)

�3
23 � �3

32 =
1
2
g33g33;2 ; (2.35)

���� = 0; otherwise; (2.36)

where comma as in usual notation denotes partial differentia-
tion with respect to �(1) and �(2).

3 Conservation of total energy and angular momentum

Many physical theories start by specifying the Lagrangian
from which everything flows. We would adopt the same at-
titude with gravitational fields exterior to homogenous oblate
spheroidal masses. The Lagrangian in the space time exterior
to our mass or pressure distribution is defined explicitly in
oblate spheroidal coordinates using the metric tensor as (3.1)
[7, 9], where � is the proper time.

For orbits confined to the equatorial plane of a homoge-
nous oblate spheroidal mass [1, 8]; � � 0 (or d� � 0) and
substituting the explicit expressions for the components of
metric tensor in the equatorial plane yields (3.2), where the
dot denotes differentiation with respect to proper time.

It is well known that the gravitational field is a conserva-
tive field. The Euler-Lagrange equations for a conservative
system in which the potential energy is independent of the
generalized velocities is written as [7, 9];

@L
@x�

=
d
d�

�
@L
@ _x�

�
(3.3)

but
@L
@x0 � @L

@t
= 0 (3.4)

and thus from equation (3.3), we deduce that

@L
@ _t

= constant: (3.5)

From equation (3.3), it can be shown using equation (3.5)
that �

1 +
2
c2
f(�; �)

�
_t = k; _k = 0 (3.6)
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where k is a constant. This is the law of conservation of en-
ergy in the equatorial plane of the gravitational field exterior
to an oblate spheroidal mass [7, 9].

The law of conservation of total energy, equation (3.6)
can also be obtained by constructing the coefficients of affine
connection for this gravitational field and evaluating the time
equation of motion for particles of non-zero rest masses. The
general relativistic equation of motion for particles of non-
zero rest masses in a gravitational field are given by

d2x�

d� 2 + ����

�
dx�

d�

��
dx�

d�

�
= 0 (3.7)

where ���� are the coefficients of affine connection for the
gravitational field.

Setting � = 0 in equation (3.7) and substituting the ex-
plicit expressions for the affine connections �0

01 and �0
02 gives

�t+
2
c2

�
1 +

2
c2
f (�; �)

��1

�

�
�

_�
@f (�; �)
@�

+ _�
@f ((�; �))

@�

�
_t = 0 :

(3.8)

Integrating equation (3.8) yields

_t = k
�

1 +
2
c2
f (�; �)

��1

(3.9)

where k is a constant of integration. Thus, the two methods
yield same results.

Also, the Lagrangian for this gravitational field is invari-
ant to azimuthal angular rotation and hence angular momen-
tum is conserved, thus;

@L
@�

= 0 (3.10)

and from Lagrange’s equation of motion,�
1 + �2� _� = l; _l = 0 (3.11)

where l is a constant. This is the law of conservation of an-
gular momentum in the equatorial plane of the gravitational
field exterior to a static homogeneous oblate spheroidal body.

This expression can also be obtained by solving the az-
imuthal equation of motion for particles of non-zero rest
masses in this gravitational field. Setting � = 3 in equa-
tion (3.7) and substituting the relevant affine connection co-
efficients gives the azimuthal equation of motion as

d
d�

�
ln _�

�
+

d
d�
�
ln
�
1� �2�� +

+
d
d�
�
ln
�
1 + �2�� = 0 :

(3.12)

Thus, by integrating equation (3.12), it can be shown that
the azimuthal equation of motion for our gravitational field is
given as

_� =
l

(1� �2) (1 + �2)
; (3.13)

where l is a constant of motion. l physically corresponds to
the angular momentum and hence equation (3.13) is the Law
of Conservation of angular momentum in this gravitational
field [7, 9]. It does not depend on the gravitational potential
and is of same form as that obtained in Schwarzschild’s Field
and Newton’s dynamical theory of gravitation [7, 9]. Note
that equation (3.13) reduces to equation (3.11) if the parti-
cles are confined to move in the equatorial plane of the oblate
spheroidal mass.

4 Orbits in homogeneous oblate spheroidal gravitation-
al fields

It is well known [7, 9] that the Lagrangian L = �, with � = 1
for time like orbits and � = 0 for null orbits. Setting L = �
in equation (3.2), substituting equations (3.6) and (3.11) and
simplifying yields;

a2�2

(1 + �2)
_�2 +

a2l2

(1 + �2)

�
1 +

2
c2
f (�; �)

�
�

� 2�2f (�; �) = c2�2 + 1 :
(4.1)

In most applications of general relativity, we are more in-
terested in the shape of orbits (that is, as a function of the
azimuthal angle) than in their time history [7]. Hence, it is in-
structive to transform equation (4.1) into an equation in terms
of the azimuthal angle �. Now, let us consider the following
transformation;

� = � (�) and u(�) =
1

� (�)
; (4.2)

thus,
_� = � l

1 + u2
du
d�

: (4.3)

Now, imposing equations (4.2) and (4.3) on equation (4.1)
and simplifying yields (4.4). Differentiating equation (4.4)
gives (4.5).

For time like orbits (�= 1), equation (4.5) reduces
to (4.6).

This is the planetary equation of motion in this gravita-
tional field. It can be solved to obtain the perihelion precision
of planetary orbits. It has additional terms (resulting from
the oblateness of the body), not found in the corresponding
equation in Schwarzschild’s field [7].

Light rays travel on null geodesics (�= 0) and hence
equation (4.5) becomes (4.7).

In the limit of special relativity, some terms in equation
(4.7) vanish and the equation becomes (4.8).

Equation (4.7) is the photon equation of motion in the
vicinity of a static massive homogenous oblate spheroidal
body. The equation contains additional terms not found in
the corresponding equation in Schwarzschild’s field. The so-
lution of the special relativistic case, equation (4.8) can be
used to solve the general relativistic equation, (4.7). This can
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1
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�2 �
a2c2u2 � 1� u2� d

du
f(u) : (4.6)

d2u
d�2 � 3u

�
1 + u2� du

d�
+
�
u+ u2�

2
�
u2 � u+ 2

��
1 +

2
c2
f(u)

�
=
u2

c2
�
1 + u2�2 d

du
f(u) : (4.7)

d2u
d�2 � 3u

�
1 + u2� du

d�
+
�
u+ u2�

2
�
u2 � u+ 2

�
= 0 : (4.8)

be done by taking the general solution of equation (4.7) to be
a perturbation of the solution of equation (4.8). The imme-
diate consequence of this analysis is that it will produce an
expression for the total deflection of light grazing a massive
oblate spheroidal body such as the Sun and the Earth.

5 Remarks and conclusion

The immediate consequences of the results obtained in this
article are:

1. The equations derived are closer to reality than those in
Schwarzschild’s gravitational field. In Schwarzschild’s
space time, the Sun is assumed to be a static perfect
sphere. The Sun has been proven to be oblate spheroid-
al in shape and our analysis agrees perfectly with this
shape;

2. The planetary equation of motion and the photon equa-
tion of motion have additional spheroidal terms not
found in Schwarzschild’s field. This equations are
opened up for further research work and astrophysical
interpretation.

3. In approximate oblate spheroidal gravitational fields,
the arbitrary function f(�; �) can be conveniently eq-
uated to the gravitational scalar potential exterior to an
oblate spheroid [7]. Thus for these fields, the com-
plete solutions for our equations of motion can be con-
structed;

4. Einstein’s field equations constructed using our met-
ric tensor has only one unknown, f(�; �). A solution
of these field equations will give explicit expressions
for the function, f(�; �) which can then be used in our
equations of motion.
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Fascination with primes dates back to the Greeks and before. Primes are named by some
“the elementary particles of arithmetic” as every nonprime integer is made of a unique
set of primes. In this article we point to new connections between primes, geometry and
physics which show that primes could be called “the elementary particles of physics”
too. This study considers the problem of closely packing similar circles/spheres in
2D/3D space. This is in effect a discretization process of space and the allowable num-
ber in a pack is found to lead to some unexpected cases of prime configurations which
is independent of the size of the constituents. We next suggest that a non-prime can be
considered geometrically as a symmetric collection that is separable (factorable) into
similar parts- six is two threes or three twos for example. A collection that has no
such symmetry is a prime. As a result, a physical prime aggregate is more difficult to
split symmetrically resulting in an inherent stability. This “number/physical” stability
idea applies to bigger collections made from smaller (prime) units leading to larger sta-
ble prime structures in a limitless scaling up process. The distribution of primes among
numbers can be understood better using the packing ideas described here and we further
suggest that differing numbers (and values) of distinct prime factors making a nonprime
collection is an important factor in determining the probability and method of possible
and subsequent disintegration. Disintegration is bound by energy conservation and is
closely related to symmetry by Noether theorems. Thinking of condensed matter as the
packing of identical elements, we examine plots of the masses of chemical elements of
the periodic table, and also those of the elementary particles of physics, and show that
prime packing rules seem to play a role in the make up of matter. The plots show con-
vincingly that the growth of prime numbers and that of the masses of chemical elements
and of elementary particles do follow the same trend indeed.

1 Introduction

Primes have been a source of fascination for a long time- as
far back as the Greeks and much before. One reason for this
fascination is the fact that every non-prime is the product of a
unique set of prime numbers, hence the name elementary par-
ticles of arithmetic, and that although primes are distributed
seemingly randomly among other integers, they do have reg-
ular not fully understood patterns (see [1] for example). The
literature is rich in theories on primes but one could say that
none-to-date have managed to make the strong connection be-
tween primes and physics that is intuitively felt by many. One
recent attempt in this direction is [2], wherein possible con-
nections between the atomic structure and the zeros of the
Zeta function — closely connected to primes — are inves-
tigated. We quote from this reference, “Why the periodic-
ity of zeros from the Riemann-Zeta function would match
the spacing of energy levels in high-Z nuclei still remains
a mystery”.

In the present work we attempt to relate primes to both
geometry and physics. We start with the packing of circles in
a plane (or balls on a plane)- all of the same size, and pose a
question; In a plane, what is the condition for packing an in-
tegral number of identical circles to form a larger circle- such
that both the diameter and circumference of the larger circle
contain an integral numbers of the small circle? The problem

is essentially the same when the 2D circles are replaced with
balls on a tray. A surprising result here is the appearance of
only two prime numbers 2 and 3 in the answer and only one
of them is nontrivial- the number 3. This gives such numbers
a fundamental and natural importance in geometry. We may
view this number as a “discretization number of the continu-
ous 3D spaces”. We further study this matter and shed light
(using balls to represent integers) on bounds on the growth of
primes- namely the well known logarithmic law in the theory
of primes. Still further, we coin the notion that distinct prime
factors in the packing of composite collections/grouping can
have a profound influence on the behaviour of such collec-
tions and the manner they react with other collections built
of some different or similar prime factors. As many physics
models of condensed matter assume identical elements for
simple matter (photons, boson and fermion statistics and the
MIT bag model [3, 6] are examples) we examine the appli-
cability of our packing rules in such case and conclude that
condensed matter do seem to follow the packing rules dis-
cussed here.

2 Theory

Consider the case of close packing of circles on a plane so as
to make a bigger circle (Figure 1). The ratio of the radius of
the large circle to that of the small circle is;R=r= 1+1= sin t,
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1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97. . .

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98. . .
3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99. . .
4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100. . .

5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 101. . .

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102. . .

Table 1: Integers arranged in columns of six.

Fig. 1: Close packing of an integral number of circles/balls on a
plane have one nontrivial solution- 6 balls, plus one at the centre (see
also Figure 2). Here in Fig. 1: L sin t = r; t = �=n; R = L + r;
R=r = 1 + 1= sin t. For integral ratio R=r, t must be �=2 or �=6
and L=r = 2; 3.

where t is half the angle between radial lines through the cen-
ters of any two adjacent circles. For this number to be an
integer, the quantity (1= sin t) must be an integer and hence
the angle t must be either 30 or 90 degrees. Thus R=r should
be either three or two (see Figure 2b). That is; the diameter
can be either two or three circles wide. The number 3 is non-
trivial, and gives six circles touching each other, and all in
turn tangent to a seventh circle at the centre.

Clearly the arrangement of balls on a plane does follow
exactly the same pattern leading to six balls touching in pairs
and surrounding a seventh ball (touching all other six) at the
center. This result is unique and is independent of the size
of the balls involved. It is rather remarkable as it gives the
number 6 a special stature in the physics of our 3D space,
parallel to that of the number � in geometry. Such stature
must have been realized in the past by thinkers as far back as
the Babylonian times and the divine stature given to such a
number in the cultures of many early civilizations- six work-
ing days in a week and one for rest is one example, the six
prongs of the star of David and the seven days of creation as
well as counting in dozens might have also been inspired by
the same. Before this, the Bees have discovered the same fact
and started building their six sided honey combs accordingly.

Consider now the set of prime numbers. It is known that
every prime can be written as 6n � 1, where n is an integer.
That is the number six is a generator of all primes. Further, we

Fig. 2: Packing of 2, 3, 4, 7 & 19 (=7+(3+3)+(3+3)) balls in 3D
(a, b). The 19 ball case possesses six side and eight side symme-
tries (c, d).

note that whereas the number six is divisible into 2 (threes) or
3 (twos), an addition of one unit raises the number to seven-
a prime and not divisible into any smaller symmetric entities.
Put differently, an object composed of six elements can easily
break into smaller symmetrical parts, whereas an object made
of 7 is more stable and not easily breakable into symmetric
parts. We know from physics that symmetry in interactions
is demanded by many conservation laws. In fact symme-
try and conservation are tightly linked by Noether theorems-
such that symmetry can always be translated to a conserva-
tion law and vice versa. When we have a group of highly
symmetric identical items, the addition of one at the centre of
the collection can make it a prime.

Now if we arrange natural numbers in columns of six as
shown in Table 1, we see clearly that all primes fall along
two lines- top line for the 6n + 1 type and the bottom line
for the case of 6n � 1 type primes (text in bold). If these
are balls arranged physically on discs six each and on top of
each other, the two lines will appear diametrically opposite
on a long cylinder. Thus there are two favourite lines along
which all primes fall in a clear display of a sign of the close
connection between primes geometry and physics.

We see then that the connection between primes and ge-
ometry is an outcome of how the plane and the space lend
themselves to discretization, when we pair such blocks with
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Fig. 3: (a) Scaling up using small blocks of seven to make larger
blocks of seven; (b) Tight packing of circles naturally resulting in
hex objects made of hex layers. The number of circles in each layer
strip increases in steps of 6. Note that each hex sector has cannon
balls (or conical) packing structure; (c) Easy to construct (square)
brick structure to formally replace circles.

the set of positive integers. We may note also that the density
of 6n � 1 and 6n + 1 type primes is the same with respect
to the integers. Moreover, if we take the difference between
prime pairs, the distribution of the difference peaks at 6 and
all multiples of it, but diminishes as the difference increases
(Figure 4c).

In a violent interaction between two prime groups, one
or more of the groups could momentarily loose a member
or more leaving a non-prime group which then become less
stable and divisible into symmetric parts according to the fac-
tors making the collection. Clearly in this case, the few none
primes neighbouring a prime also become important, and
would contribute to the rules of break-up, to the type of prod-
ucts and to the energy required in each case.

Our packing endeavour can continue beyond 7 to make
larger 3D objects (Figure 2). A stable new arrangement can
result from the addition of 6 balls- 3 on each side (top and
bottom) making an object of 13 balls- a new prime figure.
Further 6 balls can be put symmetrically secured on top and
bottom to give an object of 19 balls. This last case in addition
to being a prime collection has an interesting shape feature.
It has six and eight face symmetries and fairly smooth faces
as shown in Figures 2(c, d), which could give rise to two dif-
ferent groups of 19 ball formations. Further addition of 6’s is
possible, but the resulting object appears less strong. To go a
different direction, we can instead consider every 7, 13 or 19
ball objects as the new building unit and use it to form further
new collections of objects of prime grouping. Clearly this can
be continued in an endless scaling up process (Figure 3b).
Scaling is a prominent phenomenon in physical structures.
Fig. 3b shows that, in a plane, our packing problem and also
that of the packing of cannon-balls [5] are only subsets of the
general densest packing problem and thus it truly is a dis-

Fig. 4: (a) Two overlapping plots of the first 104 primes: (1, 2, 3,
5, � � �, 104729) compared to fitting plot (–), y = (ln�) � n � lnn
(n = serial positions of prime numbers) (.); (b) Ratio of a prime (p)
to n

P
1=n; (c) Relative number of primes with differences of 2, 4,

6, � � � 30. Peaks occur at differences of 6, 12, 18, 24, 30.

cretization process of space. We note also that circles can be
replaced with squares placed in a brick like structure provided
we only think of the centres of these squares.

In the process of adding new rings of circles to form larger
objects, both prime and nonprime numbers are met. A prime
is formed every time we have highly symmetric combination
with one to be added or subtracted to it to break the symme-
try and produce a prime. If we consider the number of circles
added in each ring in the case of circular geometry (the same
applies to hex geometry with small modification), the radius
of a ring is given bymr+m, wherem is the number of layers
and r is the radius of one small circle set to unity. The number
of circles in each ring is estimated by the integer part of 2�m.
For the next ring we substitute (m+1) for m in the above
expressions and obtain 2�(m+1) for a ring. The relative in-
crease in the number of circles is the difference between these
two divided by the circumference which gives 1=m. The rel-
ative (or probable) number of primes for m-th ring should be
taken to come from the contribution of all the items in the ring
and this is proportional to

P
1=m for large m. The actual

number of primes is an integral of this given by m
P

1=m
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Fig. 5: Relative number of primes in (50000 integer sample): Hex
strips m : m + 1 (*); Circular rings m : m + 1, m is the number
of rings of circles around the centre (+); Interval n : 2n, n is the
serial number of a prime (�).
since both the radius of a circular strip and the number of
circles in that strip are proportional to m. Fig. 5 gives the
relative number of primes in one strip and the trend is of the
form a= logm, thus confirming the reasoning used above.

Figure 4b gives a plot of the ratio p=(n
P

1=n) where p
is the value of the n-th prime for some 50000 primes sample
which, for large n, equals the number of integers/circles in the
whole area. Since

P
1=n � ln(n) for large n, we see that

this ratio tends to a constant in agreement with the results of
the prime number theory (see [1] for example).

Further, there are few results from the theory of primes
that can also be interpreted in support of the above argu-
ments. For example the well known conjectures suggesting
that there is always a prime between m and 2m and also be-
tween m2 and (m+ 1)2 [7] can respectively be taken to cor-
respond to the symmetrical duplication of an area and to the
ring regions between two concentric circles must contain at
least one prime. That is if the original area or sector can pro-
duce a prime, then duplicating it symmetrically or adding one
more sector to it will produce at least one prime. The number
of primes in each of the above cases and that of a hex region
are of course more than one and the results from a sample of
(1–50000) integers are plotted in Figure 5. The data is gener-
ated using a simple Excel-Basic program shown below;

%Open excel > Tools > micro > Basic Editor > paste and run

subroutine prime( )

kk=0:

% search divisibility up to square root

for ii=1 to 1e6: z=1: iis=int(sqr(ii+1)+1):

% test divisibility

for jj=2 to iis: if ii-int(ii/jj)*jj=0 then z=0: next jj:

% write result in excel sheet

if z=1 then kk=kk+1: if z=1 then cells(kk,1)=ii: next ii:

end sub:

Fig. 6: Relative number of primes in hex strips (see Figure 3b);
primes of the form 6n + 1 (*); primes of the form 6n � 1, n is
the number of prims around the centre (+).

Concentric circles can be drawn on top of the hexagons
shown in Figure 3, and the number of smaller circles tangent
to the large circles then occur in a regular and symmetrical
way when the number of circular layers is a prime. Some at-
tempt was made by one researcher to explain this by forming
and solving the associated Diophantine equations. It is noted
here that potential energy and forces are determined by ra-
dial distances- that is the radii of the large circles. Also it is
known that the solution of sets of Diophantine equations is a
generator of primes.

None prime numbers can be written in a unique set of
primes. Thus for any number P we have;

P = pa1 pb2 pc3 � � � and
logP = a log p1 + b log p2 + c log p3 � � �

where a; b; c are integral powers of the prime factors p1 p2� � � pn. Ref. [8] have observed that this relation is equivalent
to energy conservation connecting the energy of one large ob-
ject to the energy of its constituents- where energy is to be
associated with (logP ). Further, if the values of a; b; c are
unity, the group would only have one energy state (structure),
and could be the equivalent of fermions in behaviour. When
the exponents are not unity (integer> 1), the group would be-
have as bosons and would be able to exist in multiple equiva-
lent energy states corresponding to the different combination
values of the exponents. Note that log p would correspond
to the derivative of the prime formula (n logn) for large n
accept for a negative sign.

Still in physics, we note that the size of the nucleus of
chemical elements is proportional to the number of nucle-
ons [3, 6] inside it. Since many of the physical and statisti-
cal models of the nucleus assume identical constituents, we
may think of testing the possibility of condensed matter fol-
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I – Elementary particles; II – Particle mass/electron mass; III – Nearest primes

I- e � �0 �� K� K0 � � ! K�
II- 1 206.7 264.7 274.5 966.7 974.5 1074.5 1506.8 1532.3 1745.5
III- 1 211 263 277 967 977 1069 1511 1531 1747

I- p n �0 ' � �+ �0 �� � �0

II- 1836.2 1838.7 1873.9 1996.1 2183.2 2327.5 2333.6 2343.1 2410.9 2573.2
III- 1831 1831 1877 2003 2179 2333 2339 2347 2417 2579

I- �� �� �� 
� � D0 D� F� D� ��c
II- 2585.7 2710.4 3000 3272 3491.2 3649.7 3657.5 3857.1 3933.4 4463.8
III- 2591 2713 3001 3271 3491 3643 3671 3863 3931 4463

Table 2: Relative masses of well known elementary particles and their nearest primes.

Fig. 7: Three normalized plots in ascending order of the relative
atomic weight of 102 elements (+); 30 elementary particles (�); the
first 102 prime numbers (*), starting with number 7. Each group is
divided by entry number 25 of the group.

lowing the prime packing patterns as a result. We may also
repeat the same for the masses of the elementary particles of
physics which have hitherto defied many efforts to put a sense
in the interpretation of their mass spectrum. To do this we
shall arrange the various chemical elements of the periodic
table (102 in total) and most of the elementary particles (30
in totals) in an ascending order of their masses (disregarding
any other chemical property). We shall divide the masses of
the chemical elements by the mass of the element say, number
25, in the list of ascending mass- which is Manganese (mass
55 protons) in order to get a relative value picture. The same
is done with the group of elementary particles and these are
divided by the mass of particle number 25 in the list namely
the (Tau) particle (mass 1784 in MeV/c2 units). Actual units
do not matter here as we are only considering ratios. We then
compare these with the list of primes arranged in ascending
order too. Table 2 contains the data for the case of elementary
particles. Masses of the chemical elements can be taken from
any periodic table. The nearest prime figures in the table are

Fig. 8: Absolute-value comparison of the masses of chemical ele-
ments and primes. Primes starting from 7 (+) and relative masses of
the chemical elements of the periodic table in units of Electron mass
divided by (137�6) (*).

for information and not used in the plots. In Figure 8 an abso-
lute value comparison for the elements is shown. The primes
starts at 7 and the masses of the elements (in electron mass)
are divided by 137�6 in order to get the two curves matching
at the two ends.

For better fitting, the prime number series had to be start-
ed at number 7, not 1 as one might normally do. Comparison
results are given in Figures 7 and 8. The trends are strikingly
similar. The type of agreement must be a strong indication
that the same packing rules are prevailing in all the cases.

3 Concluding remarks

We noticed that primes are closely connected to geometry and
physics and this is dictated by the very properties of discrete
space geometry like you can closely pack on a plane only
seven balls to form a circle. This result and that of the can-
non ball packing problem are found to be subsets of the dense
packing problem. One clear link between primes and geom-
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etry comes from the fact that all primes are generated by the
formula 6n� 1. When integers are associated with balls, this
formula can be represented in the form of a long cylinder with
primes lying along two opposite generator of the cylindrical
surface.

Highly energetic particles bound together dynamically are
more likely to have circular/spherical structures, and thus can
follow the packing arrangements discussed in this article. It
may be said now that the source of discreteness frequently ob-
served in the energy levels of atoms and the correspondence
between energy levels and prime numbers are only manifes-
tations of this fact. The number of elements (balls) in each
circular area or spherical leaf in the building up of a collec-
tion is proportional to n2. The energy of each would naturally
be proportional n2 too. Each constituent will thus carry 1=n2

of the energy and the jump of one constituent from one level
to the other gives an energy change of (1=n2

1�1=n2
2) as in the

Ballmer series. The Bohr model for the atom relies on an inte-
gral number of wavelengths around a circumference, which in
this case can be interpreted as integral number of balls, which
makes the present model more realistic and easier to digest.
The Bohr model was originally intended for the electrons, but
later studies took this to concern the whole nucleus [8].

If the packing picture is carried down to the level of very
elementary particles, we could speculate that the 2 and 3 cir-
cle solutions of the packing problem correspond to the 2 and
3 quarks constituent evidence found in experimental work
and stated in the quark theory of elementary particles. Fast
particles crossing the nucleus are normally used to probe the
nucleus. The 6 pack with 3 balls along any diameter could
very well be responsible for the conclusions of such measure-
ments.

The plots of the mass growth (packing) of chemical ele-
ments and elementary particles (and hence all massive bod-
ies), as shown here, follow very closely the rules of packing
of spheres and also those of the prime numbers. Prime num-
bers or prime collections appear when it is not possible to
divide a collection into symmetric (equal) parts and are hence
more stable in structure. This makes the growth of primes
to be naturally tied to the growth in the masses of condensed
matter in its different phases. We also note that the prime
character of a number is an independent property- more of an
abstract physical property, and it is not a function of the base
of the number system in use or the physical case that number
might represent.

The eight fold rules frequently found in the behaviour pat-
tern of chemical elements and elementary particles [4,8] may
now be suspected to be a consequence of the packing rules
of similar spheres in space. We might even suggest that the
successes of the Bohr Theory for the atom, the Ballmer series
formula for energy levels and indeed the Schrödinger equa-
tion itself in predicting discrete behaviour in atoms and other
entities, might be mainly due to the discretization of space
implied in their formulations. In fact while Schrödinger equa-

tion has many solutions, those deemed correct have to obey
the integrability condition which is essentially a discretization
(normalization) of space condition. We mention also that in
the solutions of Schrödinger equation, the main interest when
finding a solution (the wave function) is the resulting number
of discrete states along any radial or circumferential direction
and not the actual form (function) of the solution. Not forget-
ting also that the most fruitful solutions of Schrödinger equa-
tion are those in circular no-Cartesian coordinates anyway.

4 Recommendations

More work is needed to reach more concrete, verifiable and
useful results. Such work might investigate the origin of the
various properties that distinguish groups of elementary par-
ticles like strangeness, charm etc in relation to the possible
geometric shape/packing of their constituents. The circles
and spheres in the present investigation are not referring to
a static picture, but one formed by very fast moving parti-
cles that generated such shapes as a result of their own dy-
namic rules. Detailed position-energy calculations of various
arrangements, as done on crystals for example, could be done
here to pin point the reasons behind an elementary particle to
become stable or unstable in the presence of external distur-
bances, and also the explanation of the various probabilities
associated with different break-up scenarios of unstable par-
ticles.
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In this work the uncopled thermoelastic model based on the Dual Phase Lag (DPL) heat
conduction equation is used to investigate the thermoelastic properties of a semi-infinite
medium induced by a homogeneously illuminating ultrashort pulsed laser heating. The
exact solution for the temperature, the displacement and the stresses distributions ob-
tained analytically using the separation of variables method (SVM) hybrid with the
source term structure. The results are tested numerically for Cu as a target and pre-
sented graphically. The obtained results indicate that at very small time duration distur-
bance by the pulsed laser the behavior of the temperature, stress and the displacement
distribution have wave like behaviour with finite speed.

1 Introduction

Heat transport and thermal stresses response of the medium
at small scales becomes recently in the spot of interest due
to application in micro-electronics [1] and biology [2, 3] and
due to its wide applications in welding, cutting, drilling sur-
face hardening, machining of brittle materials. Because of the
unique capability of very high precision control of the ultra-
short pulsed laser it is interesting to investigate the thermoe-
lastic properties of the medium due to the ultrashort pulsed
laser heating. The different models of thermoelasticity theory
based on the equation of heat convection and the elasticity
equations. The main categories of these models are the cou-
pled thermoelasticity theory formulated by abd-2-04 [4], and
the coupled thermoelasticity theory with one relaxation time
[5], the two-temperature theory of thermoelasticity [6], the
uncoupled classical linear theory of thermoelasticity based
on Fourier’a law [7], the uncoupled thermoelasticity theory
based on the Maxwell-Cattaneo modification of heat convec-
tion to include one time lag between heat flux and the tem-
perature gradient [8, 9].

The coupled and uncoupled models have been used to
solve some problems on the macroscale where the length and
time scales are relatively large. The technological needs of
a high precision control of the ultrashort pulsed laser appli-
cations processes at the microscales (< 10�12 s), with high
heating rates processes are not compatible with the Fourier’s
model of heat conduction because it implies to an infinite
speed for heat propagation and infinite thermal flux on the
boundaries. To overcome the deficiencies of Fourier’s law in
describing high rate heating processes the concept of wave
nature of heat convection had been introduced [10]. Tzou
[11, 12] had introduced another modification to Fourier law,
by inventing two time lags, Dual Phase Lag (DPL), between
the heat flux and the temperature gradient namely the heat
flux time lag and the temperature gradient time lag. There-

fore he had used the dual phase lag heat convection equation
with the energy conservation law to obtain the dual phase lag
model for heat convection.

The purpose of the present work is to study the induced
thermoelastic waves in a homogeneous isotropic semi-infinite
medium caused by an ultrashort pulsed laser heating expo-
nentially decay, based on the dual phase lag modification of
Fourier’s law. The problem is formulated in the dimension-
less form and then solved analytically by inventing a new sort
of the separation of variables hybridized by the source struc-
ture function. The stress, the displacement and the temper-
ature solutions are obtained and tested by a numerical study
using the parameters of Cu as a target. The results performed
and presented graphically and concluding remarks are given.

2 Problem formulation

In this investigation I considered a homogeneous isotropic
semi-infinite medium with mass density �, specific heat cE ,
thermal conductivity k, and thermal diffusivity � = k

�cE .
The medium occupy the half space region z > 0 considering
the Cartesian coordinates (x; y; z). the medium is assumed
to be traction free, initially at uniform temperature T0, and
subjected to heating process by a ultrashort pulsed laser heat

source its structure function; g(z; t) = I0(1�R)
tp�
p
� e
� z
' e�

�� t�tp
tp

��
,

at the surface z = 0 as in Fig. 1. where the constants charac-
terize this laser pulse are: I0, the laser intensity, R the reflec-
tivity of the irradiated surface of the medium, � the absorption
depth, and tp the laser pulse duration. The Cartesian coordi-
nates (x; y; z) are considered and z-axis pointing vertically
into the medium. Therefore the governing equations are: The
equation of motion in the absence of body forces

�ji;j = ��ui i; j = x; y; z ; (1)

where �ij is the stress tensor components, ui = (0; 0; w) are
the displacement vector components. The constitutive rela-
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tion
�ij =

�
�divui �  (T � T0)

�
�ij + 2�eij (2)

by which the stress components are

�xx = �yy = �wz �  (T � T0)

�zz = (�+ 2�)wz �  (T � T0)

�xy = 0; �xz = 0; �yz = 0 :

(3)

The volume dilation e takes the form

e = exx + eyy + ezz =
@w
@z

: (4)

Where the strain-displacement components eij , read;

eij =
1
2

(ui;j + uj;i) i; j = x; y; z ;

ezz =
@w
@z

; exx = eyy = exy = exz = eyz = 0 ;
(5)

substituting from the constitutive relation into the equation of
motion using the equation of motion we get:
� The displacement equation

(�+ 2�)wzz �  (T � T0)z = � �w ; (6)

� The energy conservation

�� cE _T = qz : (7)

Since the response of the medium to external heating ef-
fect comes later after the pulsed laser heating interacts with
the medium surface then there is a time lag, and by using the
dual phase lag modification of the Fourier’s law as invented
by Tzou;

q(z; t+ �q) = � k Tz(z; t+ �T ) ;

q + �q _q = � k Tz � k �T _Tz :
(8)

Then the energy transport equation of hyperbolic type can
be obtained by substituting in the energy conservation law
and considering the laser heat source

�q
�

�T +
1
�

_T = Tzz + �T _Tzz � 1
�cE

g(z; t)� �q _g(z; t) : (9)

This equation shows that the dual lagging should be con-
sidered for the processes whose characteristic time are scale
comparable to �q and �T . It describes a heat propagation
with finite speed. where �q is represents the effect of ther-
mal inertia, it is the delay in heat flux and the associated con-
duction through the medium, and �T is represents the delay
in the temperature gradient across the medium during which
conduction occurs through its microstructure. For �T = 0
one obtain the Maxwell-Cattaneo model, and Fourier law ob-
tained if �T = �q = 0.

The boundary conditions are;

�k Tz(z; t) = g(z; t) ; w = 0 ; �zz = 0; at z = 0 ;

�zz = 0; w = 0 ; T = 0 ; as z !1 :
(10)

Introducing the dimensionless transformations
z� = zp��q , w� = wp��q , ��ij = �ij

� , t� = t
�q , t�p = tp

�q ,

'� = 'p��q , � � = �T
�q , �0�� = T � T0, ��1 = �

� ,

��2 = �+2�
� , 0 = �0

� , �0 = I0(1�R)
k

q
�
��q , substituting

in the governing equations and in boundary conditions of the
problem by the above dimensionless transformations and then
omitting the (�) from the resulting equations we obtain the
dimensionless set of the governing equations and boundary
conditions:
� The dimensionless temperature equation

�� + _� = �zz + � _�zz +
�

1� tp
t2p '

�
e� z

' e�
�� t�2tp

tp

��
; (11)

� The dimensionless displacement equation

wzz �B2 �w = G�z ; (12)

where B2 = ��
�qt2p(�+2�) and G = 0�0

(�+2�) ;

� The dimensionless stresses equations

�zz = �2wz � 0 � ;

�xx = �yy = �1wz � 0 � ;
(13)

� Dimensionless boundary conditions

w = 0 ; �zz = 0 ; at z = 0 ;

�z(z; t) = � 1
kp��q e

�
�� t�2tp

tp

��
; at z = 0 ;

�zz = 0 ; w = 0 ; T = 0 ; as z !1 :

(14)

3 Solution of the problem

In this section I introduced the hybrid separation of variables
method (HSVM) to get the solution of equations (11) and
(12). Using this method one can construct the analytic so-
lution for some type of nonhomogeneous partial differential
equations (or system). Its idea based on using the structure
of the nonhomogeneous term to invent the form of separa-
tion of variables. Therefore the PDE (or system) will reduced
to ODE (or system) which can be solved. To illustrate the
(HSVM) we use it to solve the problem in this paper. In-
troducing the following separation of variables based on the
structure of the source function, which represents the inho-
mogeneous term,

�(z; t) = Z(z)e�
�� t�2tp

tp

��
; w(z; t) = W (z)e�

�� t�2tp
tp

��
(15)
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Fig. 1: The strcture function of the ultrashort pulsed laser of expo-
nentially decay.

Fig. 2: The dimensionless temperature distribution.

Fig. 3: The dimensionless w-displacement distribution.

Fig. 4: The dimensionless stresses �xx = �yy distributions.

Fig. 5: The dimensionless volume dilation e.

Fig. 6: The dimensionless stresses �zz distributions.
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the equations (11) and (12) will be reduced to a separable
form and can be solved directly and therefore using the di-
mensionless boundary conditions we obtain:
� The solution of the dimensionless temperature equation

�(z; t) =
h
#1e�Az + #2e�

z
'

i
e�
�� t�2tp

tp

��
; (16)

where A2 = (1�tp)
tp(tp��) , H = (tp�1)

tp' ,

#1 =
� 1
Atp'

p��p � H
A'( 1

'2�A2)

�
, #2 = H

( 1
'2�A2) ;

� The solution of the dimensionless displacement equa-
tion

w(z; t) =
h
W1e�Bz+W2e�Az+W3e�

z
'

i
e�
�� t�2tp

tp

��
; (17)

where W1 =
h

GA#1

(A2�B2
t2p

)
+ G#2

'(A2�B2
t2p

)

i
, W2 = � GA#1

(A2�B2
t2p

)
,

W3 = � G#2

'( 1
'2�B2

t2p
)
;

� The solution of the dimensionless stresses equation

�xx = �yy = �e�
�� t�2tp

tp

���
0

�
#1e�Az + #2e�

z
'

�
+

+�1

�
W1Be�Bz +W2Ae�Az +W3

1
'
e� z

'

��
;

(18)

�zz = �e�
�� t�2tp

tp

���
0(#1e�Az + #2e�

z
' ) +

+�2

�
W1Be�Bz +W2Ae�Az +W3

1
'
e� z

'

��
;

(19)

where � = 7:76�1010 kg/m sec2,
� = 8954 Kg/m3, � = 3:86�1010 kg/m sec2,
�t = 1:78�10�5, cE = 383:1 J/kgK, tp = 0:1 sec,
k = 386 W/mK, �+ 2� = 1:548�1011 kg/m sec2,
�q = 0:7�10�12 sec, �� = 89�10�12 sec,
' = 0:2 m,  = (3�+ 2�)�t = 5:518�106 kg/m sec2,
� = 2�1013, � = 1:7�10�6, A = ��q = 14,
I1 = I0(1�R) = 1�1013 W/m2.

4 Discussion and conclusion

In this paper the thermoelastic waves in a homogeneous iso-
tropic semi-infinite medium caused by an ultrashort pulsed
laser heating having exponentially decay, based on the dual
phase lag modification of Fourier’s law have been investi-
gated. The problem formulated in the dimensionless form and
then solved analytically for the temperature, the stress, and
the displacement by inventing a new sort of the hybridized
separation of variables by the source structure function. The
obtained analytical solutions are tested numerically using for
Cu as a target medium.

The results are presented graphically. The obtained re-
sults indicated that due to the very high power of the laser

pulse at the surface in a very short duration the temperature
distribution possessing a wave nature with finite speed as in
Fig. 2. The medium responses to the laser heating by increas-
ing change in the displacement distribution with increasing
time duration as in Fig. 3. The thermoelastic characteristics
(stresses components �xx =�yy and volume dilation e = @w

@z )
of the medium possess wave nature as in Fig. 4 and Fig. 5.
Fig. 6. depicts that the stress component �zz have wave na-
ture with wave front has its maximum at the average of the
laser pulse duration. By these results it is expected that the
dual phase lag heat conduction model will serve to be more
realistic to handle practically the laser problems with very
high heat flux and/or ultrashort time heating duration.
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G measurements are made with torsion balance in “vacuum” to the aim of eliminating the air convection distur-
bances. Nevertheless, the accuracy of the measured values appears unsatisfying. In 2000 J. Luo and Z. K. Hu
first denounced the presence of some unknown systematic error in high vacuum G measurements. In this work
a new systematic effect is analyzed which arises in calm air from the non-zero balance of the overall momentum
discharged by the air molecules on the test mass. This effect is negligible at vacuum pressures higher than a
millibar. However in the interval between the millibar and the nanobar the disturbing force is not negligible
and becomes comparable to the gravitational force when the chamber pressure drops to about 10�5 bar. At
the epoch of Heyl’s benchmark measurement at 1–2 millibar (1927), the technology of high vacuum pumps
was developed, but this chance was not utilized without declaring the reason. The recent G measurements use
high vacuum techniques up to 10�10 and 10�11 bar, but the effect of the air meatus is not always negligible.
We wonder whether the measurements in the interval between the millibar and the nanobar have been made.
As a matter of fact, we were not able to find the related papers in the literature. A physical explanation of the
denounced unknown systematic error appears useful also in this respect.

1 Introduction

Everyone knows the simple experience of two flat microscopy
glasses which cannot be separated from each other when their
surfaces touch. Obviously this effect is due to the pressure of
the air whose molecules penetrate with difficulty between the
corrugations of the polished surfaces generating within the
small meatus a considerable air depression. The mean free
path of the air molecules at normal pressure is about 10�7

metres, that is of the same order of magnitude of the polished
surface corrugations. In general, the molecules are not able to
freely penetrate within a meatus whose thickness is reduced
to about 1 mean free path. When we consider the meatus fac-
ing the test mass of a gravitational torsion balance placed in
a vacuum chamber, the very little air depression within the
meatus originates a disturbing force on the test mass, which
adds to the gravitational force. This disturbing force is neg-
ligible at normal pressure, but when the pressure within the
vacuum chamber is reduced beyond the millibar (for instance
to avoid other disturbances due to air convection or to mini-
mize the air friction on the oscillating pendulum) the meatus
optical thickness further reduces, so as to attain the above
condition about 1 mean free path. It appears opportune to in-
vestigate this phenomenon to obtain a semi-quantitative pre-
diction of the disturbing drawing force arising on the gravita-
tional balance. This research takes into account the results of
some experimenters which denounced the presence of some
unknown systematic effect in the G measurements.

2 Historical background

The torsion balance apparatus was first used by Cavendish in
1798 in a very simple form which permitted him to reach an
unexpected accuracy. In the following two centuries the tor-
sion balance was used by several experimenters which sub-
stantially improved the technique, but the level of accuracy

did not show a dramatic enhancement. Several methods were
devised in the XXth century to measure G. In a Conference
organized by C. C. Speake and T. J. Quinn [1] at London in
1998 — two centuries after Cavendish — a variety of papers
described the methods of measurement and their potential ac-
curacy related to the disturbances and systematic errors. In
Table 1 we report the most accurate values presented at the
Conference [G�10�11 kg/m3s2]:

Author Method G Accur. (ppm)

PTB torsion balance 6.7154 68
MSL torsion balance (a) 6.6659 90
MSL idem (re-evaluation) 6.6742 90
MSL torsion balance (b) 6.6746 134
BIPM torsion-streap bal. 6.683 1700
JILA absolute gravimeter 6.6873 1400
Zurich beam balance 6.6749 210
Wuppertal double-pendulum 6.6735 240
Moscow torsion pendulum 6.6729 75

Table 1: Measurements of G, according to [1].

Among the methods described there are: a torsion balance
where the gravitational torque is balanced by an electrostatic
torque produced by an electrometer; a torsion-strip balance
where the fibre is substituted by a strip; a dynamic method
based on a rotating torsion pendulum with angular acceler-
ation feedback; a free fall method where the determination
of G depends on changes in acceleration of the falling ob-
ject, etc. Notwithstanding the technological improvement,
up to now the gravitational constant is the less accurately
known among the physical constants. The uncertainty has
been recognized to depend on various experimental factors.
To eliminate the air thermal convection on the test mass, in
1897 K. F. Braun made a torsion balance measurement after
extracting the air from the ampule. The level of vacuum ob-
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tained with his technique is not known. In 1905 W. Gaede
invented the rotary pumps reaching the void level of 10�6 bar.
Subsequently Gaede developed the molecular drag pumps
(1915) using Hg vapour. In 1923 the mercury was substi-
tuted by refined or synthetic oil, which enabled to reach void
levels around 10�9 bar.

In 1927 Heyl [2] made a benchmark measurement with a
heavy torsion balance to the aim of establishing a firm value
of G. Although the high vacuum technology was available,
he adopted a chamber pressure equal to 1–2 millibar. The
molecule mean free path at 1 millibar is about 10�4 metres, a
quantity much smaller than the thickness of the meatus. From
our present investigation it appears that the air pressure ef-
fect does not alter the accuracy of the classical G measure-
ments performed at pressures higher than some millibars. But
this fact was unknown at the epoch. In any case the choice
of high vacuum was compelling against the air convection
disturbance. After 1958 the development of turbomolecular
pumps and the improved molecular drag pumps made avail-
able an ultra-high-vacuum up to 10�13 bar. Also this spec-
tacular jumping was apparently disregarded by the G experi-
menters. In 1987 G. T. Gillies published an Index of measure-
ments [3] containing over 200 experiments, which does not
report vacuum pressures between the millibar and the nano-
bar. At the end of ninety the unsatisfying values of G became
publicly discussed.

3 First report of a new unknown systematic error

A status of the recentGmeasurements was published in 2000
by J. Luo and Z. K. Hu [4] in which the presence of some un-
known systematic effect was first denounced: “This situation,
with a disagreement far in excess to the estimate, suggests the
presence of unknown systematic problems”.

In 2003 R. Kritzer [5] concluded that “the large spread in
Gmeasurements compared to small error estimates, indicates
that there are large systematic errors in various results”.

Among the last experiments, some of them used new so-
phisticated methods with technologies coupled to very low
pressures within the test chamber. This fact shows a new at-
tention to the problems of possible unknown air effects.

J. H. Gundlach and S. M. Merkowitz [6] made a measure-
ment where a flat pendulum is suspended by a torsion fiber
without torque since the accelerated rotation of the attracting
masses equals the gravitational acceleration of the pendulum.

To minimize the air dynamic effect, the pressure was low-
ered to 10�7 Torr (p0 ≈ 10�10 bar). At this pressure the clas-
sical mean free path l=m=� �0 within a large homogeneous
medium is of the order of 1000 metres. Hence within the vac-
uum chamber the lack of flux homogeneity is everywhere
present.

Another accurate measurement was performed in 2002
by M. L. Gershteyn et al. [7] in which the pendulum feels
a unique drawing mass fixed at different distances from the

test mass. The change of the oscillation period determines
G. To minimize the air disturbance, the pressure in the vac-
uum chamber was lowered to 10�6 Pascal (i.e. p0 = 10�11

bar). The reason for such a dramatic lowering is not dis-
cussed. The authors revealed the presence of a variation of
G with the orientation (regard to the fixed stars) amounting to
0.054%. Incidentally, the anisotropy of G is predicted by the
gravitational-inertial theory discussed in [8].

In 2004 a new torsion balance configuration with four at-
tracting spheres located within the vacuum chamber (p0 =
= 1:5�10�10 bar) was described by Z. K. Hu and J. Luo [9].
The four masses are aligned and each test mass oscillates be-
tween a pair of attracting masses. Each test mass determines
with the adjacent spheres a small meatus (estimated about 4
mm) and a large meatus (about 16 mm). During the experi-
ment the authors found the presence of an abnormal period of
the torsion pendulum, which resulted independent of the ma-
terial wire, test mass, torsion beam and could not be explained
with external magnetic or electric fields. Adopting a mag-
netic damper system, the abnormal mode was suppressed, but
the variance of the fundamental period of the pendulum in-
troduced an uncertainty as large as 1400 ppm, testifying the
presence of a systematic disturbance in determining G.

We applied to this problem the analysis carried out in this
paper. From the air density in the vacuum chamber, we calcu-
late the optical thickness of the small meatus and the related
air depression, Eq. (5), which substituted in Eq. (7) gives
upon the test mass a disturbing force rising up to F (p0) ≈
≈ 10�14 Newton, equivalent to about 10�4 times the gravi-
tational force, which alters the pendulum period. This fact
agrees with the author conclusions [9] that the torsion bal-
ance configuration would have an inherent accuracy of about
10 ppm in determining G, but the uncertainty in the funda-
mental period reduces this accuracy to 1400 ppm.

The presence of an abnormal disturbance was previously
described (1998) by Z. K. Hu, J. Luo, X. H. Fu et al. [10] in
dealing with the time-of-swing method. They found the pres-
ence of “important non-linear effects in the motion of the
pendulum itself, independent of any defect in the detector,
caused by the finite amplitude of the swing”. Their config-
uration consisted in a torsion balance with heavy masses ex-
ternal to the vacuum chamber, where the pressure was low-
ered to p0 = 2�10�10 bar. The test mass, diameter about 19
mm, was suspended within a stainless vacuum tube placed
between two heavy masses distant 60 mm apart. Since the
test mass oscillates up to 8 mm from the centre of the vac-
uum tube, the optical thickness of the small meatus can be
deduced. The smaller this thickness, the greater the disturb-
ing force F (p0). Repeating the analysis carried out for the
preceding experiment, we found a force F (p0) which repre-
sents a lower fraction of the gravitational force thanks to the
heavy attractor masses. Comparing with many measurements
made in last decades with high vacuum technology [11–19]
we notice that the vacuum pressures (when reported) were not
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comprised between the millibar and the nanobar. The reasons
for this avoidance do not appear to have been discussed.

4 Scattering of molecules upon smooth surfaces

The scattering of gas molecules hitting a smooth surface does
not generally follow the optical reflection because that which
collide about orthogonally may interact with a few atoms of
the lattice. As it happens when two free particles come in
collision, these molecules may be scattered randomly. Con-
versely, the molecules hitting the surface from a nearly paral-
lel direction interact softly with the field of the atomic lattice.
In fact these molecules, whose momentum q=mv makes an
angle �=�=2 with the vertical axis, receive from the lattice
field a small vertical momentum �q ≈ 2mv cos�which redi-
rects the molecules along a nearly optical reflection. It is use-
full to recall that the momentum hv=c of the UV rays (which
observe the reflection law) is comparable to the momentum
of air molecules at normal temperature.

To resume: after scattering on a smooth surface a fraction
of the nearly orthogonal molecules becomes quasi parallel.

As a consequence an isotropic flux �0 of molecules hit-
ting a smooth surface, after scattering becomes non-isotropic.
This condition may be described by the relationship

 0 (�) w �0 (1��1 cos�+ �2 sin�) (1)

where the parameters �1, �2 satisfy the total flux conditionR �=2
0 sin� w (�) d� = �0. Moreover we assume that about
� percent of the nearly orthogonal molecules become quasi-
parallel after scattering on the wall. Applying these two con-
ditions one obtains the figures �1 ' 1:46�; �2 ' 2�1=� '' 0:928�, where � may range between 0.10 down to 0,0001
for smoothed glass walls. This physical condition makes easy
to understand the molecular flux depression within the mea-
tus around the test mass. This phenomenon becomes partic-
ularly evident at low air pressures. For instance when the
vacuum pressure is about a millibar, then 99.99% molecules
hitting the test mass, Fig. 1, come from scattering with other
molecules within the meatus, whereas 0.01% molecules come
directly from the scattering on the chamber wall. To feel
a sensible flux depression in the meatus it is necessary that
the molecules coming from wall-scattering be about a half of
the total. Within an air meatus of thickness “s” this happens
when the optical thickness �s = s��0=m ' 107s �0 equals 1
mean free path, i.e. when the air density equals �0 ' 10�7/s.
For usual torsion balances the critical vacuum pressure which
maximizes the flux depression is p0 ≈1�10�5�3�10�5 bar.

The old G measurements adopted a torsion balance at at-
mospheric pressure, so the meatus effect took place between
the test mass and the attracting sphere. This happens also to
G measurements in vacuum when the heavy masses are com-
prised within the chamber. But in general the G measure-
ments in vacuum are made with the heavy masses outside the

chamber. In this case we define “meatus” the air comprised
between the test mass and the adjacent wall of the vacuum
chamber (Fig. 1). At pressures higher than some millibars the
molecular flux upon the moving mass is highly uniform, so
the sum of every momentum discharged by the molecules on
the sphere is null for any practical purpose. However, when
the pressure in the chamber is further reduced, the molecular
flux begins to show a little depression in the meatus. The flux
depression in the circular meatus may be expressed along the
radial direction x

� (x) w �m
�
1 + kx2� ; (2)

where �m is the minimum figure the flux takes on the meatus
centre. Since the flux on the boundary, i.e. x = L, is the un-
perturbed flux �0, then one gets �m

�
1 + kL2� = �0 which

shows that k is linked to the flux parameters of the meatus

k = (�0=�m � 1) =L2; (3)

where L w R cos� is the radius of the area of the test mass
experiencing the flux depression. The angle �, defined by
sin� = R=(R + s) (where R is the radius of the moving
mass, s is the minimum thickness of the meatus), plays a fun-
damental role since it describes (Fig. 1) the “shadow” of the
moving mass on the adjacent chamber wall. Choosing spher-
ical co-ordinates with the same axis of the meatus and origin
(Fig. 1) in the pointB, the monokinetic transport theory gives
us the angular flux of incident molecules  B (�) integrating
the scattered molecules along the meatus thickness s (�) and
adding the flux  s (�) of uncollided molecules scattered on
the surface of the moving mass

 B (�) =
Z s(�)

0
�� (r) exp(��r)dr+

+ s (�) exp
���s (�)

�
;

(4)

where � is the air macroscopic cross section, �� (r) is the
density of isotropically scattered molecules, s (�) is the mea-
tus thickness along �. This angular flux holds for � 6 �.
The above presentation of the problem has only an instructive
character denoting the complexity of the problem, because
the fluxes � (r) and  s (�) are unknown.

5 Calculation of the molecular flux in the meatus

To solve the problem of calculating the molecular flux within
the meatus we adopt the principle of superposition of the ef-
fects. Let’s consider the test sphere surrounded by the air in
the vacuum chamber at pressure p0. To obtain the disturb-
ing force F (p0) on the test mass we must calculate the flux
in the point A of the sphere and in the point C diametrically
opposite (Fig. 1). Let’s now remove the sphere and substitute
an equal volume of air at pressure p0, so to fill the chamber
with the uniform molecular flux �0. Let’s calculate the flux
incident on both sides of the point A considering a spheri-
cal coordinates system with origin in this point (Fig. 1). The
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Fig. 1: Schematic drawing of a torsion balance in a vacuum chamber
(meatus thickness arbitrarily large).

angular flux on the right-side of the point A is due to the scat-
tering on the molecules within the sphere volume and to the
uncollided molecules coming from the surface of the sphere
(point P ) where there is the uniform flux �0

 A (�) =
Z t(�)

0
��0 exp (��r)dr+�0 exp

���t (�)
�

(5)

where t (�) = 2R cos� is the distance between the points A
and P (Fig. 1) placed on the (virtual) surface of the removed
mass. Let’s notice that the first term in Eq. (3) represents the
flux due to the scattering source occupying the sphere vol-
ume. When we cancel this source term (for instance reintro-
ducing the test mass), Eq. (5) gives the flux

 A+ (�) = �0 exp (�2�R cos�): (6)

On the left-side of the point A the flux comes from scat-
tering on the air within the meatus and from the uncollided
molecules coming from the chamber wall

 A� (�) = �0
�
1� exp (��z (�))

�
+

+ w (�) exp (��z (�)) ;
(7)

where z (�) is the wall distance and �w (�) is the flux scat-
tered on the chamber wall, as defined by Eq. (1). Since in
general the size of the chamber is much larger than R, one
may assume the distance z (�) ' s/cos�. Subtracting the
flux  A+ (�) from  A� (�) gives the actual flux on the point
A of the test mass

 A (�) ' �0
�
1� exp (�2�R cos�)

��
� ��0 �  w (�)

�
exp (��s= cos�):

(8)

Now we calculate with the same procedure the incident
flux on the point C

 C (�) � �0
�
1� exp (�2�R cos�)

��
� ��0 �  w (�)

�
exp (�� (s+ 2R) = cos�):

(9)

The disturbing force on the moving mass is linked to the
different pressures on the points A and C due to the momen-
tum discharged by the molecular flux on these points. The
molecular flux shows the following difference across the test
mass diameter �C��A=�0

R �=2
0 sin� [ C (�)� A (�)] d�.

Substituting and putting w (�) =  w (�)/�0, one gets the
flux difference

��0 = �0

Z �=2

0
sin�

�
1�w (�)

��
exp (��s= cos�)�

� exp (�� (s+ 2R) = cos�)
�
d� ;

(10)

which confirms that the flux depression depends on the an-
isotropy of the flux  w (�) scattered on the wall. Through
Eq. (1) we also havew (�) = 1��1 cos�+�2 sin� which,
substituting in the above equation gives the air depression

�p0=p0 = ��0=�0 =

= �1� (�s; �R)��2
 (�s; �R) ;
(11)

where the functions

� (�s; �R) =
Z �=2

0
sin� cos�

�
exp (��s= cos�)�

� exp (�� (s+ 2R) = cos�)
�
d�

(12)

and


 (�s; �R) =
Z �=2

0
sin2 �

�
exp (��s= cos�)�

� exp (�� (s+ 2R) = cos�)
�
d�

(13)

depend on the meatus geometry and on the air density �0 in
the vacuum chamber. These functions do not appear to have
been already tabulated. Fitting functions have been used for
calculations, whose accuracy is not completely satisfying.

To give a quantitative idea of the phenomenon, the relative
depression �p0=p0 has been calculated assuming the usual
size of a torsion balance, as specified in Table 2. Substituting
in Eq. (12) the macroscopic cross section � = ��0=m for any
air density �0, one obtains the depressions �p0=p0 reported
in Table 2. Notice the high uniformity of the molecular flux
within the meatus at 1 millibar vacuum level.

Conversely, the chamber pressure p0 = 10�5 bar corre-
sponds to a sensible depression �p0=p0 ≈ 3:4�10�3 which
may alter the gravitational force between the gravitational
masses.

The disturbing force due to the small depression within
the meatus �p (r) =mv [�0 � � (r)] is defined by

F =
Z L

0
2� r�p (r) dr ; (14)

whereL=R cos� is the radius of the meatus periphery where
p (L) = p0. Substituting the flux distribution given by Eq. (2)
one gets the corresponding depression within the meatus

p0 � p (r) = p0
�
1� (�m=�0)

�
1 + kr2�� : (15)
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100 10�3 40 1:4�10�22 3:6�10�25

50 5�10�4 20 1:2�10�11 1:5�10�14

10 10�4 4 2:8�10�6 7:2�10�10

1 10�5 0:4 3:4�10�5 8:4�10�10

0:1 10�6 4�10�2 6:8�10�5 1:7�10�10

10�2 10�7 4�10�3 1:8�10�5 4:5�10�12

10�3 10�8 4�10�4 4:4�10�6 1:1�10�13

10�4 10�9 4�10�5 1:1�10�6 2:8�10�15

10�5 10�10 4�10�6 2:8�10�7 7�10�17

10�6 10�11 4�10�7 8�10�8 2�10�18

Table 2: Calculation of the disturbing force due to the air molecules
within the vacuum chamber of a gravitational torsion balance. The
assumed geometrical characteristics are: meatus thickness s = 4
mm, moving mass radius R = 5 mm.

Substituting the expression of k by Eq. (3) one obtains

p0 � p (r) = p0 [1� �m=�0]
�
1� r2=L2� (16)

which, substituted in Eq. (15), gives us the force

F (p0) = (�=2) p0L2 (�p0=p0) (17)

where the relative depression is given by Eq. (12). Assum-
ing for smoothed chamber walls a value � = 0:001 we obtain
the disturbing force reported in Table 2. One can notice that
in the assumed torsion balance apparatus with light test mass
(R = 5 mm) the disturbing force F (p0) takes a maximum at
a pressure p0 ≈ 2 Pascal = 2�10�5 bar which makes the op-
tical thickness of the meatus about equal to 1. This maximum
is estimated to be comparable to the measured gravitational
force Fgr. Even taking into account the questionable accu-
racy of the fitting functions, the values of the disturbing force
explain “ad abundantiam” why the region of the intermediate
pressures between millibar and nanobar was avoided by the
experimenters. Obviously, what is of interest in the measure-
ments is the systematic error due to F (p0). For instance in
the Gershteyn’s light torsion balance (where Fgr may be of
the order of 10�11 Newton) the measurement was made at
a pressure p0 = 10�11 bar (10�6 Pascal), so the disturbing
force F (p0) gives a negligible systematic error � ≈ 2�10�7.

In the Heyl’s heavy balance experiment (where the mea-
sured Fgr was of the order of 10�9 Newton) the disturbing
force F (p0) at a pressure p0 = 1 millibar (100 Pascal) gives
� ≈ 10�16. However the random error due to the air convec-
tion was probably around � ≈ 10�4, that is much larger than
the systematic error due to the vacuum pressure.
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Additional Explanations to “Upper Limit in Mendeleev’s Periodic Table —
Element No. 155”. A Story How the Problem was Resolved

Albert Khazan
E-mail: albkhazan@gmail.com

This paper gives a survey for the methods how a possible upper limit in Mendeleev’s
Periodic Table can be found. It is show, only the method of hyperbolas leads to exact
answering this question.

True number of elements in Mendeleev’s Periodic Table is
the most important problem to the scientists working on the
theory of the Periodic Table. The theory is based in the core
on our views about the properties of the electron shells and
sub-shells in atoms, which obviously change with increasing
nuclear change (the nuclei themselves remains unchanged in
chemical reactions). The electron shells change due to re-
distribution of electrons among the interacting atoms. There-
fore, it is important that we know the limits of stability of
the electron shells in the heavy elements (high numbers in the
Periodic Table); the stability limits are the subjects of calcula-
tion in the modern quantum theory which takes into account
the wave properties of electron and nucleons. To do it, the
scientists employ a bulky mathematical technics, which gives
calculations for the 8th and 9th periods of the Table (a hun-
dred new elements are joined there).

Already 40 years ago the physicists proved that no chem-
ical elements with mass higher than 110 can exists. Now,
118th element is known (117th element, previous to it, is still
non-discovered). In the last time, the scientists of Joint Insti-
tute for Nuclear Research, Dubna, talked that the Periodic Ta-
ble ends with maybe 150th element, but they did not provided
any theoretical reason to this claim. As is probable, the regu-
lar method of calculation, based on the quantum theory, gives
no exact answer to the question about upper limit of the Table.

It should be noted that 10 new elements were synthesed
during the last 25 years: 5 elements were synthesed in GSI�,
4 elements were synthesed in JINRy (2 of these — in com-
mon with LLNLz), and 1 element was synthesed in LBNLx.
All the laboratories produced new elements as a result of nu-
clear reactions in accelerators: new elements were found after
analysis of the products of the reactions. This is a very sim-
plified explanation, however the essence of the process is so:
problem statement, then components for the nuclear reaction
and the necessary physics condition, then — identification of
the obtained products after the reaction. This method gives

�Gesellschaft für Schwrionenforshung — Helmholtz Centre for Heavy
Ion Research, Darmstadt, Germany.
yJINR — Joint Institute for Nuclear Research, Dubna, Russia.
zLLNL — Lawrence Livermore National Laboratory, USA.
xLBNL — Lawrence Berkeley National Laboratory, USA.

new elements, of course, but it gives no answer to the ques-
tion about their total number in the Periodic Table.

In contrast to this approach, when I tackled this problem,
I used neither calculation for the limits of stability of the elec-
tron shells in atoms, nor experiments on synthesis of new ele-
ments, but absolutely another theoretical approach which al-
lowed me for formulation of a new law in the Periodic Table
and, as a result, the upper limit in it. Here I explain how. (I
published all the results, in detail, in a series of papers [1–6],
then collected in a book [7]).

First. Contents Y of every single element (say, of a K-th
element in the Table) in a chemical compound of a molec-
ular mass X can be given by the equation of an equilateral
hyperbola Y =K=X , according to which Y (in parts of unit)
decreases with increasing X .

Second. After as I created the hyperbolic curves for not
only all known elements, but also for the hypothetical ele-
ments, expected by the aforementioned experimentalists, I
looked how the hyperbolas change with molecular mass. To
do it, I determined the tops of the hyperbolas, then paved a
line connecting the tops.

Third. The line comes from the origin of the coordinates,
then crosses the line Y = 1 in a point, where the top of one of
the hyperbolas meets atomic mass of element, K =X , that is
the boundary condition in the calculation. The calculated co-
ordinates of the special point are X = 411.663243 and Y = 1.
Because no elements can be above the point (contents Y of
an element in a chemical compound is taken in parts of unit),
the element with mass X = 411.663243 is the heaviest in the
Periodic Table, so the Table ends with this element.

Fourth. In the next stage of this research, I was focused
on the functions of atomic mass of element from its number
along the Periodic Table. As a result, I have deduced the num-
ber of the last (heaviest) element in the Table. It is No. 155.

Thus, the last (heaviest) element in the Periodic Table was
proved and its parameters were calculated without calculation
of the stability of the electron shells in atoms on the basis
of the quantum theory, but proceeding only from the general
considerations of theoretical chemistry.

Of course, the methods of theoretical chemistry I applied
in this reseach do not cancel the regular methods of the quan-
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tum theory; both methods are also not in competition to each
other. Meanwhile calculations for the stability of the elec-
tronic shells of super-heavy elements can be resultative only
in the case where the last element is known. Also, the exper-
imentalists may get a new super-heavy element in practice,
but, in the absence of theory, it is unnecessary that the element
is the last in the Periodic Table. Only the aforementioned the-
ory, created on the basis of the hyperbolic law in the Periodic
Table, provides proper calculation for the upper limit in the
Periodic Table, for characteristics of the last (heaviest) ele-
ment, and hence sets a lighthouse for all futher experimental
search for super-heavy elements.

P.S. This short paper was written due to the readers who, after
reading my papers and just published book, asked me about
the rôle of the calculations for the stability of the electron
shells in my theory.

Submitted on April 03, 2009 / Accepted on May 20, 2009
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Nikolai A. Kozyrev (1908 –1983) — Discoverer of Lunar Volcanism
(On the 100th Anniversary of His Birth)

Alexander N. Dadaev�
Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, Russia

This paper draws biography of Nikolai A. Kozyrev (1908 –1983), the Russian as-
tronomer who was one of the founders of theoretical astrophysics in the 1930’s, and
also discovered Lunar volcanism in 1958.

Nikolai A. Kozyrev, the 1970’s

Of theories of the internal structure of stars and stellar en-
ergy sources scientists nowadays do not show as much inter-
est as in the twenties and thirties of the past century. Interest
at that time is explained by the situation then, when thinking
about the nature of stellar energy was grounded in the study of
the tremendous energy of the atomic nucleus, then new. Al-
ready, at the beginning of that century, hypotheses about the
structure of the atom had been put forward. That encouraged
physicists to study the deep secrets of the atom and its en-
ergy. By the end of the 1920’s it became a widespread notion
amongst astrophysicists that the generation of energy in stars
is connected with sub-atomic processes in the chemical ele-
ments of which a star is composed. By the end of the 1930’s,
theoretical physicists had advanced some schemes for nuclear
reactions which might explain energy generation in stars, to
account for the energy expenditure of a star through radiation
into space. Kozyrev’s university study and the beginning of
his scientific activity was undertaken in the 1920’s. Very soon
he became known as a serious physicist, and also as an out-
standing planetologist. The young scientist had taken a keen
�Submitted through Markian S. Chubey, Pulkovo Observatory. E-mail:

mchubey@gao.spb.ru

interest in the fashionable problem of the origin of stellar en-
ergy, but he solved this problem more generally, encompass-
ing not only stars, but also planets and their satellites. He pro-
posed the hypothesis that the genesis of the internal energy of
celestial bodies is the result of an interaction of time with sub-
stance. The discovery of volcanic activity in the Moon, made
by Kozyrev when aged fifty, served to confirm his hypothe-
sis. This discovery holds an important place in astronomical
history, since a period of some 300 years of telescopic ob-
servations until then had not revealed volcanic activity on the
Moon; the Moon being regarded as a “dead” heavenly body.
Nikolai Kozyrev is rightly considered to be the discoverer of
lunar volcanism.

Nikolai Aleksandrovich Kozyrev was born on August, 20
(2nd of September by the New Calendar) 1908, in St. Peters-
burg, into the family of an engineer, Alexander Adrianovich
Kozyrev (1874–1931), a well-known expert in his field, at the
Ministry of Agriculture, and who served in the Department of
Land Management engaged in the hydrology of Kazakhstan.
Originating from peasants of the Samara province, Kozyrev
senior, who was born in Samara, was appointed to the rank
of Valid State Councillor, in accordance with the ’tables of
ranks’ in Imperial Russia, which gave to him, and to his fam-
ily, the rights of a hereditary nobleman. N. A. Kozyrev’s
mother, Julia Nikolaevna (1882–1961), came from the family
of Samara merchants, Shikhobalov. A. A. Kozyrev had three
more children: two daughters — Julia (1902–1982); Helena
(1907–1985); and a son, Alexei (1916–1989).

Upon finishing high school in 1924, Nikolai Kozyrev
went on up to the Pedagogical Institute, and thence, under
the insistence of professors at the Institute, was admitted to
the Physical and Mathematical Science faculty of Leningrad
University, to become an astronomer. He finished university
in 1928 and went on to postgraduate study at Pulkovo Obser-
vatory.

At the same time two other Leningrad University grad-
uates went on to postgraduate study at Pulkovo — Victor A.
Ambartsumian and Dmitri I. Eropkin. Academician Aristarch
A. Belopolsky became the supervisor of studies of all three.

The “inseparable trinity” has left its imprint on the Pulko-
vo Observatory. Each of them was endowed with much talent,
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but they differed in character. Life at Pulkovo proceeded sep-
arately from “this world”, monotonously and conservatively,
as in a monastery: astronomical observations, necessary re-
laxation, processing of observations, rest before observations,
and the constant requirement of silence. The apartments of
the astronomers were located in the main building of an ob-
servatory, in the east and west wings, between which there
were working offices and premises for observations — merid-
ian halls and towers with rotating domes.

The low salary was a principal cause of latent discontent.
The protests of the three astrophysicists supported many em-
ployees of the Observatory, including the oldest — Aristarch
A. Belopolsky.

After postgraduate study, in 1931, Ambartsumian and Ko-
zyrev were appointed to the staff of the observatory as scien-
tific experts category 1. The direction taken by the work of
their supervisor is reflected in the character of the publica-
tions of the young scientists. But an independent approach
was also outlined in these works in the solving of solar phys-
ics problems. Their work in the field of theoretical astro-
physics was already recognized thanks to the writings of
Milne, Eddington, and Zanstr, which they quickly developed
on the basis of the successes of quantum mechanics, of the
theory of relativity and of atomic and nucleus physics, was
quite original. Ambartsumian and Kozyrev closely connected
to a group of young theoretical physicists working at uni-
versities and physico-technical institutes: George A. Gamov
(1904–1968), Lev D. Landau (1908–1968), Dmitri D. Ivanen-
ko (1904–1994), Matwey P. Bronstein (1906–1938). Gamov,
Landau and Ivanenko, along with their works on physics,
were publishing articles on astrophysics. Ivanenko and Bron-
stein frequently visited Pulkovo for ’free discussions’ of the
essential problems of theoretical physics and astrophysics [1].
It was an original “school of talent”.

Ambartsumian taught university courses in theoretical
physics (for astrophysicists) and theoretical astrophysics. Ko-
zyrev read lectures on the theory of relativity at the Pedagog-
ical Institute. Both participated in working out the problems
of a developing new science — theoretical astrophysics.

Courses of study in physics and astrophysics are essen-
tially various. The study of the physics of elementary pro-
cesses of interaction of matter and radiation is in astrophysics
a study of the total result of processes in huge systems that
stellar atmospheres as a whole represent. In such difficult
systems the process of elementary interaction is transformed
into the process of transfer of radiation (energy) from a star’s
internal layers to external ones, whence radiation leaves for
space. The study methods are also various. In physics, a
directed action of radiation on matter is possible, and the re-
searcher operates by this action, and the studied process can
be modified by the intervention of the researcher. In astro-
physics intervention is impossible: the researcher can only
observe the radiations emitted into space, and by the proper-
ties of observable radiation conjecture as to the internal pro-

cesses of a star, applying the physical laws established in ter-
restrial conditions. Meaningful conclusions can be made by
means of correctly applied theory. Study within these con-
straints is of what theoretical astrophysics consists.

The problem cannot be solved uniformly for all objects
because astrophysical objects are very diverse. The process
of transfer of radiation (energy) in stars of different spectral
classes does not occur by a uniform scheme. Still more di-
versity is represented by stars of different types: stationary,
variable, and non-stationary. Besides the stars, astrophysical
objects include the planetary nebula, diffuse nebula (light and
dark), white dwarfs, pulsars, etc. Theoretical astrophysics is
a science with many branches.

From Kozyrev’s early publications it is necessary to sin-
gle out articles about the results of spectro-photometrical
studies of the solar faculae and spots on the basis of his own
observations. One work dealt with the temperature of sun
spots, another the interpretation of the depth of dark spots,
and Kozyrev proved that sun spots extend to much deeper
layers of the solar atmosphere than was generally believed at
that time. Kozyrev’s arguments have since found verification.

In 1934 Kozyrev published in Monthly Notices of the
Royal Astronomical Society a solid theoretical research pa-
per concerning the radiant balance of the extended photo-
spheres of stars [2]. Concerning the problem of transfer of
radiant energy, atmospheric layers are usually considered as
plane-parallel, for stars with extended atmospheres (photo-
spheres), but such a simplification is inadmissible. Consider-
ing the sphericity of the photospheric layers, Kozyrev made
the assumption that the density in these layers changes in in-
verse proportion to the square of the distance from the star’s
centre and corresponds to the continuous emanation of mat-
ter from the star’s surface. He used available data on obser-
vations of stars of the Wolf-Rayet type and of P Cygni and
theoretically explained observable anomalies, namely appear-
ance in their spectral lines of high ionization potentials, which
demands the presence of considerably more heat than actu-
ally observed on the surface of these stars. In the issue of
the above-mentioned Journal, S. Chandrasekar’s paper, con-
taining the more common view of the same problem, was
published, although received by the Journal half a year after
Kozyrev’s paper. The theory is called the “theory of Kozyrev-
Chandrasekar”.

A considerable part of the work during the Pulkovo pe-
riod was carried out by Kozyrev and Ambartsumian. Together
with Eropkin, Kozyrev published two articles containing the
results of their expedition research work on polar lights by
a spectral method; luminescence of the night sky and zodiac
light. Research on the terrestrial atmosphere in those years
was rather physical. However, works of a geophysical charac-
ter stood outside the profile of the astronomical observatory;
besides, these works demanded considerable expenditure that
led to conflict with observatory management.

In May 1934, Belopolsky died — to the end a defender
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Nikolai Kozyrev, 1934

of his pupils. Ambartsumian, in the autumn of 1935, had
moved to Leningrad university. The “trinity” has broken up.
The Director of Pulkovo Observatory, Boris P. Gerasimovich
(1889–1937) decided to remove the two remaining “infractors
of calmness”. An infringement of financial management dur-
ing the Tadjik expedition was fashioned into a reason for the
dismissal of Dmitri Eropkin and Nikolai Kozyrev. In those
years appointment and dismissal of scientific personnel of the
observatory were made not by the director, but only with the
permission of the scientific secretary of the Academy of Sci-
ences, who upheld the action of the Director. A subsequent
investigation for the reinstatement of Eropkin and Kozyrev
conducted by the National Court and the commission of the
Presidium of the Academy of Sciences occupied more than
half a year.

In the meantime, in October, 1936, in Leningrad, arrests
of scientists, teachers of high schools, and scientific officers
had begun. One of the first to be arrested was the correspond-
ing member of the USSR Academy of Sciences, Boris V. Nu-
merov (1891–1941), the director of the Astronomical Insti-
tute, an outstanding scientist in the field of astronomy and
geodesy. He was accused of being the organizer of a terrorist
anti-Soviet group amongst intellectuals [3].

The wave of arrests reached Pulkovo. Kozyrev was ar-
rested on the solemn evening of the 19th anniversary of Oc-
tober revolution, in the House of Architects (the former Jusu-
povsky palace). The choice of the date and the place of the
repressive operation was obviously made for the purpose of
intimidation of the inhabitants. On the night of December 5th
(Day of the Stalin Constitution, the “most democratic in the
world”) Eropkin was arrested in Leningrad. These “red dates”

are not forgotten in Pulkovo: all victims of the repression are
not forgotten.

The Director of the observatory, Boris P. Gerasimovich
was arrested at night, between the 29th and 30th of June 1937,
in a train between Moscow and Leningrad. On November 30,
1937, Gerasimovich was sentenced to death and was shot that
same day.

The Pulkovo astronomers, arrested between November
and the following February, were tried in Leningrad on May
25, 1937. Seven of them, Innokentiy A. Balanovsky, Niko-
lai I. Dneprovsky, Nikolai V. Komendantov, Peter I. Jash-
nov, Maximillian M. Musselius, Nikolai A. Kozyrev, Dmitri
I. Eropkin; were each sentenced to 10 years imprisonment.
The hearings lasted only minutes, without a presentation of
charges, without legal representation, with confessions of
“guilt” extracted by torture — no hearings, only sentence.

According to the legal codes at the time, the 10 year im-
prisonment term was the maximum, beyond which was only
execution. However, almost all the condemned, on political
grounds, were died before the expiry of the sentences. Of the
condemned Pulkoveans, only Kozyrev survived.

Boris V. Numerov was sentenced 10 years imprisonment
and whilst serving time in the Oryol prison, was shot, on
September, 15th, 1941, along with other prisoners, under the
threat of occupation of Oryol by the advancing fascist army.

In Pulkovo arrests of the wives of the “enemies of the
people”, and other members of their families, had begun. It
is difficult to list all arrested persons. They were condemned
and sentenced to 5 year terms of imprisonment.

Until May 1939, Kozyrev was in the Dmitrovsk prison
and in the Oryol prison in the Kursk area, then afterwards he
was conveyed through Krasnoyarsk into the Norilsk camps.
Until January 1940, he laboured on public works, and then,
for health reasons, he was sent to the Dudinsky Permafrost
Station, as a geodesist. In the spring of 1940 he made to-
pographical readings of Dudinka and its vicinities, for what
Kozyrev was permitted free activity, for to escape there was
no possibility: the surrounds were only tundra.

In the autumn of 1940 he worked as an engineer-
geodesist, and from December 1940 was appointed to Chief
of Permafrost Station. On October 25, 1941, “for engaging in
hostile counter-revolutionary propaganda amongst the pris-
oners” he was again arrested, and on January 10, 1942, he
was sentenced to an additional 10 years imprisonment. On
the same charges, Dmitri I. Eropkin had been condemned re-
peatedly, and was shot in Gryazovetsky prison of the Vologda
area, on January 20, 1938 [3].

The Supreme Court of the Soviet Russia reconsidered the
sentence on Kozyrev as liberal one and replaced it with death
execution. But the Chief of the Noril-Lag (a part of the well-
known GULAG) tore up the order of execution before the
eyes of Kozyrev, referring to the absence in the regional cen-
tre, Dudinka, of any “executive teams”. Probably, in all real-
ity, this was a theatrical performance. Simply, Kozyrev was
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needed, as an expert, for the building of a copper-nickel inte-
grated facility, as another nickel mine near the Finnish border
was then located within a zone of military action.

After the court hearing Kozyrev was transported to No-
rilsk and directed to work on a metallurgical combine as a
thermo-control engineer. By spring of 1943, owing to his
state of poor health, Kozyrev was transferred to work at the
Norilsk Combine Geological Headquarters as an engineer-
geophysicist. Until March 1945, he worked as the construc-
tion superintendent for the Hantaysky lake expedition and as
the Chief of the Northern Magneto-Research Group for the
Nizhne-Tungus geology and prospecting expedition.

Some episodes of the prison and camp life of Nikolai A.
Kozyrev testify to his intense contemplations during this pe-
riod. Certainly, some stories, originating from Kozyrev him-
self, in being re-told, have sometimes acquired a fantastic
character.

The episode concerning Pulkovo’s Course of Astrophysics
and Stellar Astronomy [4] whilst being held in Dmitrovsky
Central (the primary prison in Dmitrov city), is an example.
Being in a cell for two people, Kozyrev thought much of sci-
entific problems. His mind went back to the problem of the
source of stellar energy. His cell-mate had been sent to soli-
tary confinement for five days and when he returned he was
very ill, and died. Kozyrev was then alone in his cell. He was
troubled by the death of this cell-mate and his thoughts ceased
to follow a desirable direction. A deadlock was created: there
were no scientific data which could drive his thoughts. He
knew that the necessary data were contained in the second
volume of the Course of Astrophysics. Suddenly, in a day
of deep meditation, through the observation port of his cell
was pushed the book most necessary — from the Course of
Astrophysics.

By different variants in the re-telling of the tale, the pris-
oner used the book for between one and three days, thumb-
ing through it and memorising the necessary data. Then the
book was noticed by a prison guard, and as it was deemed
that the use of such specialist material literature was not al-
lowed, the book was taken from him. Kozyrev thought that
this book ,which so casually appeared, was from the prison
library. That is almost impossible: someone delivered to the
prison the special reference book, published in such a small
circulation? Was there really a book in the hands of the pris-
oner or it was a figment of his tormented and inflamed imag-
ination? Most likely mental exertion drew from his mem-
ory the necessary data. Something similar happens, some-
times, to theoreticians, when some most complicated prob-
lems steadfastly occupying the brain, are solved in unusual
conditions, for example, as in a dream.

Another episode: consumed by his thoughts, Kozyrev be-
gan to pace his cell, from corner to corner. This was forbid-
den: in the afternoon the prisoner should sit on a stool, and at
night lie on his bunk. For infringement of the rules Kozyrev
was sent to solitary confinement for five days, in February

1938. The temperature in the confinement cell where daylight
did not penetrate, was about zero degrees. There the prisoners
wore only underwear, barefooted. For a meal they got only a
piece of black bread and a mug of hot water per a day. With
the mug it was possible to warm one’s freezing hands but not
the body. Kozyrev began to intensely pray to God from which
he derived some internal heat, owing to which he survived.

Upon his release from solitary, Kozyrev reflected, from
where could the internal heat have come? Certainly he un-
derstood that in a live organism the heat is generated by vari-
ous vital processes and consumption of food. And it happens
that a person remains vigorous and efficient, rather long term,
without consumption of food, and “lives by the Holy Spirit”?
What is Holy Spirit? If He pours in energy then energy can
appear through Him, in a lifeless body. What factor of uni-
versal character can generate the energy? So Kozyrev’s “time
theory”, advanced by him twenty years later, thus arose.

Both episodes contain mystical elements, but the mysti-
cism accompanied Kozyrev both in imprisonment and in free-
dom, both in his life and in his scientific activity.

In June 1945 Kozyrev was moved from Norilsk to Mos-
cow for “choice jugée revision”. According to the official
enquiry [3], choice judgée revision was made under the pe-
tition of academician Grigory A. Shayn, requesting libera-
tion of the exiled Kozyrev, for his participation in restoration
of astronomical observatories that were destroyed during the
war; in Pulkovo, Simeis, Nikolaev, and Kharkov. However
the petition of the academician was too weak an argument.
Previously, in 1939, the academicians Sergey I. Vavilov and
Grigoriy A. Shayn petitioned for revision of the choice jugées
of the Pulkovo astronomers, not knowing that some of them
were then already dead. The petition by the outstanding aca-
demicians was of no consequence.

The petition which was sent to the Minister of Internal Af-
fairs, in August 1944, and registered with the judicial-
investigatory bodies as the “letter of academician Shayn”, but
had actually been signed by three persons [5], namely, the full
members of the Academy of Sciences of the USSR, Sergei I.
Vavilov and Gregory A. Shayn, and by the correspondent-
member of the Academy, Alexander A. Mihailov, the Chair-
man of the Astronomical Council of the Academy. This peti-
tion concerned only Kozyrev. The fate other condemned as-
tronomers was known only to elements of the People’s Com-
missariat of Internal Affairs. The petition for liberation of
Kozyrev was obviously initiated those elements of the Peo-
ple’s Commissariat of Internal Affairs. How to explain this?

When the Soviet intelligence agencies had received infor-
mation about research by the USA on the creation of nuclear
weapons, the State Committee of defence of the USSR made,
in 1943, a secret decision on the beginning of such works in
the USSR. As the head of the programme had been appointed
Laurentiy P. Beriya, the National Commissar of Internal Af-
fairs [6, p. 57]. Many physicists were in custody. Many were
already dead. Those who still lived in prison camps it was

L6 Alexander N. Dadaev. Nikolai A. Kozyrev (1908 –1983) — Discoverer of Lunar Volcanism



July, 2009 PROGRESS IN PHYSICS Volume 3

necessary to rehabilitate. Kozyrev numbered amongst them.
The “choice jugée revision” is an unusual process, almost

inconceivable then. It was a question of overturning the deci-
sion of Military Board of the Supreme Court of the USSR, the
sentences of which then were not reconsidered, but categori-
cally carried out. The decision was made in the special prison
of the People’s Commissariat of Internal Affairs on Lubyanka
(called then the “Felix Dzerzhinsky Square”, in the centre of
Moscow) where Kozyrev was held for one and a half years.
At last, by decision of a Special Meeting of the KGB of the
USSR on December 14, 1946, Kozyrev was liberated “condi-
tionally ahead of schedule”. This meant that over Kozyrev’s
head still hung the sentence of the Taymyrsky court, and with
the slightest pretext he could appear again behind bars. Only
on February 21, 1958, was the sentence of the Taymyrsky
court overruled and Kozyrev completely rehabilitated.

After liberation Kozyrev has spent some days in Moscow
that were connected mainly with an employment problem.
Gregory A. Shayn, appointed in December 1944 as the Direc-
tor of the Crimean Astrophysical Observatory (CrAO) then
under construction, invited him to work in the Crimea. Kozy-
rev agreed. He devoted himself once again to scientific work.

But first he went to Leningrad for a meeting with kins-
folk and old friends, for restoration of scientific communica-
tions and, primarily, to complete work on his doctoral the-
sis, the defence of which took at Leningrad University on
March 10th, 1947, i.e. only two and a half of months after
his liberation. Many colleagues were surprised; when did
he have time to write the dissertation? But he had more or
less composed the dissertation during his ten years in prison.
The strange episodes which occurred in Dmitrovsky Central
had been connected with its theme. Kozyrev had some free
time in Taymyr, when he was free to wander there for the one
and a half years he worked as the Chief of the Topographical
Group, and as the senior manager of the Permafrost Station.
Besides, during his stay in Lubyanka, the possibility of being
engaged within a year on the dissertation with use of the spe-
cialist literature been presented itself to him. Then he could
write down all that at he had collected in his head. After lib-
eration, possibly, it was only necessary to “brush” the draft
papers.

Defence of the dissertation by Kozyrev occurred at the
Department of Mathematics and Mechanics of Leningrad
University: the dissertation theme, Sources of Stellar Energy
and the Theory of the Internal Constitution of Stars. Attend-
ing as official examiners were the corresponding member of
the Academy of Sciences of the USSR, Victor A. Ambart-
sumyan, professor Cyrill F. Ogorodnikov, and Alexander I.
Lebedinsky. As a person working, after demobilization, at
the Astronomical Observatory of Leningrad University, I was
permitted to be present at this defence. Discussion was rather
animated, because, beyond the modest name of his disser-
tation, Kozyrev put forward a new idea as to the source of
the stellar energy, subverting the already widespread convic-

Kozyrev in Crimean Observatory, after the liberation

tion that thermonuclear reactions are the source of energy in
the entrails of stars. The discussion ended with a voting in
favour of the Author’s dissertation. On this basis the Aca-
demic Council of the University conferred upon Kozyrev the
award of Doctor of Physical and Mathematical Sciences (the
Soviet ScD), subsequently ratified by the Supreme Certifying
Commission.

Kozyrev’s dissertation was published in two parts, in the
Proceedings of the CrAO [8], in 1948 (a part I), and in 1951
(a part II).

With scheme for nuclear reactions in the Sun and stars
proposed by the German theoretical physicist Hans Bethe, in
1939, the question of stellar energy sources seemed to have
been solved, and so nobody, except Kozyrev, reconsidered the
problem.

Arguing by that the age of the Earth means that the Sun
has already existed for some billions of years, and intensity
of its radiation has not changed for some millions of years,
which geological and geophysical research testifies, Kozyrev
concluded the Sun is in a rather steady state, both in its me-
chanical and its thermodynamic aspects. This necessitates a
study of the sources of its energy by which it is able to operate
continuously for millions, even billions, of years.

Certainly the character of the source depends on the in-
ternal structure of the Sun (a star). Theories of the internal
structure of stars are constructed on the basis of many as-
sumptions about a star’s chemical composition (percentage of
hydrogen and other chemical elements), about the ionization
conditions, about the quantity of developed energy per unit
mass per second, about the nature of absorption of radiation,
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etc. The reliability of all these assumptions is determined by
comparison of the theoretical conclusions with the data of ob-
servations.

The key parameters of a star are its luminosity L, its mass
M and its radius R. Kozyrev deduced theoretical dependen-
cies of type M -L and L-R, and compared them with observ-
able statistical dependencies “mass-luminosity” and “lumi-
nosity — spectral class” (Herzsprung-Russell diagram). The
spectral class is characterized by the star’s temperature, and
the temperature is connected through luminosity with the
star’s radius (Stefan-Boltzman’s law), i.e. the observable de-
pendence of type L-R obtains. Comparison of the theoreti-
cally derived dependencies with observations statistically
leads to the conclusion that the temperature at the centres of
stars of the same type as the Sun does not exceed 6 million
degrees, whereas the temperature necessary for reactions of
nuclear synthesis is over 20 million degrees.

Moreover, by comparison of theoretical indicators of en-
ergy generation in a star and the emitted energy, these indica-
tors are cancelled out by a star. Hence, in the thermal balance
of a star, the defining factor is the energy emitted. But the es-
timated energy generation of thermonuclear reactions (if they
operate in a star) far exceeds the observed emitted energy.
Thus, reactions of nuclear synthesis are impossible because
of insufficient heat in the stellar core (a conclusion drawn in
the first part of Kozyrev’s dissertation), and are not necessary
(a conclusion of the second part).

Kozyrev drew the following conclusions: 1) a star is not
a reactor, not a nuclear furnace; 2) stars are machines that
develop energy, the emitted radiation being only a regulator
for these machines; 3) the source of stellar energy is not Ein-
stein’s mass-energy interconversion, but of some other com-
bination of the physical quantities. He also wrote that the
“third part of this research will be devoted to other relations”.
Kozyrev held that stellar energy must be of a non-nuclear
source, and must be able to operate for billions years without
spending the mass of a star. The energy generation should
not depend on temperature, i.e. the source should work both
in stars, and in planets and their satellites, generating the in-
ternal energy of these cooler bodies as well. Accordingly,
Kozyrev carried out observations, in order to obtain physical
substantiation of his fundamental assumptions.

Kozyrev paid special attention to observations of the
Moon and planets. About that time the 50-inch reflector,
which Kozyrev grew so fond of, had been installed at the
Crimean Observatory.

In 1954 Kozyrev published the paper On Luminescence
of the Night Sky of Venus on the basis of spectral observa-
tions made at the Crimean Observatory in 1953. The obser-
vations for the purpose of recording the spectrogram of the
night sky of a planet possessing a substantial atmosphere, re-
quired great skill: it was necessary to establish and keep on
a slit of the spectrograph the poorly lighted strip to be com-
pletely fenced off from the reflected light of the day side of

the planet, the brightness of which is 10,000 times the lumi-
nescence of the night sky. Dispersion of light from the horns
of the bright crescent extend far into the night part, and can
serve as the source of various errors, as the exposure must be
long, to embody on a photographic plate the spectrum of the
weak luminescence of the atmosphere of the planet. His ob-
servations went well; their processing and interpretation led
to the detection of nitrogen in the atmosphere of Venus in the
form of molecules N2 and N+

2 .
The English astrophysicist Bryan Warner, in 1960, on the

basis of a statistical analysis of Kozyrev’s observations,
proved identification of nitrogen and, additionally, that part
of the spectral lines belong to neutral and ionized oxygen [9].
The presence of nitrogen and oxygen on Venus was definitely
verified by direct measurements of its atmosphere by the in-
terplanetary space missions “Venus-5”, “Venus-6” (1969) and
in the subsequent missions.

The observations of Mars in opposition, 1954 and 1956,
inclined Kozyrev to the new conclusions concerning the Mar-
tian atmosphere and polar caps. Studying the spectral details
of the planet’s surface, he has come to the conclusion that ob-
servable distinction of the colour of continents and the seas
on Mars can be explained by optical properties of the Mar-
tian atmosphere. This contention drew sharp objections from
Gabriel A. Tihov, the well-known researcher of Mars. The
scientific dispute remained unresolved. Kozyrev reasoned,
that the polar cap observed in 1956 was an atmospheric for-
mation, similar to “hoarfrost in air”. Independently, Niko-
lai P. Barabashev and Ivan K. Koval (1956), and later also
Alexander I. Lebedinsky and Galina I. Salova (1960), came
to similar conclusions.

Kozyrev systematically surveyed with spectrograph var-
ious sites on the Moon’s surface. The purpose of such in-
spections was to look for evidence of endogenetic (internal)
activity which, as Kozyrev believed, should necessarily exist
in the Moon. With the help of spectrographs it is possible to
locate on the surface the sites of gas ejection, and he was sure
that, sooner or later, he would see such phenomena.

In the beginning of the 19th century, William Hershel had
reported observation of volcanoes on the Moon. François
Arago later showed that visual observations do not permit de-
tection of eruption of a lunar volcano as in the absence of at-
mosphere the eruption is not accompanied by ignition and lu-
minescence. Kozyrev however approached the question with
a belief in the existence of a “cold source” of energy in stars
and planets.

His dissertation is devoted to the energy sources of stars.
Concerning accumulation and action of the internal energy
of planets, Kozyrev had expounded in the years 1950–1951
in the articles Possible Asymmetry in Llanetary Figures [10]
and On the Internal Structure of the Major Planets [11].

The Moon does not differ from the planets in that the non-
nuclear energy source should exist in the Moon as well. Its
continuous operation should lead to accumulation of energy
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which will inevitably erupt onto the surface, together with
volcanic products, including gas. The gas can be observed
with the help of the spectrograph. Before Kozyrev nobody
used such methods of observation of the Moon. Difficul-
ties in the observations are due to the necessity of catching
the moment of emission because the ejected gas will quickly
dissipate. The gases ejected by terrestrial volcanoes consist
of molecules and molecular composites. The temperature of
eruptions on the Moon cannot be higher. At successful regis-
tration the spectrogram should embody the linear spectrum of
the Sun, reflected by the Moon, and molecular bands super-
imposed upon this spectrum, in accordance with the structure
of the emitted gas.

Kozyrev found that luminescent properties are inherent to
the white substance of the beam systems on the Moon. Sup-
porters of the theory of a volcanic origin of craters on the
Moon consider that the beam systems are recent formations of
volcanic origins. One night in 1955 the crater Aristarkh dif-
fered in luminescence, exceeding the usual by approximately
four times. It was possible to explain the strengthening of
the luminescence by the action of a corpuscular stream as the
light stream from the Sun depends only on inclination of the
solar beams to the Moon’s surface. As a stream of the charged
corpuscles is deviated by a magnetic field, the luminescence
should be observed on a dark part of the lunar disc that was
not marked. Hence, “the Moon does not have a magnetic
field” [12].

Kozyrev had drawn this conclusion three to four years
prior to spacecraft missions to the Moon (1959). The discov-
ery of an absence of a magnetic field for the Moon is consid-
ered an important achievement of astronautics. But in those
years the prediction made by Kozyrev, went unnoticed, as did
the results of his research on the atmosphere of Venus.

Also went unacknowledged was his doctoral dissertation
which concluded an absence of thermonuclear synthesis in
stars. It would seem that his work should have drawn the
attention of physicists and astrophysicists in connection with
Raymond Davis’ experiments on the detection of the solar
neutrino.

In 1946 Bruno Pontekorvo described a technique of neu-
trino detection through physical and chemical reaction of
transformation of chlorine in argon. Any thermonuclear re-
actions are accompanied by emission of neutrino or antineu-
trino. R. Davis organized, in the 1950’s, a series of experi-
ments on the basis of Pontekorvo’s method. The observations
revealed little evidence for the expected reaction, in accor-
dance with an absence of thermonuclear reactions in the Sun’s
entrails as had been predicted by Kozyrev.

Throughout the years 1967–1985, Davis continued exper-
iments to measure neutrino streams from the Sun, with an ad-
vanced technique. Results were no better: the quantity of de-
tected neutrinos did not surpass one third of the theoretically
calculated stream. In the 1990’s the experiments were per-
formed in other research centres by other means, reaffirming

Davis’ results. The Nobel Prize [13] was awarded to Ray-
mond Davis in 2002.

From August 15th, 1957, Kozyrev began to work at Pul-
kovo Observatory in the same post of senior scientific re-
searcher. He had received a small apartment in Leningrad, on
the Moscow Prospect, on a straight line connecting the city
with Pulkovo. Twice a year he went to the Crimea to carry
out observations, in the spring and autumn, with the 50-inch
reflector.

In August, 1958 Kozyrev published his book Causal or
Asymmetrical Mechanics in the Linear Approximation [14],
where he generalized the results of laboratory experiments
and astrophysical observations to a conclusion on the non-
nuclear energy source of stars. It was a continuation of his
thesis for his doctor’s degree. Thus, this third part is in style
and character very unlike the first two. Discussion of this
book began before the death of Kozyrev, and continues.

The non-nuclear energy source of stars and planets is at-
tributed in Part III to time. Kozyrev however did not explain
what time is, but asserted that time proceeds by physical prop-
erties, and he tried to reveal them. He believed that in rotating
celestial bodies, time makes energy, which he tried to prove
experimentally by weighing of gyroscopes at infringement of
the usual relationships between cause and effect.

To consolidate his ideas about transformation of time into
energy Kozyrev tried to create a corresponding theory. Postu-
lating an infinitesimal spatial interval between cause and ef-
fect, and the same time interval between them, he defines the
relation of these intervals as the velocity of transition of a rea-
son into a consequence. After a series of postulates, Kozyrev
defined the course of time as the speed of transition of a rea-
son in a consequence, and designates it c2, unlike the velocity
of light c1. He considered that c2 is a universal constant, as
well as c1; the value of c2 he finds experimentally and theoret-
ically, as c2 = 1=137c1, where 1/137 is dimensionless value
equal to Sommerfeld’s fine structure constant. Besides that

c2 = a
e2

h
= a � 350 km/sec;

where e is the elementary charge, h is Planck’s constant, a a
dimensionless multiplier which is subject to definition.

To describe the character of interaction of the causes and
effects by means of mathematical formulae, Kozyrev gave to
these phenomena the sense of mechanical forces: reason is
active force, and effect is passive force. Thereby Kozyrev
materialized these concepts just as the definition of force in-
cludes mass. Though cause and effect phenomena had al-
ready been materialized by postulation of the spatial and time
intervals between them, Kozyrev used representations about
the compactness of bodies and the impossibility of the simul-
taneous location of two bodies at one point of space. In the
same manner Kozyrev also materialized time, or the course of
time, owing to which there is an intermediate force mdv

dt be-
tween the active and passive forces. Values ofm and v are not
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Kozyrev at home, in Leningrad

explained. Nor does Kozyrev explain how the course of time
causes the occurrence of the additional force. It was simply a
postulate, which he had not formulated. The materialization
of causes and effects is also just postulated.

The long chain of postulates included in the long theoret-
ical reasoning is reduced to a statement about the subliminal
flow of time which exists from extreme antiquity. Directly
about the flow Kozyrev does not write; but if the course of
time proceeds by mechanical force, then the force, over some
distance, does work. So the river flow actuates a water-mill.

That is why, according to Kozyrev’s theory, energy is cre-
ated at the expense of time only in rotating bodies. To prove
this thesis experimentally, Kozyrev engaged in experiments
with gyroscopes, to which a separate chapter in his book is
devoted. Later, Kozyrev reconstructed the theory on the basis
of Einstein’s theory.

The physical essence of the course of time nobody has
been able to elucidate. However there are no bases to deny
that time action promotes energy generation in stars and plan-
ets, as Kozyrev’s theory specifies. Kozyrev’s discovery of lu-
nar volcanism, as a result of his persevering research on the
basis of his own theory, also specifies that.

On November 3, 1958, at the Crimean observatory, Ko-
zyrev was observing a region on the surface of the Moon for
the purpose of its detecting endogenetic activity. This time
Kozyrev concentrated his attention on the crater Alphons, in
the central part of the lunar disc. According to American as-
tronomer Dinsmor Alter, a haze observed in the crater Al-
phons prevented clarification of the details of crater [15].

Kozyrev made a pair of spectrograms. On one of them,
in the background of the solar spectrum, with its specific dark

lines, the light bands of molecular carbon C2 and carbon diox-
ide gas CO2 were visible. On the other spectrogram taken
half an hour after the first, the bands were absent. The slit of
the spectrograph crossed the crater through the central hill of
the crater. Hence, the gas eruption occurred from the central
hill of the crater Alphons. So the discovery was made.

Soon Kozyrev published a short letter in The Astronom-
ical Circular (No. 197, 1958) and an article containing the
detailed description of a technique and circumstances of the
observations, with a reproduction of the unique spectrogram,
in Sky and Telescope (vol. 18, No. 4, 1959). In response to this
article the well-known astronomer and planetologist, Gerard
Kuiper, sent a letter to the Director of Pulkovo Observatory
in which he declared that Kozyrev’s spectrogram was a fake.

From December 6 to December 10, 1960, in Leningrad
and Pulkovo, there was held an international symposium on
lunar research by ground-based and rocket means (the Sym-
posium No. 14 “Moon”), assembled in accordance with the
calendar schedule of the International Astronomical Union
(IAU). Well-known planetologists took part in the Sympo-
sium sessions and scientists from many countries were pre-
sent: Gerard Kuiper, Garald Jurys, John Grey (USA), Zdenek
Copal (Great Britain), Auduin Dolfus (France), Nicola Bonev
(Bulgaria), Nikolai A. Kozyrev, Alexander V. Markov, Nade-
zhda N. Sytinskaja (USSR), etc.

Kozyrev’s report Spectroscopic Proofs for the Existence
of Volcanic Processes on the Moon [16], with presentation
of the original spectrogram, was favourably received. Con-
cerning the decoding of the emittance spectrum which had
appeared when photographing the lunar crater Alphons, the
skilled spectroscopists Alexander A. Kalinjak and Lydia A.
Kamionko reported. Their identification of the spectrum
proved the authenticity of the spectrogram. G. Kuiper was
also convinced of the validity of the spectrogram, and with-
drew his claims of forgery.

Kozyrev’s detection of endogenetic activity in the “dead”
Moon has not received either due consideration or support
in relation to his search for a “cold source” of the energy
of the Earth and in stars. Kozyrev’s book Causal Mechan-
ics, putting forward the flow of time as an energy source, has
received inconsistent responses in the press. The first was
by the Leningrad publicist and physicist Vladimir Lvov, who
published in the newspaper Evening Leningrad, from Decem-
ber 20, 1958, the article New Horizons of Science. The arti-
cle’s title indicates a positive reception of Kozyrev’s book.
Subsequently, Lvov repeatedly published in newspapers and
periodicals, strengthening the arguments in favour of state-
ments that Kozyrev’s theory, in essence, amounts to discov-
ery of a third origin of thermodynamics, which counteracts
thermal death of the Universe.

In the same spirit, in The Literary Newspaper, from Nov-
ember 3rd of 1959, an article by the well-known writer Mari-
etta Shaginyan, entitled ’Time from the big letter’, was pub-
lished. Meanwhile, in Pulkovo Observatory, Kozyrev’s lab-
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oratory experiments, which he conducted to substantiate the
conclusions of Causal Mechanics and his “time theory”, had
been organized. It was found that the experimental data did
not exceed the “level of noise” and so did not reveal the ef-
fects predicted by the theory. On the basis of these results,
the full members of Academy, Lev A. Artsimovich, Peter L.
Kapitsa and Igor E. Tamm reported in the newspaper Pravda,
on November 22, 1959, in the article On the Turn in Pursuit
of Scientific Sensations, in which they condemned the arti-
cle by M. Shaginjan as an “impetuously laudatory” account
of the “revolution in science” made by professor Kozyrev.

The Branch of General Physics and Astronomy of the
Academy of Sciences organized another more careful check
of the experiments and Kozyrev’s theory. The examination
and analysis was made by scientists in Leningrad and Mos-
cow, appointed by the Branch, with involvement of some Le-
ningrad institutes. The results were discussed by the Aca-
demic Council of Pulkovo Observatory on July 1, 1961. Ko-
zyrev’s theory, detailed in the book Causal Mechanics, was
deemed insolvent, and recommendations to improve equip-
ment and to raise the accuracy of experimental data
were given.

The book Causal Mechanics met with a negative recep-
tion, although it deserved some measure of positive evalua-
tion. Kozyrev’s theory as it is presented in the book is an in-
vestigation, which, before Kozyrev, nobody had undertaken.
The investigation occurred in darkness, blindly, groping, pro-
ducing an abundance of postulates and inconsistent reason-
ing. Before Kozyrev, time was mostly perceived subjectively
as sensation of its flow, from birth to death. The great philoso-
pher Immanuel Kant considered time to be the form of our
perception of the external world. It is defined still now as the
form of existence of matter. The modern theory of relativity
has fixed this concept also, having defined time as one of the
dimensions of four-dimensional space-time, by which it am-
plifies the idea that space and time are the essence of the form
of the physical world. Kozyrev searched not for formal time,
but for time that is actively operating.

Despite criticism of his efforts, Kozyrev continued his in-
vestigations in the same direction, following his intuition. He
did not change his belief that time generates energy, only his
methods of inquiry. After July 1961, Kozyrev almost entirely
disengaged from experiments of mechanical character.

Kozyrev was carried along by a great interest in the lab-
oratory study of irreversible processes which might visually
reveal time action. For this purpose he designed a torsion
balance, with an indicating arm rotating in a horizontal plane
and reacting to external processes. Having isolated the de-
vice from thermal influences, Kozyrev interpreted any devia-
tions of an arm from its “zero” position as the effect of time.
Generally speaking, all processes in Nature are irreversible,
by which the orientation of time manifests. This orientation
should cause a deviation of the balance arm in one and the
same direction, though deviations are possible to different an-

gles, depending on the intensity of the process. In Kozyrev’s
experiments the deviation of the arm occurred in both direc-
tions (to the right and to the left), for which he devised expla-
nations.

Intensive irreversible processes are especially evident.
Cases Kozyrev used included the cooling of a heated wire or a
piece of metal; the evaporation of spirit or aether; the dissolu-
tion of sugar in water; the withering of vegetation. Processes
carried out near the device caused deviations the arm which
could occur from electromagnetic influence, or waves in the
range of ultrasonic or other. Such influences Kozyrev did not
study, but any deviations of the arm he considered to be pro-
duced by time. He introduced the concept of “time density”
in the space surrounding the device. He explained the bal-
ance arm deviations in both directions as the passing of a ra-
diant time process (“time density” arises) or the absorption of
time (“density” in the surrounding space goes down). What
is “time density” Kozyrev did not explain. In some experi-
ments the same irreversible process yielded different results
on different days (deviations in opposite directions). Kozyrev
explained this by the action of a remote powerful process de-
forming the laboratory experiment.

In studying irreversible processes by the methods describ-
ed above, Kozyrev investigated the possibility of time shield-
ing. Kozyrev conjectured that if time signals come from
space, these signals can be captured by means of aluminium
coated telescopic mirrors. This offered a method for “astro-
nomical observations by means of the physical properties of
time”. In February, 1963, Victor Vasilevich Nassonov (1931–
1986), a skilled engineer and expert in electronics with work
experience at a radio engineering factory, visited Kozyrev’s
laboratory. Nassonov expressed his desire to work as a vol-
untary assistant to Kozyrev. As such he worked in laboratory
until Kozyrev died. Nassonov immediately began improve-
ment of equipment and introduced automatic data recordings
which raised their accuracy. Nassonov usually went to lab-
oratory in the evenings, after his work at the radio factory.
Kozyrev too worked mainly in the evenings. When Kozyrev
was away on observations in the Crimea, Nassonov took hol-
iday leave from the radio factory and, at his own expense, ac-
companied Kozyrev. Nassonov became Kozyrev’s irreplace-
able assistant and close colleague.

Kozyrev worked not only in the laboratory or at home be-
hind a desk. He did not alter his periodic trips to the Crimean
Observatory where he used the 50-inch reflector. Planets and
the Moon were primary objects of his observations. At any
opportunity he undertook spectrographic surveys of the lunar
surface for the purpose of detection of any changes charac-
terizing endogenic activity. He noted some minor indications
but did not again obtain such an expressive spectrogram as on
November 3, 1958 — that was a unique find by good luck.

For observations of planets he used the configurations
(opposition, elongation), most convenient for the tasks he had
in mind. He took every opportunity; adverse weather the only
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Nassonov and Kozyrev in front of Pulkovo Observatory

hindrance. In April 1963, Kozyrev conducted observations
of Mercury when the planet was at elongation — the most
remote position from the Sun, visible from the Earth. He
aimed to determine whether or not hydrogen is present in the
Mercurian atmosphere. Such an atmosphere could be formed
by Mercury’s capture of particles which constitute the solar
wind; basically protons and electrons. The captured parti-
cles, by recombination, form atomic and molecular hydro-
gen. The task was a very difficult one. First, observations
of Mercury are possible only after sunset or before sunrise,
when the luminescence of the terrestrial atmosphere is weak.
However Mercury is then close to horizon, and noise from the
terrestrial atmosphere considerably amplified. Second, Mer-
cury shines by reflected sunlight, in the spectrum of which
the hydrogen lines are embedded. It is possible to observe the
hydrogen lines formed in the atmosphere of a planet by taking
into account the shift of lines resulting from the planet’s mo-
tion (toward the red when receding from the observer, toward
the violet on approach). This shift can be seen as distortion
of a contour of the solar line from the corresponding side.
In April 1963, Mercury was to the west of the Sun and was
visible after sunset. Kozyrev detected the presence of an at-
mosphere on Mercury. In autumn of the same year, Mercury
was east of the Sun, and it was observed before sunrise; its
atmosphere was not detected (details are given in [17]).

By means of observations of the passage of Mercury
across the Sun’s disc on November 10th of 1973, Kozyrev
again detected signs of an atmosphere on Mercury [18]. How-
ever his conclusion contradicted the results of direct measure-
ments by the spacecraft “Mariner-10”, in 1974–1975. This
spacecraft, first sent to Venus, and then to Mercury, during

a flight around the Sun, took three sets of measurements as
it approached Mercury. Concerning the atmosphere of the
planet, the gathered data had demonstrated that it contains
helium and oxygen in minute quantities, and almost no hy-
drogen.

Kozyrev’s disagreement with the Mariner-10 data can be
explained by the instability of hydrogen in the atmosphere be-
cause of the great temperature of Mercury’s Sun-facing sur-
face (above 500�C) and by Mercury’s small force of gravi-
tational attraction (escape velocity 4.2 km/s). Observations
of Kozyrev fell to the periods of capture of a corpuscular so-
lar stream; soon the grasped volume of a stream dissipated.
Anyway, Kozyrev’s observations and conclusions to write-off

there are no bases.
Observing Saturn in 1966, Kozyrev detected the presence

of water vapour in its rings [19]. Emergence of the water
bands in the spectrum of the planet, which is so removed
from the Sun, Kozyrev explained as the “photosublimation”
process (the term coined by Kozyrev), i.e. by the direct trans-
formation of crystals of ice into water vapour under the influ-
ence of solar radiation. G. Kuiper an opponent, argued that
the Saturnean rings consist not of the usual ice, but of ammo-
niac, upon which Kuiper’s objections were been based, but
subsequently retracted by him.

Only in 1969 did Kozyrev’s discovery of lunar volcan-
ism receive official recognition, owing to findings made by
the American Apollo-11 mission on the Moon in July, 1969.
Astronauts Neil Armstrong, Buzz Aldrin and Michael Collins
brought back to Earth a considerable quantity of lunar soils,
which consisted mainly of volcanic rocks; proving intensive
lunar volcanic activity in the past, possibly occurring even
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now. Kozyrev’s discovery has thus obtained an official recog-
nition.

The International Academy of Astronautics (IAA, Paris,
France) at its annual meeting in late September, 1969, in
Cloudcroft (New Mexico, USA), made the resolution to
award Kozyrev a nominal gold medal with interspersed seven
diamonds in the form of constellation of the Ursa Major: “For
remarkable telescopic and spectral observations of lumines-
cent phenomena on the Moon, showing that the Moon re-
mains a still active body, and stimulating development of the
methods of luminescent researches world wide”. Kozyrev
was invited to Moscow for the award ceremony, where, in
solemnity, the academician Leonid I. Sedov, vice-president
of the International Astronautic Federation (a part of which is
the IAA) gave Kozyrev the medal.

In December 1969, the State Committee for Affairs of
Discovery and Inventions at the Ministerial Council of the
USSR, awarded Kozyrev the diploma for discovery for “tec-
tonic activity of the Moon”.

Despite the conferring of medal and diploma, the question
of a non-nuclear stellar energy source was not acknowledged.
To Kozyrev the recognition of his discovery was also recog-
nition of his work on the source of stellar energy. His theo-
retical research was amplified by his publication of a series of
articles detailing his results, along with the formulation of his
new considerations about the physical properties of time.

He no longer spoke about time generating energy in ce-
lestial bodies. In experiments with irreversible processes the
properties of bodies to “emit” or to “absorb” time, forming
around bodies a raised or lowered “time density” seemed to
have been established, though Kozyrev did not explain how
this is to be understand; but he nonetheless used the idea. It
is especially strange that in works after 1958 he avoided the
interpretation of time as material essence. In the seventies he
gradually passed to the representation of immaterial time.

Upon the idea of time “emitting” and “absorption” is
based Kozyrev’s work Features of the Physical Structure of
the Double Stars Components [20]. Therein Kozyrev did
not investigate the interaction of double star components by
light and other kinds of electromagnetic and corpuscular ra-
diation; he postulated the presence of “time radiations” —
the main star (primary star) radiates time in the direction of
the companion-star (secondary star) owing to which the time
density in the vicinity of both stars becomes identical, which
finally leads to the alignment of the temperatures of both stars
and their spectral classes in accordance with statistical studies
of double stars.

By a similar method, Kozyrev investigated the mutual in-
fluence of tectonic processes on the Earth and on the Moon
[21]. In consideration of tectonic processes Kozyrev could
not neglect their gravitational interaction and put forward two
kinds of interaction: 1) a trigger mechanism of tidal influ-
ences; 2) a direct causal relationship which is effected
“through the material properties of time”.

For comparison of lunar processes with terrestrial ones
Kozyrev used the catalogue of recorded phenomena on the
Moon, published by Barbara Middlherst et al. [22]. It is
conditionally possible to suppose that all considerable phe-
nomena on the Moon, observed from the Earth, are caused
by tectonic processes. Records of the same phenomena on
the Earth for the corresponding period (1964–1977) are easy
to find. From comparison of the records Kozyrev drew the
conclusion that there are both types of communication of the
phenomena on the Earth and on the Moon, “independently of
each other”, though they are inseparable. To reinforcement
his conclusions about the existence of relationships “through
the material properties of time”, Kozyrev referred to such re-
lationships established for double stars, although alternative
and quite obvious relations for double stars systems were not
considered.

Some words are due about appearance and habits of Ko-
zyrev. Since the age of fifty, when Kozyrev worked in Pulko-
vo, his appearance did not change much. He was of tall
stature, well-built, gentlemanly, with a high forehead, short
haircut and clean shaven, and proudly held his head high.
He resembled a military man although he never served in the
army, and went about his business in an army style, quickly,
and at meetings with acquaintances kindly bowed whilst on
the move or, if not so hastened, stopped for a handshake. He
was always polite, with everybody. When operating a tele-
scope and other laboratory devices Kozyrev displayed soft
and dexterous movements. He smoked much, especially
when not observing. In the laboratory he constantly held the
hot tea pot and cookies: a stomach ulcer, acquired in prison
(which ultimately caused his death), compelled him to take
often of any food.

When at the Crimean Observatory, he almost daily took
pedestrian walks in the mountains and woods surrounding the
settlement of Nauchny (Scientific). He walked mostly alone,
during which he reflected. Every summer, whilst on holiday,
he took long journeys. He was fond of kayaking the central
rivers of Russia for days on end. On weekends he travelled by
motorbike or bicycle along the roads of the Leningrad region.
On one occasion he travelled by steam-ship, along a tourist
route, from Moscow, throughout the Moscow Sea, then down-
wards across the Volga to Astrakhan. He loved trips to Kiev
and in to places of Russian antiquity. In the summer of 1965
Kozyrev took a cruise by steam-ship, around Europe, visiting
several capitals and large cities. Separately he visited Bul-
garia, Czechoslovakia, and Belgium.

In scientific work, which consumed his life, Kozyrev,
even in the days of his imprisonment and exile, he, first of
all, trusted in himself, in his own intuition, and considered,
in general, that intuition is theomancy emanating from God.
According to Kozyrev, postulates should represent the facts
which are not the subject to discussion. Truth certainly some-
time, will appear in such a form that it becomes clear to all
who aspire to it.
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Nikolai Aleksandrovich Kozyrev died on February 27,
1983. He is buried in the Pulkovo astronomer’s memorial
cemetery. Victor Vasilevich Nassonov continued some labo-
ratory experiments with irreversible processes relating to bi-
ology. Nassonov, through overwork that could not be sus-
tained, died on March 15th 1986, at the age of fifty-five.
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dans le cas des binaires: Physical peculiarities of the compo-
nents of double stars. On the Evolution of Double Stars, Pro-
ceedings of a Colloquium organiced under the Auspices of the
International Astronomical Union, in honor of Professor G. Van
Biesbroeck. Edited by J. Dommanget. Communications Obs.
Royal de Belgique, ser. B, no. 17, 197–202.

21. Kozyrev N. A. On the interaction between tectonic processes
of the Earth and the Moon. The Moon, Proceedings from IAU
Symposium No. 47 held at the University of Newcastle-Upon-
Tyne England, 22–26 March, 1971. Edited by S. K. Runcorn and
Harold Clayton Urey, Dordrecht, Reidel, 1971, 220–225.

22. Middlehurst B. M., Burley J. M., Moore P., Welther B. L. Chro-
nological catalogue of reported lunar events. NASA Techn. Rep.,
1968, R-277, 55+IV pages.

L14 Alexander N. Dadaev. Nikolai A. Kozyrev (1908 –1983) — Discoverer of Lunar Volcanism



The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics

PROGRESS IN PHYSICS
A quarterly issue scientific journal, registered with the Library of Congress (DC, USA). This journal is peer reviewed and included in the ab-
stracting and indexing coverage of: Mathematical Reviews and MathSciNet (AMS, USA), DOAJ of Lund University (Sweden), Zentralblatt MATH
(Germany), Scientific Commons of the University of St. Gallen (Switzerland), Open-J-Gate (India), Referativnyi Zhurnal VINITI (Russia), etc.

To order printed issues of this journal, con-
tact the Editors. Electronic version of this
journal can be downloaded free of charge:
http://www.ptep-online.com

Editorial Board

Dmitri Rabounski (Editor-in-Chief)
rabounski@ptep-online.com
Florentin Smarandache
smarand@unm.edu
Larissa Borissova
borissova@ptep-online.com
Stephen J. Crothers
crothers@ptep-online.com

Postal address

Department of Mathematics and Science,
University of New Mexico,
200 College Road,
Gallup, NM 87301, USA

Copyright © Progress in Physics, 2009

All rights reserved. The authors of the ar-
ticles do hereby grant Progress in Physics
non-exclusive, worldwide, royalty-free li-
cense to publish and distribute the articles in
accordance with the Budapest Open Initia-
tive: this means that electronic copying, dis-
tribution and printing of both full-size ver-
sion of the journal and the individual papers
published therein for non-commercial, aca-
demic or individual use can be made by any
user without permission or charge. The au-
thors of the articles published in Progress in
Physics retain their rights to use this journal
as a whole or any part of it in any other pub-
lications and in any way they see fit. Any
part of Progress in Physics howsoever used
in other publications must include an appro-
priate citation of this journal.

This journal is powered by LATEX

A variety of books can be downloaded free
from the Digital Library of Science:
http://www.gallup.unm.edu/�smarandache

ISSN: 1555-5534 (print)
ISSN: 1555-5615 (online)

Standard Address Number: 297-5092
Printed in the United States of America

OCTOBER 2009 VOLUME 4

CONTENTS

P.-M. Robitaille Kirchhoff’s Law of Thermal Emission: 150 Years . . . . . . . . . . . . . . . . . . . . . 3

P.-M. Robitaille Blackbody Radiation and the Loss of Universality: Implications for
Planck’s Formulation and Boltzman’s Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

P.-M. Robitaille COBE: A Radiological Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

G. C. Vezzoli Active Galactic Nuclei: the Shape of Material Around Black Holes and
the Witch of Agnesi Function. Asymmetry of Neutrino Particle Density . . . . . . . . . . . 43

R. T. Cahill Combining NASA/JPL One-Way Optical-Fiber Light-Speed Data with
Spacecraft Earth-Flyby Doppler-Shift Data to Characterise 3-Space Flow. . . . . . . . . .50

U. E. Bruchholz Geometry of Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

U. E. Bruchholz Derivation of Planck’s Constant from Maxwell’s Electrodynamics . . . . . 67

S. N. Shapovalov, I. A. Rubinstein, O. A. Troshichev, and S. E. Shnoll Changes in the
Shape of Histograms Constructed from the Results of 239Pu Alpha-Activity Meas-
urements Correlate with the Deviations of the Moon from the Keplerian Orbit . . . . . 68

E. N. Chifu Astrophysically Satisfactory Solutions to Einstein’s R-33 Gravitational Field
Equations Exterior/Interior to Static Homogeneous Oblate Spheroidal Masses . . . . . 73

I. Suhendro A New Finslerian Unified Field Theory of Physical Interactions . . . . . . . . . . . 81

E. Comay Physical Consequences of Mathematical Principles . . . . . . . . . . . . . . . . . . . . . . . . . 91



Information for Authors and Subscribers

Progress in Physics has been created for publications on advanced studies in
theoretical and experimental physics, including related themes from mathe-
matics and astronomy. All submitted papers should be professional, in good
English, containing a brief review of a problem and obtained results.

All submissions should be designed in LATEX format using Progress in
Physics template. This template can be downloaded from Progress in Physics
home page http://www.ptep-online.com. Abstract and the necessary informa-
tion about author(s) should be included into the papers. To submit a paper,
mail the file(s) to the Editor-in-Chief.

All submitted papers should be as brief as possible. We accept brief pa-
pers, no larger than 8 typeset journal pages. Short articles are preferable.
Large papers can be considered in exceptional cases to the section Special
Reports intended for such publications in the journal. Letters related to the
publications in the journal or to the events among the science community can
be applied to the section Letters to Progress in Physics.

All that has been accepted for the online issue of Progress in Physics is
printed in the paper version of the journal. To order printed issues, contact
the Editors.

This journal is non-commercial, academic edition. It is printed from pri-
vate donations. (Look for the current author fee in the online version of the
journal.)



October, 2009 PROGRESS IN PHYSICS Volume 4

Kirchhoff’s Law of Thermal Emission: 150 Years

Pierre-Marie Robitaille
Department of Radiology, The Ohio State University, 395 W. 12th Ave, Suite 302, Columbus, Ohio 43210, USA

E-mail: robitaille.1@osu.edu

In this work, Kirchhoff’s law (Kirchhoff G. Monatsberichte der Akademie der Wis-
senschaften zu Berlin, sessions of Dec. 1859, 1860, 783–787) is being revisited not only
to mark its 150th anniversary but, most importantly, to highlight serious overreaching
in its formulation. At the onset, Kirchhoff’s law correctly outlines the equivalence be-
tween emission and absorption for an opaque object under thermal equilibrium. This
same conclusion had been established earlier by Balfour Stewart (Stewart B. Trans.
Royal Soc. Edinburgh, 1858, v. 22(1), 1–20). However, Kirchhoff extends the treatment
beyond his counterpart, stating that cavity radiation must always be black, or normal:
depending only on the temperature and the frequency of observation. This universal
aspect of Kirchhoff’s law is without proper basis and constitutes a grave distortion of
experimental reality. It is readily apparent that cavities made from arbitrary materials
(" < 1) are never black. Their approach to such behavior is being driven either by the
blackness of the detector, or by black materials placed near the cavity. Ample evidence
exists that radiation in arbitrary cavities is sensitive to the relative position of the de-
tectors. In order to fully address these issues, cavity radiation and the generalization
of Kirchhoff’s law are discussed. An example is then taken from electromagnetics, at
microwave frequencies, to link results in the resonant cavity with those inferred from
the consequences of generalization.

1 Introduction

Kirchhoff’s law is one of the simplest and most misunder-
stood in thermodynamics [1, 2]. It is widely considered to
be the first of the laws of thermal emission [3–7]. In sim-
ple mathematical terms, Kirchhoff’s law can take on several
formulations, which stem from the equivalence between the
coefficients of emission, ", and absorption, �, at thermal equi-
librium. The most general expression of Kirchhoff’s law for
opaque objects is, in fact, a statement of Stewart’s law [6],
namely, "= 1� �, where � corresponds to the coefficient of
reflection. However, Kirchhoff’s law [1, 2] is much farther
reaching than Stewart’s [6], in requiring that radiation within
an enclosure, or cavity, must always be black, or normal [5].
Kirchhoff conceives that the ratio of emissive power, e, to
absorptive power, a, of all bodies can be described by a uni-
versal function, f , common to all radiation within enclosures:
e=a= f (T; �). Furthermore, this must be the case in a man-
ner which is independent of the nature and shape of the enclo-
sure, and which depends only on the temperature, T , of the
system and the wavelength, �, of observation [1, 2, 5, 7].

Kirchhoff’s law constitutes an attempt to summarize the
state of knowledge in radiative heat transfer during the mid-
1800’s. At the time, physicists created blackbodies from
graphite plates, by lining the interior of cavities with soot,
or by coating objects with black paint containing soot [8].
Contrary to Gustav Kirchhoff [1, 2], Balfour Stewart, in 1858
[6], stated that radiation in thermal equilibrium depends on
the constituents involved and his treatment did not lead to a
universal function. If Kirchhoff’s law can be expressed as

e=a= f (T; �), then Stewart’s would be e=a= f 0 (T; �;N),
where N represents all factors linked to the nature of the
emitter itself and f 0 is not universal. Like Kirchhoff, Stew-
art based his ideas on Prévost’s theory of exchanges [9, 10],
which was ultimately linked to the study of radiation within
enclosures. The distinctions between Stewart’s formulation
and Kirchhoff’s are profound [11, 12]. Kirchhoff’s ideas ad-
vocate a universal function [5]. Stewart’s do not [6, 11, 12].

Today, 150 years after its formulation [1, 2], the foun-
dation of Kirchhoff’s law still rests on condensed matter
physics. Blackbodies continue to be highly specialized ob-
jects [13–25] constructed from absorbers which are nearly
perfect over the frequency range of interest. Yet, if Kirch-
hoff was correct about the nature of radiation within cavities,
it should be possible to assemble a blackbody from any mate-
rial. Surely, the presence of the universal function, f , dictates
that cavity radiation must always be black, or normal [5]. All
that should be theoretically required is thermal equilibrium
with the walls of an enclosure. The attributes of the walls,
or its contents, should be inconsequential. However, the body
of experimental knowledge, relative to the assembly of black-
bodies in the laboratory, stands firmly opposed to this concept
[13–25]. True blackbodies [13–25] are extremely difficult to
produce and testify against Kirchhoff’s universal formulation
[1, 2, 5]. Stewart’s law [6] alone, not Kirchhoff’s [1, 2], is
supported by a careful consideration of experimental reality
[8, 12–41]. Still, a cursory review of the literature, relative to
cavity emission, would suggest that arbitrary cavities can ap-
pear black. Furthermore, the trend towards blackness appears
to increase as “truer” cavities are produced. This seems to

Pierre-Marie Robitaille. Kirchhoff’s Law of Thermal Emission: 150 Years 3



Volume 4 PROGRESS IN PHYSICS October, 2009

be the case, irrespective of the emissivity of the cavity walls.
The subject is a fascinating problem in physics.

2 Cavity radiation

While ideal blackbodies do not exist in nature, laboratory ex-
amples approach theoretical performances, especially when
narrow frequency and temperature ranges are considered [8,
13–25]. Typically, the best laboratory blackbodies are con-
structed from highly absorbing walls (�� 1) usually contain-
ing soot, carbon black, or graphite [8, 13–25]. Cavities which
operate in the far infrared may also be lined with metals,
metal blacks, or metal oxides [35–41]. Blackbody enclosures
are often made isothermal using water, oil, or molten metal
baths. Alternatively, metal freezing point techniques or elec-
trical heating elements may ensure isothermal operation. The
vast body of the laboratory evidence supports the idea that
standard blackbodies are always made from highly absorbing
materials set to function in an isothermal state.

Nonetheless, in treating cavity radiation from a theoreti-
cal standpoint, Planck invokes the perfectly reflecting enclo-
sure [7, 8]. This is an interesting approach, since perfectly
reflecting enclosures are adiabatic by definition and cannot
therefore participate in the exchange of heat, either through
emission or absorption. Planck, though, requires that the in-
terior of such cavities contains black radiation [7; §51–52],
in conformity with Kirchhoff’s law [1, 2]. In so insisting,
Planck makes constant recourse [8] to a minute particle of
carbon [7; §51–52]. He inserts the particle into the cavity, in
order to ensure that the latter appropriately holds black radia-
tion. Planck invokes carbon, despite the fact that Kirchhoff’s
law should have ensured the presence of the radiation sought.
In the end, and though carbon particles are perfect absorbers,
Planck treats them simply as catalysts, and ignores their im-
portance to the blackbody problem [7, 8].

It remains commonly acknowledged that all cavity radia-
tion must be black. This is the case even though cavities with
arbitrary walls of low emissivity are never used as laboratory
blackbody standards [13–25]. Clearly, there is more to the un-
derstanding of arbitrary cavities than the belief that they are
black [1, 2, 5]. In any case, when arbitrary cavities are an-
alyzed with radiometric detectors, they do appear to become
black, as seen in classic texts [i.e. 28] and the references they
contain [29–34, 42–48]. Ample theoretical work reinforces
this position [i.e. 42–48]. Monte Carlo calculations on lam-
bertian spherical arbitrary cavities constructed from walls of
low emissivity provide a good example [28]. Such calcula-
tions lead to apparent cavity emissivities approaching 1 [28].
These amazing results hint at proof, at least on the surface,
that Kirchhoff’s law is fully valid. Unfortunately, it can be
shown that such conclusions are erroneous.

Let us return for a moment to Planck’s treatment [7] and
the perfectly reflecting cavity containing a carbon particle [8].
A schematic representation of this situation is presented in

Fig. 1: Schematic representation of a perfectly reflecting cavity A)
containing a carbon particle, B) with a carbon particle near the aper-
ture, C) with a carbon particle farther from the aperture, and D) with
the carbon particle replaced by a physical detector. The eye repre-
sents a point of detection. Note that if perfectly reflecting cavities
contain any radiation whatsoever, it is solely because they have been
filled with photons either from the carbon particle or the detector.

Figure 1A. Since the cavity wall is perfectly reflecting, one
can treat it as an adiabatic boundary producing no radiation
of its own. All of the radiation which comes to fill the cavity
is being produced by the carbon particle [12]. As a result, if
one examines the contents of the cavity through a small hole,
the radiation it contains will obviously be black. Now, let us
displace the carbon particle, such that it is located just outside
the aperture leading to the cavity (see Fig. 1B). From this po-
sition, the particle will once again be able to fill the cavity
with photons, and the observer will find that its interior con-
tains black radiation. Finally, let us place the carbon particle
well outside the cavity itself, such that its radiation can still
penetrate the cavity (see Fig. 1C). In this instance, the ob-
server will record that the cavity is black, but not because it
was able to become black on its own. It is black simply be-
cause the carbon particle has filled the cavity with radiation.

Returning to the days of Kirchhoff, it is evident that lim-
ited experimental means existed. As a result, cavity radia-
tion was monitored through a combination of prisms, for fre-
quency differentiation, and thermometers, for energy detec-
tion. These thermometers were always blackened with soot,
as Langley reminds us in 1888: “I may reply that we have
lately found an admirable check on the efficiency of our op-
tical devices in the behavior of that familiar substance lamp-
black, which all physicists use either on the thermometers,
thermopiles, or bolometers” [49]. Consequently, by sampling
the cavity with a thermometer coated with lampblack, every
experimentalist brought about for himself the result which he
sought. All cavities appeared black, because all cavities were
being filled unintentionally with black radiation. Adding the
carbon particle directly to the interior of the cavity simply
helped to bring about the desired experimental scenario.

In Fig. 1D, a cavity is represented along with a radiomet-
ric detector. In order to maintain a logical progression, let
us assume that the cavity is perfectly reflecting in its interior.
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In this case, the cavity itself cannot emit any photons [12]. A
small hole is made into the cavity, and the radiation contained
within it can be sampled with the radiometer. The cavity will
be found to contain black radiation [12]. Yet, if the cavity
was a perfect reflector, then how could its interior be black?
The answer, of course, is similar to what Planck had done
with the small carbon particle. A carbon particle, no matter
how tiny [8, 12], will instantly fill an experimental cavity with
black radiation. Planck, in fact, relies on this reality [7; §51–
52]. Now, consider our radiometric detector. This instrument
must have high photon capture rates. That is to say, it must
possess an elevated absorptivity. As a result, by Stewart’s law
[6], it must also possess a high emissivity. Thus, if the cavity
appears black, it is only because it has been filled with black
radiation by the detector. Again, the experimentalist inadver-
tently produced the expected result.

In order to more fully appreciate the role of the detec-
tor in generating black radiation within cavities, let us con-
sider the classic works by De Vos [32, 33] and Ono [28,
34]. Even though he is addressing arbitrary cavities, De Vos
emphasizes that: “The radiation emerging from the hole of
observation in the blackbody should be an approximation,
as well as possible, to the theoretical blackbody radiation”
[32]. A cursory examination of these studies would lead one
to believe that all arbitrary cavities are indeed black. How-
ever, upon closer analysis, these investigators have not dis-
tinguished themselves from their predecessors. De Vos ele-
gantly links mathematical and experimental results obtained
from cavities [32]. If the cavities appear black under certain
viewing conditions, it is simply because black radiation has
been injected into them using detectors. De Vos notes that in
order to sample black radiation in a spherical cavity of arbi-
trary construction: “It is necessary to take care that the sur-
face element observed is not perpendicular to the direction of
observation” [32]. The reason for this statement is evident. If
the surface element was perpendicular, most of the radiation
introduced by the detector into the cavity would undergo nor-
mal specular reflection back out of the cavity and the latter
would not appear black. In subsequently describing the tubu-
lar blackbody (see Figure 2A), De Vos states that: “The actual
value of the quality will be better than calculated in this way
but only slightly better since the radiant intensity decreases
rapidly towards the ends of the tube” [32]. Of course, the de-
tector is pumping radiation into the hole at the center of the
tube. It is, therefore, simple to understand why radiation must
fall rapidly towards the ends of the tube. Clearly, the tubular
cavity is manifesting the performance of the detector. In fact,
De Vos himself unintentionally makes the point: “Owing to
the small hole in the tungsten tube a small quantity of energy
was available only. Hence it was necessary to use radiation
receivers of high sensitivity” [33]. De Vos might have more
appropriately written that it was important for the detector to
provide an ample supply of photons. For his part, Ono has
demonstrated that the apparent emission of the tubular cav-

Fig. 2: A) Schematic representation of a tubular cavity and a detec-
tor. B) Illustration of the type of result seen with the detector as a
function of angle from the normal. Note how there is less emission
measured at 0� and 30�.

ity depends on the position of the detector itself. Ono writes:
“The apparent emissivity has deep minima around �= 0� at
which specularly reflected radiation escapes through the lat-
eral hole. The shallow minima around 30� are also due to
specular reflection effects where incident radiation escapes
after two successive specular reflections” [28, p. 605]. This
situation is reproduced schematically in Fig. 2B. Of course,
the incident radiation arises from the detector. It alone is fill-
ing the cavity with black radiation. The cavity itself is not
producing this radiation for, if it did, the position of the de-
tector would be immaterial. This is certain proof that Kirch-
hoff’s law does not hold. Much depends on the detector, not
on the cavity.

The point is further amplified by considering the work of
Sparrow and Heinisch [30]. The authors demonstrate that the
normal emission from a cylindrical cavity is absolutely de-
pendent on the distance of the detector from the cavity. They
fail to examine the cavity as a function of detector angle. Still,
it is obvious that distance variations should not be occurring.
Again, the detector is critically important in flooding the cav-
ity with radiation.

Vollmer’s studies [29] help us to understand that arbitrary
cavities are not black, despite the fact that, at least on the sur-
face, they point to the contrary. His work is particularly inter-
esting, as it aims to reconcile theoretical foundations, stem-
ming from Buckley’s classic paper [42], with experimental
data. Surprising agreement is obtained between theory and
experiment. In the limit, these results appear to re-emphasize
that cylindrical cavities of sufficient size, made from arbi-
trary materials, will indeed behave as blackbodies. Every-
thing seems to rest on solid footing, until the experimental
setup is carefully examined. In order to reach agreement with
theory, the apparatus used not only supplied the typical detec-
tor radiation, but also a black bellows, a black water cooled
shutter, and a black water cooled cylinder [42]. Given these
many possible sources of black radiation in front of the cav-
ity opening, there can be little wonder that the cavity begins
to appear black. In reality, the contrary position should have
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been adopted. How surprising that, bombarded with black ra-
diation, some cavities still fail to be able to appear fully black.

R. E. Bedford, though he believes in the validity of Kirch-
hoff’s law, re-emphasizes the point that arbitrary cavities are
simply not black [28; p. 678]: “A blackbody is a lambertian
emitter; with the exception of a spherical cavity, none of the
blackbody simulators we will discuss will radiate direction-
ally as does a blackbody”. Yet, as seen above for the spherical
cavity, “It is necessary to take care that the surface element
observed is not perpendicular to the direction of observation”
[32]. Consequently, when these two excerpts are taken to-
gether, Bedford’s statement constitutes a direct refutation of
Kirchhoff’s law. The situation deteriorates further: “At some
angle of view away from the normal to the cavity aperture
(the angle depending on the particular cavity shape), the cav-
ity radiance will begin to drop sharply from its axial value as
that part of the wall becomes visible where "a(y) near the
aperture is much lower than "a(x) deep within the cavity. In
most cases this deficiency in emitted energy will be signifi-
cant only at angles of view larger than are subtended by most
pyrometers” [28; p. 678]. In any event, the point is made.
None of the cavities modeled can ever truly be considered
blackbodies. Arbitrary materials are not lambertian and their
emissivity can never be black [5]. Spherical cavities must be
monitored with careful attention to the angle of observation.
This should not occur if they were truly blackbodies.

If Monte Carlo simulations and other calculations reveal
that arbitrary cavities move to blackness independent of wall
emissivities, it is strictly because such methods fill the cav-
ities with black radiation [42–48]. Once again, blackbodies
are unique in possessing lambertian surfaces. Thus, models
which utilize lambertian surfaces of low emissivity represent
situations which have no counterparts in nature. In addition,
there can be no difference between placing a carbon particle
in a cavity, in order to ensure the presence of black radia-
tion, and simply filling the cavity with black radiation with-
out physically making recourse to carbon. Monte Carlo sim-
ulations introduce black photons into cavities. Hence, they
become black. The process is identical to placing a highly
emitting carbon particle, or radiometer, at the opening of a
cavity. No proof is provided by computational methods that
arbitrary cavities contain black radiation.

It can be stated that Monte Carlo simulations obtain sim-
ilar answers by modeling the repeated emission of photons
directly from the cavity walls. In this case, computational
analysis relies on internal reflection to arrive at a cavity filled
with black radiation. The problem is that this scenario vi-
olates the first law of thermodynamics and the conservation
of energy. It is not mathematically possible to maintain an
isothermal cavity while, at the same time, enabling its walls
to lose a continual stream of photons. Such approaches build
up the photon density in the cavity at the expense of wall cool-
ing. These methods must therefore be forbidden on grounds
that they violate the 1st law of thermodynamics.

Fig. 3: Schematic representations typically used to argue that cav-
ity radiation is always black. Figure A is similar to Figure 6.1 in
[50]. Figure B is similar to 5.6 in [51]. Note that figures illustrating
immediate reflection back out of the cavity (C and D) are never in-
voked. This is precisely because they represent direct physical proof
that arbitrary cavities are not black.

It is commonly argued [50, 51] that a cavity with a suffi-
ciently small hole contains black radiation. For example, in
his classic text on the photosphere D. F. Gray writes: “Let us
begin with a container that is completely closed except for
a small hole in one wall. Any light entering the hole has a
very small probability of finding its way out again, and even-
tually will be absorbed by the walls of the container or the
gas inside the container. . . We have constructed a perfect ab-
sorber” [50; p. 100]. In reality, the maintenance of thermal
equilibrium requires that if a photon enters the cavity, another
photon must exit. The experimentalist will never be able to
discern whether the exiting photon was 1) the same, 2) a pho-
ton that was newly emitted without reflection, 3) a photon
that had previously undergone several reflections before exit-
ing the cavity, or 4) a photon that had undergone a nearly in-
finite number of internal reflections before exiting the cavity.
Each of these cases corresponds to different types of cavities,
made either from arbitrary walls, perfectly absorbing walls,
or perfectly reflecting walls. In any case, a photon must exit
to maintain thermal equilibrium and nothing has been learned
about the internal nature of the cavity. Clearly, given thermal
equilibrium and the first law of thermodynamics, we cannot
be sure that the radiation inside the cavity was black. Such
arguments [50; p. 100–101] are unsound a priori. Notice, for
instance, the types of figures typically associated with such
rhetoric: the photon is usually drawn such that normal and
immediate specular reflection back out of the cavity is dis-
counted (see Figure 3A–B). This is precisely because imme-
diate specular reflection of the photon back out of the cavity
provides a sound logical defeat of such arguments (see Fig-
ure 3C–D).

In summary, the radiation contained inside arbitrary cav-
ities is not black and depends exclusively on 1) the nature of
the cavity, and 2) the nature of the radiation which is permit-
ted to enter. If excellent radiometers are used, they will be
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good emitters, and will act to fill the cavities with black radi-
ation. As such, it seems logical, although counterintuitive,
that the sampling of cavity radiation should be performed
with suboptimal radiometers. Radiometers for these stud-
ies should not have high photon capture rates. Such devices
would provide lower photon emission towards the cavity. In
so doing, they would minimally alter the true nature of the ra-
diation they seek to measure. Perhaps, by using cryogenic de-
vices, it might be possible to build detectors which retain ad-
equate sensitivity. By maintaining lower detector emissions,
the true nature of radiation within cavities might be ascer-
tained. The proper result should echo Stewart, as previously
demonstrated mathematically [12].

3 The generalization of Kirchhoff’s law

The proofs of Kirchhoff’s law are usually limited to the realm
of geometrical optics. In his classic paper [2], Kirchhoff

states in a footnote: “The effect of the diffraction of the rays
by the edges of opening 1 is here neglected. This is allow-
able if openings 1 and 2, though infinitely small in compar-
ison with their distance apart, be considered as very great
in comparison with the length of a wave.” Since Planck’s
treatment of Kirchhoff’s law is also based on geometric op-
tics, Planck writes: “Only the phenomena of diffraction, so
far at least as they take place in space of considerable di-
mensions, we shall exclude on account of their rather com-
plicated nature. We are therefore obliged to introduce right
at the start a certain restriction with respect to the size of the
parts of space to be considered. Throughout the following
discussion it will be assumed that the linear dimensions of all
parts of space considered, as well as the radii of curvature of
all surfaces under consideration, are large compared to the
wave lengths of the rays considered. With this assumption we
may, without appreciable error, entirely neglect the influence
of diffraction caused by the bounding surfaces, and every-
where apply the ordinary laws of reflection and refraction of
light. To sum up: We distinguish once for all between two
kinds of lengths of entirely different orders of magnitudes —
dimensions of bodies and wave lengths. Moreover, even the
differentials of the former, i.e., elements of length, area and
volume, will be regarded as large compared with the corres-
ponding powers of wave lengths. The greater, therefore, the
wave length of the rays we wish to consider, the larger must
be the parts of space considered. But, inasmuch as there is no
other restriction on our choice of size of the parts of space to
be considered, this assumption will not give rise to any par-
ticular difficulty” [7; §2]. Kirchhoff and Planck specifically
excluded diffraction. They do so as a matter of mathemati-
cal practicality. The problem of diffraction greatly increases
the mathematical challenges involved. As a result, Kirchhoff

and Planck adapt a physical setting where its effects could
be ignored. This is not a question of fundamental physical
limitation.

Nonetheless, the first section of Kirchhoff’s law, namely
the equivalence between the absorption and emission of en-
ergy by an opaque material at thermal equilibrium, has been
generalized to include diffraction. Correctly speaking, this
constitutes an extension of Stewart’s law, as will be discussed
below.

Much of the effort in generalizing Kirchhoff’s (Stewart’s)
law can be attributed to Sergi M. Rytov, the Russian physi-
cist. Indeed, it appears that efforts to generalize Kirchhoff’s
law were largely centered in Russia [52–55], but did receive
attention in the West [56, 57]. Though Rytov’s classic work
appears initially in Russian [52], later works have been trans-
lated into English [53]. In describing their theoretical results
relative to the generalization of Kirchhoff’s law, Rytov and
his associates [53; §3.5] write: “Equations (3.37-39) can be
termed Kirchhoff’s form of the FDT (fluctuation-dissipation
theorem), as they are a direct generalization of Kirchhoff’s
law in the classical theory of thermal radiation. This law
is known to relate the intensity of the thermal radiation of
a body in any direction to the absorption in that body when
exposed to a plane wave propagating in the opposite direc-
tion. . . ” The authors continue: “and most important, (3.37–
39) contain no constraints on the relationships between the
wavelength � and characteristic scale l of the problem (the
size of the bodies, the curvature radii of their surfaces, the
distances from the body to an observation point, etc.). In
other words, unlike the classical theory of thermal radiation,
which is bound by the constraints of geometrical optics, we
can now calculate the second moments of the fluctuational
field, that is to say both the wave part (taking into account all
the diffraction phenomena), and the nonwave (quasistation-
ary) part for any � vs l ratio” [53; §3.5].

A discussion of the fluctuation-dissipation theorem
(FTD), as it applies to thermal radiation, can also be found in
the book by Klyshko [54]. This text provides a detailed pre-
sentation of the generalization of Kirchhoff’s law [54; §4.4
and 4.5]. Apresyan and Kravtsov also address generalization
in their work on radiative heat transfer [55]. They summarize
the point as follows: “In this formulation, the Kirchhoff state-
ment — that the radiating and absorbing powers of a body
are proportional to each other — as was initially derived in
the limit of geometrical optics, is valid also for bodies with
dimension below or about the wavelength” [55; p. 406].

It appears that the generalized form of Kirchhoff’s law
has been adapted by the astrophysical community [57]. Like
the Russians before them, Linsky and Mount [56] assume
that the equality between emissivity and absorptivity at ther-
mal equilibrium is a sufficient statement of Kirchhoff’s law
[1, 2]. They refer to a Generalized Kirchhoff’s Law (GKL)
as E (�0) = 1� �(�0), where E (�0) is the directional spec-
tral emissivity and �(�0) corresponds to the directional hemi-
spherical reflectivity [56]. This statement should properly be
referred to as Stewart’s law [6], since Stewart was the first to
argue for the equality between the emissivity and absorptiv-
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ity of an opaque material under conditions of thermal equi-
librium. Furthermore, Stewart’s law makes no claim that the
radiation within opaque cavities must be black, or normal [5].
Seigel [11] speaks for physics when he outlines the impor-
tant distinction between Stewart’s law [6] and Kirchhoff’s
[1, 2]. He writes: “Stewart’s conclusion was correspond-
ingly restricted and did not embrace the sort of connection
between the emissive and absorptive powers of different ma-
terials, through a universal function of wavelength and tem-
perature which Kirchhoff established” [11; p. 584]. Herein,
we find the central difference between Stewart and Kirchhoff.
It is also the reason why Kirchhoff’s law must be abandoned.
In fact, since universality is not valid, there can be no more
room for Kirchhoff’s law in physics.

Returning to Rytov and his colleagues, following their
presentation of the generalization of Kirchhoff’s law [53;
§3.5], they move rapidly to present a few examples of its use
[53; §3.6] and even apply the treatment to the waveguide [53;
§3.7]. Interestingly, though the authors fail to discuss the mi-
crowave cavity, from their treatment of the waveguide, it is
certain that the radiation within the cavity cannot be black.
It must depend on the dimensions of the cavity itself. Such
a result is a direct confirmation of Stewart’s findings [6], not
Kirchhoff’s [1, 2]. As a consequence, the generalization of
Kirchhoff’s law brings us to the conclusion that the radiation
within cavities is not black, and the second portion of Kirch-
hoff’s law is not valid.

These questions now extend to ultra high field magnetic
resonance imaging [58, 59], and hence the problem of radi-
ation within cavities should be reexamined in the context of
the generalization of Kirchhoff’s law [52–55]. Since general-
ization extends to situations where cavity size is on the order
of wavelength, it is appropriate to turn to this setting in mag-
netic resonance imaging. In fact, this constitutes a fitting end
to nearly 10 years of searching to understand why microwave
cavities are not black, as required by Kirchhoff’s law.

4 Cavity radiation in magnetic resonance imaging

Prior to treating the resonant microwave cavity, it is impor-
tant to revisit Kirchhoff’s claims. In his derivation, Kirchhoff

initially insists that his treatment is restricted to the study
of heat radiation. He reminds the reader that: “All bodies
emit rays, the quality and intensity of which depend on the
nature and temperature of the body themselves” [2]. Then,
he immediately eliminates all other types of radiation from
consideration: “In addition to these, however, there may, un-
der certain circumstances, be rays of other kinds, — as, for
example, when a body is sufficiently charged with electric-
ity, or when it is phosphorescent or fluorescent. Such cases
are, however, here excluded” [2]. Kirchhoff then proceeds
to provide a mathematical proof for his law. Surprisingly,
he then reintroduces fluorescence. This is precisely to make
the point that, within cavities, all radiation must be of a uni-

versal nature. Moreover, this occurs in a manner which is
completely independent of the objects they contain, even if
fluorescent, or any other processes. Kirchhoff writes: “The
equation E=A= e cannot generally be true of such a body,
but it is true if the body is enclosed in a black covering of
the same temperature as itself, since the same considerations
that led to the equation in question on the hypothesis that the
body C was not fluorescent, avail in this case even if the body
C be supposed to be fluorescent” [2]. Kirchhoff deliberately
invokes the all encompassing power of universality and its in-
dependence from all processes, provided enclosure is main-
tained.

Consequently, two important extensions exist. First,
given the generalization of Kirchhoff’s law [52–55], it is ap-
propriate to extend these arguments to the microwave cavity.
In this experimental setting, the wavelengths and the size of
the object are on the same order. Furthermore, assuming ther-
mal equilibrium, it is proper to consider steady state processes
beyond thermal radiation. This is provided that a cavity be
maintained. In any event, it is established that thermal loses
exist within microwave devices. Thus, we can examine the
electromagnetic resonant cavity in light of Kirchhoff’s law.

When the use of the blackbody resonator in UHFMRI was
advanced [60], it was not possible to reconcile the behavior of
such a coil, given the conflict between Kirchhoff’s law [1, 2]
and the known performance of cavities in electromagnetics
[61, 62]. A photograph of a sealed blackbody resonator for
UHFMRI [60] is presented in Figure 4. In the simplest sense,
this resonant cavity is an enclosure in which radiation can
solely enter, or exit through, at a single drive point. The
radiation within such cavities should be black, according to
Kirchhoff [1, 2]. Nonetheless, measurements of the real cav-
ity show that it does not contain black radiation, as demon-
strated experimentally in Figure 5. Resonant cavities are well
known devices in electromagnetics [61, 62]. Their radiation
is determined purely by the constituent properties of the cav-
ity and its dimensions [61, 62]. This point is affirmed in Fig-
ure 5. In its current form, Kirchhoff’s law [1, 2] stands at
odds against practical microwave techniques [61, 62]. Since
this knowledge should not be discounted, something must be
incorrect within Kirchhoff’s law. Everything about the black-
body resonator presented in Figure 4 echoes Planck, yet the
radiation it contains is not black [5]. The type of radiation
within this cavity is being determined by electromagnetics
[61, 62], not by Kirchhoff’s law. Only the attributes of any
substance present and that of the enclosed resonant elements,
along with the size and shape of the enclosure itself, gov-
ern the type of radiation. For example, as seen in Figs. 4
and 5, the simple addition of echosorb acts to significantly al-
ter the resonances within such cavities. The associated loses
are thermal. Of course, at these frequencies, echosorb is not
a perfect absorber and the radiation inside the cavity cannot
easily be made black. Still, in partial deference to Kirchhoff,
if a perfect absorber could be found, the radiation within cav-
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Fig. 4: A) End-view photograph of a sealed blackbody resonator
[60] for use in UHFMRI studies. This device behaves as a resonant
cavity [61, 62] and is constructed by sealing both ends of the well-
known TEM resonator [63, 64]. In this particular case, one of the
ends of the resonator was made by sealing an acrylic ring with a thin
copper sheet which was then re-enforced with copper tape on the in-
ner and outer surfaces. All other assembly details are as previously
reported [60]. When a resonator is sealed at both ends to make a cav-
ity [61, 62], radiation can solely enter or leave the device through a
single drive port. As such, the blackbody resonator can be regarded
as the electromagnetic equivalent of Kirchhoff’s blackbody [1, 2, 5,
7], with the important difference, of course, that the radiation inside
such a device is never black. This constitutes a direct refutation of
Kirchhoff’s law of thermal emission as demonstrated experimentally
in Fig. 5. B) Photograph of the interior of the blackbody coil illus-
trating the TEM rods, the interior lined with copper, and the drive
point. Note that for these studies, a matching capacitor [60] was not
utilized, as the measurement of interest does not depend on matching
a given resonance to 50 ohms. It is the resonant nature of the coil it-
self which is of interest, not the impedance matching of an individual
resonant frequency. C) Photograph of the blackbody coil filled with
pieces of Echosorb. D) Photograph of the blackbody coil connected
to an Agilent Technologies N5230C 300kHz – 6 GHz PNA-L Net-
work Analyzer using an RG400 cable and SMA connectors. Since
the RF coil was assembled with a BNC connector, an SMA/BNC
adaptor was utilized to close the RF chain. The calibration of the
analyzer was verified from 200–400 MHz using a matched load of
50 ohms placed directly on the network analyzer port. In this case,
the return loss (S11) was less than �40 dB over the frequency range
of interest. The matched load was also placed on the end of the test
cable used for these studies and in this case the return loss (S11)
was less than �25 dB from 200–400 MHz. The network analyzer
provides a continuous steady state coherent source of radiation into
the cavity. The coherence of this radiation is critical to the proper
analysis of the returned radiation by the network analyzer. This does
not alter the conclusions reached. Only the ability to properly mon-
itor cavity behavior is affected by the use of incoherent radiation.
The cavity, of course, is indifferent to whether or not the radiation
incident upon it is coherent.

Fig. 5: Plot of the return loss (S11) for the blackbody coil (solid
line) as measured from 200–400 MHz. Note that even though this
cavity is completely closed, the radiation within this device is not
black. Several sharp resonances are observed whose resonant po-
sition depend on the nature of the resonant cavity itself (dimension
of the cavity, quality of the inner copper lining, dimensions of the
TEM resonant elements, degree of insertion of the struts into the
TEM elements, etc.). It is the presence of such resonances within
cavities that forms the basis of practical electromagnetics and en-
ables the use of resonant cavities in both EPR and MRI [61, 62]. If
Kirchhoff’s law of thermal emission had been correct, such a reso-
nant device would not exist. The problem is easily rectified if one
adopts Stewart’s formulation for the treatment of thermal emission
[6]. The dashed line displays the return loss (S11) for the blackbody
coil filled with the carbon-foam Echosorb as measured from 200–
400 MHz. Note that Echosorb is not a perfect absorber of radiation
at these frequencies. But since this foam is somewhat absorbing, the
resonance lines are broadened substantially. The return losses at sev-
eral frequencies are lower, as is to be expected from the introduction
of an absorbing object within a resonant cavity. If a perfect absorber
could be found at these frequencies, the return loses would become
extremely low across the entire frequency range of interest. Given
these measurements and access to resonant devices, network analyz-
ers and microwave technology, it is likely that Kirchhoff would have
reconsidered the formulation of his law of thermal emission.

ities containing such objects would be black. Nonetheless,
only Stewart’s law [6] is formulated in such a way as to con-
form with results from electromagnetics [61, 62].

5 Conclusions

Tragically, if Kirchhoff believed in universality, it was be-
cause he did not properly treat both reflection and absorp-
tion, as previously highlighted [12]. The correct treatment of
radiation at thermal equilibrium was first performed by Stew-
art, in 1858 [6]. Stewart properly addresses reflection [6, 8,
12], and does not arrive at universality. Unfortunately, Stew-
art’s formulation lacked mathematical rigor [6, 12] and this
did not help in drafting a central law of thermal emission.
At the same time, in deriving Kirchhoff’s law in his treatise,
Planck fails to fully treat reflection [7; §6]. Like Kirchhoff
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his teacher, Planck is thereby lead erroneously to the con-
cept that all enclosures contain black radiation. Planck begins
his derivation of Kirchhoff’s law by considering elements d�
within an extended substance. He then analyzes the radiation
emitted by these elements, but ignores the coefficient of re-
flection, �� . He writes: “total energy in a range of frequency
from � to �+ d� emitted in the time dt in the direction of the
conical element d
 by a volume element d�” [7; §6] is equal
to dtd� d
d�2"� . As a result, he is brought to a universal
function, which is independent of the nature of the object,
and affirms the validity of Kirchhoff’s law: "�=a� = f (T; �).
In this equation, the coefficient of emission, "� , the coefficient
of absorbance, a� , the temperature, T , and the frequency, �,
alone are considered. Had Planck properly addressed the co-
efficient of reflection, �� , and recognized that the total ra-
diation which leaves an element is the sum produced by the
coefficients of emission, "� , and reflection, �� , he would have
obtained ("� + ��)=(a� + ��) = f 0 (T; �;N), where the na-
ture of the object, N , determined the relative magnitudes of
"� , a� , and �� . By moving to the interior of an object and
neglecting reflection, Planck arrives at Kirchhoff’s law, but
the consequence is that his derivation ignores the known truth
that opaque objects possess reflection.

Given thermal equilibrium, the equivalence between the
absorptivity, a� , and emissivity, "� , of an object was first rec-
ognized by Stewart [6]. Stewart’s formulation preserves this
central equivalence. Only, it does not advance the univer-
sality invoked by Kirchhoff [1, 2]. At the same time, it re-
mains fortunate for human medicine that Kirchhoff’s law of
thermal emission does not hold. If it did, MRI within cav-
ities [60] would not be possible. Devices containing solely
black radiation would be of no use, either as microwave
components, or as antenna for human imaging. Physics and
medicine should return thereby, by necessity, to Stewart’s for-
mulation [6] and the realization that radiation within cavities
depends not uniquely on frequency and temperature, as stated
by Kirchhoff [1, 2], but also on the attributes of the cavity it-
self and the materials it contains. This contribution was first
brought to physics by Balfour Stewart [6]. Stewart’s law, not
Kirchhoff’s, properly describes physical reality as observed
in the laboratory across all subdisciplines of physics and over
the entire span of the electromagnetic spectrum.

Practical blackbodies are always made from specialized
substances which are nearly perfect absorbers over the fre-
quency range of interest [13–25]. Accordingly, the nature
of the enclosure is important, in opposition to Kirchhoff’s
law which claims independence from the properties of the
walls and its contents. Through the formulation of his law
of thermal emission, Balfour Stewart [6], unlike Kirchhoff,
recognized the individualized behavior of materials in ther-
mal equilibrium. In addition, it is well-established that the
radiation within microwave cavities is not necessarily black.
Rather, it depends on the nature, shape, contents, and dimen-
sions of the enclosure itself. This is in accordance with Stew-

art’s law. Alternatively, if Kirchhoff’s law was correct, cavi-
ties should strictly contain blackbody radiation and their use
in radio and microwave circuitry would be pointless. Network
analyzer measurements of return losses for a sealed enclo-
sure, or blackbody resonator [60], from 200–400 MHz, con-
firm that Kirchhoff’s law of thermal emission does not hold
within arbitrary resonant cavities.

At the same time, the physics community is justified in
taking a cautious approach in these matters. After all, it was
Planck [5] who provided the functional form contained in
Kirchhoff’s law [1, 2]. As a result, there is an understandable
concern, that revisiting Kirchhoff’s law will affect the results
of Planck himself and the foundation of quantum physics [5].
There is cause for concern. The loss of the universal function
brings about substantial changes not only in astrophysics, but
also in statistical thermodynamics.

Relative to Planck’s equation itself, the solution remains
valid. It does however, become strictly limited to the problem
of radiation within cavities which are known to be black (i.e.
made of graphite, lined with soot, etc). Universality is lost.
As for the mathematical value of Planck’s formulation for
the perfectly absorbing cavity, it is preserved. In describing
blackbody radiation, Planck consistently invokes the presence
of a perfect absorber. In his treatise [7], he repeatedly calls
for a minute particle of carbon [8]. Planck views this particle
as a simple catalyst, although it can be readily demonstrated
that this is not the case: the carbon particle acted as a perfect
absorber [12]. As a result, I have stated that Kirchhoff’s law
is not universal [8, 12, 26, 27] and is restricted to the study of
cavities which are either made from, or contain, perfect ab-
sorbers. Arbitrary cavity radiation is not black [12]. There
can be no universal function. Planck’s equation presents a
functional form which, far from being universal, is highly re-
stricted to the emission of bodies, best represented on Earth
by materials such as graphite, soot, and carbon black [8].

In closing, though 150 years have now elapsed since
Kirchhoff and Stewart dueled over the proper form of the law
of thermal emission [11, 12], little progress has been made
in bringing closure to this issue. Experimentalists continue
to unknowingly pump black radiation into arbitrary cavities
using their detectors. Theorists replicate the approach with
Monte Carlo simulations. At the same time, astrophysicists
apply with impunity the laws of thermal emission [1–7] to
the stars and the universe. Little pause is given relative to
the formulation of these laws [1–7] using condensed matter.
The fact that all of electromagnetics stands in firm opposi-
tion to the universality, instilled in Kirchhoff’s law, is eas-
ily dismissed as science unrelated to thermal emission [61,
62]. Losses in electromagnetics are usually thermal in origin.
Nonetheless, electromagnetics is treated almost as an unre-
lated discipline. This occurs despite the reality that Kirch-
hoff himself specifically included other processes, such as
fluorescence, provided enclosures were maintained. Though
the generalization of Kirchhoff’s law is widely recognized
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as valid [52–55], its application to the microwave cavity has
been strangely omitted [52], even though it is used in treat-
ing the waveguide. This is the case, even though waveguides
and cavities are often treated in the same chapters in texts on
electromagnetics. All too frequently, the simple equivalence
between apparent spectral absorbance and emission is viewed
as a full statement of Kirchhoff’s law [57, 65], adding further
confusion to the problem. Kirchhoff’s law must always be re-
garded as extending much beyond this equivalence. It states
that the radiation within all true cavities made from arbitrary
walls is black [1, 2]. The law of equivalence [57, 65] is Stew-
art’s [6].

Most troubling is the realization that the physical cause of
blackbody radiation remains as elusive today as in the days
of Kirchhoff. Physicists speak of mathematics, of Planck’s
equation, but nowhere is the physical mechanism mentioned.
Planck’s frustration remains: “Therefore to attempt to draw
conclusions concerning the special properties of the particles
emitting rays from the elementary vibrations in the rays of
the normal spectrum would be a hopeless undertaking” [7;
§111]. In 1911, Einstein echoes Planck’s inability to link
thermal radiation to a physical cause: “Anyway, the h-disease
looks ever more hopeless” [66; p. 228]. Though he would
be able to bring a ready derivation of Planck’s theorem using
his coefficients [67], Einstein would never be able to extract
a proper physical link [68]. In reality, we are no closer to
understanding the complexities of blackbody radiation than
scientists were 150 years ago.
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Through the reevaluation of Kirchhoff’s law (Robitaille P. M. L. IEEE Trans. Plasma
Sci., 2003, v. 31(6), 1263–1267), Planck’s blackbody equation (Planck M. Ann. der
Physik, 1901, v. 4, 553–356) loses its universal significance and becomes restricted to
perfect absorbers. Consequently, the proper application of Planck’s radiation law in-
volves the study of solid opaque objects, typically made from graphite, soot, and carbon
black. The extension of this equation to other materials may yield apparent tempera-
tures, which do not have any physical meaning relative to the usual temperature scales.
Real temperatures are exclusively obtained from objects which are known solids, or
which are enclosed within, or in equilibrium with, a perfect absorber. For this reason,
the currently accepted temperature of the microwave background must be viewed as
an apparent temperature. Rectifying this situation, while respecting real temperatures,
involves a reexamination of Boltzman’s constant. In so doing, the latter is deprived of
its universal nature and, in fact, acts as a temperature dependent variable. In its revised
form, Planck’s equation becomes temperature insensitive near 300 K, when applied to
the microwave background.

With the formulation of his law of thermal emission
[1], Planck brought to science a long sought physical order.
Though individual materials varied widely in their radiative
behaviors, Kirchhoff’s law of thermal emission [2, 3] had en-
abled him to advance dramatic simplifications in an otherwise
chaotic world [1]. Given thermal equilibrium and enclosure,
the blackbody cavity seemed to impart upon nature a univer-
sal property, far removed from the confusion prevailing out-
side its walls [4]. Universality produced conceptual order and
brought rapid and dramatic progress in mathematical physics.

In his “Theory of Heat Radiation” [4], Planck outlines the
prize: the existence of the universal constants, h and k. More-
over, he is able to introduce natural units of length, mass,
time, and temperature [4; §164]. He writes: “In contrast with
this it might be of interest to note that, with the aid of the two
constants h and k which appear in the universal law of radia-
tion, we have the means of establishing units of length, mass,
time, and temperature, which are independent of special bod-
ies or substances, which necessarily retain their significance
for all time and for all environments, terrestrial and human
or otherwise, and which may, therefore, be described as ‘nat-
ural units’ ” [4; §164]. Planck then presents the values of the
four fundamental constants [4; §164]:

Planck’s constant h = 6:415�10�27 g cm2=sec;
Boltzman’s constant k = 1:34�10�16 g cm2=sec2 degree;
the speed of light c = 3:10�1010 cm=sec;
the gravitational constant f = 6:685�10�8 cm3=g sec2:

Finally, he reveals basic units of:

length
p
fh=c3 = 3:99�10�33 cm;

mass
p
ch=f = 5:37�10�5 g;

time
p
fh=c5 = 1:33�10�43 s;

temperature
1
k
p
c5h=f = 3:60�1032 degree:

Planck continues: “These quantities retain their natural
significance as long as the law of gravitation and that of the
propagation of light in a vacuum and the two principles of
thermodynamics remain valid; they therefore must be found
always the same, when measured by the most widely differing
intelligences according to the most widely differing methods”
[4; §164].

The real triumph of Planck’s equation [1] rested not solely
on solving the blackbody problem, but rather on the univer-
sal nature of h and k. The four fundamental units of scale
for time, length, mass, and temperature profoundly altered
physics. It is in this light, that concern over any fundamen-
tal change in Kirchhoff’s law [2, 3] and Planck’s equation [1]
must be viewed.

The notion that the microwave background [5] is being
produced directly by the oceans of the Earth [6–9], brings
with it an immediate realization that universality is lost, and
Kirchhoff’s law is invalid [10–14]. Blackbody radiation is not
a universal process [10–14], as Planck so adamantly advo-
cated [4]. Yet, if the microwave background truly arises from
oceanic emissions [5–8], then it is not simple to reconcile a
temperature at �3 K with a source known to have a physical
temperature of�300 K [10]. Let us examine more closely the
problem at hand, by considering Planck’s formulation (1):

"�
��

=
2h�3

c2
1

eh�=kT � 1
: (1)
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In order to properly fit the microwave background using
this equation, the problem rests in the k T term. It is possible,
for instance, to make that assumption that an apparent tem-
perature exists [10] and to keep the meaning of Boltzman’s
constant. In fact, this was the course of action initially pro-
posed [10]. In this way, nothing was lost from the universal
nature of h and k [10]. But, upon further consideration, it
is clear that such an approach removes all physical meaning
from temperature itself. The one alternative is to alter Boltz-
man’s constant directly, and accept the full consequences of
the loss of universality. The issue involves a fundamental un-
derstanding of how energy is distributed within matter. For
the microwave background, this must focus on water [8].

Thus, let us consider a very primitive description of how
energy enters, or becomes distributed, within water [8]. Wa-
ter possesses many degrees of freedom and must be viewed
as a complex system. At low temperatures, some of the first
degrees of freedom to be fully occupied will be associated
with the weak intermolecular hydrogen bond (H2O � � �HOH)
[8]. These involve both stretching and bending processes,
resulting in several vibrational-rotational modes. The hy-
drogen bond (H2O � � �HOH) has been advanced as respon-
sible for the microwave background [8], particularly as a re-
sult of its predicted bond strength. As energy continues to
enter the water system, it will start to populate other de-
grees of freedom, including those associated with the direct
translation and rotation of individual molecules. This is in
sharp contrast to graphite, for instance, because the latter
never undergoes a solid-liquid phase transition [15]. Eventu-
ally, other degrees of freedom, associated with the vibrational
and bending modes of the intramolecular hydroxyl bonds
(H–OH) themselves, will become increasingly populated.
Hydrogen bonds (H2O � � �HOH) have bond strengths which
are on the order of 100 times lower than hydroxyl bonds
(H–OH) [8]. Considering these complexities, it is unreason-
able to believe that energy will enter the water system in a
manner which ignores the existence of these degrees of free-
dom, particularly those associated with the liquid state.

Contrary to what Kirchhoff and Planck require for univer-
sality [1–3], these complex issues extend throughout nature.
Each material is unique relative to the degrees of freedom it
has available as a function of temperature [15]. Water pos-
sesses two distinct oscillators, the intermolecular hydrogen
bond (H2O � � �HOH) and the intramolecular hydroxyl bond
(H–OH) [7]. These two oscillatory systems have very dis-
tinct energies [8] and provide a situation which is quite re-
moved from graphite. Kirchhoff and Planck had no means of
anticipating such complexity. In fact, they were relatively un-
aware of the tremendous atomic variability found at the level
of the lattice. As such, it is somewhat understandable that
they might seek universal solutions.

In any case, it has been amply demonstrated that Kirch-
hoff’s law is not valid [10–14]. There can be no universality.
In addition, it is extremely likely that the microwave back-

ground is being produced by thermal photons emitted directly
from the oceanic surface and then scattered in the Earth’s at-
mosphere [6]. This implies that a �300 K source is able to
behave, at least over a region of the electromagnetic spec-
trum, as a �3 K source. However, since the oceans are not at
�3 K, an inconsistency has been revealed in the determina-
tion of temperatures using the laws of thermal emission. The
problem stems from the weakness of the hydrogen bond and
the associated ease with which water enters the liquid state.
Furthermore, it is evident that energy can enter the water sys-
tem and be directed into its translational degrees of freedom,
thereby becoming unavailable for thermal emission. This is a
significant problem, which Kirchhoff and Planck did not need
to consider, and of which they were unaware, when treating
graphite boxes [1–4, 10]. Graphite, unlike water, cannot sup-
port convection.

In any event, the central issue remains that a �3 K tem-
perature has been obtained from a �300 K source. As men-
tioned above, it is possible to essentially ignore the conse-
quences of this finding by simply treating the microwave
background as an apparent temperature [10], devoid of physi-
cal meaning. In this way, Planck’s equation and the universal
constants, survive quite nicely [10]. Conversely, if one re-
fuses to abandon the real temperature scale, then a problem
arises. In order to properly fit the microwave background
with Planck’s equation and a real temperature at �300 K,
then Boltzman’s constant must change. In fact, it must be-
come a temperature dependent variable, k0(T ). This vari-
able must behave such that when it is multiplied by a range
of temperatures near 300 K, it results in a perfectly constant
value independent of temperature (k0(T ) �T =P , where P is
a constant). Planck’s equation thereby becomes completely
insensitive to temperature fluctuations over the temperature
and frequency ranges of interest, as seen in Eq. (2):

"�
��

=
2h�3

c2
1

eh�=P � 1
: (2)

As a result, relative to the microwave background, we
move from a universal constant, k, to a temperature sensitive
variable, k0(T ), which acts to render Planck’s equation tem-
perature insensitive. The modern value of the constant, P , for
the microwave background, is approximately 3.762�10�16

ergs. The move away from graphite, into another Planckian
system, has resulted in a profound re-evaluation of the science
of thermodynamics. Boltzman’s constant, therefore, remains
valid only for graphite, soot, or carbon black, and those ma-
terials approaching their performance at a given frequency.
Outside a certain range of temperatures, or frequencies, or
materials, then other constants and/or variables, which are
material specific, exist. The measure of how much energy
a system can hold at a given temperature, or how temperature
changes as a function of energy, is directly determined by the
makeup of the system itself. The flow of heat within a system
depends on all of the degrees of freedom which eventually
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become available [15]. In this regard, phase transitions bring
with them additional degrees of freedom, either translational
or rotational, which are simply not available to the solid state
[15]. Herein is found the central reason for the loss of uni-
versality: phase transitions exist. Nothing is universal, since
phase transitions and any available degrees of freedom [15]
are strictly dependent on the nature of matter. Hence, each
material must be treated on its own accord. This is the pri-
mary lesson of the water/microwave background findings.

Physics cannot maintain a proper understanding of tem-
perature without abandoning the universal attributes of Boltz-
man’s constant. Otherwise, the temperature scale itself loses
meaning. In order to specifically address the microwave
background, Boltzman’s constant, in fact, can become a tem-
perature dependent variable. At the same time, since many
materials contain covalent bonds with bond strengths near
those found within graphite, it is likely that many mate-
rial specific constants will, in fact, approach Boltzman’s.
Nonetheless, relative to the microwave background, a tem-
perature dependent variable exists which acts to completely
remove all temperature sensitivity from Planck’s equation at
earthly temperatures. This explains why Penzias and Wilson
[5] first reported that the microwave background was devoid
of seasonal variations.

As regards to Planck’s constant, and the fundamental
units of time, mass, and length, they appear to remain unal-
tered by the findings prompted by the microwave background.
Perhaps they will be able to retain their universal meaning.
However, a careful analysis of individual physical processes
is in order, such that the consequences of the loss of univer-
sality can be fully understood.
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The COBE Far Infrared Absolute Spectrophotometer (FIRAS) operated from �30 to
�3,000 GHz (1–95 cm�1) and monitored, from polar orbit (�900 km), the �3 K mi-
crowave background. Data released from FIRAS has been met with nearly universal ad-
miration. However, a thorough review of the literature reveals significant problems with
this instrument. FIRAS was designed to function as a differential radiometer, wherein
the sky signal could be nulled by the reference horn, Ical. The null point occurred at
an Ical temperature of 2.759 K. This was 34 mK above the reported sky temperature,
2.725�0.001 K, a value where the null should ideally have formed. In addition, an
18 mK error existed between the thermometers in Ical, along with a drift in temper-
ature of �3 mK. A 5 mK error could be attributed to Xcal; while a 4 mK error was
found in the frequency scale. A direct treatment of all these systematic errors would
lead to a �64 mK error bar in the microwave background temperature. The FIRAS
team reported �1 mK, despite the presence of such systematic errors. But a 1 mK er-
ror does not properly reflect the experimental state of this spectrophotometer. In the
end, all errors were essentially transferred into the calibration files, giving the appear-
ance of better performance than actually obtained. The use of calibration procedures
resulted in calculated Ical emissivities exceeding 1.3 at the higher frequencies, whereas
an emissivity of 1 constitutes the theoretical limit. While data from 30–60 GHz was
once presented, these critical points are later dropped, without appropriate discussion,
presumably because they reflect too much microwave power. Data obtained while the
Earth was directly illuminating the sky antenna, was also discarded. From 300–660
GHz, initial FIRAS data had systematically growing residuals as frequencies increased.
This suggested that the signal was falling too quickly in the Wien region of the spec-
trum. In later data releases, the residual errors no longer displayed such trends, as the
systematic variations had now been absorbed in the calibration files. The FIRAS team
also cited insufficient bolometer sensitivity, primarily attributed to detector noise, from
600–3,000 GHz. The FIRAS optical transfer function demonstrates that the instrument
was not optimally functional beyond 1,200 GHz. The FIRAS team did not adequately
characterize the FIRAS horn. Established practical antenna techniques strongly suggest
that such a device cannot operate correctly over the frequency range proposed. Insuffi-
cient measurements were conducted on the ground to document antenna gain and field
patterns as a full function of frequency and thereby determine performance. The ef-
fects of signal diffraction into FIRAS, while considering the Sun/Earth/RF shield, were
neither measured nor appropriately computed. Attempts to establish antenna side lobe
performance in space, at 1,500 GHz, are well outside the frequency range of interest
for the microwave background (<600 GHz). Neglecting to fully evaluate FIRAS prior
to the mission, the FIRAS team attempts to do so, on the ground, in highly limited
fashion, with a duplicate Xcal, nearly 10 years after launch. All of these findings in-
dicate that the satellite was not sufficiently tested and could be detecting signals from
our planet. Diffraction of earthly signals into the FIRAS horn could explain the spectral
frequency dependence first observed by the FIRAS team: namely, too much signal in
the Jeans-Rayleigh region and not enough in the Wien region. Despite popular belief to
the contrary, COBE has not proven that the microwave background originates from the
universe and represents the remnants of creation.
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Fig. 1: Schematic representation of the COBE FIRAS instrument reproduced from [38]. The spectrometer is based on an interferometer
design wherein the signal from the sky horn is being compared with that provided by the reference horn. Each of the input signals is split by
grid polarizers, reflected by mirrors, and sent down the arms of the interferometer. Two output ports receive the resultant signal. An internal
calibrator, Ical, equipped with two germanium resistance thermometers (GRT), provides signal to the reference horn. During calibration,
the external calibrator, Xcal, is inserted into the sky horn. Xcal is monitored by three GRTs. The interferometer assembly includes a single
mirror transport mechanism (MTM). Specific details can be found in [38]. No knowledge about the functioning of FIRAS, beyond that
contained in this figure legend, is required to follow this work. The central elements are simply that FIRAS is made up of a sky horn, a
reference horn, Ical (2 thermometers), and Xcal (3 thermometers). Reproduced by permission of the AAS.

1 Introduction

Conceding that the microwave background [1] must arise
from the cosmos [2], scientists have dismissed the idea that
the Earth itself could be responsible for this signal [3–7].
Most realize that the astrophysical claims are based on the
laws of thermal emission [8–12]. Yet, few have ever person-
ally delved into the basis of these laws [13–17]. At the same
time, it is known that two satellites, namely COBE [18] and
WMAP [19], support the cosmological interpretation [2]. As
such, it seems impossible that an alternative explanation of
the findings could ever prevail.

In late 2006, I prepared a detailed review of WMAP
which uncovered many of the shortcomings of this instrument
[20]. A range of issues were reported, including: 1) the inabi-
lity to properly address the galactic foreground, 2) dynamic
range issues, 3) a lack of signal to noise, 4) poor contrast,
5) yearly variability, and 6) unjustified changes in processing
coefficients from year to year. In fact, WMAP brought only
sparse information to the scientific community, related to the
dipole and to point sources.

Nonetheless, the COBE satellite, launched in 1989, con-
tinues to stand without challenge in providing empirical proof
that the microwave background did come from the universe.
If COBE appears immune to criticism, it is simply because
scientists outside the cosmological community have not taken
the necessary steps to carefully analyze its results. Such an
analysis of COBE, and specifically the Far Infrared Absolute
Spectrophotometer, FIRAS, is provided in the pages which

follow. Significant problems exist with FIRAS. If anything,
this instrument provides tangential evidence for an earthly
source, but the data was discounted. A brief discussion of
the Differential Microwave Radiometers, DMR, outlines that
the anisotropy maps, and the multipoles which describe them,
are likely to represent a signal processing artifact.

1.1 The microwave background

When the results of the Cosmic Background Explorer
(COBE) were first announced, Stephen Hawking stated that
this “was the scientific discovery of the century, if not of all
time” [21, book cover], [22, p. 236]. The Differential Mi-
crowave Radiometers (DMR) were said to have detected
“wrinkles in time”, the small anisotropies overlaid on the fab-
ric of a nearly isotropic, or uniform, microwave background
[21]. As for the COBE Far Infrared Absolute Spectropho-
tometer, FIRAS (see Figure 1), it had seemingly produced the
most perfect blackbody spectrum ever recorded [23–45]. The
blackbody curve deviated from ideality by less than 3.4�10�8

ergs cm�2 s�1 sr�1 cm [35] from�60–600 GHz. Eventually,
the FIRAS team would publish that the “rms deviations are
less than 50 parts per million of the peak of the cosmic mi-
crowave background radiation” [39]. As seen in Figure 2,
the signal was so powerful that the error bars in its detection
would form but a slight portion of the line used to draw the
spectrum [39]. For its part, the Differential Microwave Ra-
diometers (DMR), beyond the discovery of the anisotropies
[21], had also confirmed the motion of the Earth through the
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Fig. 2: Spectrum of the microwave background reproduced from
[39]. This figure is well known for the claim that the error bars
it contains are but a small fraction of the line width used to draw
the spectrum. While this curve appears to represent a blackbody,
it should be recalled that FIRAS is only sensitive to the difference
between the sky and Xcal. This plot therefore reflects that the signal
from the sky, after extensive calibration, is indistinguishable from
that provided by Xcal. Since the latter is presumed to be a perfect
blackbody, then such a spectrum is achieved for the sky. Note that
the frequency axis is offset and all data below 2 cm�1 have been
excluded. Reproduced by permission of the AAS.

local group, as established by a microwave dipole [46–49].
Over one thousand professional works have now appeared

which directly utilize, or build upon, the COBE results [22,
p. 247]. Yet, sparse concern can be found relative to any
given aspect of the COBE project. Eventually, George Smoot
and John Mather, the principle investigators for the DMR and
FIRAS projects, would come to share the 2006 Nobel Prize in
physics. Less than 30 years had elapsed since Arno Penzias
and Robert Wilson received the same honor, in 1978, for the
discovery of the �3 K microwave background [1].

Before the background was officially reported in the lit-
erature [1], the origin of the signal had already been ad-
vanced by Dicke et al. [2]. The interpretive paper [2] had
immediately preceded the publication of the seminal discov-
ery [1]. If the microwave background was thermal in ori-
gin [8–12], it implied a source at �3 K. Surely, such a sig-
nal could not come from the Earth. For the next 40 years,
astrophysics would remain undaunted in the pursuit of the
spectrum, thought to have stemmed from the dawn of cre-
ation. Smoot writes: “Penzias and Wilson’s discovery of the
cosmic microwave background radiation was a fatal blow to
the steady state theory” [21, p. 86]. The steady state theory
of the universe [50, 51] was almost immediately abandoned
and astrophysics adopted Lemaı̂tre’s concept of the primor-
dial atom [52], later known as the Big Bang. Cosmologists
advanced that mankind knew the average temperature of the
entire universe. Thanks to COBE, cosmology was thought to
have become a precision science [53, 54].

Throughout the detection history of the microwave back-
ground, it remained puzzling that the Earth itself never pro-
vided interference with the measurements. Water, after all,
acts as a powerful absorber of microwave radiation. This
is well understood, both at sea aboard submarines, and at
home, within microwave ovens. As such, it seemed unlikely
that the surface of our planet was microwave silent in every
CMB experiment which preceded COBE. The only interfer-
ence appeared to come from the atmosphere [55–57]. The
latter was recognized as a powerful emitter of microwave ra-
diation. The presence of water absorption/emission lines and
of the water continuum, within the atmosphere, was well doc-
umented [55–57]. Nonetheless, emission from the Earth itself
was overlooked.

The microwave signal is isotropic [1], while the Earth is
anisotropic. The Earth experiences a broad range of real tem-
peratures, which vary according to location and season. Yet,
the background is found to be independent of seasonal vari-
ation [1]. The signal is definitely thermal in origin [9–17].
Most importantly, it is completely free from earthly contami-
nation. The background appears to monitor a source temper-
ature near �3 K. Earthly temperatures average �300 K and
seldom fall below �200 K, even at the poles. It seems im-
possible that the Earth could constitute the source of this sig-
nal [3–7]. Everything can be reconsidered, only if the temper-
ature associated with the microwave background signature is
not real. Namely, that the source temperature is much higher
than the temperature reported by the photons it emits. Insight
in this regard can be gained by returning to the laws of ther-
mal emission [8–12], as I have outlined [13–17].

1.2 Kirchhoff’s law

One hundred and fifty years have now passed, since Kirch-
hoff first advanced the law upon which the validity of the mi-
crowave background temperature rests [9]. His law of thermal
emission stated that radiation, at equilibrium with the walls of
an enclosure, was always black, or normal [9, 10]. This was
true in a manner independent of the nature of the enclosure.
Kirchhoff’s law was so powerful that it would become the
foundation of contemporary astrophysics. By applying this
formulation, the surface temperatures of all the stars could be
evaluated, with the same ease as measuring the temperature of
a brick-lined oven. Planck would later derive the functional
form of blackbody radiation, the right-hand side of Kirch-
hoff’s law, and thereby introduce the quantum of action [10].
However, since blackbody radiation only required enclosure
and was independent of the nature of the walls, Planck did not
link this process to a specific physical cause [13–17]. For as-
trophysics, this meant that any object could produce a black-
body spectrum. All that was required was mathematics and
the invocation of thermal equilibrium. Even the requirement
for enclosure was soon discarded. Processes occurring far out
of equilibrium, such as the radiation of a star, and the alleged
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expansion of the universe, were thought to be suitable candi-
dates for the application of the laws of thermal emission [2].
To aggravate the situation, Kirchhoff had erred in his claim
of universality [13–17]. In actuality, blackbody radiation was
not universal. It was limited to an idealized case which, at
the time, was best represented by graphite, soot, or carbon
black [13–17]. Nothing on Earth has been able to generate
the elusive blackbody over the entire frequency range and
for all temperatures. Silver enclosures could never produce
blackbody spectra. Kirchhoff’s quest for universality was fu-
tile [13–17]. The correct application of the laws of thermal
emission [8–12] requires the solid state. Applications of the
laws to other states of matter, including liquids, gases, stars,
and primordial atoms, constitute unjustified extensions of ex-
perimental realities and theoretical truths [13–17].

Since the source of the microwave background [1] could
not possibly satisfy Kirchhoff’s requirement for an enclosure
[9], its �3 K temperature might only be apparent [13–17].
The temperature of the source could be very different than
the temperature derived from its spectrum. Planck, indeed,
advanced the same idea relative to using the laws of thermal
emission to measure the surface temperature of the Sun. He
wrote: “Now the apparent temperature of the sun is obviously
nothing but the temperature of the solar rays, depending en-
tirely on the nature of the rays, and hence a property of the
rays and not a property of the sun itself. Therefore it would
be, not only more convenient, but also more correct, to apply
this notation directly, instead of speaking of a fictitious tem-
perature of the sun, which can be made to have a meaning
only by the introduction of an assumption that does not hold
in reality” [58, §101]. Without a known enclosure, spectra ap-
pearing Planckian in nature do not necessarily have a direct
link to the actual temperature of the source. The Sun operates
far out of thermal equilibrium by every measure, as is evi-
dent by the powerful convection currents on its surface [59].
Furthermore, because it is not enclosed within a perfect ab-
sorber, its true surface temperature cannot be derived from
the laws of thermal emission [59]. These facts may resemble
the points to which Planck alludes.

1.3 The oceans of the Earth

The COBE team treats the Earth as a blackbody source of
emission at �280 K [48]. Such a generalization seems plau-
sible at first, particularly in the near infrared, as revealed by
the remote sensing studies [60,61]. However, FIRAS is mak-
ing measurements in the microwave and far-infrared regions
of the spectrum. It is precisely in this region that these as-
sumptions fail. Furthermore, the FIRAS team is neglecting
the fact that 70% of the planet is covered with water. Water
is far from acting as a blackbody, either in the infrared or in
the microwave. Using remote sensing, it has been well es-
tablished that rainfall causes a pronounced drop in terrestrial
brightness temperatures in a manner which is proportional to

the rate of precipitation. In the microwave region, large bod-
ies of water, like the oceans, display brightness temperatures
which vary from a few Kelvin to �300 K, as a function of
angle of observation, frequency, and polarization (see Fig-
ure 11.45 in [62]). Since the oceans are not enclosed, their
thermal emission profiles do not necessarily correspond to
their true temperatures. The oceans of the Earth, like the Sun,
sustain powerful convection currents. Constantly striving for
equilibrium, the oceans also fail to meet the requirements for
being treated as a blackbody [13–17].

In order to understand how the oceans emit thermal ra-
diation, it is important to consider the structure of water it-
self [6]. An individual water molecule is made up of two hy-
droxyl bonds, linking a lone oxygen atom with two adjacent
hydrogens (H�O�H). These are rather strong bonds, with
force constants of�8.45�105 dyn/cm [6]. In the gas phase, it
is known that the hydroxyl bonds emit in the infrared region.
The O�H stretch can thus be found near 3,700 cm�1, while
the bending mode occurs near 1,700 cm�1 [63]. In the con-
densed state, liquid water displays corresponding emission
bands, near 3,400 cm�1 and 1,644 cm�1 [63, p. 220]. The
most notable change is that the O�H stretching mode is dis-
placed to lower frequencies [63]. This happens because water
molecules, in the condensed state (liquid or solid), can inter-
act weakly with one another, forming hydrogen bonds [63].
The force constant for the hydrogen bond (H2O � � �HOH) has
been determined in the water dimer to be on the order of
�0.108�105 dyn/cm [6, 64, 65]. But, in the condensed state,
a study of rearrangement energetics points to an even lower
value for the hydrogen bond force constant [66]. In any event,
water, through the action of the hydrogen bond, should be
emitting in the microwave and far-IR regions [6, 63]. Yet,
this emission has never been detected. Perhaps, the oceanic
emission from hydrogen bonds has just been mistaken for a
cosmic source [2].

1.4 Ever-present water
1.4.1 Ground-based measurements

From the days of Penzias and Wilson [1], ground-based mea-
surements of the microwave background have involved a cor-
rection for atmospheric water contributions (see [56] for an
in-depth review). By measuring the emission of the sky at
several angles (at least two), a correction for atmospheric
components was possible. Further confidence in such proce-
dures could be provided through the modeling of theoretical
atmospheres [55, 56]. Overall, ground-based measurements
were difficult to execute and corrections for atmospheric con-
tributions could overwhelm the measurement of interest, par-
ticularly as higher frequencies were examined. The emission
from atmospheric water was easy to measure, as Smoot re-
calls in the “parking lot testing” of a radiometer at Berke-
ley: “An invisible patch of water vapor drifted overhead; the
scanner showed a rise in temperature. Good: this meant the
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instrument was working, because water vapor was a source
of stray radiation” [21, p. 132].

The difficulty in obtaining quality measurements at high
frequencies was directly associated with the presence of the
water continuum, whose amplitude displays powerful fre-
quency dependence [55, 56]. As a result, experiments were
typically moved to locations where atmospheric water was
minimized. Antarctica, with its relatively low atmospheric
humidity, became a preferred monitoring location [55]. The
same was true for mountain tops, places like Mauna Kea
and Kitt Peak [55]. Many ground-based measurements were
made from White Mountain in California, at an elevation of
3800 m [55]. But, there was one circumstance which should
have given cosmologists cause for concern: measurements
located near the oceans or a large body of water. These were
amongst the simplest of all to perform. Weiss writes: “Tempe-
rature, pressure, and constituent inhomogeneities occur and
in fact are the largest source of random noise in ground-based
experiments. However, they do not contribute systematic er-
rors unless the particular observing site is anisotropic in a
gross manner — because of a large lake or the ocean in the di-
rection of the zenith scan, for example. The atmospheric and
CBR contributions are separable in this case without further
measurement or modeling” [67, p. 500]. Surely, it might be of
some importance that atmospheric contributions are always a
significant problem which is only minimized when large bod-
ies of condensed water are in the immediate scan direction.

The interesting interplay between atmospheric emissions
and liquid surfaces is brought to light, but in a negative fash-
ion, in the book by Mather [22]. In describing British work
in the Canary Islands, Mather writes: “Their job was unusu-
ally difficult because Atlantic weather creates patterns in the
air that can produce signals similar to cosmic fluctuations. It
took the English scientists years to eliminate this atmospheric
noise. . . ” [22, p. 246–247]. As such, astronomers recognized
that the Earth was able to alter their measurements in a sub-
stantial manner. Nonetheless, the possibility that condensed
water itself was responsible for the microwave background
continued to be overlooked.

1.4.2 U2 planes, rockets, and balloons

As previously outlined, the presence of water vapor in the
lower atmosphere makes all measurements near the Wien
maximum of the microwave background extremely difficult,
if not impossible, from the ground. In order to gain more
elevation, astrophysicists carried their instruments skywards
using U2 airplanes, rockets, and balloons [21, 22]. All
too often, these measurements reported elevated microwave
background temperatures. The classic example is given by
the Berkeley-Nagoya experiments, just before the launch of
COBE [68]. Reflecting on these experiments, Mather writes:
“A greater shock to the COBE science team, especially to
me since I was in charge of the FIRAS instrument, was an

announcement made in early 1987 by a Japanese-American
team headed by Paul Richards, my old mentor and friend at
Berkeley, and Toshio Matsumoto of Nagoya University. The
Berkeley-Nagoya group had launched from the Japanese is-
land of Kyushu a small sounding rocket carrying a spectro-
meter some 200 miles high. During the few minutes it was
able to generate data, the instrument measured the cosmic
background radiation at six wavelengths between 0.1 mil-
limeter and 1 millimeter. The results were quite disquieting,
to say the least: that the spectrum of the cosmic microwave
background showed an excess intensity as great as 10 per-
cent at certain wavelengths, creating a noticeable bump in
the blackbody curve. The cosmological community buzzed
with alarm” [22, p. 206]. The results of the Berkeley-Nagoya
group were soon replaced by those from COBE. The ori-
gin of the strange “bump” on the blackbody curve was never
identified. However, condensation of water directly into the
Berkeley-Nagoya instrument was likely to have caused the
interference. In contrast, the COBE satellite was able to op-
erate in orbit, where any condensed water could be slowly
degassed into the vacuum of space. COBE did not have to
deal with the complications of direct water condensation and
Mather could write in savoring the COBE findings: “Rich
and Ed recognized at once that the Berkeley-Nagoya results
had been wrong” [22, p. 216]. Nonetheless, the Berkeley-
Nagoya experiments had provided a vital clue to the astro-
physical community.

Water seemed to be constantly interferring with mi-
crowave experiments. At the very least, it greatly increased
the complexity of studies performed near the Earth. For in-
stance, prior to flying a balloon in Peru, Smoot reports: “It is
much more humid in the tropics, and as the plane descended
from the cold upper air into Lima, the chilly equipment con-
densed the humidity into water. As a result, water collected
into the small, sensitive wave guides that connect the differen-
tial microwave radiometer’s horns to the receiver. We had to
take the receiver apart and dry it. . . Our equipment had dried,
so we reassembled it and tested it: it worked” [21, p. 151].

Still, little attention has been shown in dissecting the un-
derlying cause of these complications [6]. Drying scientific
equipment was considered to be an adequate solution to ad-
dress this issue. Alternatively, scientists simply tried to pro-
tect their antenna from condensation and added small mon-
itoring devices to detect its presence. Woody makes this
apparent, relative to his experiments with Mather: “On the
ground and during the ascent, the antenna is protected from
atmospheric condensation by two removable windows at the
top of the horn. . . At the same time, a small glass mirror al-
lows us to check for atmospheric condensation in the an-
tenna by taking photographs looking down the throat of the
horn and cone” [69, p. 16]. Indeed, monitoring condensation
has become common place in detecting the microwave back-
ground using balloons. Here is a recent excerpt from the 2006
flight of the ARCADE 2 balloon: “A video camera mounted
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on the spreader bar above the dewar allows direct imaging of
the cold optics in flight. Two banks of light-emitting diodes
provide the necessary illumination. The camera and lights
can be commanded on and off, and we do not use data for
science analysis from times when they are on” [70]. They
continue: “The potential problem with a cold open aper-
ture is condensation from the atmosphere. Condensation on
the optics will reflect microwave radiation adding to the ra-
diometric temperature observed by the instrument in an un-
known way. In the course of an ARCADE 2 observing flight,
the aperture plate and external calibrator are maintained at
cryogenic temperatures and exposed open to the sky for over
four hours. Figure 12 shows time averaged video camera im-
ages of the dewar aperture taken two hours apart during the
2006 flight. No condensation is visible in the 3 GHz horn
aperture despite the absence of any window between the horn
and the atmosphere. It is seen that the efflux of cold boiloff he-
lium gas from the dewar is sufficient to reduce condensation
in the horn aperture to below visibly detectable levels” [70].

The fact that condensation is not visible does not imply
that it is not present. Microscopic films of condensation could
very well appear in the horn, in a manner undetectable by the
camera. In this regard, claims of strong galactic microwave
bursts, reported by ARCADE 2 [70, 71] and brought to the
attention of the public [72], must be viewed with caution.
This is especially true, since it can be deduced from the pre-
vious discussion, that the camera was not functional during
this short term burst. In any event, it is somewhat improbable
that an object like the galaxy would produce bursts on such a
short time scale. Condensation near the instrument is a much
more likely scenario, given the experimental realities of the
observations.

It remains puzzling that greater attention is not placed
on understanding why water is a source of problems for mi-
crowave measurements. Singal et al. [70], for instance, be-
lieve that condensed water is a good reflector of microwave
radiation. In contrast, our naval experiences, with signal
transmission by submarines, document that water is an ex-
tremely powerful absorber of microwave radiation. There-
fore, it must be a good emitter [8–12].

It is interesting to study how the Earth and water were
treated as possible sources of error relative to the microwave
background. As a direct precursor to the COBE FIRAS horn,
it is most appropriate to examine the Woody-Mather instru-
ment [69, 73]. Woody provides a detailed error analysis, as-
sociated with the Mather/Woody interferometer-based spec-
trometer [69]. This includes virtually every possible source
of instrument error. Both Mather and Woody view earthshine
as originating from a �300 K blackbody source. They ap-
pear to properly model molecular species in the atmosphere
(H2O, O2, ozone, etc...), but present no discussion of the ex-
pected thermal emission profile of water in the condensed
state on Earth. Woody [69, p. 99] and Mather [73, p. 121]
do attempt to understand the response of their antenna to the

Earth. Woody places an upper limit on earthshine [69, p. 104]
by applying a power law continuum to model the problem.
In this case, the Earth is modeled as if it could only produce
300 K photons. Such a treatment generates an error correc-
tion which grows with increasing frequency. Woody reaches
the conclusion that, since the residuals on his fits for the mi-
crowave background are relatively small, even when earth-
shine is not considered, then its effect cannot be very signif-
icant [69, p. 105]. It could be argued that continental emis-
sion is being modeled. Yet, the function selected to represent
earthly effects overtly dismisses that the planet itself could be
producing the background. The oceans are never discussed.

Though Mather was aware that the water dimer exists in
the atmosphere [73, p. 54], he did not extend this knowledge
to the behavior of water in the condensed state. The poten-
tial importance of the hydrogen bond to the production of the
microwave background was not considered [73]. At the same
time, Mather realized that condensation of water into his an-
tenna created problems. He wrote: “The effect of air condens-
ing into the antenna were seen. . . ” [73, p. 140]. He added:
“When the second window was opened, the valve which con-
trols the gas flow should have been rotated so that all the gas
was forced out through the cone and horn. When this situ-
ation was corrected, emissions from the horn were reduced
as cold helium has cooled the surfaces on which the air had
condensed, and the signal returned to its normal level” [73,
p. 140–141]. Mather does try to understand the effect of
diffraction for this antenna [73, p. 112–121]. However, the
treatment did not model any objects beyond the horn itself.

Relative to experiments with balloons, U2 airplanes, and
rockets, the literature is replete with complications from wa-
ter condensation. Despite this fact, water itself continues to
be ignored as the underlying source of the microwave back-
ground. It is in this light that the COBE project was launched.

1.4.3 The central question

In studying the microwave background, several important
conclusions have been reached as previously mentioned.
First, the background is almost perfectly isotropic: it has es-
sentially the same intensity, independent of observation an-
gle [1]. Second, the background is not affected by seasonal
variations on Earth [1]. Third, the signal is of thermal ori-
gin [8–17]. Finally, the background spectrum (see Figure 2)
is clean: it is free from earthly interference. Over a frequency
range spanning nearly 3 orders of magnitude (�1–660 GHz),
the microwave background can be measured without any con-
taminating effect from the Earth. The blackbody spectrum is
“perfect” [39]. But, as seen above, liquid water is a powerful
absorber of microwave radiation. Thus, it remains a complete
mystery as to why cosmology overlooked that the surface of
the Earth could not produce any interference in these mea-
surements. The only issue of concern for astrophysics is the
atmosphere [55, 56] and its well-known absorption in the mi-
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crowave and infrared bands. The contention of this work is
that, if the Earth’s oceans cannot interfere with these mea-
surements, it is precisely because they are the primary source
of the signal.

2 COBE FIRAS

For this analysis, the discussion will be limited primarily to
the FIRAS instrument. Only a brief treatment of the DMR
will follow in section 3. The DIRBE instrument, since it is un-
related to the microwave background, will not be addressed.

2.1 General concerns

Beginning in the late 1980’s, it appeared that NASA would
utilize COBE as a much needed triumph for space explo-
ration [22, 24]. This was understandable, given the recent
Challenger explosion [22, 24]. Visibility and a sense of ur-
gency were cast upon the FIRAS team. COBE, now unable
to use a shuttle flight, was faced with a significant redesign
stage [22, 24]. Mather outlined the magnitude of the task at
hand: “Every pound was crucial as the engineers struggled
to cut the spacecraft’s weight from 10,594 pounds to at most
5,025 pounds and its launch diameter from 15 feet to 8 feet”
[22, p. 195]. This urgency to launch was certain to have af-
fected prelaunch testing. Mather writes: “Getting COBE into
orbit was now Goddard’s No. 1 priority and one of NASA’s
top priorities in the absence of shuttle flights. In early 1987
NASA administrator Jim Fletcher visited Goddard and looked
over the COBE hardware, then issued a press release stating
that COBE was the centerpiece of the agency’s recovery” [22,
p. 194–195]. Many issues surfaced. These are important to
consider and have been highlighted in detail [22, chap. 14].

After the launch, polite open dissent soon arose with a se-
nior group member. The entire premise of the current paper
can be summarized in the discussions which ensued: “Dave
Wilkinson, the FIRAS team sceptic, argued effectively at nu-
merous meetings that he did not believe that Ned” (Wright)
“and Al” (Kogut) “had proven that every systematic error in
the data was negligible. Dave’s worry was that emissions
from the earth might be shinning over and around the space-
craft’s protective shield” [22, p. 234]. As will be seen below,
Wilkinson never suspected that the Earth could be emitting as
a �3 K source. Nonetheless, he realized that the FIRAS horn
had not been adequately modeled or tested. Despite these
challenges, the FIRAS team minimized Wilkinson’s unease.
Not a single study examines the interaction of the COBE
shield with the FIRAS horn. The earthshine issue was never
explored and Wilkinson’s concerns remain unanswered by the
FIRAS team to this day.

2.2 Preflight testing

A review of the COBE FIRAS prelaunch data reveals that
the satellite was not adequately tested on the ground. These

concerns were once brought to light by Professor Wilkinson,
as mentioned above. He writes: “Another concern was the
magnitude of 300 K Earth emission that diffracted over, or
leaked through, COBE’s ground screen. This had not been
measured in preflight tests, only estimated from crude (by to-
day’s standards) calculations” [74]. Unfortunately, Professor
Wilkinson does not give any detailed outline of the question
and, while there are signs of problems with the FIRAS data,
the astrophysical community itself has not published a thor-
ough analysis on this subject.

Professor Wilkinson focused on the Earth as a �300 K
blackbody source, even if the established behavior of the
oceans in the microwave and far-infrared suggested that the
oceans were not radiating in this manner [62]. Wilkinson
never advanced that the Earth could be generating a signal
with an apparent temperature of �3 K. This means that the
diffraction problems could potentially be much more impor-
tant than he ever suspected. Mather did outline Wilkinson’s
concerns in his book as mentioned above [22, p. 234], but did
not elaborate further on these issues.

Beyond the question of diffraction, extensive testing of
FIRAS, assembled in the flight dewar, did not occur. Mather
stated that each individual component of FIRAS underwent
rigorous evaluation [22, chap. 14], however testing was cur-
tailed for the fully-assembled instrument. For instance,
Hagopian described optical alignment and cryogenic perfor-
mance studies for FIRAS in the test dewar [29]. These stud-
ies were performed at room and liquid nitrogen temperatures
and did not achieve the cryogenic values, �1.4 K, associ-
ated with FIRAS [29]. Furthermore, Hagopian explained:
“Due to schedule constraints, an abbreviated version of the
alignment and test plan developed for the FIRAS test unit
was adopted” [29]. Vibration testing was examined in or-
der to simulate, as much as possible, the potential stresses
experienced by FIRAS during launch and flight. The issue
centered on optical alignments: “The instrument high fre-
quency response is however, mainly a function of the wire
grid beam splitter and polarizer and the dihedrals of the
MTM. The instrument is sensitive to misalignments of these
components on the order of a few arc seconds” [29]. In
these studies, a blackbody source was used at liquid nitro-
gen temperatures to test FIRAS performance, but not with
its real bolometers in place. Instead, Golay cell IR detec-
tors were fed through light pipes mounted on the dewar out-
put ports. It was noted that: “Generally, the instrument be-
haved as expected with respect to performance degradation
and alignment change. . . These results indicate that the in-
strument was successfully flight qualified and should survive
cryogenic and launch induced perturbations” [29]. These ex-
periments did not involve FIRAS in its final configuration
within the flight dewar and did not achieve operational tem-
peratures.

A description of the preflight tests undergone by COBE
was also presented by L. J. Milam [26], Mosier [27], and Co-
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ladonato et al. [28]. These accounts demonstrate how little
testing COBE actually underwent prior to launch. Concern
rested on thermal performance and flight readiness. There
obviously were some RF tests performed on the ground. In
Mather [22, p. 216], it was reported that the calibration file for
Xcal had been obtained on Earth. This was the file utilized to
display the first spectrum of the microwave background with
FIRAS [22, p. 216]. Nonetheless, no RF tests for sensitivity,
side lobe performance, or diffraction were discussed for the
FIRAS instrument. Given that Fixsen et al. [38] cite work
by Mather, Toral, and Hemmati [25] for the isolated horn,
as a basis for establishing side lobe performance, it is clear
that these tests were never conducted for the fully-assembled
instrument. Since such studies were difficult to perform in
the contaminating microwave environments typically found
on the ground, the FIRAS team simply chose to bypass this
aspect of preflight RF testing.

As a result, the scientific community believes that COBE
was held to the highest of scientific standards during ground
testing when, in fact, a careful analysis suggests that some
compromises occurred. However, given the scientific nature
of the project, the absence of available preflight RF testing
reports implies that little took place. Wilkinson’s previously
noted statement echoes this belief [74].

2.2.1 Bolometer performance

The FIRAS bolometers were well designed, as can be gath-
ered from the words of Serlemitsos [31]: “The FIRAS bolo-
meters were optimized to operate in two frequency ranges.
The slow bolometers cover the range from 1 to 20 Hz (with
a geometric average of 4.5 Hz), and the fast ones cover the
range from 20–100 Hz (average 45 Hz).” Serlemitsos contin-
ues: “The NEP’s for the FIRAS bolometers are �4.5�10�15

W/Hz1/2 at 4.5 Hz for the slow bolometers and �1.2�10�14

W/Hz1/2 at 45 Hz for the fast ones” [31], where NEP stands
for “noise equivalent power”. The FIRAS bolometers were
made from a silicon wafer “doped with antimony and com-
pensated with boron” [31]. Serlemitsos also outlined the key
element of construction: “IR absorption was accomplished by
coating the back side of the substrate with metallic film. . . ”
made “of 20 Å of chromium, 5 Å of chromium-gold mixture,
and 30–35 Å of gold” [31]. Such vaporized metal deposits, or
metal blacks, were well known to give good blackbody per-
formance in the far IR [75,76]. Thus, if problems existed with
FIRAS, it was unlikely that they could be easily attributed to
bolometer performance.

2.2.2 Grid polarizer performance

The FIRAS team also fully characterized the wire grid po-
larizer [30]. While the grids did “not meet the initial spec-
ification” their spectral performance did “satisfy the overall
system requirements” [30].

2.2.3 Emissivity of Xcal and Ical

The FIRAS team essentially makes the assumption that the
two calibrators, Xcal and Ical, function as blackbodies over
the entire frequency band. Xcal and Ical are represented
schematically in Figure 3 [38, 42]. Both were manufactured
from Eccosorb CR-110 (Emerson and Cuming Microwave
Products, Canton, MA, 1980 [77]), a material that does not
possess ideal attenuation characteristics. For instance, CR-
110 provides an attenuation of only 6 dB per centimeter of
material at 18 GHz [78]. In Hemati et al. [79], the thermal
properties of Eccosorb CR-110 are examined in detail over
the frequency range for FIRAS. The authors conduct trans-
mission and reflection measurements. They demonstrate that
Eccosorb CR-110 has a highly frequency dependent decrease
in the transmission profile, which varies by orders of mag-
nitude from �30–3,000 GHz [79]. Hemati et al. [79] also
examine normal specular reflection, which demonstrate less
variation with frequency. Therefore, when absorption coef-
ficients are calculated using the transmission equation [79],
they will have frequency dependence. Consequently, Hemati
et al. [79] report that the absorption coefficients for Eccosorb
CR-110 vary by more than one order of magnitude over the
frequency range of FIRAS.

In addition, it is possible that even these computed ab-
sorption coefficients are too high. This is because Hemati et
al. [79] do not consider diffuse reflection. They justify the
lack of these measurements by stating that: “For all sam-
ples the power response was highly specular; i.e., the re-
flected power was very sensitive with respect to sample ori-
entation” [79]. As a result, any absorption coefficient which
is derived from the transmission equation [79], is prone to be-
ing overestimated. It is unlikely that Eccosorb CR-110 allows
no diffuse reflection of incoming radiation. Thus, Eccosorb
CR-110, at these thicknesses, does not possess the absorption
characteristics of a blackbody. It is only through the construc-
tion of the “trumpet mute” shaped calibrator that blackbody
behavior is thought to be achieved [38].

When speaking of the calibrators, Fixsen et al. [39] state:
“The other input port receives emission from an internal ref-
erence calibrator (emissivity �0.98)” and “During calibra-
tion, the sky aperture is completely filled by the external cal-
ibrator with an emissivity greater than 0.99997, calculated
and measured” [39]. Practical experience, in the construction
of laboratory blackbodies, reveals that it is extremely difficult
to obtain such emissivity values over a wide frequency range.
Measured emissivity values should be presented in frequency
dependent fashion, not as a single value for a broad frequency
range [80]. In the infrared, comparable performance is not
easily achievable, even with the best materials [15, 80]. The
situation is even more difficult in the far infrared and mi-
crowave.

The emissivity of the calibrators was measured, at 34
and 94 GHz, using reflection methods as described in de-
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Fig. 3: Schematic representation of Xcal and Ical reproduced from
[42]. Note that the calibrators are made from Eccosorb CR-110
which is backed with copper foil. Xcal, which contains three GRTs,
is attached to the satellite with a movable arm allowing the calibra-
tor to be inserted into, or removed from, the sky horn. The internal
calibrator, Ical, is equipped with two GRTs and provides a signal for
the reference horn. Reproduced by permission of the AAS.

tail [42]. However, these approaches are not appropriate for
devices like the calibrators. In examining Figure 3, it is evi-
dent that Xcal is cast from layers of Eccosorb CR-110, backed
with copper foil. For reflection methods to yield reliable re-
sults, they must address purely opaque surfaces. Eccosorb
CR-110 is not opaque at these thicknesses [79] and displays
significant transmission. The problem is worthy of further
discussion.

In treating blackbody radiation, it is understood, from the
principle of equivalence [8], that the emission of an object
must be equal to its absorption at thermal and radiative equi-
librium. Emission and absorption can be regarded as quan-
tum mechanical processes. Therefore, it is most appropriate
to state that, for a blackbody, or any body in radiative equi-
librium, the probability of absorption, P�, must be equal to
the probability of emission, P", (P� =P"). But, given the
combination of the transmittance for Eccosorb CR-110, the
presence of a copper lining and the calibrator geometry, the
FIRAS team has created a scenario wherein P� ,P". This
is an interesting situation, which is permitted to exist be-
cause the copper backing on the calibrator provides a con-
ductive path, enabling Xcal to remain at thermal equilibrium
through non-radiative processes. Under these test conditions,
Xcal is in thermal equilibrium, but not in radiative equilib-
rium. It receives incoming photons from the test signal, but
can dissipate the heat, using conduction, through the cop-
per backing. Xcal does not need to use emission to balance
absorption.

If the FIRAS calibrators provide excellent reflection mea-
surements [42], it is because of their “trumpet mute” shape

and the presence of a copper back lining. Radiation inci-
dent to the device, during reflectance measurements, which
is not initially absorbed, will continue to travel through the
Eccosorb and strike the back of the casing. Here it will un-
dergo normal specular reflection by the copper foil present
at this location. The radiation can then re-enter the Ec-
cosorb, where it has yet another chance of being absorbed.
As a result, P� can be effectively doubled as a consequence
of this first reflection. Because of the shape of the cali-
brators, along with the presence of normal specular reflec-
tion on the copper, the radiation is essentially being pushed
further into the calibrator where its chances of being ab-
sorbed are repeated. Consequently, P� continues to increase
with each reflection off the copper wall, or because pho-
tons are being geometrically forced to re-enter the adjacent
Eccosorb wall. The situation moves in the opposite direc-
tion for P" and this probability therefore drops under test
conditions.

Note that the copper foil has a low emissivity in this fre-
quency range. Therefore, it is reasonable to assume that it
cannot contribute much to the generation of photons. These
must be generated within the Eccosorb CR-110 layers. Now,
given the geometry of the “trumpet mute”, there exists no
means of increasing the probability of emission, P". In-
deed, some of the photons emitted will actually travel in
the direction of the copper foil. This will lengthen their
effective path out of the Eccosorb, since they exit and im-
mediately re-enter, and increases the chance that they are
absorbed before ever leaving the surface of the calibrator.
Thus, P" experiences an effective decrease, because of the
presence of the copper foil. The net result is that P� ,P"
and the FIRAS team has not properly measured the emis-
sivity of their calibrators using reflective methods [42]. In
fact, direct measures of emissivity for these devices would
demonstrate that they are not perfectly black across the fre-
quencies of interest. Nonetheless, the devices do appear
black in reflection measurements. But this is an illusion
which does not imply that the calibrators are truly black
when it comes to emission. Reflection measurements can-
not establish the blackness of such a device relative to emis-
sion if the surface observed is not opaque. Geometry does
matter in treating either emission or absorption under cer-
tain conditions. The problem is reminiscent of other log-
ical errors relative to treating Kirchhoff’s first proof for
universality [16].

The FIRAS group asserts that they have verified the
blackness of their calibrators with computational methods.
Yet, these methods essentially “inject photons” into cavities,
which otherwise might not be present [17]. Much like the
improper use of detectors and reflection methods (on non-
opaque surfaces), they can ensure that all cavities appear
black [17]. The FIRAS calibrators are not perfectly black, but
it is not clear what this implies relative to the measurements
of the microwave background.
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2.2.4 Leaks around Xcal

The acquisition of a blackbody spectrum from the sky is
based on the performance of Xcal. For instance, Fixsen and
Mather write: “It is sometimes stated that this is the most
perfect blackbody spectrum ever measured, but the measure-
ment is actually the difference between the sky and the cali-
brator” [43]. Mathematically, the process is as follows:

(Sky� Ical)� (Xcal� Ical) = (Sky� Xcal) :

Thus, Ical and all instrumental factors should ideally be
negligible, contrary to what the FIRAS team experiences.
Furthermore, if the calibration file with Xcal perfectly
matches the sky, then a null result occurs. Since Xcal is
thought to be a perfect blackbody, the derived sky spectrum is
also ideal, as seen in Figure 2. It is extremely important that
the calibration file, generated when Xcal is within the horn,
does not contain any contamination from the sky. In the limit,
should the sky dominate the calibration, a perfect blackbody
shape will be recorded. This would occur because the sky is
effectively compared against itself, ensuring a null.

The FIRAS team reminds us that: “When the Xcal is in
the sky horn it does not quite touch it. There is a 0.6 mm
gap between the edge of the Xcal and the horn, so that the
Xcal and the sky horn can be at different temperatures. Al-
though the gap is near the flare of the horn and not in the
direct line of sight of the detectors, it would result in undesir-
able leakage at long wavelengths because of diffraction. To
ensure a good optical seal at all wavelengths, two ranks of
aluminized Kapton leaves attached to the Xcal make a flexi-
ble contact with the horn” [38] (see Figure 3). The claim that
the Kapton leaves make a flexible contact with the horn, at
operating temperatures, does not seem logical. The horn is
operating at cryogenic temperatures (�2.7 K) and, thus, the
Kapton leaves should not be considered flexible, but rather
rigid, perhaps brittle. This might cause a poor contact with the
horn during critical calibration events in space. The FIRAS
team continues: “An upper limit for leakage around the Xcal
was determined in ground tests with a warm cryostat dome by
comparing signals with the Xcal in and out of the horn. Leak-
age is less than 1.5�10�4 in the range 5<� < 20 cm�1 and
6.0�10�5 in the range 25<� < 50 cm�1” [38]. The issue of
leakage around Xcal is critical to the proper functioning of
FIRAS. Consequently, Mather et al. revisit the issue at length
in 1999 (see section 3.5.1 in [42]). The seal does indeed ap-
pear to be good [42], but it is not certain that these particular
ground tests are valid in space.

It is not clear if RF leak testing occurred while FIRAS
was equipped with its specialized bolometers. As seen in
section 2.2, in some preflight testing, Golay cell IR detectors
had been fed through light pipes mounted on the dewar output
ports. Such detectors would be unable to properly detect sig-
nals at the lowest frequencies. In fact, the FIRAS bolometers
were made from metal blacks [31, 75, 76] in order to specifi-

cally provide sensitivity in the difficult low frequency range.
As a result, any leak testing performed with the Golay cell
IR detectors might be subject to error, since these may not
have been sensitive to signal, in the region most subject to
diffraction.

The FIRAS group also makes tests in flight and states:
“The Kapton levels sealing the gap between the sky horn and
Xcal were tested by gradually withdrawing the Xcal from the
horn. No effect could be seen in flight until it had moved
1.2 cm” [38]. This issue is brought up, once again, by Mather
et al.: “A test was also done in flight by removing the calibra-
tor 12 steps, or 17 mm, from the horn. Only a few interfero-
grams were taken, but there was no sign of a change of signal
level” [42]. It is interesting that Fixsen et al. [38] claim that
no effect could be seen until the horn had moved 1.2 cm. This
implies that effects were seen at 1.2 cm. Conversely, Mather
et al. assert that no effects were seen up to 17 mm [42]. In any
case, identical results could have been obtained, even if the
seal was inadequate. Perhaps this is why Fixsen et al. write:
“During calibration, the sky acts as a backdrop to the external
calibrator, so residual transmission is still nearly 2.73 K ra-
diation” [39]. Clearly, if the seal was known to be good, there
should not be any concern about “residual transmission” from
the sky.

Fixsen et al. [39] rely on the sky backdrop providing a per-
fect blackbody spectrum behind Xcal. However, if the signal
was originating from the Earth, the sky signal could be dis-
torted as a function of frequency. This would bring error into
the measurements, should the sky signal leak into the horn.
From their comments, a tight seal by the Kapton leaves can-
not be taken for granted. While in-flight tests, slowly remov-
ing Xcal, indicate that the spectrum changes as the calibrator
was lifted out of the horn, they may not exclude that leakage
exists when it is inside the horn.

It is also interesting that Mather describes significant
problems with Xcal prior to launch, as follows: “Now with-
out gravity to help hold it in place, the calibrator popped out
of the horn every time the test engineers inserted it by means
of the same electronic commands they would use once COBE
was in orbit. Nothing the engineers tried would keep it in
place” [22, p. 202]. In the end, the problem was caused by the
flexible cable to the Xcal [22]. The cable was replaced with
three thin ribbons of Kapton [22, p. 202–204]. COBE under-
went one more cryogenic test, with the liquid helium dewar
at 2.8 K, lasting a total of 24 days ending in June 1989 [26].
Milan’s report does not provide the results of any RF test-
ing [26], but everything must have worked. The satellite was
prepared for shipment to the launch site [22, p. 202–204].

In 2002, Mather reminds us of the vibration problems
with COBE: “There were annoying vibrations at 57 and
� 8 Hz” [43]. On the ground, the Xcal could “pop out” of
the horn if the satellite was turned on its side [22, p. 202].
Only gravity was holding Xcal in place. Still, in orbit, COBE
experiences very little gravity. As such, the effects of the vi-
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brations in knocking Xcal out of the horn, or in breaking the
contact between the Kapton leaves and the horn, are not the
same in space. A small vibration, in space, could produce
a significant force against Xcal, pushing it out of the horn.
Thus, all leak testing on the ground has little relevance to the
situation in orbit, since both gravity and vibrations affect the
Xcal position in a manner which cannot be simulated in the
laboratory. The FIRAS team simply cannot be assured that
Xcal did not allow leakage from the sky into the horn during
calibration.

2.2.4.1 Conclusive proof for Xcal performance

When FIRAS first begins to transfer data to the Earth, a cali-
bration file using Xcal had not been collected in space [22,
p. 216]. Nonetheless, a calibration file existed which had
been measured on the ground. Mather provides a wonder-
ful account of recording the first blackbody spectrum from
the microwave background [22, p. 216]. The text is so pow-
erfully convincing that it would be easy to dismiss the search
for any problems with FIRAS. Using the ground-based cali-
bration file, the FIRAS team generates an “absolutely perfect
blackbody curve” [22, p. 216]. However, considering all of
the errors present in orbit, it is not clear how the calibration
file gathered on Earth differed, if at all, from the one obtained
in space. If the FIRAS team had wanted to bring forth the
most concrete evidence that the situation in space, relative to
Xcal, was identical to that acquired on the ground, then they
could have easily displayed the difference spectrum between
these two files. Ideally, no differences should be seen. But, if
differences were observed, then either temperature variations,
or leakage, must be assumed. In fact, the difference between
the two files could have provided a clue as to the nature of the
leakage into the FIRAS horn. Mather et al. feel compelled
to verify the performance of Xcal on the ground 10 years af-
ter launch [42]. This suggests that the calibration files taken
prior to launch did not agree with those acquired in flight.

2.2.5 Design of the FIRAS horn

In examining the FIRAS horn (see Figure 1), it is apparent
that this component does not conform to accepted practices
in the field of antenna design [81–83]. This device is unique,
meant to operate over a phenomenal range from�30 to 3,000
GHz [32–45]. Since broadband horns generally span no more
than 1 or 2 decades in frequency [84, 85], it is doubtful that a
comparable antenna can be found in the electromagnetics lit-
erature. Even the most modern broadband horns tend to cover
very limited frequency ranges and, typically, at the expense
of variable gains across the band [84, 85]. Unfortunately,
insufficient ground tests were conducted, to demonstrate the
expected performance from 30–3,000 GHz. It is highly un-
likely that FIRAS was ever able to perform as intended. The
FIRAS team provides no test measurements to the contrary.
These would have included gain and side lobe performances

spanning the frequency spectrum. Moreover, as will be seen
below (see section 2.4.3.1), FIRAS is operating less than op-
timally over all wavelengths. The idea of using an interfer-
ometer for these studies was elegant [32–45]. But, broadband
horns with demonstrated performances, over such a range of
frequencies, simply do not exist [81–85]. It is interesting in
this light, that the WMAP [19] and PLANCK [86] missions
have both reverted to the use of narrow band devices to sam-
ple the microwave background. As for FIRAS, it functions
primarily from �30–600 GHz. However, even in this region,
the instrument must deal with horn/shield interactions and the
effects of diffraction. These effects were never appropriately
considered by the FIRAS team.

The testing of the COBE FIRAS antenna pattern was in-
adequate. Proper tests were never performed to document the
interaction of the FIRAS horn with the Sun/Earth/RFI shield.
Furthermore, the team conducted no computational model-
ing of the horn-shield interaction as a function of frequency.
This type of documentation would have been central in estab-
lishing the reliability of the FIRAS findings. Without it, the
FIRAS team did not eliminate the possibility that the Earth
itself is producing the microwave background. The RF shield
on COBE could accomplish little more than prevent terres-
trial/solar photons, in the visible or near-infrared range, from
directly illuminating the dewar which contains FIRAS. The
central issue for the Sun/Earth shield appears to be the con-
servation of helium in the dewar, not the elimination of RF
interference [87]. The shield is not corrugated [81, p. 657–
659] and has no special edges to prevent diffraction in the far
infrared. Given that the FIRAS horn is broadband, it is ex-
tremely difficult, if not impossible, to build a good RF shield
for such a device. The FIRAS team has not established that
an adequate shield was constructed to prevent RF interference
from the Earth. The Sun/Earth shield simply prevents direct
heating of the dewar, by visible or near infrared light [87].
They comment: “a large external conical shield protects the
cryostat and instruments from direct radiation from the Sun
and the Earth. The Sun never illuminates the instruments or
cryostat, but the COBE orbit inclination combined with the
inclination of the Earth’s equator to the ecliptic do allow the
Earth limb to rise a few degrees above the plane of the instru-
ment and sunshade apertures during about one-sixth of the
orbit for one-fourth of the year. During this period, the sky
horn could not be cooled to 2.7 K because of the Earth limb
heating” [42]. Nowhere, in the COBE literature, is the RF
performance of the “sunshade” analyzed.

2.3 FIRAS in flight
2.3.1 Side lobe performance

Fixsen et al. [38] argue that the FIRAS horn “provides a 7�
field of view with low side lobes”. They base this statement
on work by Mather, Toral, and Hemmati [25]. In this paper,
Mather et al. present measured and theoretical evaluations of
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Fig. 4: Plot of the side lobe response for the FIRAS horn, without the
presence of the COBE ground shield as reproduced from [25]. The
sky lobe response, in preflight testing, was evaluated at three wave-
lengths, namely 118, 10, and 0.5 �m. Note that only the first mea-
surement at 118 �m (�2,540 GHz) is within the frequency range of
the instrument (30–3000 GHz). The latter two occur in the optical
band. The side lobe performance is best at the longer wavelength,
in opposition to the expected theoretical result. The FIRAS team
also measures the FIRAS horn at 31.4 and 90 GHZ [25], with ex-
cellent performance (data is not reproduced herein). However, once
again, these results were obtained without the interfering effects of
the ground shield. Reproduced with permission of the Optical So-
ciety of America from: Mather J.C., Toral M., Hemmati H. Heat
trap with flare as multimode antenna. Appl. Optics, 1986, v. 25(16),
2826–2830 [25].

side lobe data at 31.4 and 90 GHz [25]. As expected, the side
lobes are lower at the higher frequency. The measurements
conform to expected performance, at least at these frequen-
cies. But, these tests were conducted without the RF shield
and consequently have limited relevance to the actual situa-
tion in flight.

A careful examination of Figure 4 [25] is troubling. In
this figure, Mather et al. [25] characterize the antenna pattern
of the isolated FIRAS horn, without the COBE RF shield, at
infrared and optical wavelengths (118, 10, and 0.5 �m). It
is not evident why the authors present this data, as only the
first wavelength, 118 �m (�2,540 GHz), is within the usable
bandwidth of the instrument. Nonetheless, in Figure 4, the
antenna has the strongest side lobes at the highest frequen-
cies. For instance, at a wavelength of 0.5 �m, the antenna
shows a relative response that is decreased by only 20 dB at
10� [25], as shown in Figure 4. At 118 �m, the antenna re-
sponse is decreased by nearly 50 db. The authors are demon-
strating that the FIRAS horn has better side lobe behavior at
longer wavelengths rather than at short wavelengths. This is
opposed to the expected performance. Mathematical mod-
eling may well be impossible at these elevated frequencies.
Once again, the shield was never considered.

Fig. 5: Plot of the side lobe response obtained for the FIRAS shield
on the ground, at 3 cm�1 (solid line), and in orbit, using the Moon
as a source of signal, at 50 cm�1 (dashed line). This figure is repro-
duced from [38]. A detailed discussion is provided in section 2.3.1.
Reproduced by permission of the AAS.

Neglecting to characterize the horn-shield interaction on
the ground, the FIRAS team attempts to do so in flight. In
Fixsen et al. [38], they publish Figure 5. They attempt to de-
termine the antenna pattern in space by monitoring the Moon
as a function of angle. Using this approach at 50 cm�1, they
conclude that the satellite provides a maximum side lobe re-
sponse of “less �38 dB beyond 15� from the center of the
beam” [38]. Such a performance is reasonable, at least at this
frequency. However, the FIRAS team then compares side
lobe performance at 50 cm�1 (�1,500 GHz) with data ob-
tained on the ground at 3 cm�1 (�90 GHz). In referring to
this figure in their paper, the FIRAS team writes: “Prelimi-
nary results are shown in Figure 4, along with preflight mea-
surements at 1 and 1.77 cm�1” [38]. Yet the figure legend
itself states the following: “Antenna pattern for the FIRAS
horn as measured on the ground before launch at 3 cm�1

(solid line) and as measured from in flight Moon data at �50
cm�1 (dashed line)” [38]. Beyond the inconsistency between
the text and the figure legend, there are at least five concerns
relative to this figure.

First, the data on the ground appears to have measured the
FIRAS horn exclusively, not the horn with the RF shield. Sec-
ond, they are comparing data at frequencies which differ by
more than one order of magnitude. Third, they display none
of the critical in-flight data for the lowest frequencies, namely
those frequencies where one would expect the strongest ef-
fects from diffraction. Fourth, they fail to present ground data
at 50 cm�1. Finally, the data from Fixsen et al. [38] is also
puzzling. It reveals much stronger side lobes at 50 cm�1 than
one would have predicted at this frequency (�1,500 GHz).
Note, in Figure 5, that the Moon data displays a plateau at ap-
proximately�45 dB in the range from 20–50�. This is higher
than would be expected, based on the excellent side lobe re-
sponse, even at a much lower 90 GHz, reported for the free
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horn on the ground [25]. This plateau may simply be caused
by a lack of sensitivity for the Moon at these angles. It is im-
possible to determine whether the plateau achieved in detec-
tion is a result of this effect. The FIRAS Explanatory Supple-
ment suggests that the Moon can contaminate the microwave
background at all frequencies [40, p. 61]. The FIRAS team
does not adequately confront the issue and does not publish a
work focused on side lobe behavior. Comparing ground data
at �30 GHz, or even �90 GHz, with in-flight data at 1,500
GHz, has no value relative to addressing the side lobe issue.

It is also true that a loss of “Moon signal”, as a function of
angle, could account for the appearance of good side lobe per-
formance. The possibility that the Moon could be reflecting
terrestrial, or even solar, signals back into the FIRAS horn,
through normal specular reflection, is not discussed. This
process would be angle dependent and might create the il-
lusion of reasonable side lobe behavior. The FIRAS team
provides no supportive evidence from the literature that the
Moon behaves as a lambertian emitter at 50 cm�1. The Moon
does have phases, which result in differential heating across
its surface. Should the Moon not act as a lambertian emitter,
the side lobe performance was not properly evaluated. This
would be true, unless the satellite was rapidly turned away
from the Moon while maintaining a single orbital position.
But, this is unlikely to have been the case, since COBE did
not have a propulsion system [22, p. 195]. Thus, the satellite
was simply permitted to continue in its orbit, and the angle
to the Moon thereby increased. Such a protocol might not
accurately assay side lobe behavior. This is because it would
depend on the absence of specular reflection from the Earth
and the Sun, while requiring that the Moon is lambertian. In
the end, experiments in space cannot replace systematic test-
ing on the ground in establishing side lobe behavior.

Perhaps more troubling is that the frequencies of inter-
est, relative to the microwave background, extend from less
than 1 cm�1 to �22 cm�1 (<30 to �660 GHz). For exam-
ple, the initial Penzias and Wilson measurements were made
near 4 GHz [1]. Consequently, the FIRAS team is showing
side lobe performance for a region outside the frequencies of
interest. In fact, 1,500 GHz is the region wherein galactic
dust would be sampled, not the microwave background [23].
The side lobe performance at this frequency is not relevant to
the problem at hand. Furthermore, if there are problems with
diffraction, they are being manifested by a distortion of sig-
nal, primarily in the lower frequency ranges. Hence, it would
be critical for the FIRAS team to display in-flight data, or
ground data including the shield, in order to fully document
side lobe performance in this region. The data, unfortunately,
is not provided.

Should access be available to the exact dimensions of the
FIRAS horn and the COBE shield, it would, in principle, be
possible for an independent group to verify the performance
of the satellite relative to this instrument. It is true that the
problem of modeling the FIRAS horn/shield interaction is ex-

tremely complex, even at 30 GHz. Nonetheless, given cur-
rent computational methods, using the Geometric Theory of
Diffraction, it is difficult to reconcile that the true directional
sensitivity of the FIRAS horn was not modeled at any fre-
quency. These studies would depend on obtaining the exact
configuration, for the FIRAS horn/shield, and then treating
the problem using computational methods. The issue cannot
be treated analytically. Furthermore, this is a difficult task.
It is achievable perhaps, only at the lowest frequencies of
operation.

In 2002, Fixsen and Mather give a summary of the FIRAS
results [43], wherein they also describe how a new instrument
might be constructed. In order to address the lack of side lobe
characterization, they advance that: “we would surround the
entire optical system with segmented blackbody radiators to
measure the side lobe responses and ensure that the source of
every photon is understood” [43]. With COBE, the source of
every photon was not understood. The side lobes were never
measured in the presence of the shield. The idea of surround-
ing the optical system with blackbody calibrators is less than
optimal. It would be best to simply analyze the horn/shield
performance with preflight testing.

2.3.2 Establishing temperatures

The FIRAS team presents a dozen values for the microwave
background temperature, using varying methods, as shown in
Table 1. This occurs over a span of 13 years. Each time,
there is a striking recalculation of error bars. In the end, the
final error on the microwave background temperature drops
by nearly two orders of magnitude from 60 mK to 0.65 mK.
Yet, as will be seen below, in sections 2.3.3 and 2.3.4, FIRAS
was unable to yield proper nulls, either with the sky and Ical,
or with Xcal and Ical. Despite the subsequent existence of
systematic errors, the FIRAS team minimizes error bars.

The problems with correctly establishing temperatures for
Xcal and Ical were central to the mission, as these investiga-
tors recognized: “There were two important problems. One
was that the thermometers on both the Ical and Xcal did not
at all agree. In fact, the disagreement among different Xcal
thermometers was 3 mK at 2.7 K” [38]. They continue: “The
disagreement between the Ical thermometers was 18 mK at
2.7 K. The heat sinking of the Ical thermometer leads was in-
adequate, and some of the applied heat flowed through part
of the Ical” [38].

They try to overcome the reality that the temperature
monitors on the external calibrator report a systematic error.
The temperature errors on Xcal are fitted with an “arbitrary
offset in the Xcal thermometer and the result was �7.4�0.2
mK for this offset” [38]. The FIRAS team realizes that this
was “considerably larger than the �1 mK expected from the
preflight calibration of the thermometers” [38]. They at-
tribute the problem either to having improperly calibrated the
thermometers before flight, or due to an unknown systematic
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Reference Temperature Error (mK)� Frequency (cm�1)

Mather et al., ApJ, 1990, v. 354, L37–40 [32] 2.735x �60 1–20#

Mather et al., ApJ, 1994, v. 420, 439–444 [35] 2.726x �10 2–20#

Fixsen et al., ApJ, 1996, v. 473, 576–587 [39] 2.730x �1 2–21y

Fixsen et al., ApJ, 1996, v. 473, 576–587 [39] 2.7255{ �0.09 2–21y

Fixsen et al., ApJ, 1996, v. 473, 576–587 [39] 2.717¥ �7 2–21y

Fixsen et al., ApJ, 1996, v. 473, 576–587 [39] 2.728�� �4 2–21y

Mather et al., ApJ, 1999, v. 512, 511–520 [42] 2.725x �5 2–20z

Mather et al., ApJ, 1999, v. 512, 511–520 [42] 2.7255{ �0.085 2–21y

Mather et al., ApJ, 1999, v. 512, 511–520 [42] 2.722¥ �12 2–20z

Mather et al., ApJ, 1999, v. 512, 511–520 [42] 2.725�� �2 2–20z

Fixsen & Mather, ApJ, 2002, v. 581, 817–822 [43] 2.725 �0.65 2–20z

Fixsen & Mather, ApJ, 2002, v. 581, 817–822 [43] 2.725 �1 2–20z

� 95% confidence intervals.
xMeasurement using FIRAS microwave background lineshape. Calibration sensitive to the thermometers
of the external calibrator, Xcal.
{Measurement using FIRAS microwave background frequency. Calibration relies on CO and C+ lines at
7.69, 11.53, 15.38, and 16.42 cm�1 [39].
¥ Measurement using a fit of the dipole spectrum to the 1st derivative of a Planckian function describing
the microwave background with Tcmbr set to 2.728 K.
�� Composite value obtained from analysis of three previous entries.
# Frequency range used is formally stated.
y Frequency range used is not formally stated but appears to be 2–21 cm�1.
z Frequency range used is not formally stated but appears to be 2–20 cm�1.

Table 1: Summary of microwave background temperatures obtained by the COBE FIRAS instrument.

error. They therefore assign a �4 mK offset to Xcal and raise
to 5 mK its 1� error. Though this might seem negligible, the
FIRAS team is sufficiently concerned about Xcal that they
attempt to recalibrate it on the ground, using a duplicate ex-
periment, nearly ten years after launch [42]. For the present
discussion, an error of at least 5 mK can be attributed to Xcal.

The FIRAS Explanatory Supplement outlines an en-
hanced picture relative to Ical performance [40, p. 42]. An
optical temperature drift is modeled as follows:

T 0 = T + A exp (t=�Ical) + To�set

where T 0 is the “raw” Ical temperature, A= 4.26 mK,
To�set =�3.054 mK, and �Ical = 104.3 days [40, p. 42].
Given that FIRAS was operational for �259 days [40, p. 28],
the drift model accounts for a 48 mK error in Ical by the time
the instrument is decommissioned. Yet, in 1999, Mather et
al. [42] offer a different view [40, p. 42]. While treating Ical,
they write: “An additional drift of �3 mK was noted in the
early part of the mission” [42]. Thus, it is likely that the equa-
tion in the supplement is simply missing a negative sign in the
exponent. As a result, the �3 mK drift, discussed by Mather
et al., can be attributed to Ical [42] along with errors of 18 mK
for temperature differences between thermometers. In addi-
tion, as demonstrated in Figure 6, the emissivity modeled for
Ical can exceed the theoretical upper limit of 1 over much of

the FIRAS frequency range. This illustrates that the calibra-
tion model adopted by the FIRAS team contains significant
shortcomings.

2.3.3 Achieving a sky null

As represented in Figure 1, FIRAS functions as a differen-
tial spectrometer, wherein the sky or the external reference,
Xcal, are being constantly compared to an internal reference
blackbody, Ical. When the system is functioning properly and
all temperatures are equal, then a perfect null should be mea-
sured in the interferogram. This should take place whether
1) the sky is being compared to Ical set at the temperature of
the sky, or 2) the external reference calibrator, Xcal, is being
compared to Ical set at the same temperature.

Once COBE finally reaches orbit, the first finding is that
FIRAS is unable to achieve a null when the internal reference
Ical is set to the sky temperature. This is demonstrated in Fig-
ure 7 [32]. Years later, the FIRAS team discuss the situation:
“If both the sky and the Ical were blackbodies, and the inter-
ferometer were perfectly symmetrical, one could in principle
null the signal from the former simply by adjusting the tem-
perature of the latter. The temperature of the CMBR could
then be read from the reference body thermometers. Unfortu-
nately, neither of those conditions prevails” [38]. The FIRAS
team continues: “Our Ical and instrument asymmetry com-
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Fig. 6: Calculated emissivity for Ical as a result of calibration re-
produced from the FIRAS Explanatory Supplement [40]. Note that
emissivity exceeds 1, the theoretical maximum, at many frequencies.
Reprinted with permission of John Mather.

bine to produce a net reflectance of �4%, and Galactic emis-
sion from gas and dust contributes to the observed signal. To
measure these effects, we must calibrate the instrument” [38].
Note that since the sky temperature would end up being as-
signed as 2.725�0.001 K [43], the upper trace in Figure 7
indicates that the null point appears with Ical at nearly 34 mK
above the sky temperature (2.759–2.725 K = 34 mK). Conse-
quently, COBE is faced with a 34 mK systematic error based
on this fact. It is not clear how much of this error can be
attributed to Galactic emissions. These should be primarily
sensed at frequencies beyond 20 cm�1 [23], the cutoff of the
low frequency channel [38]. As such, it is doubtful that galac-
tic contributions can fully account for the lack of a proper null
in these channels. By the end of the mission, Ical is spending
most of its time near the null, at �2.758 K and toggling to a
temperature 12 mK higher,�2.770 K [40, p. 28]. The FIRAS
team writes: “In addition, the temperature of Ical was tog-
gled between a “sky null” setting to a setting 12 mK hotter,
every 3–4 days, to allow instrumental gain errors to be dis-
tinguished” [40, p. 19]. The latter is 45 mK above the tem-
perature reported for the microwave background.

Unable to attain the expected null, the FIRAS team begins
to target instrumental problems and calibration [38]. They do
not envision that a null could not be achieved, because the
sky was not acting as anticipated. Consider, for instance, that
the Earth is producing the microwave background and that its
diffracted signal is coming over the shield of the satellite. In
this case, one can assume that the Earth was producing a sig-
nal with a nearly perfect Planckian [10] shape. But, at lower
frequencies, the microwave background will experience more
diffraction at the shield. Hence, FIRAS will be most sensi-
tive to low frequency signals. As frequencies are increased,
progressively less diffraction will occur at the shield and the
FIRAS horn will become more forward directional. In so do-
ing, it will be less sensitive to signals arising from beneath the
shield. Thus, FIRAS may not sense a true Planckian curve,

Fig. 7: Interferograms obtained in flight with the FIRAS instrument,
as reproduced from [32]. The upper trace demonstrates the null con-
dition between the sky (final reported temperature = 2.725�0.001 K
[43]) and Ical set at 2.759 K. This trace is not plotted with the same
vertical scaling factor as the one displayed in the central portion of
the figure. Such a plot creates the illusion that a better result was
achieved than actually obtained. The middle trace displays the inter-
ferogram recorded when Ical was set at 2.771 K. This indicates the
magnitude of signal “off the null”. The bottom interferogram was
measured when comparing the two calibrators set at nearly the same
temperature (Xcal = 2.759; Ical = 2.750). A null should have been
obtained under these conditions, but did not occur. Once again, the
vertical scale does not correspond to that used for the central trace.
A correction of a factor of 3–5 should be applied to place the up-
per and lower interferograms on scale with the central one. This
was not mentioned in the original text [32], but points to deviations
from the theoretically expected results. Reproduced by permission
of the AAS.

but a distorted spectrum displaying too much signal at the
lower frequencies, and not enough signal at the higher fre-
quencies. There may be less than the expected signal insten-
sity along with constructive/destructive interference effects.
The situation is illustrated schematically in an exaggerated
fashion in Figure 8. This scenario would make it impossible
to reach a null. The issue is not simply a question of tem-
perature, but of lineshape. If two signals, arising from the
sky and Ical, do not have the same lineshape, they can never
be nulled. A proper null is never displayed. The underly-
ing cause cannot be ascertained, given the nature of preflight
testing, instrumental drift, and incoming signal.

In re-examining Figure 7 [32], note that the trace deter-
mining the null point is not a good null. The top trace in
this figure is not plotted on the same scale as the bottom two
traces, as can be deduced by examining the noise power. It
needs to be multiplied by a factor of 3–5 to match the noise
seen in the central trace. This gives the illusion that a better
null is achieved than is actually obtained in practice. The sec-
ond trace has much more noise. In fact, an analysis of noise
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Fig. 8: Schematic representation of an ideal blackbody at 2.725 K
(solid line). The dashed line is an exaggerated representation of the
distortions that might occur if an earthly signal was diffracting over
the FIRAS ground shield. Since diffraction might be expected to
have the greatest effects at the lowest frequencies, the points in this
region would be elevated. Conversely, as frequencies are increased,
less diffraction should occur off the ground shield. The FIRAS horn
should become more forward directional at elevated frequencies. As
a result, a decreased signal might be sensed in this region. It is dif-
ficult to deduce the exact appearance of the effects from diffraction.
For instance, there could actually be signs of constructive and de-
structive interference on the acquired spectrum. The nature of the
spectrum acquired by FIRAS would also depend on the extent that
the sky signal was diffracting into the FIRAS horn during calibration
with Xcal, due to leakage. In the limit of severe leakage, FIRAS
would report a perfect blackbody spectrum from the sky, even with
diffraction occurring at the ground shield. Further details are pro-
vided in the text.

power from these traces establishes that the FIRAS team is
not maintaining a constant vertical amplification. This should
not have escaped the eye of the reviewers. Correct scaling
factors should have been provided in the figure legend.

In any case, the null is not clean. The FIRAS team, for
instance, shows a second interferogram in Fixsen et al. [38],
reproduced herein as Figure 9. In the figure legend, they state
that the peak at 355 can be nulled within detector noise levels.
However, they fail to demonstrate the corresponding interfer-
ogram. It is certain that the point at 355 can be nulled. But,
it is essential that all the points in the spectrum are simul-
taneously nulled. The FIRAS team has never been able to
present such an interferogram. Moreover, if a proper null ex-
ists, they should not display data “just off the null”. These
interferograms are not useful as measures of instrument per-
formance. The issue is not simply one of temperature match.
For, if two blackbodies are brought to the same temperature,
then ideally, the null must be perfect. Lineshape differences,
generated by diffraction on the shield, could account for the
discrepancies noted.

Unable to reach a perfect null with the sky and dismissing
lineshape effects, the FIRAS team is left to implicate instru-

Fig. 9: FIRAS interferogram acquired between the sky and Ical, as
reproduced from [38]. The signal is being generated just slightly “off

the null”. Apparently, the point at 355 can be perfectly nulled [38],
but it is doubtful that such a result can be obtained while maintaining
the null condition over all other points. The FIRAS team does not
present a perfect null. A spectrum acquired “just off the null” yields
little scientific information. Reproduced by permission of the AAS.

ment design [38]. This is because they believe that a perfectly
Planckian background must be found in the sky in front of
FIRAS. The idea that an ideal blackbody spectrum, produced
by the Earth, could have been distorted by diffraction over the
shield, is not entertained. As a result, they cite that the Ical
provides a 4% reflectance, to partially account for the lack of
a proper null [38].

2.3.4 Achieving a null when TIcal = TXcal

In analyzing the bottom trace in Figure 7, it is evident that
a null cannot be achieved, when Xcal is set at nearly the
same temperature as Ical (Xcal = 2.750 K, Ical = 2.759 K).
Unfortunately, the FIRAS team does not publish a sufficient
number of interferograms to enable the complete dissection
of this question. On the surface, failure to locate a null, when
TIcal =TXcal, would support the idea that the problem was in-
strumental. After all, a second failure to establish a solid null
is being reported. The FIRAS team might have been able to
supply proof of this contention, using a combination of inter-
ferograms with Xcal and Ical at differing temperatures. As it
is, no proof exists that Ical was the sole problem with FIRAS.
Again, failure to attain a null, when TIcal =TXcal, could also
be supported by technical issues with leakage around Xcal.

It is vital to understand the exact temperatures for Xcal
and Ical, when a null spectrum is achieved by the two cali-
brators. However, such data is not presented by the FIRAS
team. Furthermore, it is not certain that they were ever able
to obtain a null. In order to properly address this issue, the
critical data is found in the null spectrum between Xcal and
Ical on the ground. It is not known if the null imbalance was
documented for FIRAS using preflight tests. The data have
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not been published, but are critical to understanding the in-
ability to reach a null between the sky and Ical, as discussed
in section 2.3.3. Without it, the FIRAS team cannot defend
the hypothesis that galactic contributions, for instance, were
responsible for this shortcoming. It is obvious that the galaxy
may not be invoked for the lack of a null between the two
reference blackbodies. Therefore, for a proper evaluation of
these questions, ground data, obtained between Xcal and Ical,
should be provided.

2.4 Data processing

Initially, the FIRAS team publishes a spectrum from 1–21
cm�1 [32]. That spectrum was said to deviate from the inten-
sity of a blackbody by less than 1%. Then, in 1994, Mather
et al. [35] advance a new set of data, wherein the intensity
deviates from a blackbody by less than 0.03%. The error bar
in setting the absolute temperature, using Xcal, drops pre-
cipitously from 60 mK to 10 mK (see Table 1). Fixsen et
al. [39], in 1996, then report that the “rms deviations are less
than 50 parts per million of the peak of the cosmic microwave
background radiation”. In 1999, Mather et al. apparently
again increase the rms deviation and assert that the devia-
tion of the CMB from the theoretical blackbody is less than
0.01% [42]. Finally, in 2002, Fixsen and Mather [43] advance
that “the measured deviation from this spectrum are 50 parts
per million (PPM, rms) of the peak brightness of the CMBR
spectrum, within the uncertainty of the measurement”. Using
technology established in the 1970’s, the FIRAS team report-
ed a spectral precision well beyond that commonly achievable
today in the best radiometry laboratories of the world.

Figure 2 [39] is famous for the observation that the un-
certainties are a small fraction of the line thickness. This fig-
ure is unusually drawn, as the frequency axis is offset. This
makes it less apparent that data is not being shown below
2 cm�1. The final result was obtained with the calibration
procedures outlined by Fixsen et al. [38]. In the end, the
FIRAS team transfers the error from the spectrum of inter-
est into the calibration file, as will be discussed in detail be-
low. Using this approach, it would be possible, in principle,
to attain no deviations whatsoever from the perfect theoretical
blackbody. Given enough degrees of freedom and computing
power, errors begin to lose physical meaning. The calibration
file became a repository for everything that did not work with
FIRAS. The only problem was that it was now impossible to
dissect what the FIRAS microwave background spectrum re-
ally looked like. Along these lines, the most serious concern
was the omission of data, as discussed in section 2.4.3.

2.4.1 FIRAS calibration

In order to provide data for in-flight calibration, the FIRAS
team controls the temperature of four key sources of emis-
sion, 1) the internal calibrator, 2) the external calibrator,

3) the sky horn, and 4) the reference horn. The emissivity
of each of these devices could be modified on demand in the
temperature range from 2–25 K [38]. Other parts of the in-
strument are approximated as Planckian functions [10], pre-
sumably because they are isothermal [38]. Cheng describes
the calibration process: “Calibration is accomplished by re-
moving all known instrument effects from the raw spectra.
This requires a model of the instrument, with all known im-
perfections, and sufficient calibration data to establish the
model parameters. The measured instrument state for the sky
data can then be used to predict the instrument characteris-
tics based on the model which is then used to calibrate the
sky data. . . The emissivity of various internal components in
the instrument are determined by varying their temperatures
while observing a constant input signal (e.g. from the external
calibrator). These components include the sky horn, refer-
ence horn, internal reference load, dihedral mirrors, collima-
tor, and the detector itself. The temperature of the first three
components can be varied by command so that determining
their emissivity is straightforward. The emissivity of the other
components are determined by temperature variations during
several cryostat temperature transients which occurred early
on in the mission” [34].

A critical aspect of the calibration procedure is that the ex-
ternal calibrator, Xcal, is treated as providing a perfect black-
body signal to the rest of the instrument. This approximation
may not be justified, given the discussion in section 2.2.3.
There are also complications, if the seal between the horn
and the calibrator is not perfect, due to vibration, as addressed
in section 2.2.4. The idea of approximating the thermal be-
havior of the dihedral mirrors, collimator, and detectors with
Planck functions, as Fixsen describes [38], does not rest on
solid grounds. Each material should ideally have been mea-
sured in the laboratory, as real materials do not behave as
blackbody sources [80]. For instance, the FIRAS team de-
scribes harmonic responses in the instrument when radiation
passes through the system more than once. This proves that
the interior components of the instrument cannot be modeled
as perfect blackbodies. They do provide reflective surfaces.
It is noted that �20% of the input signal fails to reach the
output [38]. This is a large number, which represents fre-
quency dependent losses. However, no frequency dependence
is mentioned, presumably because the loss for each interfer-
ogram cannot be dissected in these terms. Both second and
third order harmonics were thought to be significant at the
0.1% level [38]. They also report that the frequency scale
for FIRAS does not quite agree with that determined using
known spectral lines. In order to correct the situation, they
make a 0.5% adjustment with “the remainder being absorbed
by a 4 mK adjustment in the absolute temperature scale” [38].

The discussion relative to the bolometers highlights how
modeling can misrepresent the actual behavior of a device.
The FIRAS team writes: “The total of nine parameters with
their uncertainties and covariance matrix were determined
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from these tests. The agreement with the determination of the
parameters from the FIRAS in-orbit calibration is poor, with
normalized �2’s of 80 to 800 in various fits for 9 DOF (de-
grees of freedom). This is probably due to a deficit in the
bolometer model” [38]. In the final analysis, the in-flight cal-
ibration procedure is viewed as correct, and the disagreement
with pre-flight data appears to be disregarded. This demon-
strates how the COBE calibration procedures have become
essentially detached from any experimental findings recorded
on the ground before flight.

The calibration process brings many more degrees of free-
dom for setting error bars and temperatures. Mather et al.
thus write: “However, the calibration process corrects other
effects of the error to the first order. . . ” [42]. Calibration in-
volves: “comparison of the sky with an ideal movable exter-
nal blackbody calibrator (Xcal) that can fill the aperture of
the sky horn. The rest of the calibration process is used to
measure gains and offsets that apply if the calibrator spec-
trum does not match the sky spectrum” [43]. As a result,
the FIRAS team can achieve a perfect fit to the sky spec-
trum. They have sufficient degrees of freedom to accomplish
the task by invoking the calibration procedure. The inver-
sion matrix required for the calibration fits is “of such large
rank (�4,000)” that it “is not generally tractable” [38]. The
FIRAS team was “able to invert this matrix by taking ad-
vantage of its special form. . . This made inversion possible,
though still not speedy” [38].

Relative to error analysis, very large degrees of freedom
(DOF) were invoked. The FIRAS team writes: “The nor-
malized �2 resulting from this fit is 2.8218 (27873 DOF) for
the left low detector, short slow stroke data (2.27<� < 21.54
cm�1), and 4.53 for (159353 DOF) for the right high de-
tector, short slow stroke data (2.27<� < 96.28 cm�1)” [38].
Moreover, it can be deduced that the values are rather high
for �2/DOF, particularly when operating away from the null
position. Cheng [34] reports higher than expected �2/DOF
values, of 4 to 10, for the low and high frequency channels
when discussing the calibration data. Apparently [34], it is
only when considering calibration files near the null condi-
tion that �2/DOF values near 1 are reached [39]. Of course,
it is easier to fit data near the null, for the precise reason that
the spectrum contains little power in this range. It is solely
by examining the performance of the calibration model away
from the null, that any real insight can be harnessed relative
to the reliability of this method. However, such data appears
to give even higher �2/DOF values than obtained near the
null [34]. This is not a good sign, relative to the validity of
this approach. The inability to find good �2/DOF values off

the null might be reflecting leakage around Xcal, for instance.
This could become more apparent when Xcal and Ical are at
very different temperatures.

Fixsen et al. [39] do describe excellent �2/DOF perfor-
mance in their Figure 1 (not reproduced herein). An analy-
sis of Table 1 in [39] reveals that �2/DOF are generally on

Fig. 10: Plot of various error terms for the FIRAS high frequency
channel for a typical sky point, as reproduced from [38]. Separate
fits are obtained for each point in the sky. This allows for far too
many degrees of freedom in the FIRAS calibration stage. Curve D
represents the error arising from detector sensitivity. Note the reso-
nances at �7, 16, and 20 cm�1. These may correspond to CO lines
in the galaxy. Such resonances should not be found on functions
representing detector sensitivity. They are not found in the detec-
tor functions at low frequency [38]. The dashed line, which is not
labeled in the original work, represents the calculated errors from
the galaxy as can be established using Figure 13. Note that there is
little error contribution from the galaxy, below 20 cm�1. As such,
the FIRAS team cannot attribute the failure to achieve a proper null
to the presence of contaminating galactic signal in this frequency
region. The dotted line, PEP, accounts for error associated with var-
ious temperatures within the instrument. Once again, a resonance
line is observed at �7 cm�1. Such a resonance line should not be
found on this function. It would, however, permit the FIRAS team to
vary the error in this region when trying to correct for contributions
from galactic CO. PTP accounts for errors in the absolute tempera-
ture scale. PUP error depends on the absolute temperature state of
the instrument and is most sensitive to Ical. PUP and PTP are given
a blackbody appearance without proper justification by the FIRAS
team (see text for additional details). Reproduced by permission of
the AAS.

the order of 2 or more. Nonetheless, it is noticeable that the
�2/DOF, listed in this work (see Table 1 in [39]), have im-
proved substantially over those found 2 years earlier (see Ta-
ble 2 in [38]). It is not clear if this represents anything but bet-
ter insight into how �2/DOF values could be minimized. In
the end, there is too much flexibility in these approaches. This
places at risk all physically meaningful experimental findings,
reflecting systematic errors.

A treatment by Fixsen et al. [38] of the error terms for
FIRAS reveals that the FIRAS team considered nearly every
possible source of instrumental contribution, while discount-
ing the possibility that errors existed in the shape of the black-
body provided by the sky itself. Such a systematic error could
exist if diffraction effects were important.

Figure 10 is a reproduction of Figure 9b in [38]. For
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the low frequency channel (figure not displayed), the ma-
jor term is referred to as PTP. It represents the uncertainty
in the absolute temperature scale. The peak brightness of a
2.7 K blackbody is approximately 120 �ergs cm�2 s�1 sr�1

cm [38]. As a result, this error term absorbs about 0.5% of
the deviation from the peak of a blackbody. The most impor-
tant error term for the high frequency channel, D, accounts
for detector noise. The PUP error is linked to the temper-
ature state of the instrument and is primarily dependent on
Ical. The PEP error depends on the temperatures of various
emitters in the instrument. “These are: Ical 2.76�0.006 K,
MTM 2.0�0.4 K, horns 2.75�0.005 K, mirrors 1.56�0.02 K,
and bolometers 1.52�0.017 K” [38]. The FIRAS team writes
that the PEP and PUP error terms are well approximated by
Planckian functions. This claim, however, is without foun-
dation. In fact, there are no references provided for assign-
ing a Planckian shape [10] to either PTP or PUP. Assigning
such shapes to these two terms will help determine the ap-
pearance of the other terms. The entire procedure is with-
out scientific basis [80]. It is particularly concerning that the
FIRAS team generates such error functions for each point in
the sky. Instrument error should not be dependent on the
scan direction. At the same time, it is true that the instru-
ment experiences temperature fluctuations over time: “Fur-
ther tests of the calibration are obtained by searching the
calibrated map of the sky for features relating to changes of
the instrument state. The largest such changes occurred dur-
ing the time from 1990 May to August. In this time period,
it was impossible to keep both the Earth and the Sun below
the Sun screen, and the Earth illuminated the top of the in-
strument during part of the orbit. The data taken with the
Earth above the instrument were rejected in the maps, but
the thermal transient produced by the heat of the Earth was
large and long. As a result, we raised the set point of the
horn temperature controllers to as high as 6 K to achieve sta-
bility” [38]. Direct visualization of the Earth did impact the
COBE results, but the data were rejected. Yet, if the Earth
was truly silent over the frequency of interest, there could
be no reason to reject this data. Heating by the Earth could
simply be accounted for in a manner similar to that used
for other parts of the orbit. The FIRAS team believes that
the heat transient in the instrument, as a consequence of di-
rect infrared heating, was the only effect. However, it would
have been most interesting to examine the resulting sky in-
terferograms. Perhaps these actually contained direct phys-
ical proof that the Earth had emitted the microwave back-
ground.

In any case, note the nature of the error term, D, for the
high frequency channels. Essentially, there are resonance
lines at �7, �16, and �20 cm�1. These features seem to
correspond to the presence of the CO lines in the galaxy [39].
Such lines should not be found within detector noise error. In
addition, curve D for the high frequency channels approaches
10 �ergs cm�2 s�1 sr�1 cm, at 95 cm�1. This is an extremely

Fig. 11: Calculated residual errors in the microwave background, as
reproduced from [35]. These residuals were generated, using a con-
servative approach, by increasing the statistical errors, forcing �2

to 32 [35]. Nonetheless, note the systematic increase in the residu-
als beyond 15 cm�1. There is a slight trend towards signal loss in
this region as well. In addition, the points below 5 cm�1, slowly be-
gin to rise away from the reported temperature, and represent signs
of excessive signal in this region of the spectrum. The residuals are
presented once again in 2001 [44]. At this time, systematic varia-
tions have been absorbed by the calibration files and the residuals
are now random and of insignificant importance. Reproduced by
permission of the AAS.

powerful contribution from this term, given that the maximal
power of the microwave background itself is on the order of
120 �ergs cm�2 s�1 sr�1 cm.

2.4.2 Analysis of residual errors

When Mather et al. [35] publish the 1994 FIRAS data re-
lease, several unexpected findings are revealed. Figure 1 of
this work [35], a presentation of the CMBR residuals, is re-
produced as Figure 11. There are two interesting aspects of
this figure. First, there is a pronounced increase in the er-
ror bars associated with the residuals, as the frequencies are
raised beyond 15 cm�1. This increase in variability is sys-
tematic, and consequently may represent a real finding. In
fact, there is a slight trend towards decreased temperatures
as a function of frequency beyond 15 cm�1. Second, at the
lower frequencies, the data points begin to rise. The FIRAS
team comments as follows: “pending further detailed study
of possible instrument faults at these low frequencies, we can-
not speculate on their nature. We emphasize that the size of
the apparent deviations is greatest at those frequencies where
diffractive effects, interferogram baseline curvature, and very
low spectral resolving power and wide spectral sidebands
cause the greatest difficulties in calibration” [35]. The au-
thors therefore “conservatively increase the statistical errors
by a factor, forcing �2 to exactly 32, the number of degrees of
freedom in the fit” [35]. Nonetheless, they eventually publish
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new residuals [44], which have now lost the systematic vari-
ations displayed in Figure 11. This shows the power of the
fitting methods applied.

The FIRAS team believes that they fully understand all
systematic errors and that their fits are justified. However,
this is not the case. The fact that an excellent fit can be found,
given sufficient degrees of freedom, is well recognized in sci-
ence. The question remains how well justified were the bases
for the fits. Adequate justification is based on a complete un-
derstanding of the instrument on the ground with calibrated
test procedures. This approach was not utilized. Instead,
fits are obtained by adjusting gains, offsets, and functions,
which have a weak foundation, other than their ability to re-
sult in minimal residual errors for the sky. Furthermore, the
FIRAS team has not shown that it can minimize residuals,
using their final calibrations across all ranges of temperatures
for Xcal, Ical, the sky horn, and the reference horn. Without
explicit demonstration that the final calibrations apply to all
possible interferograms, the analysis of residuals for the sky
alone have little value. It is a complement of all residuals, for
all conditions, which is important to visualize, for this alone
might help establish the reliability of the approach in the ab-
sence of sufficient pre-flight testing.

2.4.3 Data omission

The FIRAS data set from 1994 contains a more serious con-
cern: all of the observations at frequencies below 2 cm�1 are
now excluded [35]. Moreover, there is a rise in the residuals
below 4 cm�1 which cannot be accounted for by their error
bars. This region is usually the easiest to monitor due to the
low frequency range. Never again is the data below 2 cm�1

re-included in the FIRAS data set. It is only through read-
ing the accompanying calibration work by Fixsen et al. [38],
that one might postulate on the causes behind the loss of this
data. A single sentence is presented when discussing the ref-
erence horn: “However, the measured emission is higher than
predicted, particularly at the lowest frequencies” [38].

Though FIRAS was designed to cover the region from
1–2 cm�1, the FIRAS team omits the data below 2 cm�1 and
ignores the excessive signal. They do not discuss the cause of
this anomaly, unless Wilkinson’s concerns about earthshine
were a reaction to this problem [74]. At the same time, given
the use of calibration files to correct FIRAS, it may have been
that the FIRAS team could not envision a means to account
for the spectral behavior below 2 cm�1. On the surface, ig-
noring this data might not appear so serious. After all, the
entire spectrum beyond 2 cm�1 was reported.

Given that diffraction of a terrestrial signal would produce
distortions in the measurement of the microwave background,
which include excessive signal at low frequencies and de-
creased signal as frequencies increase, the dismissal of this
data cannot be taken lightly. The FIRAS team also forsakes
all data acquired when the Earth was directly illuminating

FIRAS [38], as previously discussed in section 2.4.1. While
infrared heating of the instrument did occur at this time, it
is not evident that such heating could not be modeled. This
is the type of evidence that may have pointed to an earthly
source for the microwave background.

2.4.4 Error bars

Despite the presence of systematic errors, the FIRAS team is
able to essentially sidestep the recordings of their thermome-
ters and overcome their inaccuracy. E. S. Cheng summarizes
the overall approach of the group: “Since the FIRAS is a far
more sensitive thermometer that the GRT’s (germanium resis-
tance thermometers), especially at temperatures above 3 K,
the thermometer readings can be adjusted, using the calibra-
tion data, to provide maximal internal consistency and a re-
fined temperature calibration” [34]. As such, the readings of
the physical thermometers could be given less weight.

Initially, it is not evident if they are aware that er-
rors in the thermometers limit the ultimate temperature that
can be reported for the microwave background. In 1996,
Fixsen et al. arrive at a microwave background temperature of
2.730�0.001 K (see Table 1), which relies on Xcal (see page
581, section 4.1, in [39]). Then, three years later, in 1999,
the FIRAS team writes: “A 5 mK error in the temperature
determination of Xcal leads directly to a 5 mK error in the
temperature determination of the CMBR” [42]. The team ap-
parently realized that it was impossible for Fixsen et al. [39]
to claim a 1 mK error bar for this measurement in 1996. But,
they continue to discount the 18 mK error between the Ical
thermometers [38].

In order to fully restrict the error bars on the determina-
tion of the microwave background, the COBE group therefore
moves to adopt two additional methods which, at least on the
surface, are independent of Xcal. In the first instance, they de-
termine the temperature by calibrating the frequencies of the
background, using lines from CO and C+ [39]. Few details
are provided relative to this approach; however, it may rely
on accurately defining a Wien maximum and extracting the
temperature from Wien’s law [11]. The method is solid, on
the surface at least. Nonetheless, it will depend on correctly
setting the peak in the microwave background data, which
may in turn depend on Ical and/or Xcal. The ability to detect
a proper Wien maximum [11] would also be sensitive to in-
terference effects caused by diffraction on the COBE shield,
should the signal originate from the Earth. As a result, it is
not clear that the frequency method holds any less systematic
error than that directly relying on Xcal.

Alternatively, the group also uses the existence of a dipole
to extract a monopole temperature [39]. In this way, they
can build on the findings of the DMR relative to the dipole
value [46–49]. Once again, the method may appear more ac-
curate, but is also subject to many of the same problems as
that based on Xcal. If the use of frequency calibration, or of
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the dipole, seems less prone to systematic error, it may sim-
ply be because these have escaped detection by the FIRAS
team. It is well established, not only in physics, but across
the sciences, that systematic errors can be extremely difficult,
even impossible, to detect [88]. Consequently, one must not
dismiss those systematic errors which are evident.

Using a combination of these three methods, the FIRAS
team finally arrives at a microwave background temperature
of 2.725�.00065 K [43]. Beyond undetected systematic er-
rors, this number circumvents much of the planning built into
Xcal and Ical. It also neglects the excessive signal detected
below 2 cm�1. Relative to error bars, the result obtained, us-
ing an average of many methods, was analogous to ignoring
the existence of known temperature error in the reference cal-
ibrators Xcal and Ical. The existence of imperfect nulls was
also dismissed, as were all interferograms obtained while the
Earth was directly illuminating FIRAS.

In the absence of proper pre-flight testing, it is impossible
to account, with certainty, for all possible source of system-
atic errors associated with inability to find a null. Data pro-
cessing methods do not address the fundamental issue. The
FIRAS team believes that it has fully understood all system-
atic errors and that they can be removed from the final error
report. But, systematic errors are best treated through the
proper design and testing of scientific instruments on the
ground. This was not achieved. The calibration procedure
creates the illusion that all systematic error can be taken into
account, after completion of data acquisition. This is not a
prudent approach to systematic error, especially since they
can be nearly impossible to identify [88, p. 93–95]. It is best
to report all known systematic errors within the final error bar.

In failing to achieve a clear null, FIRAS is pointing to
something on the order of a 34 mK error. The overall error in
Xcal was �5 mK. The error difference between the Ical ther-
mometers is 18 mK and the drift for Ical is 3 mK. A frequency
correction of �4 mK exists. Some of these errors may be
related and could be added quadratically [88, p. 93–95]. Di-
rect addition provides a worse case scenario of �64 mK [88,
p. 93–95]. As such, using direct addition,�64 mK appears to
be a good lower limit on the accuracy of the FIRAS data set,
from 2–20 cm�1. This treatment would discount attempts to
lower the error bar to 1 mK in the final FIRAS report [43]. In
fact, �64 mK is not far from the 60 mK error initially used
by the FIRAS team [32]. At the same time, the group asserts
that their data is “indistinguishable from a blackbody” [37].
A cursory examination would suggest that this was the case
(see Figure 2). An understanding of calibration process has
provided the explanation.

2.4.5 The optical transfer function

The FIRAS team first presents the optical transfer function
in the Explanatory Supplement, in 1997 [40]. This function
is critical in processing FIRAS data files [40, p. 50] and it is

Fig. 12: Illustration of the Optical Transfer Function for FIRAS,
as reproduced from the Explanatory Supplement [40]. The features
near 20 cm�1 are due to the position of the filter cutoff. Nonetheless,
this does act to provide a substantial correction for signal beyond
the Wien maximum and between 15 and 20 cm�1. Note the oscil-
lation present below this frequency range. It is not clear why such
features should be present on this optical transfer function. These
might represent the effect of constructive and destructive interfer-
ence. It is impossible to truly ascertain their cause with the data
provided. Most importantly, the optical transfer function is decreas-
ing exponentially. This is not characteristic of a properly functioning
spectrophotometer. This figure reveals that the FIRAS instrument is
suboptimal, beyond �30 cm�1. Reprinted with permission of John
Mather.

reproduced herein as Figure 12. For an ideal spectrometer,
the optical transfer function would be unity over the entire
frequency range. That is, for every photon which enters the
system, one photon is recorded by the detector. This situation
does not occur in practice, and transfer functions will deviate
from ideality. But, the transfer function for FIRAS is much
less than ideal. At the lowest frequencies (<20 cm�1), the
transfer function contains a very strange and unexplained os-
cillation. The FIRAS team does not comment on the cause of
this feature. Nonetheless, since the reciprocal of the transfer
function is used to process data, this oscillation is significant.
Although difficult to ascertain, this feature might be a sign of
signal diffraction into the horn. In any event, the discontinu-
ity near 20 cm�1 is due to the filter cutoff between the low
and high frequency channels.

The most noteworthy feature of the optical transfer func-
tion for FIRAS is that only 1 photon in 10 is being detected,
at best. In addition, the plot is on a logarithmic scale. Such
behavior is highly unusual and demonstrates that the FIRAS
instrument is not linear. It is also not sensitive at the higher
frequencies. As a result, when the optical transfer function is
applied to process data beyond 30 cm�1, it results in a pro-
nounced amplification of spectral noise. This is revealed in
Figure 13 [41], where noise in the fits is amplified beyond
40 cm�1. This constitutes a solid illustration that the FIRAS
instrument, for practical purposes, is subfunctional in this fre-
quency range.
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Fig. 13: Fit spectra calculated across the high frequency region using
the FIRAS instrument, as reproduced from [41]. Note the tremen-
dous increase in random errors beyond 30 cm�1. This indicates that
the spectrometer is suboptimal, in this frequency range. Reproduced
by permission of the AAS.

2.4.6 Comments made by other authors

Several Italian authors [89–91] have been interested in the
calibration of the FIRAS instrument as Fixsen and Mather
highlight [42]. Giorgi, for instance, suggests that there could
be an asymmetry of as much as 5% in the two input arms
of FIRAS [89]. Fixsen and Mather point out that the mea-
sured asymmetry is only 1–3% [42]. In defending FIRAS
data, Fixsen and Mather write: “However, one must also con-
sider the source of any reflection. The Xcal is part of a closed
cavity composed of the calibrator, the sky horn, a small gap
between the calibrator and the sky, and a small aperture lead-
ing to the spectrometer horn. Consequently, the radiation
reflected by the calibrator must have originated either from
itself, the sky horn, the sky through the gap, or the small
aperture to the spectrometer. Three of these sources are ef-
fectively at the temperature of the CMB. As the most emis-
sive of the four, the source of most of the reflected radiation
is the calibrator itself. . . Moreover, since both the horn and
the Xcal temperatures were set to match the CMB tempera-
ture, the only source of radiation that could be reflected by

the calibrator and that was not at the CMB temperature is
the small aperture leading to the spectrometer” [42]. Such a
statement cannot be justified. It is not clear that the sky is at
the temperature of the CMB. Should the signal originate from
the Earth, it would undergo differential diffraction as a func-
tion of frequency, as it travels over the RF shield and into the
horn. This would lead to a spectrum which is not blackbody,
and the measured sky spectrum would not be at the exact tem-
perature of the microwave background. It would be distorted.
Fixsen and Mather cannot assume that the sky is a blackbody
at the temperature of the CMB. That is what they are trying
to determine.

Work by Battistelli et al. [90] is centered on a computa-
tional analysis of Xcal, in order to further refine cosmolog-
ical parameters. The text does not constitute a criticism of
FIRAS. The emissivity values obtained for Xcal, are nearly
ideal. Salvaterra and Burigana [91] examine a range of issues
in detail, but the text does not raise any real concerns relative
to FIRAS.

3 The Differential Microwave Radiometers (DMR)

The COBE satellite is also equipped with Differential Mi-
crowave Radiometers, the DMR. These constitute three pairs
of narrow band antennae operating at 31.5, 53, and 90 GHz
[46]. The DMR are mounted directly on the sides of the he-
lium dewar containing the FIRAS and DIRBE instruments
[45]. A detailed treatment of the DMR will not be presented,
as many of the issues relative to the DMR have already been
addressed relative to the WMAP satellite [20]. It is clear
that the DMR has measured a dipole. This result is highly
significant.

Of all the concerns which the DMR shares with WMAP,
the central issue remains the processing of data and the ex-
traction of the multipoles [20]. These are the “wrinkles on
the fabric of time” [21]. Before the multipoles can be an-
alyzed, the signal from both the dipole and galactic fore-
ground must be removed. Importantly, as Smoot discusses
in his popular book [21], these investigators also remove the
quadrupole signal from the underlying maps. It is only at this
stage that the multipoles become visible. Smoot writes: “We
were confident that the quadrupole was a real cosmic sig-
nal. . . By late January and early February, the results were
beginning to gel, but they still did not quite make sense. I tried
all kinds of different approaches, plotting data in every for-
mat I could think of, including upside down and backwards,
just to try a new perspective and hoping for a breakthrough.
Then I thought, why not throw out the quadrupole — the thing
I’d been searching for all those years — and see if nature
had put anything else there!” [21, 276–277]. After removing
the quadrupole, the multipoles finally appeared. Smoot then
comments [21, 279]: “Why, I puzzled, did I have to remove
the quadrupole to see the wrinkles?”

The answer to this question is one of data processing.
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The raw maps do not contain any systematic signal varia-
tions on their own [21, 276–279]. The signals were random
in nature. However, when Smoot and his colleagues imposed
a systematic removal of signal, they produced a systematic
remnant. In essence, the act of removing the quadrupole cre-
ated the multipoles and the associated systematic anisotropy.
Once the quadrupole was removed, the multipoles appeared
as extremely consistent variations on the maps. As previously
mentioned, these findings have no relevance to cosmology
and are purely an artifact of signal processing. Citing from
previous work [20]: “Apparent anisotropy must not be gen-
erated by processing”. The sky does have anisotropy. But
this anisotropy is likely to remain random, as Smoot initially
observed in his data set, before removal of the quadrupole.

4 Conclusion

Through this analysis, unexpected problems with FIRAS and
the DMR data have been brought to light. With regard to
FIRAS, many issues exist. They include: 1) lack of gain and
side lobe characterization for the FIRAS horn, 2) absence
of diffraction modeling involving the interaction between
FIRAS and the shield, 3) rudimentary pre-flight testing,
4) failure to document side lobe performance, in space, at
frequencies relevant to the microwave background, 5) inap-
propriate evaluation of Xcal emissivities, 6) inability to en-
sure that leakage did not occur around Xcal in flight, given
the vibrations present, the lack of gravity, and the nature of
the Kapton leaves, 7) existence of a suboptimal transfer func-
tion for the instrument, 8) the presence of systematic errors,
for the Xcal and Ical thermometers, 9) inability to achieve a
proper null between the sky and Ical, 10) inability to reach
a proper null between Xcal and Ical, 11) excessive degrees
of freedom during the calibration process, 12) lack of justifi-
cation for the error functions PTP and PUP, 13) inappropri-
ate minimization of error bars, 14) omission of data below 2
cm�1 from all final data releases, and 15) omission of data
when the Earth was directly illuminating FIRAS.

Given the systematic errors on Xcal, Ical, the frequency
drift, and the null temperature, it is reasonable to ascertain
that the FIRAS microwave background temperature has a sig-
nificant error bar. As such, an error on the order of 64 mK
represents a best case scenario, especially in light of the dis-
missal/lack of data at low frequency. The report of a mi-
crowave temperature of 2.725�0.001 K [43] does not accu-
rately reflect the extent of the problems with the FIRAS in-
strument. Furthermore, the absolute temperature of the mi-
crowave background will end up being higher than 2.725 K,
when measured without the effect of diffraction, and when
data below 2 cm�1 is included. Contrary to popular belief,
the FIRAS instrument did not record the most perfect black-
body spectrum in the history of science.

Relative to the DMR, the problems mirror, to a large
extent, those I voiced earlier with WMAP [20]. The most

pressing questions are centered on the ability to remove the
quadrupole from the maps of the sky. In so doing, it is clear
that a systematic residual will be created, which can easily
be confounded for true multipoles. In the end, the meth-
ods to process the anisotropy maps are likely to be “creating
anisotropy” where none previously existed.

It also remains fascinating that the astrophysical commu-
nity has not expressed greater anxiety relative to the difficul-
ties produced by water, in the lower atmosphere. This is per-
haps the most serious area of concern. It is certainly true that
the Earth is bathed in a field with an apparent temperature
near 3 K. The existence of the dipole is also firmly estab-
lished. Cosmology holds that the monopole signal [1] rep-
resents a remnant of creation. Conversely, I maintain, along
with my colleagues [5, 7], that it is being produced by the
oceans of the Earth. Through this work, it is my hope that
others will begin to see that there are legitimate issues with
the FIRAS and DMR results on COBE. The thermal emis-
sion of water, in the microwave and far infrared, remains in-
completely characterized. Our planet has never been elimi-
nated as the source of the microwave background. In the end,
the PLANCK satellite [86] should reveal that the Penzias and
Wilson monopole [1] was never present in the depth of the
Cosmos. The signal belongs to the Earth.
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A mathematical representation is given and physically described for the shape of the
very hot material that immediately surrounds a black hole and the warm material located
at a greater distance from the black hole, as related to active galactic nuclei. The shape
of the material surrounding the black hole is interpreted in terms of asymmetry of the
neutrino flux. Detailed experimental measurements on radioactive decay influenced by
astrophysical events are given to support this interpretation.

1 Introduction

Recent work [1] that examined over 200 active galactic nu-
clei has shown that all have a common shape of the material
surrounding the black hole core, and that this shape seems
to be independent of the size of the black hole. The Active
galactic nuclei (AGN) are cores of galaxies that are energized
by disks of hot material that act as ingress/feeder to super-
massive black holes. the shape of the hot material that sur-
rounds the black hole was inferred from the observation of
x-rays that emanate from very hot material that is close to
the black hole, and from infra-red radiation that derives from
warm material much further from the core of the black hole.

Through comparing the ratio of x-rays to infrared radia-
tion, the contour shape of the black hole is indirectly mapped
[1]. The results are shown in Fig. 1. Inspection of the in-
ferred topology of the surrounding material indicates that al-
though approximate symmetry is shown across the vertical
axis, the horizontal axis shows no indication whatsoever of
mirror plane symmetry, and thus the upper and lower regions
of the 2-d projection must derive from very different func-
tional representations. Stars, planets, and moons do not show
a significant asymmetry, other than equatorial bulge. The
non-symmetry of the material surrounding the black hole ap-
pears thus at first surprising, however, when considered in
terms of a collision-induced gravity model [2], the asymme-
try could be hypothesized to be a consequence of observing
the black hole from a location closer to the centre of the uni-
verse where the neutrino flux density is far greater than at
position coordinates that are associated with the expansion of
the periphery region of the universe, even though that locus
of positions is considered unbounded. Asymmetries, such as
shown in Fig. 1 are generally thought to be associated with
tidal effects — and in the case at hand, this would mean grav-
itational interactions, such as a form of lensing. Although
there is a consideration of the red shift associated with the
receding of the galaxies, the cores of which are powered by
disks of very hot material “feeding” the supper massive black

Fig. 1: Material shape near black hole. Courtesy of Anna Morton,
moderator of 4D WorldX Yahoo Science Groups. See [1].

hole, I do not think that the asymmetry shown in Fig. 1 arises
purely from considerations of Relativity, but instead arises at
least to some significant level from collision criteria [2].

2 Analysis and interpretation

The event horizon associated with a black hole refers to the
surface that surrounds the black hole, having the property that
any visible light cannot escape from the super dense mass be-
cause of the strength of the gravitational field [3]. In terms
of collision-induced gravity, the term “field” is not employed
because gravity is considered to be particle-based and the
escape-inability of photons at energies less than x-rays is due
the increase in collision cross-section between neutrinos and
photons that accompanies the super dense packing of mass
in a black hole that has developed from a neutron star. The
accretion disc of a black hole refers to how accretion onto a
neutron star takes place from from a matter input from the
Roche lobe of a primary star in the binary system. This pass-
ing of matter when occurring from the primary to the sec-
ondary star through a Lagrangian point [4] establishes a non-
symmetry, but of a different form than that of the black hole
shown in Fig. 1, yet these asymmetries may be ultimately re-
lated through the physical processes associated with the in-
volvement of the black hole. The vertical asymmetry of the
material that surrounds the black hole may also arise from
the phenomena that are associated with the periodic ejecta of
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Fig. 2: The Witch of Agnesi function.

material from the black hole, which may be influenced by the
magnetic properties of the super dense collapsed star. The
comparatively slight asymmetry in the horizontal direction
must relate to inhomogeneous temperatures and non-isotropic
mass distributions of the black hole because of specific local
conditions at the xyzt spatial-temporal location of the highly
dense aggregating of matter.

The 2-d geometry shown in Fig. 1 above the horizontal
axis that passes through the extrema of the inferred contoured
distribution of mass, shows the appearance of the mathe-
matical function known as the Witch of Agnesi. (The term
“witch” is an involvement of a misnomer, caused by an in-
correct translation of the work of Maria Agnesi who devel-
oped the function geometrically in 1768). The Agnesi func-
tion (Fig. 2) is generally given by, y = [(8a3)=(x2 + 4a2)],
where a is the radius of the circle that is utilized to geometri-
cally form the functional curve. In polar coordinates the Ag-
nesi function is given by x = 2a cot�, and y = 2 sin2 �. The
function can be generated geometrically by rotating the radius
of the circle whereby the y-coordinate of the function is the
y-value of the radial vector as it sweeps the associated circle,
and the x-coordinate is the x-value of the ordered pair that
represents the intersection of the extrapolation of the radial
vector with the line, y = a. Although many world class math-
ematicians explored the geometric development of this func-
tion, including Fermat, no application in astrophysics to the
author’s knowledge was established for what became known
as the Witch of Agnesi function, until now — general appli-
cations of the function being confined to probability theory.

Some properties of the Agnesi function are associated
with gravitational criteria, such as the x-squared term appear-
ing in the denominator, and suggestive of an inverse square
relationship, which in Newtonian gravity derives from New-
ton’s postulate of a central force, which he interpreted from
Kepler’s First Law of Planetary Action-namely that the orbits
of the planet must be elliptical from consideration of years of
visual data of Tycho Brahe. The inverse square relationship in
the collision-induced gravity model/theory derives from the
properties of a flux, as in the photon inverse-square light in-
tensity fall-off, or the equivalent for the distance dependency
of the amplitude/intensity of magnetic or electrostatic prop-
erties. The relationship of the sweeping rotating radius of the
function-forming circle, and its extension to intersect the line

Fig. 3: Representation of the shape of material near a black hole
using Agnesi function contours and quadratic function.

y = a can be arguably topologically associated with the no-
tion of accretion and event horizon, and continuous processes.
The asymptotes of the function (the positive and negative x-
axes) relate to the convergence of the shape of the constituent
material as temperature decreases because of distance from
the “donut” core of the black hole.

The region of Fig. 1 below the horizontal axis can in 2-d
projection be well represented by a wide parabola that opens
upward. Thus the combined representation of the 2-d geom-
etry shown in Fig. 1 requires the use of a two-function coa-
lescence, and implies the involvement of two different physi-
cal phenomena, whereby the quadratic is typically associated
with gravitational interactions but the Agnesi function is not.

Using the Agnesi function, and varying the value of the
radius, a, combined with the parabola, y = ax2� k, where a
is a very small positive constant� 1, the contoured represen-
tation shown in Fig. 3 is readily developed. The knee shaped
curve given also in Fig. 3 represents the calculation of vol-
ume of integration of the region surrounding the black hole as
a function of the position coordinate, x, showing a threshold
effect above which the volume increases rapidly with high
slope. The volume function involves an arc tangent term
which which is consistent with involvement of an event
horizon.

It has been proposed [5] that when emission from an in-
ner accretion disk around a black hole is occulted by a com-
panion star, the observed light curve becomes asymmetric at
ingress and egress on a time scale of 0.1–1 sec. The light-
curve analysis is claimed [5] to provide a means of verifying
the relativistic properties of the accretion flow which is based
on both the Special Relativity and General Relativity that is
associated with black holes. It is reported [5] that the “skew-
ness” for the eclipsing light curve is approximately zero for
what are called slim disks because the innermost part is self-
occulted by the outer rim of the disk. This self occulting is
a very important property of the black hole, yet these criteria
do not uniquely and exclusively seem capable of explaining
the major asymmetry shown in the geometry inferred from
the x-ray and infra-red data [1] given in Fig. 1.
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Fig. 4: Radioactive decay data for Po-210 during August-September
2001 measured at Harvard University using the Rad-7 solid-state
detector.

On the other hand, it has been reported [6] that propaga-
tion of fermions in curved space-time generates gravitational
interaction due to the coupling of its spin with space time cur-
vature connection, and causes a CPT violating term in the La-
grangian, generating an asymmetry between the left-handed
and the right-handed partners under the CPT transformation.
(CPT refers to charge conjugation, space reversal, and time
interval, and thus deals with parity). It is interpreted [6] that
in the case of neutrinos this property can generate neutrino
asymmetry in the Universe, causing the dispersion energy re-
lation for the neutrino and its anti-neutrino to be different giv-
ing rise to differences in their number density, and associated
with the left-hand helicity of the neutrino. These effects may
have an influence in contributing to the asymmetry shown in
Fig. 1. It has also been shown [7] that particle interactions in
the black-hole accretion disks cause an excess production of
positrons as compared to electrons, however, this disparity
alone, without emission directionality considerations, does
not constitute a non-conservation of parity.

Although the behaviour of each type of galaxy or AGN
is dependent upon the angle of observation relative to the ac-
cretion plane of the black hole core, the asymmetry shown in
Fig. 1 is common to all 200 AGN’s that were studied in [1],
yet the angles of observation relative to the accretion zones
had to be different, and the azimuths from the observation
coordinates also had to be different.

Our own work [8] has suggested that near the periphery
of the current universe, gravitational interactions must have a
net repulsive, rather than attractive, dependence — this owing
to the far lower neutrino flux in the far distant regions of the

universe (� 1050 km). Thus, though arguably at very small
length scales (� 0:1 mm), gravitational interactions may be
described by an inverse fourth dependence [9], and at typical
solar system and galactic length scales by inverse square de-
pendence, yet at length scales of 10n km (where n > 40),
the dependence is likely not to be attractive at all, and in-
stead repulsive near the outer zones of the universe. Thus,
relative to the line of centres (a curved Riemannian arc) of
the earth born measurement laboratory and the very distant
black holes, the neutrino flux that is emanating from the outer
regions of the universe, and opposing the escape of both x-
rays and infra-red radiation toward the observer, has a higher
particle density, than the neutrino flux that is opposing (due
to collisions and associated net exchange of total momenta)
the escape of electromagnetic radiation in the direction of the
periphery of the universe. This higher level of particles per
square centimetre per second escaping toward the periphery
of the universe diffuses in curved directions because of the
collision basis of gravity, and the net result contributes to the
asymmetry detected by the observer, as in Fig. 1, and shown
functionally in Figs. 2 and 3.

3 Supporting evidence for the significance of the neu-
trino flux

In a work previously published in this journal [10] I pre-
sented the explanation of the physical cause of the decades
of radioactive decay data histograms determined by Shnoll et
al. [11–13] which reported characteristic histograms for the
decay of Pu-239 which were periodic over a 24 h interval
(the solar day, thus the spin of the Earth), a �28 day in-
terval (the lunar month, thus the period of the Moon), and
the sidereal year, and also reported characteristic histograms
of radioactive decay rate associated with a New Moon and
a total solar eclipse. My explanation [10] was based on
the Moon and/or the Earth periodically interrupting through
scattering and capture some of the neutrinos that emanated
from the Sun, and which would have otherwise transferred
their momentum to the radioactive source, the decay rate of
which was being studied in the experiments (taking place in
Moscow, and aboard two research ships that travelled all over
the world, including the polar regions). Also, the Sun and
Moon intercept neutrinos emanating from deep space.

The Shnoll work [11–13] prompted me to lease a Rad-7
solid-state detector through Dr. Derek Lane-Smith at Dur-
ridge Corporation (Bedford, MA) for the purpose of explor-
ing further the Shnoll conclusions. The Rad-7 detector is uti-
lized worldwide as the principle detector of alpha particles
decaying from radon gas, and as such is ideally suited also
to study the daughter isotopes of Radon. Amongst these, Po-
210 has the ideal half life compatible with the purposes of
my work. The detector was set up for a 4 week period at the
Farlow Herbarium at Harvard University, where I was a re-
search affiliate at the time, conducting work at the Arnold Ar-
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Fig. 5: Data showing three decreases in radioactive decay data of Po-210, 24 hours apart, corresponding to period of 6–10 AM Sept. 7–10
during time interval of Jupiter eclipsing quasar JO842+1835. Reproduced from [16].

boretum, studying the negative geotropism of a heavy vine,
Aristolochia macrophylla. Although, conclusions could not
be definitely established regarding a diurnal variation of the
radioactive decay, a clear peak was observed in the 12:00–
4:00 PM time interval on 26 August 2001, far exceeding two-
sigma in alpha particles per 4 hour interval. These data are
given in Fig. 4, and are digitally reproduced from [14]. It
was not until over a year later that I learned that on 26–27
August 2001, radiation from the explosion of supernova SN
2001 dz (in UGC 47) reached the Earth [15]. A supernova
explosion is associated with a very significant release of neu-
trinos, and I interpret that the radioactive alpha particle decay
rate peak, shown in Fig. 4, is a consequence of the impinge-
ment of the neutrinos, associated with the supernova explo-
sion burst, upon the radioactive isotope source which then
pertubed and further de-stabilized a nucleus that was already
unstable due to the ratio of neutrons to protons.

During the period September 7–11, 2002, the planet
Jupiter eclipsed the deep space quasar JO842+1835, and
measurements of alpha particle decay rate were conducted
by Dr. Lane-Smith in the Boston area at my request. The
averaged data are given in Fig. 5 (digitally reproduced from
[16]), showing a decrease in decay rate from approximately
6:00AM to 10:00 AM every 24 hours during the 3-day time
interval of the eclipsing event. This variation is attributed to
the rotation of the Earth such that once per day Jupiter, in-
terrupted the particle-path from the deep-space quasar to the
earth laboratory where the radioactive source was located for
the experiment. This interruption of neutrinos, due to the nu-
cleons of Jupiter scattering and inelastically capturing some
small, but non-trivial, proportion of particles and/or radiation
causes a decrease in radioactive decay rate because of the
consequent decrease in the particle flux transferring momen-

tum to the nuclei of Po-210. The x-axis scale is the number
of four-hour periods in to the experiment starting at 1:00 AM
EDT Sept 7, 2002, and showing decreases at abscissa values
of 9, 15, and 21 — these being six 4-hr intervals (24 h) apart.

On 4 Dec 2002, a total solar eclipse occurred, during
which the radioactive decay rate of Co-60 was measured at
Pittsburg State University in southeastern Kansas [17], and
the radioactive decay rate of Po-210 [18] was measured in
the Boston area, both at/near the time of totality in southern
Australia. The decay data [14] are plotted in Fig. 6, and show
dips in decay rate at the time when the umbra of the eclipse
was closest to the location of the source isotopes (on the op-
posite side of the Earth from totality). The inset shows very
recent data [19] on the decay of Cs-137 during the annular so-
lar eclipse of 26 January 2009, also in southeast Kansas, at the
time when the eclipse was at peak darkness in Australia, also
showing a dip in decay rate when the umbra passed closest
to the source isotope (time = 4.06 days into the experiment).
The 2009 data plot (inset) shows also the envelope of the neg-
ative percent changes. The circled data points are analogous
to the leading-edge signal and the trailing-edge signal that
corresponded to dips in gravity upon first contact and upon
last contact associated with the total solar eclipse in China
in March 1997 (see [20, 20]). These consistent decreases in
decay rate (using three different isotopes) during two differ-
ent solar eclipses can only be explained by the mass of the
Moon and the mass of the Earth interupting the flux of neu-
trinos coming from the Sun, and thus some of the neutrinos
associated with the flux, never reaching the source isotope.
Hence these scattered and captured neutrinos do not cause
any further de-stabilization of the weak cohesive interaction
of mesons and of gluons that hold the nucleus intact/together,
normally ascribed to the weak force — an internal interaction
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Fig. 6: Decrease in radioactive decay rate for Co-60 and for Po-210 during total eclipse of 4 Dec. 2002, and decrease in radioactive decay
rate for Cs-137 during annular solar eclipse of 26 Jan. 2009.

— but now shown to depend upon momenta transfer from
externally impinging particles including primarily the muon
neutrino and the electron neutrino.

Additional supporting data regarding the significance of
the neutrino flux on radioactivity, and highly supportive of my
own work and interpretations given herein, are as follows:

1. A major multi-year study by Purdue University re-
searchers at Brookhaven National Laboratory clearly
show that the radioactive decay rates of many isotopes
correlate very well with the distance of the source iso-
tope from the Sun, as well as changes in radioactive
decay rate correlated with major solar flares [22].

2. Positron annihilation measurements [23] that show pe-
riodic variation with the phases of the Moon, yielding
peaks associated with the New Moon (which approxi-
mates a solar eclipse), and troughs correlated with the
presence of the Full Moon. The source of positrons in
this study was Na-22, and the dependent variable of the
experiment measured the yield of molecular iodine (I2).
Thus the peaks in I2% correlated with the presence
of the New Moon, and hence the interference by the
Moon of a flow of particles from the Sun and from
space. The data also showed a general trend increase
in I2 production over the course of the months of the
experiment (November through February), that the au-
thors tentatively attribute to seasonal changes of the
distance between the Earth and the Sun. The exact
phenomena causing the peaks is not yet established

since in this case an interruption of neutrino flow by
the Moon enhances positronium production. It is possi-
ble that the peaks are due to more molecular iodine be-
ing produced associated with a different collision cross-
section caused by change-in-flavor of the neutrino due
to collision with nucleons of the Moon.

3. Periodic oscillations have been reported [24] in Pm-
142 which show an oscillating sinusoidal decay for
electron capture (as contrasted to a conventionally es-
tablished exponential decay) which the authors at-
tribute to modulations caused by the oscillation of neu-
trinos between two different mass states (flavors), that
of the electron neutrino emitted in the original decay,
and that of the muon neutrino which is observed in de-
cays of the muon (a particle 200 times more massive
than the electron).

4. The standard deviation of decay rate of radioactive
isotopes is periodic with respect to the phases of the
Moon, being maximum at Full Moon (whereby exter-
nal particle impingement from the Sun is unobstructed)
and minimum at New Moon (whereby external particle
impingement is obstructed by the Moon [25]), akin an
eclipse condition.

4 Conclusion

Thus based on all of the above considerations, in the current
work, the asymmetry in neutrino flux is identified as the prin-
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cipal cause of the non-symmetry shown in Fig. 1, owing to
neutrino-photon collisions in the AGN or black hole regimes
where the collision cross-sections of neutrinos and photons
is many orders of magnitude higher than in the solar system
regime. This conclusion is supported by our previous exper-
imental work using both very-close-proximity gravitational
pendula, and a magnetic pendulum system, interrogated by
laser scattering, showing asymmetry in gravitational parti-
cle/wave impinging flux in the X-Y plane as compared to
the zed (Z) direction [16].

Note added in proof

Recent work by G. C. Vezzoli and R. Morgan has shown that
the 1444 minute annually periodic histogram reported by
Shnol and Rubenstein in this journal for the period 24 July
2005 into August correlates with the NASA report of the Sun
beginning the occulting of Saturn on that date; and thus also
correlates with the work of Vezzoli reporting a dip in grav-
ity on 18 May 2001 when earth, Sun, and Saturn were in
syzygy [15]. The Morgan-Vezzoli work will be reported in
a Letter-to-the-Editor of this journal authored by Morgan.
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Combining NASA/JPL One-Way Optical-Fiber Light-Speed Data with
Spacecraft Earth-Flyby Doppler-Shift Data to Characterise 3-Space Flow
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We combine data from two high precision NASA/JPL experiments: (i) the one-way
speed of light experiment using optical fibers: Krisher T.P., Maleki L., Lutes G.F., Pri-
mas L.E., Logan R.T., Anderson J.D. and Will C.M. Phys. Rev. D, 1990, v. 42, 731–734,
and (ii) the spacecraft earth-flyby Doppler shift data: Anderson J.D., Campbell J.K.,
Ekelund J.E., Ellis J. and Jordan J.F. Phys. Rev. Lett., 2008, v. 100, 091102, to give the
solar-system galactic 3-space average speed of 486 km/s in the direction RA = 4.29h,
Dec = �75.0�. Turbulence effects (gravitational waves) are also evident. Data also
reveals the 30 km/s orbital speed of the Earth and the Sun inflow component at 1AU of
42 km/s and also 615 km/s near the Sun, and for the first time, experimental measure-
ment of the 3-space 11.2 km/s inflow of the Earth. The NASA/JPL data is in remark-
able agreement with that determined in other light speed anisotropy experiments, such
as Michelson-Morley (1887), Miller (1933), Torr and Kolen (1981), DeWitte (1991),
Cahill (2006), Munera (2007), Cahill and Stokes (2008) and Cahill (2009).

1 Introduction

In recent years it has become clear, from numerous exper-
iments and observations, that a dynamical 3-space� exists
[1, 2]. This dynamical system gives a deeper explanation for
various observed effects that, until now, have been success-
fully described, but not explained, by the Special Relativity
(SR) and General Relativity (GR) formalisms. However it
also offers an explanation for other observed effects not de-
scribed by SR or GR, such as observed light speed anisotropy,
bore hole gravity anomalies, black hole mass spectrum and
spiral galaxy rotation curves and an expanding universe with-
out dark matter or dark energy. Herein yet more experimental
data is used to further characterise the dynamical 3-space, re-
sulting in the first direct determination of the inflow effect of
the Earth on the flowing 3-space. The 3-space flow is in the
main determined by the Milky Way and local galactic cluster.
There are also components related to the orbital motion of the
Earth and to the effect of the Sun, which have already been
extracted from experimental data [1].

The postulate of the invariance of the free-space speed
of light in all inertial frames has been foundational to the
physics of the 20th Century, and so to the prevailing physi-
cist’s paradigm. Not only did it provide computational means
essential for the standard model of particle physics, but also
provided the spacetime ontology, which physicists claim to
be one of the greatest of all discoveries, particularly when
extended to the current standard model of cosmology, which
assumes a curved spacetime account of not only gravity but
also of the universe, but necessitating the invention of dark
matter and dark energy.
�The nomenclature 3-space is used to distinguish this dynamical

3-dimensional space from other uses of the word space.

It s usually assumed that the many successes of the re-
sulting Special Theory of Relativity mean that there could
be very little reason to doubt the validity of the invariance
postulate. However the spacetime formalism is just that, a
formalism, and one must always be careful in accepting an
ontology on the basis of the postulates, as in the case of the
speed of light, because the postulate never stipulated how the
speed of light was to be measured, in particular how clock re-
tardation and length contraction effects were to be corrected.
In contrast to the spacetime formalism Lorentz gave a differ-
ent neo-Galilean formalism in which space and time were not
mixed, but where the special relativity effects were the conse-
quence of absolute motion with respect to a real 3-space. Re-
cently [3] the discovery of an exact linear mapping between
the Minkowski-Einstein spacetime class of coordinates and
the neo-Galilean class of time and space coordinates was re-
ported. In the Minkowski-Einstein class the speed of light
is invariant by construction, while in the Galilean class the
speed is not invariant. Hence statements about the speed of
light are formalism dependent, and the claim that the suc-
cesses of SR implies that the speed of light is invariant is bad
logic. So questions about of the speed of light need to be
answered by experiments.

There have been many experiments to search for light
speed anisotropy, and they fall generally into two classes —
those that successfully detected anisotropy and those that did
not. The reasons for this apparent disparity are now under-
stood, for it is important to appreciate that because the speed
of light is invariant in SR — as an essential part of that for-
malism, then SR cannot be used to design or analyse data
from light speed anisotropy experiments. The class of exper-
iments that failed to detect anisotropy, such as those using
vacuum Michelson interferometers, say in the form of reso-
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nant vacuum cavities [4], suffer a design flaw that was only
discovered in 2002 [5,6]. Essentially there is a subtle cancel-
lation effect in the original Michelson interferometer, in that
two unrelated effects exactly cancel unless the light passes
through a dielectric. In the original Michelson interferometer
experiments the dielectric happened, fortuitously, to be a gas,
as in [7–11,15], and then the sensitivity is reduced by the fac-
tor k2 = n2 � 1, where n is the refractive index of the gas,
compared to the sensitivity factor k2 = 1 used by Michel-
son in his calculation of the instrument’s calibration constant,
using Newtonian physics. For air, with n = 1:00029, this fac-
tor has value k2 = 0:00058 which explained why the original
Michelson-Morley fringe shifts were much smaller than ex-
pected. The physics that Michelson was unaware of was the
reality of the Lorentz-Fitzgerald contraction effect. Indeed
the null results from the resonant vacuum cavities [4] experi-
ments, in comparison with their gas-mode versions, gives ex-
plicit proof of the reality of the contraction effect�. A more
sensitive and very cheap detector is to use optical fibers as the
light carrying medium, as then the cancellation effect is over-
come [16]. Another technique to detect light speed anisotropy
has been to make one-way speed measurements; Torr and
Kolen [12], Krisher et al. [18], DeWitte [13] and Cahill [14].
Another recently discovered technique is to use the Doppler
shift data from spacecraft earth-flybys [19]. Using the space-
time formalism results in an unexplained earth-flyby Doppler
shift anomaly, Anderson et al. [20], simply because the space-
time formalism is one that explicitly specifies that the speed
of the EM waves is invariant, but only wrt a peculiar choice
of space and time coordinates.

Here we combine data from two high precision
NASA/JPL experiments: (i) the one-way speed of light ex-
periment using optical fibers: Krisher et al. [18], and (ii)
the spacecraft earth-flyby Doppler shift data: Anderson et
al. [20], to give the solar-system galactic 3-space average
speed of 486 km/s in the direction RA = 4.29h, Dec =�75�.
Turbulence effects (gravitational waves) are also evident. Var-
ious data reveal the 30 km/s orbital speed of the Earth and
the Sun inflow component of 615 km/s near the Sun, and
42 km/s at 1AU, and for the first time, experimental evi-
dence of the 3-space inflow of the Earth, which is predicted
to be 11.2 km/s at the Earth’s surface. The optical-fiber and
restricted flyby data give, at this stage, only an average of
12:4�5 km/s for the Earth inflow — averaged over the space-
craft orbits, and so involving averaging wrt distance from
earth and RF propagation angles wrt the inflowy. The opti-
cal fiber — flyby data is in remarkable agreement with the
�As well the null results from the LIGO-like and related vacuum-mode

Michelson interferometers are an even more dramatic confirmation. Note
that in contrast the LISA space-based vacuum interferometer does not suffer
from the Lorentz contraction effect, and as a consequence would be exces-
sively sensitive.
yA spacecraft in an eccentric orbit about the Earth would permit, us-

ing the high-precision Doppler shift technology, a detailed mapping of the
3-space inflow.

spatial flow characteristics as determined in other light speed
anisotropy experiments, such as Michelson-Morley (1887),
Miller (1933), DeWitte (1991), Torr and Kolen (1981), Cahill
(2006), Munera (2007), Cahill and Stokes (2008) and Cahill
(2009). The NASA data enables an independent calibration
of detectors for use in light speed anisotropy experiments and
related gravitational wave detectors. These are turbulence ef-
fects in the flowing 3-space. These fluctuations are in essence
gravitational waves, and which were apparent even in the
Michelson-Morley 1887 data [1, 2, 21].

2 Flowing 3-space and emergent quantum gravity

We give a brief review of the concept and mathematical for-
malism of a dynamical flowing 3-space, as this is often con-
fused with the older dualistic space and aether ideas, wherein
some particulate aether is located and moving through an un-
changing Euclidean space — here both the space and the
aether were viewed as being ontologically real. The dy-
namical 3-space is different: here we have only a dynamical
3-space, which at a small scale is a quantum foam system
without dimensions and described by fractal or nested homo-
topic mappings [1]. This quantum foam is not embedded in
any space — the quantum foam is all there is and any met-
ric properties are intrinsic properties solely of that quantum
foam. At a macroscopic level the quantum foam is described
by a velocity field v(r; t), where r is merely a 3-coordinate
within an embedding space. This space has no ontological
existence — it is merely used to (i) record that the quan-
tum foam has, macroscopically, an effective dimension of 3,
and (ii) to relate other phenomena also described by fields, at
the same point in the quantum foam. The dynamics for this
3-space is easily determined by the requirement that observ-
ables be independent of the embedding choice, giving, for
zero-vorticity dynamics and for a flat embedding spacez

r �
�
@v
@t

+ (v � r)v
�

+

+
�
8
�
(trD)2 � tr(D2)

�
= � 4�G� ;

r� v = 0; Dij =
1
2

�
@vi
@xj

+
@vj
@xi

�
;

9>>>>>>>=>>>>>>>;
(1)

where �(r; t) is the matter and EM energy densities ex-
pressed as an effective matter density. Borehole g mea-
surements and astrophysical blackhole data has shown that
� � 1=137 is the fine structure constant to within observa-
tional errors [1, 2, 24, 25]. For a quantum system with mass

zIt is easy to re-write (1) for the case of a non-flat embedding space,
such as an S3, by introducing an embedding 3-space-metric gij(r), in place
of the Euclidean metric �ij . A generalisation of (1) has also been suggested
in [1] when the vorticity is not zero. This vorticity treatment predicted an
additional gyroscope precession effect for the GPB experiment, R. T. Cahill,
Progress in Physics, 2007, v. 3, 13–17.
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m the Schrödinger equation is uniquely generalised [24] with
the new terms required to maintain that the motion is intrinsi-
cally wrt to the 3-space, and not wrt to the embedding space,
and that the time evolution is unitary

i~
@ (r; t)
@t

= � ~2

2m
r2 (r; t)�

� i~
�
v � r+

1
2
r � v

�
 (r; t) :

(2)

The space and time coordinates ft; x; y; zg in (1) and (2)
ensure that the separation of a deeper and unified process into
different classes of phenomena — here a dynamical 3-space
(quantum foam) and a quantum matter system, is properly
tracked and connected. As well the same coordinates may
be used by an observer to also track the different phenomena.
However it is important to realise that these coordinates have
no ontological significance — they are not real. The veloc-
ities v have no ontological or absolute meaning relative to
this coordinate system — that is in fact how one arrives at the
form in (2), and so the “flow” is always relative to the internal
dynamics of the 3-space. A quantum wave packet propaga-
tion analysis of (2) gives the acceleration induced by wave
refraction to be [24]

g =
@v
@t

+ (v � r)v + (r� v)� vR ; (3)

vR(r�(t); t) = v�(t)� v(r�(t); t) ; (4)

where vR is the velocity of the wave packet relative to the
3-space, and where v� and r� are the velocity and position
relative to the observer, and the last term in (3) generates the
Lense-Thirring effect as a vorticity driven effect. Together
(2) and (3) amount to the derivation of gravity as a quantum
effect, explaining both the equivalence principle (g in (3) is
independent of m) and the Lense-Thirring effect. Overall we
see, on ignoring vorticity effects, that

r � g = �4�G�� �
8
�
(trD)2 � tr(D2)

�
; (5)

which is Newtonian gravity but with the extra dynamical term
whose strength is given by �. This new dynamical effect
explains the spiral galaxy flat rotation curves (and so doing
away with the need for “dark matter”), the bore hole g anoma-
lies, the black hole “mass spectrum”. Eqn. (1), even when
� = 0, has an expanding universe Hubble solution that fits
the recent supernovae data in a parameter-free manner with-
out requiring “dark matter” nor “dark energy”, and without
the accelerating expansion artifact [25,26]. However (5) can-
not be entirely expressed in terms of g because the fundamen-
tal dynamical variable is v. The role of (5) is to reveal that
if we analyse gravitational phenomena we will usually find
that the matter density � is insufficient to account for the ob-
served g. Until recently this failure of Newtonian gravity has

been explained away as being caused by some unknown and
undetected “dark matter” density. Eqn. (5) shows that to the
contrary it is a dynamical property of 3-space itself. Here
we determine various properties of this dynamical 3-space
from the NASA optical-fiber and spacecraft flyby Doppler
anomaly data.

Significantly the quantum matter 3-space-induced “grav-
itational” acceleration in (3) also follows from maximising
the elapsed proper time wrt the wave-packet trajectory r�(t),
see [1],

� =
Z
dt

r
1� v2

R(r�(t); t)
c2

(6)

and then taking the limit vR=c ! 0. This shows that (i)
the matter ‘gravitational’ geodesic is a quantum wave refrac-
tion effect, with the trajectory determined by a Fermat least
proper-time principle, and (ii) that quantum systems undergo
a local time dilation effect — which is used later herein in
connection with the Pound-Rebka experiment. A full deriva-
tion of (6) requires the generalised Dirac equation.

3 3-space flow characteristics and the velocity superpo-
sition approximation

This paper reports the most detailed analysis so far of data
from various experiments that have directly detected the
3-space velocity field v(r; t). The dynamics in (1) is nec-
essarily time-dependent and having various contributing ef-
fects, and in order of magnitude: (i) galactic flows associated
with the motion of the solar system within the Milky Way, as
well as flows caused by the supermassive black hole at the
galactic center and flows associated with the local galactic
cluster, (ii) flows caused by the orbital motion of the Earth
and of the inflow caused by the Sun, and (iii) the inflow asso-
ciated with the Earth. An even smaller flow associated with
the Moon is not included in the analysis. It is necessary to
have some expectations of the characteristics of the flow ex-
pected for an earth based observer. First consider an isolated
spherical mass density �(r), with total mass M , then (1) has
a stationary flow solution, for r > R, i.e outside of the mass,

v(r) = �r̂

r
2GM(1 + �

2 + : : : )
r

(7)

which gives the matter acceleration from (3) to be

g(r) = �r̂
GM(1 + �

2 + : : : )
r2 (8)

corresponding to a gravitational potential, via g = �rΦ,

�(r) = �GM(1 + �
2 + : : : )
r

: (9)

This special case is Newton’s law of gravity, but with
some 0.4% of the effective mass being caused by the �- dy-
namics term. The inflow (7) would be applicable to an iso-
lated and stationary sun or earth. At the surface of the Sun
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this predicts an inflow speed of 615 km/s, and 42 km/s at the
Earth distance of 1AU. For the Earth itself the inflow speed at
the Earth’s surface is predicted to be 11:2 km/s. When both
occur and when both are moving wrt the asymptotic 3-space,
then numerical solutions of (1) are required. However an ap-
proximation that appears to work is to assume that the net
flow in this case may be approximated by a vector superposi-
tion [27]

v = vgalactic + vsun � vorbital + vearth + : : : (10)

which are, in order, translational motion of the Sun, inflow
into the Sun, orbital motion of the Earth (the orbital mo-
tion produces an apparent flow in the opposite direction —
hence the -ve sign; see Fig. 4), inflow into the Earth, etc.
The first three have been previously determined from experi-
mental data, and here we more accurately and using new data
determine all of these components. However this superposi-
tion cannot be completely valid as (1) is non-linear. So the
superposition may be at best approximately valid as a time
average only. The experimental data has always shown that
the detected flow is time dependent, as one would expect, as
with multi-centred mass distributions no stationary flows are
known. This time-dependence is a turbulence effect — it is
in fact easily observed and is seen in the Michelson-Morley
1887 data [2]. This turbulence is caused by the presence
of any significant mass, such as the galaxy, sun, earth. The
NASA/JPL data discussed herein again displays very appar-
ent turbulence. These wave effects are essentially gravita-
tional waves, though they have characteristics different from
those predicted from GR, and have a different interpretation.
Nevertheless for a given flow v(r; t), one can determine the
corresponding induced spacetime metric g�� which generates
the same matter geodesics as from (5), with the proviso that
this metric is not determined by the Hilbert-Einstein equa-
tions of GR. Significantly vacuum-mode Michelson interfer-
ometers cannot detect this phenomenon, which is why LIGO
and related detectors have not seen these very large wave ef-
fects.

4 Gas-mode Michelson interferometer

The Michelson interferometer is a brilliant instrument for
measuring v(r; t), but only when operated in dielectric mode.
This is because two different and independent effects exactly
cancel in vacuum mode; see [1, 2, 5]. Taking account of
the geometrical path differences, the Fitzgerald-Lorentz arm-
length contraction and the Fresnel drag effect leads to the
travel time difference between the two arms, and which is
detected by interference effects�, is given by

�t = k2 Lv2
P

c3
cos
�
2(� �  )

�
; (11)

�The dielectric of course does not cause the observed effect, it is merely
a necessary part of the instrument design physics, just as mercury in a ther-
mometer does not cause temperature.
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Fig. 1: Schematic diagrams of the gas-mode Michelson Interferom-
eter, with beamsplitter/mirror at A and mirrors at B and C mounted
on arms from A, with the arms of equal length L when at rest. D
is the detector screen. In (a) the interferometer is at rest in space.
In (b) the 3-space is moving through the gas and the interferome-
ter with speed vP in the plane of the interferometer and direction
� = � �  relative to AB arm. Interference fringes are observed
at D when mirrors C and D are not exactly perpendicular. As the
interferometer is rotated in the plane shifts of the fringes are seen in
the case of absolute motion, but only if the apparatus operates in a
gas. By measuring fringe shifts the speed vP may be determined. In
general the vP direction has angle � wrt the local meridian, and the
armAB has angle  relative to the local meridian, so that � = �� 
is angle between vP and one-arm. The difference in travel times �t
is given in (11), but with temperature changes and non-orthogonal
mirrors by (12). In vacuum the fringes do not shift during rotation .

where  specifies the direction of v(r; t) projected onto
the plane of the interferometer, giving projected value vP ,
relative to the local meridian, and where k2 = (n2� 2)�
�(n2� 1)=n. Neglect of the relativistic Fitzgerald-Lorentz
contraction effect gives k2�n3� 1 for gases, which is es-
sentially the Newtonian theory that Michelson used.

However the above analysis does not correspond to how
the interferometer is actually operated. That analysis does
not actually predict fringe shifts, for the field of view would
be uniformly illuminated, and the observed effect would
be a changing level of luminosity rather than fringe shifts.
As Michelson and Miller knew, the mirrors must be made
slightly non-orthogonal with the degree of non-orthogonality
determining how many fringe shifts were visible in the field
of view. Miller experimented with this effect to determine a
comfortable number of fringes: not too few and not too many.
Hicks [22] developed a theory for this effect – however it is
not necessary to be aware of the details of this analysis in
using the interferometer: the non-orthogonality reduces the
symmetry of the device, and instead of having period of 180�
the symmetry now has a period of 360�, so that to (11) we
must add the extra term a cos(� � �) in

�t = k2 L(1 + e�)v2
P

c3
cos
�
2(� �  )

�
+

+ a(1 + e�) cos(� � �) + f :
(12)

The term 1 + e� models the temperature effects, namely
that as the arms are uniformly rotated, one rotation taking
several minutes, there will be a temperature induced change
in the length of the arms. If the temperature effects are linear
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in time, as they would be for short time intervals, then they are
linear in �. In the Hick’s term the parameter a is proportional
to the length of the arms, and so also has the temperature fac-
tor. The term f simply models any offset effect. Michelson
and Morley and Miller took these two effects into account
when analysing his data. The Hick’s effect is particularly ap-
parent in the Miller and Michelson-Morley data.

The interferometers are operated with the arms horizon-
tal. Then in (12) � is the azimuth of one arm relative to the
local meridian, while  is the azimuth of the absolute mo-
tion velocity projected onto the plane of the interferometer,
with projected component vP . Here the Fitzgerald-Lorentz
contraction is a real dynamical effect of absolute motion, un-
like the Einstein spacetime view that it is merely a spacetime
perspective artifact, and whose magnitude depends on the
choice of observer. The instrument is operated by rotating at
a rate of one rotation over several minutes, and observing the
shift in the fringe pattern through a telescope during the rota-
tion. Then fringe shifts from six (Michelson and Morley) or
twenty (Miller) successive rotations are averaged to improve
the signal to noise ratio, and the average sidereal time noted.
Some examples are shown in Fig. 2, and illustrate the in-
credibly clear signal. The ongoing claim that the Michelson-
Morely experiment was a null experiment is disproved. And
as well, as discussed in [1, 2, 21], they detected gravitational
waves, viz 3-space turbulence in 1887. The new data anal-
ysed herein is from one-way optical fiber and Doppler shift
spacecraft experiments. The agreement between these and
the gas-mode interferometer techniques demonstrate that the
Fitzgerald-Lorentz contraction effect is a real dynamical ef-
fect. The null results from the vacuum-mode interferome-
ters [4] and LIGO follow simply from having n = 1 giving
k2 = 0 in (11).

5 Sun 3-space inflow from Miller interferometer data

Miller was led to the conclusion that for reasons unknown the
existing theory of the Michelson interferometer did not reveal
true values of vP , and for this reason he introduced the param-
eter k, with k herein indicating his numerical values. Miller
had reasoned that he could determine both vgalactic and k
by observing the interferometer-determined vP and  over
a year because the known orbital speed of the Earth about
the Sun of 30 km/s would modulate both of these observ-
ables, giving what he termed an aberration effect as shown
in Fig. 11, and by a scaling argument he could determine the
absolute velocity of the solar system. In this manner he fi-
nally determined that jvgalacticj = 208 km/s in the direction
(� = 4h54m, � = �70�330). However now that the theory of
the Michelson interferometer has been revealed an anomaly
becomes apparent. Table 2 shows v = vM=kair, the speed
determined using (11), for each of the four epochs. How-
ever Table 3 also shows that k and the speeds v = vM=k
determined by the scaling argument are considerably differ-

Fig. 2: (a) A typical Miller averaged-data from September 16, 1925,
4h400 Local Sidereal Time (LST) — an average of data from 20
turns of the gas-mode Michelson interferometer. Plot and data af-
ter fitting using (12), and then subtracting both the temperature drift
and Hicks effects from both, leaving the expected sinusoidal form.
The error bars are determined as the rms error in this fitting proce-
dure, and show how exceptionally small were the errors, and which
agree with Miller’s claim for the errors. (b) Best result from the
Michelson-Morley 1887 data — an average of 6 turns, at 7h LST
on July 11, 1887. Again the rms error is remarkably small. In both
cases the indicated speed is vP — the 3-space speed projected onto
the plane of the interferometer. The angle is the azimuth of the
3-space speed projection at the particular LST. The speed fluctua-
tions from day to day significantly exceed these errors, and reveal
the existence of 3-space flow turbulence — i.e gravitational waves.

ent. We denote by vM the notional speeds determined from
(11) using the Michelson Newtonian-physics value of k = 1.
The vM values arise after taking account of the projection
effect. That k is considerably larger than the value of kair in-
dicates that another velocity component has been overlooked.
Miller of course only knew of the tangential orbital speed of
the Earth, whereas the new physics predicts that as-well there
is a 3-space radial inflow vsun = 42 km/s at 1AU. We can
approximately re-analyse Miller’s data to extract a first ap-
proximation to the speed of this inflow component. Clearly
it is vR =

p
v2
sun + v2

orbital that sets the scale, see Fig. 4 and
not vorbital, and because k = vM=vorbit and kair = vM=vR
are the scaling relations, then

vsun = vorbital

s
v2
R

v2
orbital

� 1 = vorbital

s
k2

k2
air
� 1 : (13)
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Epoch 1925/26 vM k v = vM=kair v = vM=k v =
p

3v vsun

February 8 9.3 km/s 0.048 385.9 km/s 193.8 km/s 335.7 km/s 51.7 km/s

April 1 10.1 0.051 419.1 198.0 342.9 56.0

August 1 11.2 0.053 464.7 211.3 366.0 58.8

September 15 9.6 0.046 398.3 208.7 361.5 48.8

Table 1: The k anomaly: k� kair = 0:0241, as the 3-space inflow effect. Here vM and k come from fitting the interferometer data using
Newtonian physics (with vorbital = 30 km/s used to determine k), while v and v are computed speeds using the indicated scaling. The
average of the Sun inflow speeds, at 1AU, is vsun = 54 � 6 km/s, compared to the predicted inflow speed of 42 km/s from (7). From
column 4 we obtain the average galactic flow of v = 417� 50 km/s, compared with the NASA-data determined flow of 486 km/s.

Fig. 3: Speeds vP , of the 3-space velocity v projected onto the hor-
izontal plane of the Miller gas-mode Michelson interferometer lo-
cated atop Mt.Wilson, plotted against local sidereal time in hours,
for a composite day, with data collected over a number of days
in September 1925, [8]. The data shows considerable fluctuations,
from hour to hour, and also day to day, as this is a composite day.
The dashed curve shows the non-fluctuating best-fit variation over
one day, as the Earth rotates, causing the projection onto the plane
of the interferometer of the velocity of the average direction of the
space flow to change. The maximum projected speed of the curve is
417 km/s (using the STP air refractive index of n = 1:00029 in (11)
(atop Mt. Wilson the better value of n = 1:00026 is suggested by
the NASA data), and the min/max occur at approximately 5hrs and
17hrs local sidereal time (Right Ascension). Note from Fig. 11 and
Table 2 that the Cassini flyby in August gives a RA= 5:15h, close
to the RA apparent in the above plot. The error bars are determined
by the method discussed in Fig. 2. The green data points, with error
bars, at 7h and 13h are from the Michelson-Morley 1887 data, from
averaging (excluding only the July 8 data for 7h because it has poor
S/N), and with same rms error analysis. The fiducial time lines at 5h

and 17h are the same as those shown in Figs. 6 and 11. The speed
fluctuations are seen to be much larger than the statistically deter-
mined errors, confirming the presence of turbulence in the 3-space
flow, i.e gravitational waves, as first seen in the Michelson-Morley
experiment.

¾

?
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vsun

sun

vorbital

vR

Fig. 4: Orbit of earth about the Sun defining the plane of the ecliptic
with tangential orbital velocity vorbital and the Sun inflow velocity
vsun. Then vR = vsun � vorbital is the velocity of the 3-space
relative to the Earth, but not showing the vgalactic contribution.

Using the k values in Table 1 and the value� of kair we
obtain the vsun speeds shown in Table 1, which give an aver-
aged speed of 54� 6 km/s, compared to the predicted inflow
speed of 42 km/s. Of course this simple re-scaling of the
Miller results is not completely valid because the direction of
vR is of course different to that of vorbital, nevertheless the
Sun inflow speed of vsun = 54 � 5 km/s at 1AU from this
analysis is reasonably close to the predicted value of 42 km/s.

6 Generalised Maxwell equations and the Sun 3-space
inflow light bending

One of the putative key tests of the GR formalism was the
gravitational bending of light by the Sun during the 1915
solar eclipse. However this effect also immediately follows
from the new 3-space dynamics once we also generalise the
Maxwell equations so that the electric and magnetic fields are
excitations of the dynamical space. The dynamics of the elec-
tric and magnetic fields must then have the form, in empty
space,

r�E = ��
�
@H
@t

+ v � rH
�
; r �E = 0 ;

r�H = �
�
@E
@t

+ v � rE
�
; r �H = 0 ;

9>>>=>>>; (14)

�We have not modified this value to take account of the altitude effect or
temperatures atop Mt.Wilson. This weather information was not recorded by
Miller. The temperature and pressure effect is thatn = 1:0+0:00029 P

P0
T0
T ,

where T is the temperature in 0 K and P is the pressure in atmospheres.
T0 = 273K and P0 =1atm. The NASA data implies that atop Mt. Wilson
the air refractive index was probably close to n = 1:00026.
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Fig. 5: Shows bending of light through angle � by the inhomoge-
neous spatial inflow, according to the minimisation of the travel time
in (18). This effect permits the inflow speed at the surface of the Sun
to be determined to be 615 km/s. The inflow speed into the Sun at
the distance of the Earth from the Sun has been extracted from the
Miller data, giving 54� 6 km/s.

which was first suggested by Hertz in 1890 [23], but with v
being a constant vector field. Suppose we have a uniform flow
of space with velocity v wrt the embedding space or wrt an
observer’s frame of reference. Then we can find plane wave
solutions for (14):

E(r; t) = E0ei(k�r�!t) H(r; t) = H0ei(k�r�!t) (15)

with

! (k;v) = c j~kj+ v � k where c = 1=
p
�� : (16)

Then the EM group velocity is

vEM = ~rk! (k;v) = c k̂ + v : (17)

So the velocity of EM radiation vEM has magnitude c
only with respect to the space, and in general not with re-
spect to the observer if the observer is moving through space.
These experiments show that the speed of light is in general
anisotropic, as predicted by (17). The time-dependent and
inhomogeneous velocity field causes the refraction of EM ra-
diation. This can be computed by using the Fermat least-time
approximation. Then the EM ray paths r(t) are determined
by minimising the elapsed travel time:

� =
Z sf

si

ds
����drds ����

jc v̂R(s) + v(r(s); t(s)j ; (18)

vR =
�
dr
dt
� v(r(t); t)

�
; (19)

by varying both r(s) and t(s), finally giving r(t). Here s is
a path parameter, and vR is the 3-space vector tangential to
the path. For light bending by the Sun inflow (7) the angle of
deflection is

� = 2
v2

c2
=

4GM(1 + �
2 + : : : )

c2d
+ : : : (20)

where v is the inflow speed at distance d and d is the impact
parameter. This agrees with the GR result except for the �
correction. Hence the observed deflection of 8:4�10�6 ra-
dians is actually a measure of the inflow speed at the Sun’s
surface, and that gives v = 615 km/s, in agreement with
(7). These generalised Maxwell equations also predict gravi-
tational lensing produced by the large inflows associated with
the new “black holes” in galaxies.

7 Torr and Kolen RF one-way coaxial cable experiment

A one-way coaxial cable experiment was performed at the
Utah University in 1981 by Torr and Kolen [12]. This in-
volved two rubidium vapor clocks placed approximately 500
m apart with a 5 MHz sinewave RF signal propagating be-
tween the clocks via a nitrogen filled coaxial cable buried
in the ground and maintained at a constant pressure of �2
psi. Torr and Kolen observed variations in the one-way travel
time, as shown in Fig. 7 by the data points. The theoretical
predictions for the Torr-Kolen experiment for a cosmic speed
of 480 km/s in the direction (� = 5h; � = �70�), and includ-
ing orbital and in-flow velocities, are shown in Fig. 7. The
maximum/minimum effects occurred, typically, at the pre-
dicted times. Torr and Kolen reported fluctuations in both
the magnitude, from 1–3 ns, and time of the maximum vari-
ations in travel time, just as observed in all later experiments
— namely wave effects.

8 Krisher et al. one-way optical-fiber experiment

The Krisher et al. one-way experiment [18] used two hydro-
gen maser oscillators with light sent in each direction through
optical fiber of length approximately 29 km. The optical fiber
was part of the NASA DSN Deep Space Communications
Complex in the Mojave desert at Goldstone, California. Each
maser provided a stable 100-MHz output frequency. This
signal was split, with one signal being fed directly into one
channel of a Hewlett-Packard Network Analyzer. The other
signal was used to modulate a laser carrier signal propagated
along a 29 km long ultrastable fiber optics link that is buried
five feet underground. This signal was fed into the second
channel of the other Network Analyzer at the distant site.
Each analyzer is used to measure the relative phases of the
masers, �1 and �2. The data collection began on Novem-
ber 12 1988 at 20:00:00 (UTC), with phase measurements
made every ten seconds until November 17 1988 at 17:30:40
(UTC). Figs. 6(a) and (f) shows plots of the phase difference
�1 � �2 and phase sum �1 + �2, in degrees, after remov-
ing a bias and a linear trend, as well as being filtered using a
Fast Fourier Transform. The data is plotted against local side-
real time. In analysing the phase data the propagation path
was taken to be along a straight line between the two masers,
whose longitude and latitude are given by (243�1202100:65;
35�2503300:37) and (243�0604000:37; 35�1405100:82). Fig. 6
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Fig. 6: Data from five different EM speed anisotropy experiments showing earth rotation wrt local preferred frame, as shown by sidereal
time phasing, together with wave effects. In all cases a zero bias was removed and low-pass filtering was applied. (a): Krisher [18] optical
fiber phase difference data �1 � �2, in degrees. (b): DeWitte [13] RF coaxial cable phase data, in ns. The DeWitte cable ran NS. (c):
Cahill [14] hybrid optical-fiber/RF coaxial-cable data, in ps, from August 2006. Cable ran NS. (d): Cahill [16, 17] optical-fiber Michelson
interferometer, in photodiode mV, from September 18, 2007. (e): Cahill RF coaxial-cable data, in ps, from May 2009. Cable ran NS. (f):
Krisher [18] optical fiber phase sum data �1 +�2, in degrees. In each case the (red) sinusoidal curves shows the phase expected for a RA of
5h, but with arbitrary magnitudes. The vertical lines are at local sidereal times of 5h and 17h, on successive days, corresponding to the RAs
shown in red in Fig. 11. The Krisher data gives a local sidereal time of 4:96h, corresponding to a RA of 6:09h for November — caused by
the 42� azimuth angle of the optical fiber to the local meridian. This RA was used in combination with the spacecraft earth-flyby Doppler
shift data. Note the amplitude and phase fluctuations in all the data — these are gravitational wave effects.
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Fig. 7: Data from the 1981 Torr-Kolen experiment at Logan, Utah
[12]. The data shows variations in travel times (ns), for local side-
real times, of an RF signal travelling through 500 m of coaxial cable
orientated in an EW direction. Actual days are not indicated but the
experiment was done during February-June 1981. Results are for a
typical day. For the 1st of February the local time of 12:00 corre-
sponds to 13:00 sidereal time. The predictions are for February, for
a cosmic speed of 480 km/s in the direction (� = 5:0h; � = �70�),
and including orbital and in-flow velocities but without theoretical
turbulence. The vertical lines are at local sidereal times of 5h and
17h, corresponding to the RAs shown in red in Figs. 6 and 11.

shows as well the corresponding phase differences from other
experiments. Krisher only compared the phase variations
with that of the Cosmic Microwave Background (CMB), and
noted that the phase relative to the local sidereal time dif-
fered from CMB direction by 6 hrs, but failed to notice that
it agreed with the direction discovered by Miller in 1925/26
and published in 1933 [8]. The phases from the various ex-
periments show that, despite very different longitudes of the
experiments and different days in the year, they are in phase
when plotted against local sidereal times. This demonstrates
that the phase cycles are caused by the rotation of the Earth
relative to the stars — that we are observing a galactic phe-
nomenon, being that the 3-space flow direction is reasonably
steady wrt the galaxy�. Nevertheless we note that all the phase
data show fluctuations in both the local sidereal time for max-
ima/minima and also fluctuations in magnitude. These wave
effects first appeared in experimental data of Michelson and
Morley in 1887.

From the November Krisher data in Figs. 6(a) and (f) the
Right Ascension of the 3-space flow direction was obtained
from the local sidereal times of the maxima and minima, giv-
ing a RA of 6:09h, after correcting the apparent RA of 4:96h

for the 42� inclination of the optical fiber to the local merid-
ian. This RA was used in combination with the spacecraft
earth-flyby Doppler shift data, and is shown in Fig. 11.

The magnitudes of the Krisher phases are not used in de-

�The same effect is observed in Ring Lasers [29] — which detect a side-
real period of rotation of the Earth, and not the solar period. Ring Lasers
cannot detect the 3-space direction, only a rate of rotation.
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Fig. 8: Asymptotic flyby configuration in earth frame-of-reference,
with spacecraft (SC) approaching Earth with velocity Vi. The de-
parting asymptotic velocity will have a different direction but the
same speed, as no force other than conventional Newtonian grav-
ity is assumed to be acting upon the SC. The dynamical 3-space
velocity is v(r; t), though taken to be time independent during the
Doppler shift measurement, which causes the outward EM beam to
have speed c � vi(r), and inward speed c + vi(r), where vi(r) =
v(r) cos(�i), with �i the angle between v and V. A similar descrip-
tion applies to the departing SC, labeled i! f .
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Fig. 9: Spacecraft (SC) earth flyby trajectory, with initial and final
asymptotic velocity V, differing only by direction. The Doppler
shift is determined from Fig. 8 and (32). The 3-space flow velocity at
the location of the SC is v. The line joining Tracking Station (TS) to
SC is the path of the RF signals, with length D. As SC approaches
earth v(D) changes direction and magnitude, and hence magnitude
of projection vi(D) also changes, due to earth component of 3-space
flow and also because of RF direction to/from Tracking Station. The
SC trajectory averaged magnitude of this earth in-flow is determined
from the flyby data and compared with theoretical prediction.

termining the RA for November, and so are not directly used
in this report. Nevertheless these magnitudes provide a check
on the physics of how the speed of light in optical fibers is af-
fected by the 3-space flow. The phase differences �1 � �2 in
Fig. 6a, which correspond to a 1st order in v=c experiment in
which the Fresnel drag effect must be taken into account, are
shown to be consistent with the determined speed for Novem-
ber, noting that the use of phase comparators does not allow
the determination of multiple 360� contributions to the phase
differences. The analysis of the Krisher phase sum �1 + �2
in Fig. 6f, which correspond to a 2nd order in v=c experi-
ment, requires the Lorentz contraction of the optical fibers.
as well as the Fresnel drag effect, to be taken into account.
The physics of optical fibers in relation to this and other 3-
space physics will be discussed more fully elsewhere.

9 3-space flow from Earth-flyby Doppler shifts

The motion of spacecraft relative to the Earth are measured by
observing the direction and Doppler shift of the transponded
RF transmissions. This gives another technique to determine
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the speed and direction of the dynamical 3-space as mani-
fested by the light speed anisotropy [19]. The repeated de-
tection of the anisotropy of the speed of light has been, until
recently, ignored in analysing the Doppler shift data, causing
the long-standing anomalies in the analysis [20]. The use of
the Minkowski-Einstein choice of time and space coordinates
does not permit the analysis of these Doppler anomalies, as
they mandate that the speed of the EM waves be invariant.

Because we shall be extracting the Earth inflow effect we
need to take account of a spatially varying, but not time-
varying, 3-space velocity. In the Earth frame of reference,
see Fig. 8, and using clock times from earth-based clocks, let
the transmitted signal from earth have frequency f . The time
for one RF maximum to travel distance D to SC from earth
is, see Fig. 9,

t1 =
Z D

0

dr
c� vi(r) : (21)

The next RF maximum leaves time T = 1=f later and
arrives at SC at time, taking account of SC motion,

t2 = T +
Z D�V T

0

dr
c� vi(r) : (22)

The period at the SC of the arriving RF is then

T 0 = t2 � t1 = T +
Z D�V T

D

dr
c� vi(r) �

� c� vi(D)� V
c� vi(D)

T : (23)

Essentially this RF is reflected� by the SC. Then the 1st
RF maximum takes time to reach the Earth

t01 = �
Z 0

D�V T
dr

c+ vi(r)
(24)

and the 2nd RF maximum takes time

t02 = T 0 �
Z 0

D�V T�V T 0
dr

c+ vi(r)
: (25)

Then the period of the returning RF at the Earth is

T 00 = t02 � t01 =

= T 0 +
Z D�V T�V T 0

D�V T
dr

c+ vi(r)
�

� c+ vi(D)� V
c+ vi(D)

T 0: (26)

Then overall we obtain the return frequency to bey

f 00 = 1
T 00 =

c+ vi(D)
c+ vi(D)� V �

c� vi(D)
c� vi(D)� V f : (27)

�In practice a more complex protocol is used.
yThis corrects the corresponding expression in [19], but without affect-

ing the final results.

Ignoring the projected 3-space velocity vi(D), that is, as-
suming that the speed of light is invariant as per the usual lit-
eral interpretation of the Einstein 1905 light speed postulate,
we obtain instead

f 00 = c2

(c� V )2 f : (28)

The use of (28) instead of (27) is the origin of the putative
anomalies. Expanding (28) we obtain

�f
f

=
f 00 � f
f

=
2V
c
: (29)

However expanding (27) we obtain, for the same Doppler
shift,

�f
f

=
f 00 � f
f

=
�

1 +
v(D)2

c2

�
2V
c

+ : : : (30)

It is the prefactor to 2V=c missing from (29) that ex-
plains the spacecraft Doppler anomalies, and also permits yet
another determination of the 3-space velocity v(D), viz at
the location of the SC. The published data does not give the
Doppler shifts as a function of SC location, so the best we can
do at present is to use a SC trajectory-averaged v(D), namely
vi and vf , for the incoming and outgoing trajectories, as fur-
ther discussed below.

From the observed Doppler shift data acquired during a
flyby, and then best fitting the trajectory, the asymptotic hy-
perbolic speeds Vi1 and Vf1 are inferred from (29), but in-
correctly so, as in [20]. These inferred asymptotic speeds may
be related to an inferred asymptotic Doppler shift

�fi1
f

=
f 01 � f
f

=
2Vi1
c

+ : : : (31)

which from (30) gives

Vi1 � �fi1
f
� c

2
=
�

1 +
v2
i
c2

�
V + : : : (32)

where V is the actual asymptotic speed. Similarly after the
flyby we obtain

Vf1 � �ff1
f
� c

2
=

 
1 +

v2
f

c2

!
V + : : : (33)

and we see that the “asymptotic” speeds Vi1 and Vf1 must
differ, as indeed reported in [20]. We then obtain the expres-
sion for the so-called flyby anomaly

�V1 = Vf1 � Vi1 =
v2
f � v2

i

c2
V (34)

where here V � V1 to sufficient accuracy, where V1 is the
average of Vi1 and Vf1, The existing data on v permits ab
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initio predictions for �V1. As well a separate least-squares-
fit to the individual flybys permits the determination of the
average speed and direction of the 3-space velocity, relative
to the Earth, during each flyby. These results are all remark-
ably consistent with the data from the various laboratory ex-
periments that studied v. We now indicate how vi and vf
were parametrised during the best-fit to the flyby data. In
(10) vgalactic + vsun � vorbital was taken as constant dur-
ing each individual flyby, with vsun inward towards the Sun,
with value 42 km/s, and vorbital as tangential to earth orbit
with value 30 km/s — consequentially the directions of these
two vectors changed with day of each flyby. The earth inflow
vearth in (10) was taken as radial and of an unknown fixed
trajectory-averaged value. So the averaged direction but not
the averaged speed varied from flyby to flyby, with the in-
coming and final direction being approximated by the (�i; �i)
and (�f ; �f ) asymptotic directions shown in Table 2. The pre-
dicted theoretical variation of vearth(R) is shown in Fig. 10.
To best constrain the fits to the data the flyby data was used in
conjunction with the RA from the Krisher optical fiber data.
This results in the aberration plot in Fig. 11, the various flyby
data in Table 2, and the Earth in-flow speed determination in
Fig. 12. The results are in remarkable agreement with the re-
sults from Miller, showing the extraordinary skill displayed
by Miller in carrying out his massive interferometer exper-
iment and data analysis in 1925/26. The only effect miss-
ing from the Miller analysis is the spatial in-flow effect into
the Sun, which affected his data analysis, but which has been
partially corrected for in Sect. 5. Miller obtained a galactic
flow direction of � = 4:52 hrs, � = �70:5�, compared to
that obtained herein from the NASA data of � = 4:29 hrs,
� = �75:0�, which differ by only � 5�.

10 Earth 3-space inflow: Pound and Rebka experiment

The numerous EM anisotropy experiments discussed herein
demonstrate that a dynamical 3-space exists, and that the
speed of the earth wrt this space exceeds 1 part in 1000 of c,
namely a large effect. Not surprisingly this has indeed been
detected many times over the last 120 years. The speed of
nearly 500 km/s means that earth based clocks experience a
real, so-called, time dilation effect from (6) of approximately
0.12 s per day compared to cosmic time. However clocks may
be corrected for this clock dilation effect because their speed
v though space, which causes their slowing, is measurable
by various experimental methods. This means that the abso-
lute or cosmic time of the universe is measurable. This very
much changes our understanding of time. However because
of the inhomogeneity of the Earth 3-space in-flow component
the clock slowing effect causes a differential effect for clocks
at different heights above the Earth’s surface. It was this ef-
fect that Pound and Rebka reported in 1960 using the Harvard
tower [28]. Consider two clocks at heights h1 and h2, with

Fig. 10: Earth 3-space inflow speed vs distance from earth in earth
radii, as given in (7), plotted only for R > 1:0. Combining the
NASA/JPL optical fiber RA determination and the flyby Doppler
shift data has permitted the determination of the angle- and distance-
averaged inflow speed, to be 12:4� 5km/s.

h = h2�h1, then the frequency differential follows from (6),

�f
f

=

r
1� v2(h2)

c2
�
r

1� v2(h1)
c2

�

� v2(h1)� v2(h2)
2c2

+ � � � =
=

1
2c2

dv2(r)
dr

h+ � � � =
=

g(r)h
c2

+ � � � =
= ���

c2
+ : : : (35)

using (3) with v �rv =r� v2

2

�
for zero vorticityr�v = 0,

and ignoring any time dependence of the flow, and where fi-
nally, �� is the change in the gravitational potential. The
actual process here is that, say, photons are emitted at the top
of the tower with frequency f and reach the bottom detec-
tor with the same frequency f — there is no change in the
frequency. This follows from (23) but with now V = 0 giv-
ing T = T 0. However the bottom clock is running slower
because the speed of space there is faster, and so this clock
determines that the falling photon has a higher frequency, ie.
appears blue shifted. The opposite effect is seen for upward
travelling photons, namely an apparent red shift as observed
by the top clock. In practice the Pound-Rebka experiment
used motion induced Doppler shifts to make these measure-
ments using the Mössbauer effect. The overall conclusion is
that Pound and Rebka measured the derivative of v2 wrt to
height, whereas herein we have measured that actual speed,
but averaged wrt the SC trajectory measurement protocol. It
is important to note that the so-called “time dilation” effect is
really a “clock slowing” effect — clocks are simply slowed
by their movement through 3-space. The Gravity Probe A
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Fig. 11: South celestial sphere with RA and Dec shown. The red dotted circle shows the Miller aberration path discovered in 1925/26,
from [8]. The red point at � = 4:52 hrs, � = �70:5� shows the galactic flow direction determined by Miller, after removing earth-
orbit aberration effect. The dark blue circle shows the aberration path from best-fitting the Earth-flyby Doppler shift data and using the
optical-fiber RA data point for November from Krisher [18], see Fig. 12. This corresponds to a best fit averaged earth inflow speed of
12:4 � 5km/s. The blue aberration paths show the best-fit if (a) upper circle: earth inflow speed = 0 km/s, (b) = 4.0 km/s, (c) = 8.0 km/s
and (d) = 12.4 km/s (thick blue circle). The actual 3-space flow directions are shown by light-blue background to labels for the flybys in
Aug, Dec, Jan and Mar, and given in Table 2. The red point at � = 4:29 hrs, � = �75:0� shows the optical-fiber/earth-flyby determined
galactic flow direction, also after removal of earth-orbit aberration effect, and is only 5� from the above mentioned Miller direction. The
miss-fit angle �� between the best-fit RA and Dec for each flyby is given in Table 2, and are only a few degrees on average, indicating
the high precision of the fit. This plot shows the remarkable concordance between the NASA/JPL determined 3-space flow characteristics
and those determined by Miller in 1925/26. It must be emphasised that the optical-fiber/flyby aberration plot and galactic 3-space flow
direction is obtained completely independently of the Miller data. The blue line at 6:09h is the orientation corrected Krisher RA, and has
an uncertainty of�1h, caused by wave/turbulence effects. The fiducial RA of 5h and 17h, shown in red, are the fiducial local sidereal times
shown in Figs. 3, 6 and 7. The point EP is the pole of the ecliptic. The speed and declination differences between the Miller and NASA data
arise from Miller being unaware of the Sun 3-space inflow effect — correcting for this and using an air refractive index of n = 1:00026
atop Mt. Wilson increases the Miller data determined speed and moves the declination slightly southward, giving an even better agreement
with the NASA data. Here we have merely reproduced the Miller aberration plot from [8].
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Parameter GLL-I GLL-II NEAR Cassini Rosetta M’GER

Date Dec 8, 1990 Dec 8, 1992 Jan 23, 1998 Aug 18, 1999 Mar 4, 2005 Aug 2, 2005
V1 km/s 8.949 8.877 6.851 16.010 3.863 4.056
�i deg 266.76 219.35 261.17 334.31 346.12 292.61
�i deg -12.52 �34.26 �20.76 �12.92 �2.81 31.44
�f deg 219.97 174.35 183.49 352.54 246.51 227.17
�f deg �34.15 �4.87 �71.96 �4.99 �34.29 �31.92

�v hrs 5.23 5.23 3.44 5.18 2.75 4.89
�v deg �80.3 �80.3 �80.3 �70.3 �76.6 �69.5
v km/s 490.6 490.6 497.3 478.3 499.2 479.2

(O) �V1 mm/s 3.92�0.3 �4.6�1.0 13.46�0.01 �2�1 1.80�0.03 0.02�0.01
(P) �V1 mm/s 4.07 �5.26 13.45 �0.76 0.86 �4.56
(P) �� deg 1 1 2 4 5 —

Table 2: Earth flyby parameters from [20] for spacecraft Galileo (GLL: flybys I and II), NEAR, Cassini, Rosetta and MESSENGER
(M’GER). V1 is the average osculating hyperbolic asymptotic speed, � and � are the right ascension and declination of the incoming (i)
and outgoing (f) osculating asymptotic velocity vectors, and (O) �V1 is the putative “excess speed” anomaly deduced by assuming that
the speed of light is isotropic in modeling the Doppler shifts, as in (31). The observed (O) �V1 values are from [20], and after correcting
for atmospheric drag in the case of GLL-II, and thruster burn in the case of Cassini. (P) �V1 is the predicted “excess speed”, using (34),
after least-squares best-fitting that data using (34): �v and �v and v are the right ascension, declination and the 3-space flow speed for each
flyby date, which take account of the Earth-orbit aberration and earth inflow effects, and correspond to a galactic flow with � = 4:29 hrs,
� = �75:0� and v = 486 km/s in the solar system frame of reference. �� is the error, in the best fit, for the aberration determined flow
direction, from the nearest flyby flow direction. In the fitting the MESSENGER data is not used, as the data appears to be anomalous.

Fig. 12: The weighted angle- and distance-averaged earth 3-space
inflow speed vearth, see Fig. 10, as determined from NASA data, up-
per green plot. Uses the averaged Right Ascension from the Krisher
et al. data for November, � = 4:96h, but corrected to � = 6:09h

for orientation effect of the optical fiber, shown by the thick blue
line, with uncertainty range from wave effects shown by two thin
blue lines, compared with the predicted RA from fitting the flyby
data, as shown in Fig. 11. The red plot shows that prediction for
various averaged inflow speeds, with +ve speeds being an inflow,
while -ve speeds are an outflow. The earth flyby aberration fits for
vearth = 0;+4:0, +8:0 and +12:4 km/s are shown in Fig. 11. The-
ory gives that the inflow speed is +11:2km/s at the Earth’s surface —
shown by lower green plot. So the detected averaged inflow speed
seems to be in good agreement with an expected averaged value.
This is the first detection of the Earth’s spatial inflow, and the accel-
eration of this flow is responsible for the Earth’s gravity. Note that
the flyby data clearly mandates an inflow (+ve values in this figure
and not an out-flow — having -ve values).

experiment [33] also studied the clock slowing effect, though
again interpreted differently therein, and again complicated
by additional Doppler effects.

11 CMB direction

The Cosmic Microwave Background (CMB) velocity is often
confused with the Absolute Motion (AM) velocity or light-
speed anisotropy velocity as determined in the experiments
discussed herein. However these are unrelated and in fact
point in very different directions, being almost at 90� to each
other, with the CMB velocity being 369 km/s in direction
(� = 11:2h, � = �7:22�). The CMB velocity vector was
first determined in 1977 by Smoot et al. [30].

The CMB velocity is obtained by defining a frame of
reference in which the thermalised CMB 3�K radiation is
isotropic, that is by removing the dipole component, and the
CMB velocity is the velocity of the Earth in that frame. The
CMB velocity is a measure of the motion of the solar system
relative to the last scattering surface (a spherical shell) of the
universe some 13.4Gyrs in the past. The concept here is that
at the time of decoupling of this radiation from matter that
matter was on the whole, apart from small observable fluctu-
ations, on average at rest with respect to the 3-space. So the
CMB velocity is not motion with respect to the local 3-space
now; that is the AM velocity. Contributions to the AM ve-
locity would arise from the orbital motion of the solar sys-
tem within the Milky Way galaxy, which has a speed of some
250 km/s, and contributions from the motion of the Milky
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Way within the local cluster, and so on to perhaps super clus-
ters, as well as flows of space associated with gravity in the
Milky Way and local galactic cluster etc. The difference be-
tween the CMB velocity and the AM velocity is explained by
the spatial flows that are responsible for gravity at the galactic
scales.

12 Conclusions

We have shown that the NASA/JPL optical fiber and space-
craft earth flyby data give another independent determination
of the velocity of the solar system through a dynamical 3-
space. The resulting direction is in remarkable agreement
with the direction determined by Miller in 1925/26 using a
gas-mode Michelson interferometer. The Miller speed re-
quires a better knowledge of the refractive index of the air
atop Mt. Wilson, where Miller performed his experiments,
but even using the STP value we obtain reasonable agreement
with the NASA/JPL determined speed. Using an air refractive
index of 1.00026 in place of the STP value of 1.00029 would
bring the Miller speed into agreement with the NASA data
determined speed. As well the NASA/JPL data has permitted
the first direct measurement of the flow of 3-space into the
Earth, albeit averaged over spacecraft trajectory during their
flybys. This is possible because the inflow component is radi-
ally inward and so changes direction relative to the other flow
components during a flyby, making the flyby Doppler shifts
sensitive to the inflow speed.

It must be emphasised that the long-standing and repeated
determinations of the anisotropy of vacuum EM radiation is
not in itself in contradiction with the Special Relativity for-
malism — rather SR uses a different choice of space and time
variables from those used herein, a choice which by construc-
tion mandates that the speed of EM radiation in vacuum be
invariant wrt to that choice of coordinates [3]. However that
means that the SR formalism cannot be used to analyse EM
radiation anisotropy data, and in particular the flyby Doppler
shift data.

The discovery of absolute motion wrt a dynamical
3-space has profound implications for fundamental physics,
particularly for our understanding of gravity and cosmology.
It shows that clocks, and all oscillators, whether they be clas-
sical or quantum, exhibit a slowing phenomenon, determined
by their absolute speed though the dynamical 3-space. This
“clock slowing” has been known as the “time dilation” effect
— but now receives greater clarity. It shows that there is an
absolute or cosmic time, and which can be measured by using
any clock in conjunction with an absolute speed detector —
many of which have been mentioned herein, and which per-
mits the “clock slowing” effect to be compensated. This in
turn implies that the universe is a far more coherent and non-
locally connected process than previously realised, although
a model for this has been proposed [1]. It also shows that
the now standard discussion of the limitations of simultaneity

were really misleading — being based on the special space
and time coordinates invoked in the SR formalism, and that
simultaneity is a fact of the universe, albeit an astounding one.

As well successful absolute motion experiments have al-
ways shown wave or turbulence phenomena, and at a signifi-
cant scale. This is a new phenomena that is predicted by the
dynamical theory of 3-space. Ongoing development of new
experimental techniques to detect and characterise these wave
phenomena will be reported elsewhere.
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The geometry of the space-time is deduced from gravitational and electromagnetic
fields. We have to state that Rainich’s “already unified field theory” is the ground work
of the proposed theory. The latter is deduced independently on Rainich. Rainich’s
analogies are brilliantly validated. His formulae are verified this way. Further reaching
results and insights demonstrate that Rainich’s theory is viable. In final result, we can
formulate an enhanced equivalence principle. It is the equivalence of Newton’s force
with the Lorentz force.

To the memory of John Archibald Wheeler, who
foresaw this simple idea.

1 The predecessor

George Yuri Rainich already saw the analogies of the electro-
magnetic with the gravitational field. Since Einstein’s equiv-
alence principle implies a geometric approach of gravitation
[1], electromagnetism has to be geometry too. Not enough,
Rainich also saw that the electromagnetic field tensor is per-
formed from the congruences of two dual surfaces. It is the
analogy of the curvature vector of the current path, performed
from the main normal, see on generalized Frenet formulae
in [2].

One can well pursue Rainich’s way in his papers from
1923 to 1924. First, he tried to find a non-Riemannian geom-
etry for the electromagnetic vacuum field [3]. Later, he saw
that Riemannian geometry is sufficient to describe electro-
magnetism [4, 5]. Rainich’s identities (also called algebraic
Rainich conditions) are deduced without special techniques
in [6]. Present paper provides a further derivation of Rainich’s
identities, additionally identifying the concrete geometry.

Since a full geometric approach precludes sources,
Rainich concluded a central role of singularities. However,
it is deduced in [7] that this role is commonly overestimated.
The singularities pass for a bar to the geometric approach. It
is shown in [7] that formal singularities are in areas (accord-
ing to observer’s coordinates), which are not locally imaged.
The related boundaries specify the discrete values of the inte-
gration constants from field equations [7].

2 The derivation

The first precursor is to see in [8]. The derivation follows the
steps according to the chapter “Geometric interpretation of
the Ricci tensor — the Ricci main directions” in [2]. As well,
we shall see that the space-time involves a vital difference to

other manifolds.
The known source-free Einstein-Maxwell equations

Rik = �
�

1
4
gikFabF ab � FiaFka

�
; (1)

F ia;a = 0 ; (2)

Fij;k + Fjk;i + Fki;j = 0 (3)

involve a special kind of Riemannian geometry, what is ex-
plained as follows.

The Ricci main directions (written in terms according to
Eisenhart [2]) follow from

det jRik + �gikj = 0 (4)

with the solutions�

�j1 = �j4 = +�0 ; �j2 = �j3 = ��0 (5)

with

�0
2 = R1

aR1
a = R2

aR2
a = R3

aR3
a = R4

aR4
a ; (6)

what leads directly to Rainich’s identities

RiaRka = �ki �0
2 =

1
4
�ki Ra

bRab : (7)

Characteristical are the two double-roots, that means:
There are two dual surfaces of the congruences

ej1iej4k � ej1kej4i and ej2iej3k � ej2kej3i
with minimal and maximal mean Riemannian curvature.
ej1 : : : ej4 are the vectors of an orthogonal quadruple (vier-
bein) in those “main surfaces”. At single roots we had 4 main
directions. But we will see that the main surfaces are a spe-
�Where �0 has a negative value, what has to do with the special signature

of the space-time.
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ciality of the space-time. With the obtained solutions we get

gik = ej1 iej1 k + ej2 iej2 k +
+ ej3 iej3 k � ej4 iej4 k ;

Rik
�0

= �ej1 iej1 k + ej2 iej2 k +

+ ej3 iej3 k + ej4 iej4 k :

9>>>>>>=>>>>>>;
(8)

If we set

cjik = �cjki = Fabejiaejkb (9)

follows from elementary calculations

���(cj23)2 + (cj14)2
�

= 2�0 ;

cj12 = cj34 = cj13 = cj24 = 0 :

9=; (10)

With it, the field tensor

Fik = �cj14(ej1 iej4 k � ej1 kej4 i) +

+ cj23(ej2 iej3 k � ej2 kej3 i) (11)

is performed from the main surfaces. Rainich knew also these
relations [4, 5].

3 Conclusions

Montesinos and Flores [9] deduce the electromagnetic
energy-momentum tensor via Noether’s theorem [10]. That
means, the Ricci tensor must have just the form according to
Eqn. (1). Therefore, the geometry with the main surfaces is
necessary for the space-time. Since the electromagnetic field
tensor is performed by the main surfaces, it is a curve pa-
rameter of the current path like the curvature vector (which is
performed by the main normal, and is the geometric expres-
sion of both gravitation and accelerated motion), as Rainich
already saw. We can formulate an enhanced equivalence prin-
ciple this way. It is the equivalence of the Lorentz force with
Newton’s force. Because the test body means a current point
on the path, i.e. all forces to the test body come from curve
parameters.

Montesinos and Flores [9] derived a symmetric energy-
momentum tensor from three different theories, with the re-
sult that sources have to vanish in each case. That means:

1. The Maxwell theory is sufficient, because it runs as
demonstrated in [7], even also regarding quantization.
Non-Riemannian ansatzes are not needed;

2. Any ansatz with distributed charges or masses is false
in principle. This error was helpful in classical theories
before Einstein, which were separately handled. Now,
such error turns up to be counterproductive.

It appears inviting to specify metrics first via Eqn. (7)
(see [6]), but this method has narrow limits. The electromag-
netic integration constants (charge, magnetic momentum)

come from Maxwell’s equations. The geometric theory of
fields [7] unifies electromagnetism with gravitation natu-
ral way.
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Like Planck deduced the quantization of radiation energy from thermodynamics, the
same is done from Maxwell’s theory. Only condition is the existence of a geometric
boundary, as deduced from author’s Geometric theory of fields.

Let us go from Maxwell’s equations of the vacuum that cul-
minate in wave equations for the electric potential

�' = 0 (1)
and

�A = 0 (2)

for the magnetic vector potential.
Take the wave solution from Eqn. (2), in which the vector

potential consists of a single component vertical to the prop-
agation direction

Ay = Ay
�
! � (t� x)

�
; (3)

where c = 1 (normalization), ! is a constant (identical with
the circular frequency at the waves), x means the direction of
the propagation, Ay is an arbitrary real function of ! � (t�x)
(independent on y; z).

The field strengthes respectively flow densities (which are
the same in the vacuum) become

Ey =
@Ay
@t

= !Ay 0
�
! � (t� x)

�
; (4)

and
Bz = �@Ay

@x
= !Ay 0

�
! � (t� x)

�
; (5)

where Ay 0 means the total derivative.
The energy density of the field results in

� =
"�
2
� (Ey2 +Bz2) = !2"�Ay 02

�
! � (t� x)

�
; (6)

where "� means the vacuum permitivity.
The geometric theory of fields allows geometric bound-

aries from the non-linearities in the equations of this the-
ory [1]. If one assumes such a boundary, like those in station-
ary solutions of the non-linear equations, the included energy
becomes the volume integral within this boundaryZZZ

� d(t� x) dy dz =

= !"�
ZZZ

Ay 02
�
! � (t� x)

�
d
�
! � (t� x)

�
dy dz : (7)

This volume integral would be impossible without the
boundary, because the linear solution, being alone, is not
physically meaningful for the infinite extension.

We can write the last equation as

E = ! ~ (8)

(E means here energy), or

E = h � ; (9)

because the latter volume integral has a constant value. The
known fact that this value is always the same means also that
only one solution exists with ! as a parameter.

Keep the calculation for the concrete value. This can be
done only in numerical way, and might be a great challenge.
The value of the above volume integral has to become ~="�.
With it, the fundamental relation of Quantum Mechanics fol-
lows from classical fields.

Summarizingly, the derivation involves two predictions:

1. Photon has a geometric boundary. That may be the rea-
son that photon behaves as a particle;

2. There is only one wave solution.
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We have found that the shape of the histograms, constructed on the basis of the results
of radioactivity measurements, changes in correlation with the distortions of the lunar
Keplerian orbit (due to the gravitational influence of the Sun). Taking into account that
the phenomenon of “macroscopic fluctuations” (regular changes in the fine structure of
histograms constructed from the results of measurements of natural processes) does not
depend on the nature of the process under study, one can consider the correlation of the
histogram shape with the Moon’s deviations from the Keplerian orbit to be independent
from the nature of the process the histograms were obtained on.

1 Introduction

In the last decades, the studies of solar-terrestrial relations,
which were initiated by A. L. Chizhevsky [1, 2], rest upon
the concept that these relations have an electromagnetic ori-
gin [3–9]. A supposition that the solar-terrestrial relations
could be of gravitational nature — when the matter at issue
are physico-chemical, chemical and biochemical processes —
would raise objections, as the energy change upon gravita-
tional disturbances is much less than that observed in the pro-
cesses mentioned. As for correlations of physiological pro-
cesses with tidal forces (see, for example, [10–12]), they can
be explained on the basis of complex indirect mechanisms.

Nevertheless, there were reports [13–21] on a strong cor-
relation between variation of some physical and biochemical
processes and deviations of the Moon from the Keplerian or-
bit (evection, variation and annual inequality; see [30]). The
conclusion was that gravitational disturbances should play an
essential role in these phenomena. The processes that corre-
lations were revealed for were very different in their nature:
there were fluctuations of “computer time”, 239Pu �-activity,
the rate of a model chemical redox reaction, the content of
haemoglobin in erythrocytes, and urea secretion.

There is no trivial explanation to the fact that physical
and biochemical processes, which are little affected by tidal
forces, correlate with changes of the lunar orbit.

As shown for the processes of diverse nature, the spec-
trum of their amplitude fluctuations (i.e., the shape of the cor-
responding histograms) correlates with a number of cosmo-
physical factors [22–28]. The change of energy in those pro-
cesses (noise in electronic circuits, �-decay, chemical reac-

tions) varies by tens orders of magnitude, yet the correlations
are the same. Evidently, we deal with correlations of a non-
energy nature. So we can suggest that the correlations of var-
ious processes with the distortions of the lunar orbit reported
in [13–21] have a non-energy nature as well.

Thereby we have checked if changes in the shape of his-
tograms constructed from the results of 239Pu �-activity mea-
surements correlate with the deviations of the Moon from the
Keplerian orbit. The measurements were carried out at Novo-
Lazarevskaya station (Antarctida) and in Pushchino in 2003–
2008. Analysing regularities in the change of the histogram
shape, we found periods corresponding to the periodical devi-
ations of the Moon from the Keplerian orbit: variation (14.8
days) and evection (31.8 days). The correlations are analo-
gous to those reported earlier [13–21], which suggests a com-
mon and very general nature of all these phenomena.

2 Materials and methods

The measurements of 239Pu �-activity were performed at
Novo-Lazarevskaya station (Antarctida) and in Pushchino in
2003–2008. �-Activity was monitored continuously, with a
second interval, using devices constructed by one of the au-
thors (I. A. Rubinstein). The analysis of data consists in pair-
wise comparing of histograms constructed from the results
of measurements. Histograms were constructed either for
60-point segments of one-second measurements (1-min his-
tograms) or for 60-point segments of one-minute measure-
ments (1-h histograms). All the operations of histogram con-
struction and analysis, as well as calculation of intervals be-
tween similar histograms and plotting the corresponding dis-
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Fig. 1: Comparing 1-h histograms reveals periods equal to 350–354 h (in the region of variation, 14.8 days), 647 h (in the region of the
27-day period) and 762 h (in the region of evection, 31.8 days). In the figure, the number of similar histogram pairs (y-axis) is plotted
versus the interval between similar histograms (x-axis, h).

tributions, were conducted with the aid of a computer pro-
gram written by E. V. Pozharsky [22]. The decision of two
histograms to be or not to be similar was made by an expert
upon visual evaluation. A detailed description of all the pro-
cedures (measurements, histogram construction and analysis)
can be found in [22].

3 Results

3.1 The shape of histograms changes with the periods of
evection and variation

Figs. 1 and 2 show the results of our search for periodical
changes in the shape of histograms constructed from the Ant-
arctic data (Novo-Lazarevskaya station; since May 26, 2005
till the end of the year). We compared series of both 1-min
and 1-h histograms in the regions of the putative periods:
762�6 h (a 31-day period, evection), 648�6 h (a 27-day pe-
riod) and 355�6 h (a 15-day period, variation).

All the expected periods can be seen in Fig. 1. However,
the period that corresponds to evection is, ceteris paribus,
much more pronounced. To be sure that the periods revealed
are not artefacts, we repeated the analysis many times with
different data. Fig. 2 shows the summary result of five other
experiments, in which we compared 1-h histograms con-
structed from the data obtained on April–October, 2004.

Along with 1-h histograms, we also compared 1-min
ones. Fig. 3 shows the results of this analysis, which was
made in the region of evection period.

As can be seen in Fig. 3, the 60-fold increase in “resolu-
tion” does not change the character of the distribution: there
is a sharp extremum, which corresponds to the evection pe-

Fig. 2: Determination of the evection period by comparing 1-h his-
tograms constructed from the results of 239Pu �-activity measure-
ments on April–October, 2004 (a summary result of five experi-
ments). Axes are defined as in Fig. 1.

riod. It is very surprising. Evection is a rather slow process:
its period equals to 31.8 days. Naturally, one minute (out of
45779!) is by no means enough for evection to manifest itself
— the distortion of the Keplerian orbit will be negligible. So
we believe that the clear periodicity in the alteration of the
histogram shape cannot be explained by a slow change of the
“effecting force”.

3.2 “Palindrome effects” in the evection periods

It seems that the apparently paradoxal narrowness of the ex-
trema we see in the above figures has a relation to the sharp
spatial anisotropy of our world [26–29]. Many observations
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Fig. 4: Evection phenomenon (periodical change of the extent of distortion of the lunar Keplerian orbit) on July–August, 2005. Evection
maxima in 2005: May 26, June 26, July 27, August 28–29, September 29–30, November 1 and December 2. Evection minima in 2005:
June 10, July 11–12, August 12–13, September 13–14, October 15–16 and November 16.

Fig. 3: Comparing 1-min histograms gave an evection period equal
to 45779 min (31.79 days). Axes are defined as in Fig. 1.

confirmed this supposition — in particular, the experiments
that made use of collimators, isolating narrowly directed
beams of �-particles [24–25]. This anisotropy is stable,
which is evidenced by the high probability of a certain his-
togram shape to reappear every time the laboratory has the
same orientation towards the sphere of fixed stars. With the
Earth rotating about its axis and moving along the circum-
solar orbit, the laboratory will repeatedly pass through such
points of the same star-related orientation. A manifestation of
stable anisotropy of our space is the phenomenon of “palin-
dromes”, which is the high probability of a series of “day-
time” histograms to be similar to the inverse series of the
“nighttime” ones. In the nighttime, the rotation of the Earth
is co-directed with its movement along the sircumsolar orbit,
this being the opposite in the daytime. As a result, the se-
quence of “star-orientation points” that the laboratory passes

through in the nighttime will be reversibly scanned by the
laboratory in the daytime. Accordingly, series of daytime his-
tograms were found to be opposite to the correspondent series
of the nighttime ones [27, 28], with the “day-” and “night-
time” being accurately defined as the local time since 6:00
to 18:00 (daytime) and since 18:00 to 6:00 of the next day
(nighttime). Figuratively speaking, the rotating Earth consec-
utively reads the same text first in the direct and then in the
inverse order, and the result is the same — as in the phrase
“step on no pets”.

As it turned out, the histogram series that correspond to
the “direct” and “inverse” halfs of the evection cycle are also
“palindromes”.

The periodical changes of the lunar Keplerian orbit in the
evection cycles that correspond to the periods of our measure-
ments are given in Fig. 4. According to this graph, we pre-
pared series of 1-h histograms constructed from the results of
239Pu �-activity measurements. The series were divided into
the “odd” and “even” ones, corresponding to the descending
and ascending halfs of the evection periods respectively (each
half lasting 381.6 h or, more precisely, 22896 min). Then we
compared the “odd” series to the “even” ones pairwise, with
the even series being of two types: direct and inverse (with
the direct and inverse sequence of histograms).

As shown in Fig. 5, there is a high probability of an “even”
histogram to be similar to the “odd“ one of the same order
number when the series of “odd” histograms is inverse. With-
out inversion, the similarity is much less probable. This is a
typical palindrome.

4 Discussion

Thus, the shape of histograms constructed from the results of
radioactivity measurements changes in correlation with the
distortions of the lunar Keperian orbit caused by the gravita-
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Fig. 5: The palindrome effect. When a series of consecutive 1-h histograms of the 1st (descending) half of the evection period is compared
to the corresponding series of the 2nd (ascending) half, the high probability of histograms of the same order number to be similar is
observed only in the case of inversion of the 2nd histogram series. The figure shows a summary result of analysis of four different sets of
data obtained in the period since May 26 to October 1, 2005 at Novo-Lazarevskaya station.

tional influence of the Sun. It changes in the same manner as
the processes reported in [13–21]. Taking into account that
the phenomenon of “macroscopic fluctuations” (i.e., regular
changes in the fine structure of histograms constructed from
the results of measurements of natural processes) does not
depend on the nature of the process studied [26, 28], one can
consider the correlation of the histogram shape with the de-
viations of the Moon from the Keplerian orbit to be indepen-
dent of the process nature as well. Since gravitational forces
would have no direct impact on physico-chemical and bio-
logical processes in terms of energy, the correlations revealed
can be considered as resulting from gravitation-induced dis-
turbances in the space geometry. These disturbances, changes
of space curvature — to formulate in general, changes of the
spacial-temporal scale — should equally manifest themselves
in the processes of any nature. The data on strong correla-
tions revealed for the fluctuations of “computer time” [13–
21] might be an illustration of such alterations of the spacial-
temporal scale.

The phenomena of half-day and half-year palindromes
were explained by the repetition of a certain orientation of
the Earth towards the Sun [27] and the sphere of fixed stars
[28] respectively. Adopting an analogous explanation to
the palindrome with the period equal to that of evection
(31.8 days) assumes a strong spatial anisotropy caused by
the Moon.
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In this article, we formulate solutions to Einstein’s geometrical field equations derived
using our new approach. Our field equations exterior and interior to the mass distribu-
tion have only one unknown function determined by the mass or pressure distribution.
Our obtained solutions yield the unknown function as generalizations of Newton’s grav-
itational scalar potential. Thus, our solution puts Einstein’s geometrical theory of grav-
ity on same footing with Newton’s dynamical theory; with the dependence of the field
on one and only one unknown function comparable to Newton’s gravitational scalar po-
tential. Our results in this article are of much significance as the Sun and planets in the
solar system are known to be more precisely oblate spheroidal in geometry. The oblate
spheroidal geometries of these bodies have effects on their gravitational fields and the
motions of test particles and photons in these fields.

1 Introduction

After the publication of A. Einstein’s geometrical theory of
gravitation in 1915/1916, the search for exact solutions to its
inherent geometrical field equations for various mass distri-
butions began [1]. Four well known approaches have so far
been proposed.

The first approach is to seek a mapping under which the
metric tensor assumed a simple form, such as the vanishing of
the off-diagonal components.With sufficiently clever assump-
tions of this sort, it is often possible to reduce the Einstein
field equations to a much simpler system of equations, even a
single partial differential equation (as in the case of stationary
axisymmetric vacuum solutions, which are characterised by
the Ernst equation) or a system of ordinary differential equa-
tions (this led to the first exact analytical solution — the fa-
mous Schwarzschild’s solution [2]). A special generalization
of the Schwarzschild’s metric is the Kerr metric. This metric
describes the geometry of space time around a rotating mas-
sive body.

The second method assumes that the metric tensor has
symmetries-assumed forms of the Killing vectors. This led to
the solution found by Weyl and Levi-Civita [3–6]. The third
approach required that the metric tensor leads to a particular
type of the classifications of Weyl and Riemann — Christof-
fel tensors. These are often stated interms of Petrov classi-
fication of the possible symmetries of the Weyl tensor or the
Segre classification of the possible symmetries of the Ricci
tensor. This leds to plane fronted wave solutions [3–6]. It is
worth remarking that even after the symmetry reductions in
the three methods above, the reduced system of equations is
often difficult to solve. The fourth approach is to seek Taylor
series expansion of some initial value hyper surface, subject
to consistent initial value data. This method has not proved

successful in generating solutions [3–6].
Recently [7–12], we introduced our own method and ap-

proach to formulation of exact analytical solutions as an ex-
tension of Schwarzschild’s method. In this article, we show
how exact analytical solutions of order c�2 (where c is the
speed of light in vacuum) can be constructed in gravita-
tional fields interior and exterior to static homogeneous oblate
spheroids placed in empty space. For the sake of mathemat-
ical convenience we choose to use the 3rd (R33) field equa-
tion [7].

2 Exterior field equation

The covariant metric tensor in the gravitational field of a static
homogeneous oblate spheroid in oblate spheroidal coordina-
tes (�; �; �) has been obtained [7, 12] as

g00 =
�

1 + 2
c2
f(�; �)

�
; (2.1)

g11 = � a2

1 + �2 � �2 �
�
�
�2
�

1 + 2
c2
f(�; �)

��1
+
�2(1 + �2)
(1� �2)

�
;

(2.2)

g12 � g21 = � a2��
1 + �2 � �2

�
1�

�
1 + 2

c2
f(�; �)

��1
�
; (2.3)

g22 = � a2

1 + �2 � �2 �
�
�
�

2
�

1 + 2
c2
f(�; �)

��1
+
�2(1� �2)
(1 + �2)

�
;

(2.4)

g33 = �a2(1 + �2)(1� �2); (2.5)

g�� = 0; otherwise; (2.6)
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g00 =
�
1 +

2
c2
f (�; �)

��1

(2.7)

g11 =
� �1� �2� �1 + �2 � �2� h�2 �1� �2�+ �2 �1 + �2� �1 + 2

c2 f (�; �)
��1
i

a2
�
1 + 2

c2 f (�; �)
��1 [�2 (1� �2) + �2 (1 + �2)]2

(2.8)

g12 � g21 =
��� �1� �2� �1 + �2� �1 + �2 � �2� h1� �1 + 2

c2 f (�; �)
��1
i

a2
�
1 + 2

c2 f (�; �)
��1 [�2 (1� �2) + �2 (1 + �2)]2

(2.9)

g22 =
� �1 + �2� �1 + �2 � �2� h�2 �1 + �2�+ �2 �1� �2� �1 + 2

c2 f (�; �)
��1
i

a2
�
1 + 2

c2 f (�; �)
��1 [�2 (1� �2) + �2 (1 + �2)]2

(2.10)

g33 = �
"
a2 �1 + �2� �1� �2�#�1

(2.11)

g�� = 0 otherwise (2.12)
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(2.18)
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and the contravariant metric tensor is as shown in formulas
(2.7)–(2.12), where f (�; �) is an unknown function deter-
mined by the mass distribution. From this covariant met-
ric tensor, we can then construct our field equations for the
gravitational field after formulating the Coefficients of affine
connection, Riemann Christoffel tensor, Ricci tensor and the
Einstein tensor [7–12]. After the above steps, it can be shown
that the exterior R33 field equation in this gravitational field
is given as;

R33 � 1
2
Rg33 = 0 : (2.13)

or more explicitly interms of the affine connections, Ricci ten-
sor and covariant metric tensor as;

��1
33�0

10 � �2
33�0

20 � �1
33;1 � �1

33�1
11 � �2

33�1
21�3

31�1
33�

��2
33;2 � �1

33�2
12 � �2

33�2
22 + �3

32�2
33 � 1

2
Rg�� = 0

(2.14)

with the symbols and numbers having their usual meaning
and

R = g00R00 + g11R11 + 2g12R12 + g22R22 + g33R33 :
(2.15)

Now, multiplying equation (2.13) by 2g33 and using the
fact that g33g33 = 1 yields

2g33R33 �R = 0 : (2.16)

Writing the expression for the curvature scalar,R as in
equation (2.15) gives;

�g00R00 � g11R11 � 2g12R12�
� g22R22 + g33R33 = 0 :

(2.17)

Writing the various terms of the field equation (2.17) ex-
plicitly in terms of the metric tensor gives our field equation
explicitly as (2.18).

Now, we realize that our covariant metric tensor (2.1)–
(2.6) can be written equally as

g�� (�; �) = h�� (�; �) + f�� (�; �) ; (2.19)

where h�� are the well known pure empty space components
and f�� are the contributions due to the oblate spheroidal
mass distribution. Consequently, as the mass distribution de-
cays out; f�� ! 0 and hence g�� ! h�� . Therefore, the
metric tensor reduces to the pure empty space metric tensor
as the distribution of mass decays out. Also,

g�� (�; �) = h�� (�; �) + f�� (�; �) ; (2.20)

where h�� are the well known pure empty space components
and f�� are the contributions due to the oblate spheroidal
mass distribution. Thus it can be shown that for this field,
the non zero metric components can be written as;

h00 = 1 ; (2.21)

h11 = �a2 ��2 + �2�
1� �2 ; (2.22)

h22 = �a2 ��2 + �2�
1 + �2 ; (2.23)

h33 = �a2 �1 + �2� �1 + �2� ; (2.24)

f00 =
2
c2
f ; (2.25)

f11 = � a2�2

(1� �2 + �2)

1X
n=1

(�1
n )

2n

cn
fn ; (2.26)

f12 � f21 = � a2��
(1� �2 + �2)

1X
n=1

(�1
n )

2n

cn
fn ; (2.27)

f22 = � a2�2

(1� �2 + �2)

1X
n=1

(�1
n )

2n

cn
fn ; (2.28)

also,

h00 =
1
h00

; (2.29)

h11 =
1
h11

; (2.30)

h22 =
1
h22

; (2.31)

h33 =
1
h33

; (2.32)

f00 =
1X
n=1

(�1
n )

2n

cn
fn ; (2.33)

f11 = � f11

(h11)2 + 0 (c�4) ; (2.34)

f12 � f21 = � f12

h11h22
+ 0 (c�4) ; (2.35)

f22 = � f22

(h22)2 + 0 (c�4) : (2.36)

To begin the explicit formulation of the R33 field equa-
tion we note, first of all, that all the terms of order c0 cancel
out identically since the empty space time metric tensor h��
independently satisfies the homogeneous R33 field equation.
Therefore the lowest order of terms we expect in the exterior
R33 field equation is c�2. Hence in order to formulate the
exterior R33 field equation of order c�2, let us decompose
our covariant metric tensor g�� into pure empty space part
h�� (of order c0 only) and the nonempty space part f�� (of
order c�2 or higher). Similarly, let our contravariant metric
tensor g�� be decomposed into pure empty space part h��
(of order c0 only) and the nonempty space part f�� (of order
c�2 or higher). Substituting explicit expressions for equations
(2.19) and (2.20) into equation (2.18) and neglecting all terms
of order c0, the exterior R33 field equation can be written as
(2.37), where the coefficients are given as (2.38)–(2.58).
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S1 (�; �) f22;11 + S2 (�; �) f00;11 + S3 (�; �) f12;12 + S4 (�; �) f00;12 + S5 (�; �) f11;22 +
+S6 (�; �) f00;22 + S7 (�; �) f00;1 + S8 (�; �) f12;1 + S9 (�; �) f22;1 + S10 (�; �) f11;1 +
+S11 (�; �) f12;1 +S12 (�; �) f22;1 +S13 (�; �) f00;2 + S14 (�; �) f11;2 + S15 (�; �) f12;2 +
+S16 (�; �) f22;2 + S17 (�; �) f12;2 +S18 (�; �) f22;2 +S19 (�; �) f11 + S20 (�; �) f12 +
+S21 (�; �) f22 = 0

(2.37)

S1 (�; �) = �2h11h22 (2.38)

S2 (�; �) = �h11 (2.39)
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S5 (�; �) = �2h11h22 (2.42)

S6 (�; �) = �h22 (2.43)
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� 1
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(2.58)
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K1 (�; �) f�� +K2 (�; �) f�� +K3 (�; �) f� � +K4 (�; �) f� +K5 (�; �) f� +K6 (�; �) f = 0 (2.59)

K1 (�; �) =
2
�
1� �2

� �
1� �2 + �2

�� 2a4�2
�
�2 + �2

�
a2c2 (�2 + �2) (1� �2 + �2)

(2.60)

K2 (�; �) =
4
�
�2 + �2

� �
1� �2 + �2

�� 8��
�
1� �4

�
a2c2 (�2 + �2)2 (1� �2 + �2)

(2.61)

K3 (�; �) =
2
�
1 + �2

�
a2c2 (�2 + �2)

(2.62)

K4 (�; �) =
�8a2��2S1 (�; �) + 2a2�2S9 (�; �)

c2 (1� �2 + �2)2 � 8�
�
1� �4

� �
1� �2 � �2

�
a2c2 (�2 + �2)2 (1� �2 + �2)2 +

+
2a2�2S10 (�; �)

c2 (h11)2 (1� �2 + �2)
+

2a2��S11 (�; �)
c2h11h22 (1� �2 + �2)

� 2a2�2S12 (�; �)
c2 (h22)2 (1� �2 + �2)

(2.63)

K5 (�; �) =
�8�

�
1 + �2 + �2

�
a2c2 (�2 + �2)2 (1� �2 + �2)2 +

16�2�
�
1� �4

�
a2c2 (�2 + �2)2 (1� �2 + �2)

+
2 [S9 (�; �) + S13 (�; �)]

c2
+

+
2a2�� [�S8 (�; �)� S15 (�; �) + �S16 (�; �)]

c2 (h11)2 (1� �2 + �2)
+ +

2a2��S17 (�; �)
c2h11h22 (1� �2 + �2)

� 2a2�2S17 (�; �)
c2 (h22)2 (1� �2 + �2)

(2.64)

K6 (�; �) =
�4a2�2

�
1 + 3�2 + �2

�
c2 (1� �2 + �2)3 � 8

�
1� �4

� �
1� �4 � �4 � 10�2�2

�
a2c2 (�2 + �2)2 (1� �2 + �2)3 +

8�2
�
1� �2

�
a2c2 (�2 + �2) (1� �2 + �2)2 +

+
2a2
��� �1 + �2 + �2

�
S8 (�; �) + 2��2S9 (�; �)� � �1� �2 � �2

�
S15 (�; �) + 2�

�
1� �2

�
S16 (�; �)

�
c2 (1� �2 + �2)2 �

��2a2�2 (h11)2 ;1 S10 (�; �)
c2 (h11)4 (1� �2 + �2)

+
2a2�2

�
2
�
1 + �2

�
S10 (�; �)� S19 (�; �)

�
c2 (h11)2 (1� �2 + �2)

+
2a2�

�
1 + �2 + �2

�
S11 (�; �)

c2h11h22
�

� 2a2�� [(h11h22) ;1 S11 (�; �)]
c2 (h11h22)2 (1� �2 + �2)

+
2a2�

�
(h22)2 ;1 S12 (�; �)� � (h22)2 ;2 S18 (�; �)

�
c2 (h22)4 (1� �2 + �2)

+

+
2a2
��

1� �2 � �2
�
S17 (�; �)� �� �1� �2 + �2

�
S20 (�; �)

�
c2 (h11h22) (1� �2 + �2)2 �

�
2a2�

h
��S12 (�; �)� 2

�
1� �2

�2 S18 (�; �)� �S21 (�; �)
i

c2 (h22)2 (1� �2 + �2)2

(2.65)

Substituting the explicit expressions for the nonempty
space parts f�� and f�� into equation (2.37), simplifying and
grouping like terms yields (2.59), where the terms consisting
it are (2.60)–(2.65).

Equation (2.59) is thus our exact explicit R33 exterior
field equation to the order c�2. We can now conveniently
formulate astrophysical solutions for the equation in the next
section; which are convergent in the exterior space time of a
homogeneous massive oblate spheroid placed in empty space.

3 Formulation of R-33 exterior solution

In the exterior oblate spheroidal space time [7]:

� > �0 and � 1 6 � 6 1; �0 = constant (3.1)

Let us now seek a solution for the R33 field equation (2.59)
in the form of the power series

f (�; �) =
1X
n=0

P+
n (�) �n: (3.2)

where P+
n is a function to be determined for each value of n.

Substituting the proposed function into the field equation and
taking into consideration the fact that f�ng1n=0 is a linearly
independent set, we can thus equate the coefficients of �n on
both sides of the obtained equation. From the coefficients of
�0, we obtain the equation

0 = K1 (�; �)P+
2 (�) +K2 (�; �)

�
P+

1 (�)
�0 +

+K3 (�; �)
�
P+

0 (�)
�00 +K4 (�; �)P+

1 (�) +

+K5 (�; �)
�
P+

0 (�)
�0 +K6 (�; �)P+

0 (�)

(3.3)

or more explicitly

0 = a3�3 �1 + �2 � a2�4�P+
2 (�) +

+ 2a3�3 �1 + �2�2 �P+
1 (�)

�0 + a3�2 �1 + �2�P+
1 (�) +

+ a3�3 �1 + �2�2 �P+
0 (�)

�00 + �1 + �2��
� ��1� 2a2�2 � �2 � a2�3 + 4a2�5� �P+

0 (�)
�0+

+
�
2a3�

�
4� 2�2 � a4�4 � a4�6

��
P+

0 (�) :

(3.4)
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Equation (3.4) is the first recurrence differential equation
for the unknown functions. All the other recurrence differen-
tial equations can thus follow, yielding infinitely many recur-
rence differential equations that can be used to determine all
the unknown functions.

The following profound points can thus be made. Firstly,
equation (3.4) determines P+

2 in terms of P+
0 and P+

1 , sim-
ilarly the other recurrence differential equations will deter-
mine the other unknown functions P+

3 ; : : : in terms of P+
0

and P+
1 . Secondly, we note that we have the freedom to

choose our arbitrary functions to satisfy the physical require-
ments or needs of any particular distribution or area of appli-
cation.

Let us now recall that for any gravitational field [7, 13],

g00 � 1 +
2
c2

� (3.5)

where � is Newton’s gravitational scalar potential for the field
under consideration. Thus we can then deduce that the un-
known function in our field equation can be given approxi-
mately as

f (�; �) � �+ (�; �) (3.6)

where �+ (�; �) is Newton’s gravitational scalar potential ex-
terior to a homogeneous oblate spheroidal mass. Recently
[14], it has been shown that

�+ (�; �) =B0Q0 (�i�)P0 (�)+B2Q2 (�i�)P2 (�) (3.7)

where Q0 and Q2 are the Legendre functions linearly inde-
pendent to the Legendre polynomials P0 and P2 respectively;
B0 and B2 are constants.

Let us now seek our exact analytical exterior solution
(3.4) to be as close as possible to the approximate exterior
solution (3.7). Now since the approximate solution possesses
no term in the first power of �, let us choose

P+
0 (�) = B0Q0 (�i�)P0 +B2Q2 (�i�) (3.8)

and
P+

1 (�) � 0 : (3.9)

Hence, we can write P+
2 in terms of P+

0 as

P+
2 (�) = �

�
1 + �2

�2
(1 + �2 � a2�4)

�
P+

0 (�)
�00 �

� 2
�
1 + �2

� �
3a2�2 + 4a2�5 � �2 � 1

�
a2�3

�
P+

0 (�)
�0�

� 2
�

1� 2a3�2 � a7�4 � a7�6 + a3

a3�2 (1 + �2 � a2�4)

�
P+

0 (�) :

(3.10)

We now remark that the first three terms of our series so-
lution converge everywhere in the exterior space time. We
also remark that our solution of order c0 may be written as

f (�; �) = �+ (�; �) + �+
0 (�; �) (3.11)

where �+ (�; �) is the corresponding Newtonian gravita-
tional scalar potential given by (3.7) and �+

0 (�; �) is the pure
Einsteinian or general relativistic or post Newtonian correc-
tion of order c0.

Hence, we deduce that our exterior analytical solution is
of the general form

f (�; �) = �+ (�; �) + �+
0 (�; �) +

1X
n=1

�+
2n (�; �) : (3.12)

4 Formulation of interior R-33 field equation and solu-
tion

For the interior space time, Einstein’s field equations are well
known to be given as;

R�� � 1
2
Rg�� = �8�G

c4
T�� (4.1)

where T�� is the energy momentum tensor.
Now, let us assume that the homogeneous mass distribu-

tion is a “perfect fluid”. Thus, we can define the energy mo-
mentum tensor as

T�� = (�0 + P0)u�u� � P0g�� (4.2)

where �0 is the proper mass density and P0 is the proper pres-
sure and u� is the velocity four vector. Hence, the five non
trivial interior field equations can be written as;

R00 � 1
2
Rg00 = �8�G

c4
[(�0 + P0)u0u0 � P0g00] ; (4.3)

R11 � 1
2
Rg11 =

8�G
c4

P0g11 ; (4.4)

R12 � 1
2
Rg12 =

8�G
c4

P0g12 ; (4.5)

R22 � 1
2
Rg22 =

8�G
c4

P0g22 ; (4.6)

R33 � 1
2
Rg33 =

8�G
c4

P0g33 : (4.7)

Now, we formulate the solution of (4.7). For the sake of
mathematical convenience, we assume in this article that the
pressure is negligible compared to the mass density and hence

P0 � 0 : (4.8)

Multiplying equation (4.7) by 2g33 and using the fact that
g33g33 = 1 we obtain precisely as in the section 2;

�g00R00 � g11R11 � g22R22 + g33R33 � 2g12R12 = 0 : (4.9)

Similarly, we obtain the interior equation explicitly as

K1 (�; �) f�� +K2 (�; �) f�� +K3 (�; �) f� � +

+K4 (�; �) f� +K5 (�; �) f� +K6 (�; �) f = 0 :
(4.10)

78 Chifu E. N. Astrophysically Satisfactory Solutions to Einstein’s R-33 Gravitational Field Equations



October, 2009 PROGRESS IN PHYSICS Volume 4

We now remark that, for the interior field we are re-
quired to formulate interior solutions of (4.10) convergent in
the range

0 6 � 6 �0 ; �1 6 � 6 1: (4.11)

Let us thus seek a series solution of the form;

f� (�; �) =
1X
n=0

Z�n (�) �n: (4.12)

where Z�n are unknown functions to be determined. Now,
using the fact that f�ng1n=0 is a linearly independent set, we
may equate coefficients on both sides and hence obtain the
equations satisfied by Z�n . We proceed similarly as in the
case of the exterior solution to obtain recurrence differential
equations that determine the explicit expression for our exact
analytical solution. Equating the coefficients of �0, we obtain
the first recurrence differential equation as

K1 (�; �)
�
Z�0 (�)

�00 +K2 (�; �)
�
Z�1 (�)

�0 +

+K3 (�; �)Z�2 (�) +K4 (�; �)
�
Z�0 (�)

�0+
+K5 (�; �)Z�1 (�) +K6 (�; �)Z�0 (�) = 0 :

(4.13)

In a similar manner, the other recurrence differential equa-
tions follow.

We can now proceed as in the previous section to choose
the most astrophysically satisfactory solution to be as close as
possible to the approximate solution. The gravitational scalar
potential interior to a homogeneous oblate spheroid is well
known [14] to be given as

�� (�; �) =
�
A0 � 1

2
A2P2(�)

�
� 3=2A2P2(�) �2; (4.14)

where P2 is Legendre’s polynomial of order 2 and A0, A2,
are constants.

Since (4.14) converges for all values in the interval (4.11),
it is very satisfactory for us to choose;

Z�0 (�) = A0 � 1
2
A2P2(�) (4.15)

and
Z�1 (�) � 0 : (4.16)

Thus the first recurrence differential equation determines
Z�2 in terms of Z�0 . Similarly, all the other recurrence differ-
ential equations will determine all the other functions in terms
of Z�0 . Hence we obtain our unique astrophysically most sat-
isfactory interior solution. It is obvious that this unique solu-
tion will converge, precisely as the first two terms. Moreover,
it is obvious that our unique solution reduces to the corre-
sponding pure Newtonian gravitational scalar potential in the
limit of the first two terms. This solution may be written as

f� (�; �) = �� (�; �) + ��0 (�; �) (4.17)

where �� (�; �) is the corresponding Newtonian gravita-
tional scalar potential given by (4.14) and ��0 (�; �) is the
pure instructively Einstenian (or general relativistic or post
Newtonian correction) of order c0.

Proceeding exactly as above we may derive all the cor-
responding solutions of all the other non-trivial interior Ein-
stein’s field equations for the sake of mathematical complete-
ness, comparison with those of the R33 equation and theo-
retical applications where and when necessary in Physics. It
is clearly obvious how to extend the derivation of the inte-
rior Einstein field equations above to include any given pres-
sure function P0 (�; �), wherever and whenever necessary
and useful in physical theory.

5 Conclusions

Interestingly, the single dependent function f in our math-
ematically most simple and astrophysically most satisfac-
tory solution turns out as the corresponding well known pure
Newtonian exterior/interior gravitational scalar potential aug-
mented by hitherto unknown pure Einsteinian (or general
relativistic or post-Newtonian) gravitational scalar potential
terms of orders c0, c�2, c�4, . . . Hence, this article has re-
vealed a hitherto unknown sense in which the exterior/interior
Einstein’s geometrical gravitational field equations are ob-
tained as a generalization or completion of Newton’s dynam-
ical gravitational field equations.

With the formulation of our mathematically most simple
and astrophysically most satisfactory solutions in this article,
the way is opened up for the formulation and solution of the
general relativistic equations of motion for all test particles in
the gravitational fields of all static homogeneous distributions
of mass within oblate spheroidal regions in the universe. And
precisely because these equations contain the pure Newtonian
as well as post-Newtonian gravitational scalar potentials all
their predictions shall be most naturally comparable to the
corresponding predictions from the pure Newtonian theory.
This is most satisfactory indeed.

It is now obvious how our work in this article may by
emulated to (i) derive a mathematically most simple structure
for all the metric tensors in the space times exterior or inte-
rior to any distribution of mass within any region having any
of the 14 regular geometries in nature, (ii) formulate all the
nontrivial Einstein geometrical gravitational field equations
and derive all their general solutions and (iii) derive astro-
physically most satisfactory unique solutions for application
to the motions of all test particles and comparison with cor-
responding pure Newtonian results and applications. There-
fore our goal in this article has been completely achieved:
to use the case of a spheroidal distribution of mass to show
how the much vaunted Einstein’s geometrical gravitational
field equations may be solved exactly and analytically for
any given distribution of mass within any region having any
geometry.
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Finally, we conclude that at very long last — 93 years
after the publication of the laws of General Relativity by Ein-
stein in 1915 — we have found a method and process for
(1) deriving a unique approximate astrophysically most sat-
isfactory solutions for the space times exterior and interior to
every distribution of mass within any region having any of the
14 regular geometries in nature, in terms of the correspond-
ing pure Newton’s gravitational scalar potential, without even
formulating the field equation; and (2) systematically formu-
lating and solving the geometrical gravitational field equa-
tions in the space times of all distributions of mass in nature.
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A New Finslerian Unified Field Theory of Physical Interactions

Indranu Suhendro
E-mail: spherical symmetry@yahoo.com

In this work, we shall present the foundational structure of a new unified field theory of
physical interactions in a geometric world-space endowed with a new kind of Finslerian
metric. The intrinsic non-metricity in the structure of our world-geometry may have
direct, genuine connection with quantum mechanics, which is yet to be fully explored
at present. Building upon some of the previous works of the Author, our ultimate aim
here is yet another quantum theory of gravity (in just four space-time dimensions). Our
resulting new theory appears to present us with a novel Eulerian (intrinsically motion-
dependent) world-geometry in which the physical fields originate.

1 Introduction

This work is a complementary exposition to our several pre-
vious attempts at the geometrization of matter and physical
fields, while each of them can be seen as an independent, self-
contained, coherent unified field theory.

Our primary aim is to develop a new foundational world-
geometry based on the intuitive notion of a novel, fully nat-
uralized kind of Finsler geometry, which extensively mimics
the Eulerian description of the mechanics of continuous me-
dia with special emphasis on the world-velocity field, in the
sense that the whole space-time continuum itself is taken to
be globally dynamic on both microscopic and macroscopic
scales. In other words, the world-manifold itself, as a whole,
is not merely an ambient four-dimensional geometric back-
ground, but an open (self-closed, yet unbounded), co-moving,
self-organizing, self-projective entity, together with the indi-
vidual particles (objects) encompassed by its structure.

2 Elementary construction of the new world-geometry

Without initial recourse to the common structure of Finsler
geometry, whose exposition can easily be found in the liter-
ature, we shall build the essential geometric world-space of
our new theory somewhat from scratch.

We shall simply start with an intuitive vision of intrinsi-
cally motion-dependent objects, whose fuzzy Eulerian behav-
ior, on the microscopic scale, is generated by the structure of
the world-geometry in the first place, and whose very pres-
ence, on the macroscopic scale, affects the entire structure
of the world-geometry. In this sense, the space-time contin-
uum itself has a dynamic, non-metric character at heart, such
that nothing whatsoever is intrinsically “fixed”, including the
defining metric tensor itself, which evolves, as a structural
entity of global coverage, in a self-closed (self-inclusive) yet
unbounded (open) manner.

In the present theory, the Universe is indeed an evolving,
holographic (self-projective) four-dimensional space-time
continuum U4 with local curvilinear coordinates x� and an
intrinsically fuzzy (quantum-like), possibly degenerate, non-

metric field  . As such, U4 may encompass all possible
metric-compatible (sub-)universes, especially those of the
General Theory of Relativity. In this sense, U4 may be viewed
as a Meta-Universe, possibly without admitting any apparent
boundary between its microscopic (interior) and macroscopic
(exterior) mechanisms, as we shall see.

If we represent the metric-compatible part of the geomet-
ric basis of U4 as g� (x), then, following our unification sce-
nario, the total geometric basis of our generally non-metric
manifold shall be given by

g� (x; u) = g� (x) +  � u

g� (x; u) = (g� (x; u))�1

g� (x; u) ; g� (x; u)

�
= ���

where u= dx�
ds g� (x; u) is the world-velocity field along the

world-line

s (x; u) =
Z q

g�� (x; u) dx�dx�

(with g�� (x; u) being the components of the generalized
metric tensor to be subsequently given below), and where
��� are the components of the Kronecker delta. (Needless to
say, the Einstein summation convention is applied throughout
this work as usual.) Here the inner product is indicated by
h: : : ; : : :i. We then have

@
@x�

g� (x; u) =
@
@ x�

g� (x) + u
@  �
@ x�

+  �r� u ;
wherer denotes the gradient, that is, the covariant derivative.

The components of the symmetric, bilinear metric tensor
g (x; u) for the given geometric basis are readily given by

g�� (x; u) = hg� (x; u) ; g� (x; u)i
g�� (x; u) g�� (x; u) = ��� :

As such, we obtain

g�� (x; u) = g�� (x) + 2 û(� �) + �2 (x; u)  �  � :
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As usual, round brackets enclosing indices indicate
symmetrization; subsequently, anti-symmetrization shall be
indicated by square brackets. In the above relation,
û� = hu; g� (x)i and

�2 (x; u) = g�� (x; u)u�u�

is the squared length of the world-velocity vector, which
varies from point to point in our world-geometry. As we
know, this squared length is equal to unity in metric-
compatible Riemannian geometry.

The connection form of our world-geometry is obtained
through the inner product

���� (x; u) =
�
g� (x; u) ;

@
@ x�

g� (x; u)
�
:

In an explicit manner, we see that

���� (x; u) = ���� (x) +
�
@  �
@ x�

�
u� +  �r� u�:

In accordance with our previous unified field theories
(see, for instance, [1–5]), the above expression must gener-
ally be asymmetric, with the torsion being given by the anti-
symmetric form

��[��] (x; u) = ��[��] (x) +
1
2

�
@  �
@ x�

� @  �
@ x�

�
u�+

+
1
2
�
 �r� u� �  � r� u�� :

In contrast to the case of a Riemannian manifold (without
background embedding), we have the following unique case:

r� g� (x; u) � @
@ x�

g� (x; u)� ���� (x; u) g� (x; u) =

=
1
2
 �  �

�r� u�� 
for which, additionally, ���� (x)  � = 0. Consequently, the
covariant derivative of the world-metric tensor fails to vanish
in the present theory, as we obtain the following non-metric
expression:

r� g�� (x; u) = �  �  �r� u�:
At this point, in order to correspond with Finsler geome-

try in a manifest way, we shall write

r� g�� (x; u) = ����r� u�
and

g�� (x; u) =
1
2

@2

@ u�@ u�
�2 (x; u)

in such a way that the following conditions are satisfied:

���� = �  �  � ;

1
2

���� =
1
2

�(���) =
1
2

@
@ u�

g�� (x; u) =

=
1
4

@3

@ u� @ u� @ u�
�2 (x; u) ;

���� u� = 0 ;

 � u� = 0 :

Once the velocity field is known, the Hessian form of the
metric tensor enables us to write, in the momentum represen-
tation for a geometric object with mass m (initially at rest,
locally),

g�� (x; u) =
1
2
m2 @2

@ p� @ p�
�2 (x; u) ;

p� =mu�

such that, with �2 (x; u) being expressed in parametric form,
physical geometry, that is, the existence of a geometric object
in space-time, is essentially always related to mass and its
energy content.

Taking into account the projective angular tensor given by


�� (x; u) = g�� (x; u)� 1
�2 (x; u)

u� u� ;


�� (x; u) 
�� (x; u) = ��� � 1
�2 (x; u)

u� u� ;


�� (x; u) u� = 0 ;

where n is the number of dimensions of the geometric space
(in our case, of course, n= 4), in the customary Finslerian
way, it can easily be shown that

���� =
1
n

�

�� (x; u) �� + 
�� (x; u) �� +

+ 
�� (x; u) �� � 1
�� ��

�� �� ��
�
;

�� = g�� (x; u) ���� = 2
@

@ u�
ln
p

det (g (x; u)) ;

@
@ u�

ln
p

det (g (x; u)) =
1
2
g�� (x; u)

@
@u�

g�� (x; u)

for which, in our specific theory, we have, with  2 =
= g�� (x; u)  �  � ,

���� =
 2

n

�

�� (x; u)  � + 
�� (x; u)  � +

+ 
�� (x; u)  � � 1
 2  �  �  �

�
:

We may note that, along the world-line, for the intrinsic
geodesic motion of a particle given by the parallelism

Du�

Ds
= (r� u�)u� = 0 ;
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the Finslerian condition

D
Ds

g�� (x; u) = 0

is always satisfied, along with the supplementary condition

D
Ds

�2 (x; u) = 0 :

Consequently, we shall also have

D
Ds


�� (x; u) = 0 :

It is essential to note that, unlike in Weyl geometry, we
shall not expect to arrive at the much simpler gauge condition
r� g�� (x; u) = g�� (x; u) A� ( ). Instead, we shall always
employ the following alternative general form:

r� g�� (x; u) =
1

�2 (x; u)
�
�u g�� � 2 û(�  �)

�
 �r� u�

where, as we can easily see, the diffeomorphic structure of the
metric tensor for the condition of non-metricity of our world-
geometry is manifestly given by

�u g�� � g�� (x; u)� g�� (x) =

= 2 û(� �) + �2 (x; u)  �  �

3 Explicit physical (Eulerian) structure of the connec-
tion form

Having recognized the structural non-metric character of our
new world-geometry in the preceding section, we shall now
seek to outline the explicit physical structure of the connec-
tion form for the purpose of building a unified field theory.

We first note that the non-metric connection form of our
theory can always be given by the general expression

���� (x; u) =
1
2
g�� (x; u)

�
@
@ x�

g�� (x; u)�

� @
@x�

g�� (x; u) +
@
@ x�

g�� (x; u)
�

+

+ ��[��] (x; u)� g�� (x; u)
�
g�� (x; u) ��[��] (x; u) +

+ g�� (x; u) ��[��] (x; u)
�

+

+
1
2
g�� (x; u)

�
r� g�� (x; u)�

� r� g�� (x; u) +r� g�� (x; u)
�
:

Then, using the results given in the previous section, in
direct relation to our previous metric-compatible unification
theory of gravity, electromagnetism, material spin, and the
nuclear interaction [4], where the electromagnetic field and

material spin are generated by the torsion field, we readily
obtain

���� (x; u) =
1
2
g�� (x; u)

�
@
@ x�

g�� (x; u)�

� @
@ x�

g�� (x; u) +
@
@ x�

g�� (x; u)
�

+

+
e

2mc2
�2 (x; u)

�
F�� u� � F�� u� � F�� u��+

+ S��� � g�� (x; u)
�
g�� (x; u) S��� + g�� (x; u) S���

�
+

+
1
2
g��(x; u) �( �  �r� u� �  �  � r� u� +

+  �  �r� u�) :
Here it is interesting to note that even when  = 0, which

gives a metric-compatible (“classical”) case, our connection
form already explicitly depends on the world-velocity (in ad-
dition to position), hence the unified field theory of physical
interactions outlined in [4] can somehow already be consid-
ered as being a Finslerian one despite the fact that it is metric-
compatible.

We recall, still from [4], that the electromagnetic field F
and the material spin field S have a common geometric origin,
which is the structural torsion of the space-time manifold, and
are essentially given by the following expressions:

F�� = 2
mc2

e
��[��] u� ;

S��� =S�� u� � S�� u� ;

S�� u� = 0; S�� =S[��] ;

��[��] =
e

2mc2
F�� u� + S��� ;

wherem is the (rest) mass, e is the electric charge, and c is the
speed of light in vacuum, such that the physical fields are in-
trinsic to the space-time geometry itself, as manifest in gener-
alized geodesic equation of motion Du�

Ds = 0, which naturally
yields the general relativistic equation of motion of a charged,
massive particle in the gravitational field

mc2
�
du�

ds
+ ��

�� u
� u�

�
= eF�� u

� ;

��
�� =

1
2
g��

�
@ g��
@ x�

� @ g��
@ x�

+
@ g��
@ x�

�
:

In other words, the physical fields other than gravity
(chiefly, the electromagnetic field) can also be represented
as part of the internal structure of the free-fall of a particle.
Just like gravity, being fully geometrized in our theory, these
non-holonomic (vortical) fields are no longer external entities
merely added into the world-picture in order to interact with
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gravity and the structure of space-time itself, thereby essen-
tially fulfilling the geometrization program of physics as
stated, for example, in [6].

Correspondingly, the nuclear (Yang-Mills) interaction is
essentially given in our theory as an internal electromagnetic
interaction by

F i�� = 2!i� ��[��] ;

F�� =
mc2

e
F i�� ui (i= 1; 2; 3) ;

where !i� are the components of the tetrad (projective) field
relating the global space-time to the internal three-
dimensional space of the nuclear interaction.

In this direction, we may also define the extended electro-
magnetic field, which explicitly depends on the world-
velocity, through

~F�� (x; u) =�2 (x; u)F�� = 2�2 (x; u)
mc2

e
��[��] u� :

4 Substantial structure of covariant differentiation
in U4

Given an arbitrary world-tensor T (x; u) at any point in our
Finslerian world-geometry, we have the following elementary
substantial derivatives:

d
d�

T��:::��:::� (x; u) =

= @
@x�

�
T��:::��:::� (x; u)

� dx�
d�

+ @
@u�

�
T��:::��:::� (x; u)

� @u�
@�

;

d
dx�

T��:::��:::� (x; u) =

= @
@x�

T��:::��:::� (x; u) + @
@u�

�
T��:::��:::� (x; u)

� @u�
@x�

;

where � is a global parameter.
In this way, the substantial structure of covariant differen-

tiation in U4 shall be given by

~r� T��:::��:::� (x; u) =

= @
@ x�

T��:::��:::� (x; u) + @
@ u&

�
T��:::��:::� (x; u)

� @ u&
@ x�

+

+ ���� (x; u)T ��:::��:::� (x; u) + ���� (x; u)T��:::��:::� (x; u) + : : :+

+ ��� (x; u)T��:::���:::� (x; u)� ���� (x; u)T��:::��:::� (x; u) �
����� (x; u)T��:::��:::� (x; u)� : : :� ���� (x; u)T��:::��:::� (x; u)

along with the more regular (point-oriented) form

r� T��:::��:::� (x; u) = @
@ x�

T��:::��:::� (x; u) +

+ ���� (x; u)T ��:::��:::� (x; u) + ���� (x; u)T��:::��:::� (x; u) + � � �+
+ ��� (x; u)T��:::���:::� (x; u)� ���� (x; u)T��:::��:::� (x; u) �
����� (x; u)T��:::��:::� (x; u)� � � � � ���� (x; u)T��:::��:::� (x; u) :

Turning our attention to the world-metric tensor, we see
that the expression

~r� g�� (x; u) = @
@ x�

g�� (x; u) + @
@ u�

(g�� (x; u)) @ u
�

@ x�
�

����� (x; u) g�� (x; u)� ���� (x; u) g�� (x; u)

may enable us to establish a rather indirect metricity-like
condition. This can be done by invoking the condition

�������� (x; u)u� = 0

and by setting
~r� g�� (x; u) = 0 :

Now, with the help of the already familiar relations

@
@ u�

g�� (x; u) = ���� ;

g�� (x; u)
@
@ u�

g�� (x; u) = 2
@
@ u�

ln
p

det (g (x; u))

we shall again have

r� g�� (x; u) = ����r� u� :

5 Generalized curvature forms

We are now equipped enough with the basic structural rela-
tions to investigate curvature forms in our theory. In doing so,
we shall derive a set of generalized Bianchi identities corre-
sponding to a peculiar class of field equations, including some
possible conservation laws (in rather special circumstances).

In a direct customary manner, we have the extended ex-
pression� ~r� ~r� � ~r� ~r��T��:::��:::� (x; u) =

= (r� r� �r�r�)T��:::��:::� (x; u) +

+ @
@ u�

�r�T��:::��:::� (x; u)
� @ u�
@ x�

�

� @
@ u�

�r�T��:::��:::� (x; u)
� @ u�
@ u�

+

+r�
�

@
@ u�

�
T��:::��:::� (x; u)

� @ u�
@ x�

�
�

�r�
�

@
@ u�

�
T��:::��:::� (x; u)

� @ u�
@ x�

�
+

+ @
@ u�

�
@
@ u�

�
T��:::��:::� (x; u)

� @ u�
@ x�

�
@ u�

@ x�
�

� @
@ u�

�
@
@ u�

�
T��:::��:::� (x; u)

� @ u�
@ x�

�
@ u�

@ x�
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for which the essential part is

(r� r� �r�r�)T��:::��:::� (x; u) =

=R���� (x; u)T��:::��:::� (x; u) +

+R���� (x; u)T��:::��:::� (x; u) + : : :+

+R���� (x; u)T��:::��:::� (x; u) �
�R���� (x; u)T ��:::��:::� (x; u) �
�R���� (x; u)T��:::��:::� (x; u) �
� : : :�R��� (x; u)T��:::���:::� (x; u) �
� 2 ��[��] (x; u)r� T��:::��:::� (x; u) :

Here the world-curvature tensor, that is, the generalized,
Eulerian Riemann tensor, is given by

R���� (x; u) =
@
@ x�

���� (x; u)� @
@ x�

���� (x; u) +

+ ���� (x; u) ���� (x; u)� ���� (x; u) ���� (x; u)

for which the corresponding curvature form of mobility may
simply be given by

~R���� (x; u) = @
@ x�

���� (x; u) + @
@ u�

�
���� (x; u)

� @ u�
@ x�

�

� @
@ x�

���� (x; u)� @
@ u�

�
���� (x; u)

� @ u�
@ x�

+

+ ���� (x; u) ���� (x; u)� ���� (x; u) ���� (x; u) :

We can now write the following fundamental decomposi-
tion:

R���� (x; u) =B���� (x; u) +M�
��� (x; u) +

+N�
��� (x; u) + U���� (x; u) ;

B���� (x; u) = @
@ x�

��
�� (x; u)� @

@ x�
��
�� (x; u) +

+ ��
�� (x; u) ��

�� (x; u)� ��
�� (x; u) ��

�� (x; u) ;

M�
��� (x; u) =

^r�K�
�� (x; u)� ^r�K�

�� (x; u) +

+K�
�� (x; u)K�

�� (x; u)� K�
�� (x; u)K�

�� (x; u) ;

N�
��� (x; u) =

^r�Q��� (x; u)� ^r� Q��� (x; u) +

+Q��� (x; u)Q��� (x; u)� Q��� (x; u)Q��� (x; u) ;

U����(x; u) =K�
��(x; u)Q��� (x; u)�K�

��(x; u)Q��� (x; u) +

+Q��� (x; u)K�
�� (x; u)�Q��� (x; u)K�

�� (x; u) ;

where the Eulerian Levi-Civita connection, the Eulerian con-
torsion tensor, and the connection of non-metricity are re-

spectively given by

��
�� (x; u) = 1

2
g�� (x; u)

�
@
@ x�

g�� (x; u)� @
@ x�

g�� (x; u) +

+ @
@ x�

g�� (x; u)
�
;

K�
�� (x; u) = ��[��] (x; u)�
� g�� (x; u)

�
g�� (x; u) ��[��] (x; u) + g�� (x; u) ��[��] (x; u)

�
;

Q��� (x; u) = 1
2
g�� (x; u)

�
r� g�� (x; u)�r� g�� (x; u) +

+ r� g�� (x; u)
�
;

such that
^r represents covariant differentiation with respect

to the symmetric connection � (x; u) alone. The curvature
tensor given by B (x; u) is, of course, the Eulerian Riemann-
Christoffel tensor, generalizing the one of the General Theory
of Relativity which depends on position alone.

Of special interest, for the world-metric tensor, we note
that
(r�r��r�r�) g�� (x; u) =R���� (x; u) +R���� (x; u)�
� 2 ��[��] (x; u)r� g�� (x; u)

where, with the usual notation, R���� (x; u) =
g�� (x; u)R���� (x; u). That is, more specifically, while
keeping in mind that

���� =
@
@ u�

g�� (x; u) = �  �  � ;

we have

(r�r� �r�r�) g�� (x; u) =R���� (x; u) +

+R���� (x; u)� 2 ��[��] (x; u) ��� r� u :
As such, we have a genuine homothetic curvature

given by

H�� (x; u) =R���� (x; u) =

=
^r�Q� (x; u)� ^r� Q� (x; u) =

=
@
@ x�

Q� (x; u)� @
@ x�

Q� (x; u) ;

Q� (x; u) =Q��� (x; u) =
1
2
g�� (x; u)r� g�� (x; u) =

= 2  � r� u� :
Upon setting

�� (x; u) =
1
2
 � r� u� ;

we have

H�� (x; u) = 2
�

@
@ x�

�� (x; u)� @
@ x�

�� (x; u) �

� 2
�
�� (x; u)

@ ln 
@ x�

� �� (x; u)
@ ln 
@ x�

��
:
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At this point, the generalized, Eulerian Ricci tensor is
given in the form

R�� (x; u) =R���� (x; u) =Z�� (� (x; u) ;K (x; u)) +

+N�� (Q (x; u)) +X�� (K (x; u) ; Q (x; u)) ;

Z�� (� (x; u) ;K (x; u)) =B���� (x; u) +M�
��� (x; u) ;

N�� (Q (x; u)) =N�
��� (x; u) ;

X�� (K (x; u) ; Q (x; u)) =U���� (x; u) ;

which admits the peculiar anti-symmetric part

R[��] (x; u) = 1
2

� @
@ x�

K�
�� (x; u)� @

@ x�
K�
�� (x; u)

�
+

+ 1
2

� @
@ x�

Q� (x; u)� @
@ x�

Q� (x; u)
�

+

+
^r� ��[��] (x; u) +

+ ��[��] (x; u)K�
�� (x; u) + ��[��] (x; u)Q� (x; u) +

+ ��[��] (x; u)Q��� (x; u)� ��[��] (x; u)Q��� (x; u) +

+ 1
2
�
K�
�� (x; u)K�

�� (x; u)�K�
�� (x; u)K�

�� (x; u)
�
;

where we have made use of the fact that K�
[��] (x; u) =

= ��[��] (x; u). Let us also keep in mind that the explicit phys-
ical structure of the connection form forming our various cur-
vature expressions, as it relates to gravity, electromagnetism,
material spin, and the nuclear interaction, is given in Section 3
of this work, naturally following [4].

We can now obtain the complete Eulerian generalization
of the first Bianchi identity as follows:

R���� (x; u) +R����(x; u) +R���� (x; u) =

= � 2 g�� (x; u)
�

@
@ x�

��[��] (x; u) + @
@ x�

��[��] (x; u) +

+ @
@ x�

��[��] (x; u)
�
�

� 2 g�� (x; u)
�

��� (x; u) �[��] (x; u) +

+ ��� (x; u) �[��] (x; u) + ��� (x; u) �[��] (x; u)
�

+

+ 2 ���

�
��[��] (x; u)r�u + ��[��] (x; u)r�u +

+ ��[��] (x; u)r�u
�
:

Similarly, after a somewhat lengthy calculation, we ob-
tain, for the generalization of the second Bianchi identity,

r�R���� (x; u) +r�R���� (x; u) +r� R���� (x; u) =

= 2
�

�[��] (x; u)R��� (x; u) + �[��] (x; u)R��� (x; u) +

+ �[��] (x; u)R��� (x; u)
�

+

+ ��� (x; u) ((r� ���)r�u� � (r� ���)r� u�) +

+ ��� (x; u) ((r� ���)r�u� � (r� ���)r� u�) +

+ ��� (x; u) ((r� ���)r�u� � (r� ���)r� u�) �
� ��� (x; u) ���

�
R���� (x; u)u� + 2 ��[��] (x; u)r�u�� �

� ��� (x; u) ���
�
R���� (x; u)u� + 2 ��[��] (x; u)r� u�� �

� ��� (x; u) ���
�
R���� (x; u)u� + 2 ��[��] (x; u)r� u�� +

+ ��� (r� u�)
�r� ��� (x; u)�r� ��� (x; u)

�
+

+ ��� (r� u�)
�r� ��� (x; u)�r� ��� (x; u)

�
+

+ ��� (r� u�)
�r� ��� (x; u)�r� ��� (x; u)

�
;

where

r� ���� (x; u)�r� ���� (x; u) = �R���� (x; u) +

+ ���� (x; u) ���� (x; u)� ���� (x; u) ���� (x; u) �
� 2 ��[��] (x; u) ���� (x; u) :

By contraction, we may extract a physical density field as
follows:

J� (x; u) =

= �r�
�1

2
�
R�� (x; u) + �R�� (x; u)

�� 1
2
��� R (x; u)

�
;

where �R�� (x; u) =R���� (x; u) are the components of the
generalized Ricci tensor of the second kind and
R (x; u) =R�� (x; u) = �R�� (x; u) is the generalized Ricci
scalar. As we know, the Ricci tensor of the first kind and
the Ricci tensor of the second kind coincide only when the
connection form is metric-compatible. The asymmetric, gen-
erally non-conservative world-entity given by

G�� (x; u) =
1
2
�
R�� (x; u) + �R�� (x; u)

�� 1
2
��� R (x; u)

will therefore represent the generalized Einstein tensor, such
that we may have a corresponding geometric object given by

C� (x; u) � �g�� (x; u) J� (x; u) =

=r� G�� (x; u)�G�� (x; u)r� g�� (x; u) :

6 Quantum gravity from the physical vacuum of U4

We are now in a position to derive a quantum mechanical
wave equation from the underlying structure of our present
theory. So far, our field equations appear too complicated
to handle for this particular purpose. It is quite enough that
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we know the structural content of the connection form, which
encompasses the geometrization of the known classical fields.
However, if we deal with a particular case, namely, that of
physical vacuum, we shall immediately be able to speak of
one type of emergent quantum gravity.

Assuming now that the world-geometry U4 is devoid of
“ultimate physical substance” (that is, intrinsic material con-
finement on the most fundamental scale) other than, perhaps,
primordial radiation, the field equation shall be given by

R�� (x; u) = 0

for which, in general, R���� (x; u) =W�
��� (x; u) , 0,

where W (x; u) is the generalized Weyl conformal tensor. In
this way, all physical fields, including matter, are mere ap-
pearances in our geometric world-structure. Consequently,
from R(��) (x; u) = 0, the emergent picture of gravity is
readily given by the symmetric Eulerian Ricci tensor for the
composite structure of gravity, that is, explicitly,

B�� (� (x; u)) = � �M��
�
K (x; u)

�
+N��

�
Q ( )

�
+

+U��
�
K (x; u) ; Q ( )

��
;

where we have written Q (x; u) =Q ( ), such that, in this
special consideration, gravity can essentially be thought of as
exterior electromagnetism as well as arising from the quan-
tum fuzziness of the background non-metricity of the world-
geometry. In addition, from R[��] (x; u) = 0, we also have
the following anti-symmetric counterpart:

R[��] (� (x; u) ;K (x; u)) = @
@ x�

Q� ( )� @
@ x�

Q� ( ) �
���[��] (x; u)Q� ( ) +

+ ��[��] (x; u)Q��� ( )� ��[��] (x; u)Q��� ( ) ;

Q� ( ) = 1
2
 2  � r� u� :

Correspondingly, we shall set, for the “quantum poten-
tial”,

Q� ( ) =
@
@ x�

ln � 

such that the free, geodesic motion of a particle along the
fuzzy world-path s (x; u) = �

�
 
� � 
��

in the empty U4 can
simultaneously be described by the pair of dynamical equa-
tions

Du�

Ds
= 0 ;

D � 
Ds

= 0 ;

since, as we have previously seen, Q�
�
 
� � 
��
u� = 0.

Immediately, we obtain the geometrically non-linear
wave equation

1p
det (g (x; u))

@
@ x�

�
g�� (x; u)

p
det (g (x; u)) @

� 
@ x�

�
=

= (R (� (x; u) ;K (x; u)) + � (Q ( ))) � 

that is, �
�2
B � _

R (x; u)
�

� = 0 ;

where

�2
B = 1p

det (g (x; u))
@
@ x�

�
g�� (x; u)

p
det (g (x; u)) @

@ x�
�

is the covariant four-dimensional Beltrami wave operator and,
with the explicit dependence of  on � ,

_
R (x; u) =R (� (x; u) ;K (x; u)) + �

�
Q
�
 
� � 
���

is the emergent curvature scalar of our quantum field, for
which

� (Q ( )) =
_
N
�
Q
�
 
� � 
���� 1

� 2 g
��(x; u)

@ � 
@ x�

@ � 
@ x�

;

_
N
�
Q
�
 
� � 
���

=N
�
Q
�
 
� � 
���

+

+U
�
K (x; u) ; Q

�
 
� � 
���� g��(x; u)

^r�Q�� � � 
��
:

In terms of the Eulerian Ricci scalar, which is now quan-
tized by the wave equation, we have a quantum gravitational
wave equation with two quantized intrinsic sources, namely,
the torsional source M (x; u), which combines the electro-
magnetic and material sources, and the quantum mechanical
source �

�
Q
�
 
� � 
���

= � (Q (x; u)),�
�2
B �B (x; u)

� � =M (x; u) � + �
�
Q
�
 
� � 
��� � 

thereby completing the quantum gravitational picture at an
elementary stage.

7 Special analytic form of geodesic paths

Here we are interested in the derivation of the generalized
geodesic equation of motion such that our geodesic paths cor-
respond to the formal solution of the quantum gravitational
wave equation in the preceding section. Indeed, owing to
the wave function � = � (x; u), these geodesic paths shall be
conformal ones.

For our purpose, let 	 (x) = const: represent a family of
hypersurfaces in U4 such that with respect to a mobile hy-
persurface �, for @

@ x� (	 (x)) �x� = 0, there exists a gen-
uine unit normal velocity vector, given by n� = dx�

d� , at some
point whose extended path can be parametrized by � = � (s),
that is

n� = �
�
x;

@
@ x

	 (x)
�

@
@ x�

	 (x)

g�� (x; u) n� � n� = 0 :

The essential partial differential equation representing
any quantum gravitational hypersurface � can then
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simply be represented by the arbitrary parametric form
�
�
x; @

@ x 	 (x)
�

= �
� � 
�

= const such thatZ b

a

�
� (x; u)� � � � 

� d
d�

	 (x)
�
d� > 0

where a and b are two points in � .
Keeping in mind once again that  � u� = 0 and that

u� =
1
2

@
@ u�

�2 (x; u)

@
@ x�

g�� (x; u) =

= ���� (x; u) + ���� (x; u) +  �  �  �r�u�
the generalized Euler-Lagrange equation corresponding to
our situation shall then be given by

d
ds

�
@

@ u�
�2 (x; u)

�
� @
@ x�

�2 (x; u) +

+
@
@ u�

�
�2 (x; u)

� @ u�
@ x�

+ b� (x; u) = 0 ;

where the “external” term is given by

b� (x; u) = 4 ��[��] (x; u)u� u� :

As a matter of straightforward verification, we have

du�
ds
� ���� (x; u)u� u� = 0

A unique general solution to the above equation correspond-
ing to the quantum displacement field  = 

� � 
�
, which,

in our theory, generates the non-metric nature of the world-
manifold U4, can now be obtained as

s (x; u) = s
�
 
� � 
��

=C1 + C2

Z
exp
�Z

H
�
 
� � 
�
ds
��

ds

where C1 and C2 are integration constants. This is such that,
at arbitrary world-points a and b, we have the conformal re-
lation (for C =C2)

dsb = exp
�
C
Z
H
�
 
� � 
��
ds
�
dsa ;

which sublimely corresponds to the case of our previous
quantum theory of gravity [3].

8 Geometric structure of the electromagnetic potential

As another special consideration, let us now attempt to exten-
sively describe the geometric structure of the electromagnetic
potential in our theory.

Due to the degree of complicatedness of the detailed gen-
eral coordinate transformations in U4, let us, for the sake of

tangibility, refer a smoothly extensive coordinate patch P (x)
to the four-dimensional tangent hyperplane M4 (y), whose
metric tensor � is Minkowskian, such that an ensemble of
Minkowskian tangent hyperplanes, that is,X

a= 1;2;:::;N
M (a)

4 (y)

cannot globally cover the curved manifold U4 without
breaking analytic continuity (smoothness), at least up to the
third order. Denoting the “invariant derivative” by
rA =E�A (x; u) @

@ x� , this situation can then basically be
described by

g�� (x; u) =EA� (x; u)EB� (x; u) �AB ;

EA� (x; u) =
@ yA

@ x�
; E�A (x; u) =

�
EA� (x; u)

��1 ;

yA = yA (x; u) ; x� =x� (y) ;

EA� (x; u)E�A (x; u) = ���; E
�
A (x; u)EB� (x; u) = �BA ;

���� (x; u) =E�A (x; u)
@
@ x�

EA� (x; u) =

=E�A (x; u)EB� (x; u)rBEA� (x; u) :

Of fundamental importance in our unified field theory are,
of course, the torsion tensor given by

��[��] (x; u) = 1
2
E�A (x; u)

� @
@ x�

EA� (x; u)� @
@ x�

EA� (x; u)
�

and the curvature tensor given by

R���� (x; u) =

= � E�A (x; u)
�� @

@ x�
@
@ x�

� @
@ x�

@
@ x�

�
EA� (x; u)

�
=

=EA� (x; u)
�� @

@ x�
@
@ x�

� @
@ x�

@
@ x�

�
E�A (x; u)

�
:

Additionally, we can also see that

R���� (x; u) =

=EA� (x; u)
�� @

@ x�
@
@ x�

� @
@ x�

@
@ x�

�
EA� (x; u)

�
+

+
� @
@ x�

@
@ x�

� @
@ x�

@
@ x�

�
g�� (x; u) :

Immediately, we obtain

R���� (x; u) =E�A (x; u)EB� (x; u)EC� (x; u) �
� �(rBrC�rCrB)EA� (x; u)

��2���� (x; u) ��[��] (x; u) :

Introducing a corresponding internal (“isotopic”) curva-
ture form through

�R��AB (x; u) =E�C (x; u)
�
(rArB�rB rA)EC� (x; u)

�
;
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we can write

R���� (x; u) =EA� (x; u)EB� (x; u) �R��AB (x; u) �
� 2 ���� (x; u) ��[��] (x; u) :

In physical terms, we therefore see that

R���� (x; u) =EA� (x; u)EB� (x; u) �R��AB (x; u) �
� 2 ���� (x; u)S��� � e

mc2
�2 (x; u) ���� (x; u)F�� u� ;

where the electromagnetic field tensor can now be expressed
by the extended form (given in Section 3)

~F�� (x; u) = 2
mc2

e
�2 (x; u) ��[��] (x; u)u� ;

that is,

~F�� (x; u) =
mc2

e
�2 (x; u)

�
@ u�
@ x�

� @ u�
@ x�

�

� EA� (x; u)EB� (x; u) (rB uA �rB uA)
�
:

An essential feature of the electromagnetic field in our
unified field theory therefore manifests as a field of vorticity,
somewhat reminiscent of the case of fluid dynamics, that is,

~F�� (x; u) =

= 2 mc
2

e
�2 (x; u)

�
!�� � EA� (x; u)EB� (x; u) �AB

�
;

where the vorticity field is given in two referential forms by

!�� =
1
2

�
@ u�
@ x�

� @ u�
@ x�

�
;

�AB =
1
2

(rB uA � rA uB) :

For our regular Eulerian electromagnetic field, we
simply have

F�� =F�� (x; u) = 2 mc
2

e
�
!�� � EA� (x; u)EB� (x; u) �AB

�
:

After some algebraic (structural) factorization, a profound
physical solution to our most general Eulerian expression for
the electromagnetic field can be obtained in integral form as

'� (x; u) = mc2

e

I
C
�2 (x; u)

� @
@ x�

EA� (x; u)
�
uA dx�

such that ~F�� (x; u) = @
@ x� '� (x; u) � @

@ x� '� (x; u), that
is, in order to preserve the customary gauge invariance, our
electromagnetic field shall manifestly be a “pure curl”.
This structural form is, of course, given in the domain of a
vortical path C covered by a quasi-regular surface spanned
in two directions and essentially given by the form

d �AB = d1 yA (x; u) d2 yB (x; u) � d1 yB (x; u) d2 yA (x; u).
Upon using Gauss theorem, we therefore see that.

'� (x; u) = 1
2
mc2

e
�

�
ZZ

�
�2 (x; u)

�
(rB rA � rArB)EC� (x; u)

�
uC d �AB :

In other words, we have

'� (x; u) = � 1
2
mc2

e

Z Z
�
�2 (x; u) �R��AB (x; u)u� d �AB

or, with d ��� =E�A (x; u)E�B (x; u) d �AB ,

'� (x; u) = � 1
2
mc2

e

Z Z
�
�2 (x; u)�

� �R���� (x; u) + 2 ���� (x; u) ��[��] (x; u)
�
u� d ���;

which means that

'� (x; u) = � 1
2
mc2

e

Z Z
�
�2(x; u)�

� �R���� (x; u) + 2 ���� (x; u)S��� (x; u)
�
u� d ��� �

� 1
2

Z Z
�

���� (x; u)F�� (x; u)u� u� d ���:

Combining the above expression with the geodesic equa-
tion of motion given by du�

ds = ���� (x; u)u� u� , we finally
obtain the integral equation of motion

'� (x; u) = � 1
2
mc2

e

Z Z
�
�2 (x; u)�

� �R���� (x; u) + 2 ���� (x; u)S��� (x; u)
�
u� d ��� �

� 1
2

Z Z
�

�
du�
ds

�
F�� (x; u) d ���;

which shows, for the first time, the explicit dependence of the
electromagnetic potential on world-velocity (as well as local
acceleration), global curvature, and the material spin field.

9 Closing remarks

In the foregoing presentation, we have created a new kind
of Finsler space, from which we have built the foundation
of a unified field theory endowed with propagating torsion
and curvature. Previously [1, 5], we have done it without the
“luxury” of killing the metricity condition of Riemannian ge-
ometry; at present, the asymmetric connection form of our
world-geometry, in addition to the metric and curvature, is
a function of both position and world-velocity. Therefore,

Indranu Suhendro. A New Finslerian Unified Field Theory of Physical Interactions 89



Volume 4 PROGRESS IN PHYSICS October, 2009

looking back on our previous works, we may conclude that,
in particular, the theories outlined in [3,4], as a whole, appear
to be a natural bridge between generalized Riemannian and
Finslerian structures.

A very general presentation of my own version of the
theory of non-linear connection has also been given in [3],
where, in immediate relation to [4], the enveloping evolu-
tive world-structure can be seen as some kind of conformal
Finsler space with torsion. The union between [3] and [4] has
indeed already given us the essence of a fully geometric quan-
tum theory of gravity, with electromagnetism and the Yang-
Mills gauge field included. The present work mainly serves
to complement and enrich this purely geometric union.
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Physical consequences are derived from the following mathematical structures: the
variational principle, Wigner’s classifications of the irreducible representations of the
Poincaré group and the duality invariance of the homogeneous Maxwell equations. The
analysis is carried out within the validity domain of special relativity. Hierarchical re-
lations between physical theories are used. Some new results are pointed out together
with their comparison with experimental data. It is also predicted that a genuine Higgs
particle will not be detected.

1 Introduction

Physics aims to describe processes which are observed in the
real world. For this purpose, mathematical formulations of
physical theories are constructed. Mathematical elements of
a physical theory can be divided into three sets: elements that
play a relative fundamental role and are regarded as corner-
stones of the theory’s structure, elements used as a derivation
tool and final formulas that describe the behavior of a given
system. This kind of classification is used here for the con-
venience of the presentation. In particular, what is regarded
here as a fundamental element may, in principle, be derived
from more profound mathematical elements.

This work regards the following mathematical structures
as cornerstones of the discussion. The variational principle
and its relevant Lagrangian density; Wigner’s analysis of the
irreducible representations of the Poincaré group; the dual-
ity invariance of the homogeneous Maxwell equations. Some
well known results of these elements are pointed out along-
side others that are not very well known. Boldface numbers
are used for marking the latter kind of results. It is shown that
some of these results fit experimental data whereas others are
used as a prediction of yet unknown experimental data.

The discussion is carried out within a framework that is
based on the following theoretical elements. First, Special
Relativity is regarded as a covering theory and all expres-
sions must be consistent with relativistic covariance. The De
Broglie relation between the particle’s wave properties and
its energy-momentum is used. Another issue is related to the
hierarchical relations between physical theories. (A good dis-
cussion of this issue can be found in [1], pp. 1–6.) The fol-
lowing lines explain this issue in brief.

Every physical theory applies to a limited set of processes.
For example, let us take the problem of moving bodies. It is
well known that physical theories yield very good predictions
for the motion of planets around the sun. On the other hand,
nobody expects that a physical theory be able to predict the
specific motion of an eagle flying in the sky. This simple ex-
ample proves that the validity of a physical theory should be

evaluated only with respect to a limited set of experiments.
The set of experiments which can be explained by a physical
theory is called its domain of validity. The relations between
domains of validity define hierarchical relations between the
corresponding theories. For example, given theories A; B
and A’s domain of validity is a subset of B’s domain of va-
lidity then B’s rank is higher than that of A.

An examination of Newtonian mechanics and relativistic
mechanics illustrates the notion of hierarchical relations be-
tween theories. Newtonian mechanics is good for low veloc-
ity experiments (because its predictions are consistent with
the error range of measurements). On the other hand, rel-
ativistic mechanics is good even for velocities that approach
the speed of light. Two conclusions can be derived from these
properties of the theories: First, relativistic mechanics has a
more profound basis because it is valid for all experiments
where Newtonian mechanics holds and for many other exper-
iments where Newtonian mechanics fails. Another aspect of
the relations between Newtonian mechanics and relativistic
mechanics is that Newtonian mechanics imposes constraints
on the form of the low velocity limit of relativistic mechan-
ics. Indeed, the low velocity limit of relativistic mechanics
is (and must be) consistent with Newtonian formulas. Below,
this kind of constraint is called constraint imposed by a lower
rank theory. Some of the theoretical derivations included be-
low rely on this principle.

The Lorentz metric used is diagonal and its entries are
(1,�1,�1,�1). Greek indices run from 0 to 3. Expressions
are written in units where ~ = c = 1. In this system of units
there is just one dimension. Here it is taken to be that of
length. Therefore, the dimension of a physical quantity is a
power of length and is denoted by [Ln]. In particular, energy
and momentum take the dimension [L�1]. The symbol Q;�
denotes the partial derivative of the quantity Q with respect
to x�. An upper dot denotes a differentiation with respect to
time.

The second section discusses quantum mechanical conse-
quences of the variational principle. The Dirac equation is ex-
amined in the third section. The fourth section shows incon-
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sistencies of the Klein-Gordon (KG) and the Higgs equations.
The fifth section examines results obtained from Wigner’s
classification of the irreducible representations of the Poinca-
re group. Consequences of the duality invariance of the ho-
mogeneous Maxwell equations together a regular charge-mo-
nopole theory are discussed in the sixth section. The seventh
section contains concluding remarks.

2 The Variational Principle

This section is dedicated to the form of a quantum theory of
a massive particle. Let us examine the pattern obtained in a
two slit interference experiment. Here one finds bright and
dark strips. A completely dark interference point indicates
that a full anti-phase destruction takes place there. Obviously,
this property should be obtained in every Lorentz frame of
reference. It follows that the phase must depend on a Lorentz
scalar.

The quantity which is suitable for this purpose is the ac-
tion of the system. Thus, let us examine a Lagrangian density
of the system and its action

S =
Z
L( ; ;�) d4x�: (1)

Now, if the Lagrangian density is a Lorentz scalar then
also the action is a Lorentz scalar. Therefore, it is conclud-
ed that

1. A relativistically consistent quantum theory may be de-
rived from a Lagrangian density which is a Lorentz
scalar.

Another issue is related to the dimension of the quanti-
ties. The phase is an argument of an exponent. Therefore, it
must be dimensionless. Thus, in the system of units used here
the action is dimensionless and satisfies this requirement. It
follows that

2. An acceptable Lagrangian density must have the di-
mension [L�4].

This conclusion means that the wave function  acquires a
well defined dimension.

Remark:
The foregoing arguments indicate that if one wishes to
take an alternative way for constructing a relativistically self-
consistent quantum theory, then one must find another phys-
ically meaningful quantity that is a dimensionless Lorentz
scalar and is suitable for taking the role of the particle’s phase.
Apparently, such a quantity does not exist. If this claim is cor-
rect then the variational principle is also a necessary condition
for constructing a self-consistent relativistic quantum theory.

Another point is related to the independent variables x�
of the wave function

 (x�) (2)

which is a single set of four space-time coordinates. There-
fore (2) cannot describe a composite particle, because such a
particle requires, besides a description of the space-time lo-
cation of its center of energy, additional coordinates for de-
scribing its internal structure. Therefore,

3. The wave function  (x�) describes an elementary
structureless pointlike particle.

This result is consistent with the nature of an elementary clas-
sical particle (see [2], pp. 46, 47). Below it is applied as a
useful criterion for evaluating experimental data.

The Lagrangian density is used here as the cornerstone
of the theory. Hence, the particle’s equations of motion are
the corresponding Euler-Lagrange equations (see [3], p. 14;
[4], p. 16)

@
@x�

@L
@ @ 
@x�
� @L
@ 

= 0 : (3)

On this basis it is concluded that

4. The particle’s equations of motion are the Euler-Lagra-
nge equations derived from the Lagrangian density.

Obviously, different kinds of Lagrangian density yield differ-
ent equations of motion. This point is discussed later.

Another issue is the consistency of a quantum theory of
a massive particle with the classical theory, where the latter
provides an example of constraints imposed by a lower rank
theory. The classical limit of quantum mechanics is discussed
in the literature (see [5], pp. 19–21 and elsewhere; [6], pp. 25–
27, 137–138).

In order to do that, the quantum theory should provide
expressions for the energy and the momentum of the parti-
cle. As a matter of fact, having an appropriate expression for
the energy at the system’s rest frame is enough. Indeed, a
Lorentz boost guarantees that the theory provides appropriate
expressions for the energy and momentum in any reference
frame. Therefore, the following lines examine the construc-
tion of an expression for the energy of a massive quantum
mechanical particle in its rest frame. For this end, let us take
the Lagrangian density and construct the following second
rank tensor (see [4], p. 19)

T�� =
@L
@ @ 
@x�

@ 
@x�
� Lg�� : (4)

Now, density is a 0-component of a 4-vector and the same
is true for energy. Hence, energy density is a (0,0) compo-
nent of a second rank tensor. Moreover, like the dimension of
the Lagrangian density, the dimension of T�� of (4) is [L�4].
This is also the dimension of energy density. Now, in quan-
tum mechanics, the Hamiltonian is regarded as the energy op-
erator. Thus, the entry T00 of (4) is regarded as an expression
for the Hamiltonian density

H = _ 
@L
@ _ 
� L : (5)
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It is explained below why an expression for density is re-
quired. Here, density properties can be readily taken from
electrodynamics (see [2], pp. 73–75). Density must have the
dimension [L�3] and be a 0-component of a 4-vector satisfy-
ing the continuity equation

j�;� = 0 : (6)

At this point, one may take either of the following alter-
natives:

A. Use the Hamiltonian density H together with the den-
sity expression and extract the Hamiltonian differential
operator H , operating on  . The energy is an eigen-
value of this operator:

H = E ; (7)

Now the De Broglie relation

i
@ 
@t

= E ; (8)

yields the differential equation

i
@ 
@t

= H : (9)

At this point one can construct a Hilbert space that in-
cludes all eigenfunctions of the Hamiltonian H .

B. Use the expression for density as an inner product for  
and construct an orthonormal basis for the correspond-
ing Hilbert space. Next construct the Hamiltonian ma-
trix. For the i; j functions of the Hilbert space basis,
the Hamiltonian matrix element is

Hij =
Z
H( i;  i;�;  j ;  j;�) d3x : (10)

At this point, the Hamiltonian matrix is diagonalized
and its energy eigenfunctions and eigenvalues are ob-
tained.

Obviously, the mathematical structures of A and B are rele-
vant to the same data. Therefore, both methods construct one
and the same Hilbert space.

Equation (9) makes the following problem. As stated
above, the Euler-Lagrange equation (3) is the system’s equa-
tion of motion. On the other hand, (9) is another differential
equation. Hence, the following requirement should be satis-
fied.

5. Requirement 1: The first order differential equation (9)
should be consistent with the Euler-Lagrange equation
of the theory (3).

The next two sections are devoted to two specific kinds of
Lagrangian density of massive particles.

3 The Dirac field

It is shown here that the Dirac field satisfies the requirements
derived above and that experimental data support the theory.
The formulas are written in the standard notation [3,7].

The Dirac Lagrangian density is

L = � 
�
�(i@� � eA�)�m� : (11)

A variation with respect to � yields the corresponding
Euler-Lagrange equation

�(i@� � eA�) = m : (12)

As stated in section 2, the dimension of a Lagrangian den-
sity is [L�4]. Therefore, the dimension of  is [L�3=2] and
the Dirac 4-current

j� = � � (13)

satisfies the required dimension and the continuity equation
(6) (see [7], p. 9). Thus, the density is the 0-component
of (13)

�Dirac =  y : (14)

Substituting the Dirac Lagrangian density (11) into the
general formula (5), one obtains the Dirac Hamiltonian
density

H =  y
�
α � (�ir� eA) + �m+ eV

�
 : (15)

The density  y can be factored out from (15) and the
expression enclosed within the square brackets is the Dirac
Hamiltonian written as a differential operator. Its substitu-
tion into (9) yields the well known Dirac quantum mechani-
cal equation

i
@ 
@t

=
�
α � (�ir� eA) + �m+ eV

�
 : (16)

It is also interesting to note that due to the linearity of the
Dirac Lagrangian density (11) with respect to _ , the Dirac
Hamiltonian density (15) as well as the Dirac Hamiltonian do
not contain a derivative of with respect to time. Hence, (16)
is an explicit first order differential equation. It is easily seen
that (16) agrees completely with the Euler-Lagrange equation
(12) of the Dirac field. It follows that Requirement 1 which
is written near the end of section 2 is satisfied.

A Hilbert space can be constructed from the eigenfunc-
tions obtained as solutions of the Dirac equation (16). Here
the inner product of the Hilbert space is based on the density
of the Dirac function (14). The eigenfunctions of the Hamil-
tonian are used for building an orthonormal basis

�ij =
Z
 yi j d3x : (17)

Now, the form of an energy eigenfunction is

 (x; t) = e�iEt�(x): (18)
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This form enables a construction of a Hilbert space based
on e�iEt�(x) (the Schrödinger picture) or on �(x) (the Hei-
senberg picture). Here, in the Heisenberg picture, wave func-
tions of the Hilbert space are time independent.

As is well known, the non-relativistic limit of the Dirac
equation agrees with the Pauli equation of a spinning electron
(see [7], pp. 10–13). Hence, in accordance with the discus-
sion presented in the first section, the Dirac relativistic quan-
tum mechanical equation is consistent with the constraint im-
posed by the lower rank theory of the non-relativistic quan-
tum mechanical equations. A related aspect of this constraint
is the density represented by the Dirac wave function (14).
Indeed, in the non-relativistic limit of Dirac’s density, (14)
reduces to the product of the ”large” components of Dirac’s
 (see [7], pp. 10–13). Hence, (14) agrees with the den-
sity of the Pauli-Schrödinger equations 	y	. This agreement
also proves the compatibility of the Hilbert space of the Pauli-
Schrödinger equations with that of the non-relativistic limit of
the Dirac equation.

Beside the satisfactory status of Dirac’s theory, his equa-
tion has an extraordinary success in describing experimental
results of electrons and muons in general and in atomic spec-
troscopy in particular. Moreover, experiments of very high
energy prove that quarks are spin-1/2 particles. In particular,
high energy experimental data are consistent with the point-
like nature of electrons, muons and quarks (see [8], pp. 271,
272; [9], p. 149). Hence, the Dirac equation satisfies item 3
of section 2.

4 Lagrangian density of second order equations

This section discusses second order quantum equations of
motion (denoted here by SOE) which are derived from a La-
grangian density. The presentation is analogous to that of
the previous section where the Dirac equation is discussed.
The analysis concentrates on terms containing the highest or-
der derivatives. Thus, the specific form of terms containing
lower order derivatives is not written explicitly and all kinds
of these terms are denoted by the acronym for Low Order
Terms LOT . Second order quantum differential equations
are derived from Lagrangian densities of the following form:

L = ��;��;�g�� + LOT: (19)

This form of the Lagrangian density is used for the KG
(see [3], p. 38) and the Higgs (see [4], p. 715) fields.

Applying the Euler-Lagrange variational principle to the
Lagrangian density (19) one obtains a second order differen-
tial equation that takes the following form

g��@�@�� = LOT: (20)

Here, unlike the case of the Dirac field, the dimension of �
is L�1. Hence, in order to satisfy dimensional requirements,

the expression for density must contain a derivative with re-
spect to a coordinate. Thus, the 4-current takes the following
form (see [3], p. 40; [10], p. 199)

j� = i (���;� � ��;��) + LOT (21)

and the density is

� = i (�� _�� _���) + LOT: (22)

The left hand side of (21) is a 4-vector. Therefore, � of
SOE is a Lorentz scalar.

Using the standard method (5), one finds that the Hamil-
tonian density takes the following form (see [3], p. 38; [10],
p. 198)

H = _�� _�+ (r��) � (r�) + LOT: (23)

An analysis of these expressions shows that, unlike the
case of the Dirac equation, SOE theories encounter problems.
Some of these problems are listed below.

a. One cannot obtain a differential operator representing
the Hamiltonian. Indeed, the highest order time deriva-
tive of the SOE density (22) is anti-symmetric with re-
spect to _��; _� whereas the corresponding term of the
Hamiltonian density (23) is symmetric with respect to
these functions (see [11], section 3, which discusses the
KG equation). Hence, in the case of SOE theories, one
cannot use method A of section 2 for constructing a
Hilbert space for the system.

b. The density associated with the wave function � is an
indispensable element of the Hilbert space. The de-
pendence of the SOE density (22) on time-derivatives
proves that a SOE Hilbert space is built on functions of
the four space-time coordinates x�. Hence, SOE can-
not use the Heisenberg picture where the functions of
the Hilbert space are time independent  H =  S(t0)
(see [3], p. 7).

c. In the Schrödinger theory 	�	 represents density. It
follows that like the case of the Dirac field, the dimen-
sion of this 	 is [L�3=2]. On the other hand, the di-
mension of the SOE function � is [L�1]. Therefore,
the nonrelativistic limit of SOE theories is inconsistent
with the Schrödinger theoretical structure.

d. Unlike the Dirac Hamiltonian, which is independent
of time-derivatives of  , the SOE Hamiltonian den-
sity has a term containing the bilinear product _�� _�.
Hence, it is not clear how a SOE analogue of the fun-
damental quantum mechanical equation (9) can be cre-
ated. Moreover, it should be proved that this first or-
der implicit nonlinear differential equation is consis-
tent with the corresponding second order explicit differ-
ential equation (20) of SOE, as stated by requirement
1 which is formulated near the end of section 2. With-
out substantiating the validity of the Hamiltonian, SOE
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theories violate a constraint imposed by a lower rank
theory which is explained in the lines that precede (4).

e. Some SOE theories apply to real fields (see [3], p. 26;
[4], p. 19 etc.). New problems arise for these kinds of
physical objects. Indeed, density cannot be defined for
these particles (see [12], pp. 41–43). Moreover, a mas-
sive particle may be at rest. In this case its amplitude
should be independent of time. But a real wave func-
tion has no phase. Therefore, in the case of a motion-
less real particle, the time-derivative of its wave func-
tion vanishes identically. For this reason, its physical
behavior cannot be described by a differential equation
with respect to time. Thus, a real SOE particle cannot
be described by the SOE equation of motion (20) and
it cannot have a Hamiltonian.

f. Another problem arises for a charged SOE particle. As
stated in item a above, this particle cannot have a differ-
ential operator representing the Hamiltonian. Hence,
method A, discussed near (7)-(9), cannot be used for a
Hilbert space construction. Moreover, the inner prod-
uct of a time-dependent Hilbert space is destroyed in
the case of an external charge that approaches a charged
SOE particle (see [13], pp. 59–61). Hence, method B
does not hold either. It follows that a charged SOE
particle has no Hamiltonian. Therefore, a charged
SOE particle does not satisfy a constraint imposed by a
lower rank theory.

This discussion points out theoretical difficulties of SOE
fields. The experimental side responds accordingly. Point 3
of section 2 is useful for evaluating the data. Thus, a field
 (x�) used in a Lagrangian density describes an elementary
point-like particle. It turns out that as of today, no scalar
pointlike particle has been detected.

In the history of physics, the three �-mesons have been
regarded as KG particles and the electrically neutral �0 mem-
ber of this triplet was regarded as a Yukawa particle, namely,
a real (pseudo) scalar KG particle. However, it has already
been established that �-mesons are not elementary pointlike
particles but composite particles made of q�q and they occupy
a nonvanishing spatial volume. Thus, as of today, there is
no experimental support for an SOE particle. The theoreti-
cal and experimental SOE problems mentioned above are re-
garded seriously here. On the basis of the foregoing analysis,
it is predicted here that no genuine elementary SOE particle
will be detected. A special case is the following statement: a
genuine Higgs particle will not be detected.

5 Irreducible representations of the Poincaré group

The profound significance of Wigner’s analysis of the irre-
ducible representations of the Poincaré group (see [14]; [15],
pp. 44–53; [16], pp. 143–150) is described by the follow-
ing words: ”It is difficult to overestimate the importance of

this paper, which will certainly stand as one of the great in-
tellectual achievements of our century” (see [16], p. 149).
Wigner’s work shows that there are two physically relevant
classes of irreducible representations of the Poincaré group.
One class is characterized by a massm > 0 and a spin s. The
second class consists of cases where the self mass m = 0,
the energy E > 0 and two values of helicity. (Helicity is
the projection of the particle’s spin in the direction of its mo-
mentum.) Two values of helicity �s correspond to a spin s.
Thus, each massive particle makes a basis for a specific ir-
reducible representation that is characterized by the pair of
values (m; s). A massless particle (like the photon) has a
zero self mass, a finite energy and two values of helicity (for
a photon, the helicity is �1).

A result of this analysis is that a system that is stable for
a long enough period of time is a basis for an irreducible rep-
resentation of the Poincaré group (see [15], pp. 48–50). Let
us take a photon. Cosmic photons are detected by measuring
devices on earth after traveling in space for a very very long
time, compared to the duration of an electromagnetic interac-
tion. Therefore, photons must belong to a unique irreducible
representation of the Poincaré group. This conclusion is in-
consistent with the idea of Vector Meson Dominance (VMD).
VMD regards the photon as a linear combination of a mass-
less real photon and a massive vector meson. (For a presen-
tation of VMD see [9], pp. 296–303; [17].)

The VMD idea has been suggested in order to explain
experimental results of scattering of energetic photons on nu-
cleons. The main points of the data are:

i. The overall charge of a proton is +e whereas the over-
all charge of a neutron vanishes. Therefore, charge con-
stituents of a proton and a neutron are different.

ii. In spite of the data of the previous item, interaction of
a hard photon with a proton is nearly the same as its
interaction with a neutron.

The theoretical analysis of Wigner’s work shows that VMD
is unacceptable. Other inconsistencies of VMD with experi-
mental data have also been published [18]. This state of af-
fairs means that the currently accepted Standard Model has
no theoretical explanation for the photon-nucleon interaction.
This point is implicitly recognized by the PACS category of
VMD which does not belong to a theoretical PACS class.
Thus, on July 2009, VMD is included in the class of ”Other
models for strong interactions”. Hence, the Standard Model
does not provide a theoretical explanation for the scattering
data of hard photons on nucleons.

6 Duality transformations of electromagnetic fields

Electromagnetic fields travel in vacuum at the speed of light.
Therefore, the associated particle, namely — the photon, is
massless. For this reason, it cannot be examined in a frame
where it is motionless. This result means that the argument of
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point e of section 4 does not hold for electromagnetic fields.
It follows that, unlike the wave function of a massive parti-
cle, electromagnetic fields can be described by a Lagrangian
density that depends on real functions. This well known fact
is another aspect of the inherent difference between massive
and massless particles, which has been obtained by Wigner
and discussed in the previous section.

Thus, the system consists of electromagnetic fields whose
equations of motion (Maxwell equations) are derived from
a Lagrangian density and charge carrying massive particles
whose equation of motion (the Lorentz force) is derived from
a classical Lagrangian. Below, this theory is called ordinary
electrodynamics. All quantities are described by real func-
tions. The action of the system is (see [2], p. 75)

S = �
Z
m
p

1� v2 dt�
Z
A�j

�
(e)d

4x�

� 1
16�

Z
F��F��d4x ; (24)

where the subscript (e) indicates that j� is a current of electric
charges, A� denotes the 4-potential of the electromagnetic
fields, and F�� is the corresponding fields tensor

F�� = A�;� � A�;� : (25)

The explicit form of this tensor is

F�� =

0BB@ 0 �Ex �Ey �Ez
Ex 0 �Bz By
Ey Bz 0 �Bx
Ez �By Bx 0

1CCA : (26)

These expressions enable one to derive Maxwell equa-
tions (see [2], pp. 78, 79 and 70, 71)

F��;� = � 4�j�(e); F ���;� = 0 : (27)

Here F ��� is the dual tensor of F��

F ��� =

0BB@ 0 �Bx �By �Bz
Bx 0 Ez �Ey
By �Ez 0 Ex
Bz Ey �Ex 0

1CCA : (28)

These tensors satisfy the following relation

F ��� =
1
2
"����F�� ; (29)

where "���� is the completely antisymmetric unit tensor of
the fourth rank.

The Lorentz force, which describes the motion of a charg-
ed particle, is obtained from a variation of the particle’s coor-
dinates (see [2], pp. 49–51)

ma�(e) = eF��v� : (30)

The foregoing expressions describe the well established
theoretical structure of ordinary electrodynamics. Let us see
the results of introducing duality transformations. Duality
transformations (also called duality rotations by �=2) of elec-
tromagnetic fields take the following form (see [19], pp. 252,
551; [20], p. 1363)

E! B; B! �E : (31)

These transformations can be put into the following ten-
sorial form

F�� ! F ��� ; F ��� ! �F�� : (32)

An examination of the homogeneous Maxwell equations

F��;� = 0; F ���;� = 0; (33)

proves that they are invariant under the duality transforma-
tions (32). On the other hand, an inequality is obtained for
the inhomogeneous Maxwell equation

F ���;� , � 4�j�(e): (34)

This problem can be settled by the introduction of the
notion of magnetic monopoles (called briefly monopoles).
Thus, duality transformations of the electromagnetic fields
(32) are augmented by the following transformation that re-
lates charges and monopoles

e! g; g ! �e ; (35)

where g denotes the monopole strength.
Two things are established at this point:

1. The theoretical foundation of ordinary electrodynamics
(24), and its equations of motion (27) and (30).

2. The mathematical form of duality transformations (32)
and (35).

Now, a theory for a system of monopoles and electromagnetic
fields (called below monopole electrodynamics) is obtained
from the application of duality transformations to ordinary
electrodynamics. The action principle of this system is

S = �
Z
m
p

1� v2 dt�
Z
A(m)�j

�
(m)d

4x�

� 1
16�

Z
F �(m)��F

���
(m) d

4x ; (36)

where the subscript (m) denotes that the quantities pertain to
monopole electrodynamics. Here the fields are derived from
a 4-potential

F �(m)�� = A(m)�;� � A(m)�;� ; (37)

which is analogous to (25). Maxwell equations of monopole
electrodynamics are

F � ��
(m) ;� = �4�j�(m); F ��

(m) ;� = 0 (38)
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and the Lorentz force is

ma�(m) = gF ���(m) v� : (39)

Thus, we have two theories for two distinct systems: ordi-
nary electrodynamics for a system of charges and fields and
monopole electrodynamics for a system of monopoles and
fields. The first system does not contain monopoles and the
second system does not contain charges. The problem is to
find the form of a unified theory that describes the motion of
charges, monopoles and fields. Below, such a theory is called
a charge-monopoly theory. The charge-monopole theory is a
higher rank theory whose domain of validity includes those of
ordinary electrodynamics and of monopole electrodynamics
as well. On undertaking this assignment, one may examine
two postulates:

1. Electromagnetic fields of ordinary electrodynamics are
identical to electromagnetic fields of monopole electro-
dynamics.

2. The limit of the charge-monopole theory for a system
that does not contain monopoles agrees with ordinary
electrodynamics and limit of the charge-monopole the-
ory for a system that does not contain charges agrees
with monopole electrodynamics.

It turns out that these postulates are mutually contradictory.
A charge-monopole theory that relies (implicitly) on the

first postulate has been published by Dirac many years ago
[21, 22]. (Ramifications of Dirac monopole theory can be
found in the literature [20].) This theory shows the need
to define physically unfavorable irregularities along strings.
Moreover, the form of its limit that applies to a system of
monopoles without charges is inconsistent with the theory
of monopole electrodynamics, which is derived above from
the duality transformations. Therefore, it does not satisfy the
constraint imposed by a lower rank theory. The present ex-
perimental situation is that in spite of a long search, there is
still no confirmation of the existence of a Dirac monopole
(see [23], p. 1209).

The second postulate was used for constructing a differ-
ent charge-monopole electrodynamics [24, 25]. This postu-
late guarantees that the constraints imposed by the two lower
rank theories are satisfied. Moreover, this theory does not
introduce new irregularities into electrodynamics. Thus, it
is called below regular charge-monopole theory. The fol-
lowing statements describe important results of the regular
charge-monopole theory: The theory can be derived from
an action principle, whose limits take the form of (24) and
(36), respectively. Charges do not interact with bound fields
of monopoles; monopoles do not interact with bound fields
of charges; radiation fields (namely, photons) of the systems
are identical and charges as well as monopoles interact with
them. Another result of this theory is that the size of an ele-
mentary monopole g is a free parameter. Hence, the theory is

relieved from the huge and unphysical Dirac’s monopole size
g2 = 34:25.

The regular charge-monopole theory is constructed on the
basis of the second postulate. This point means that it is not
guided by new experimental data. However, it turns out that
it explains the important property of hard photon-nucleon in-
teraction which is mentioned in the previous section. Indeed,
just assume that quarks carry a monopole and postulate that
the elementary monopole unit g is much larger then the elec-
tric charge e (probably jgj ' 1). This property means that
photon-quark interaction depends mainly on monopoles and
that the photon interaction with the quarks’ electric charge is
a small perturbation. Therefore, the very similar results of
photon-proton and photon-neutron scattering are explained.
(Note also that all baryons have a core which carries three
units of magnetic charge that attracts the three valence quarks.
The overall magnetic charge of a hadron vanishes.) Other
kinds of experimental support for the regular charge-monopo-
le theory have been published elsewhere [26].

7 Concluding remarks

This work is based on the main assumption of theoretical
physics which states that results derived from physically rel-
evant mathematical structures are expected to fit experimen-
tal data [27]. Three well known mathematical structures are
used here: the variational principle, Wigner’s analysis of the
irreducible representations of the Poincaré group and duality
transformations of electromagnetic fields.

The paper explains and uses three points which are either
new or at least lack an adequate discussion in textbooks.

1. Constraints are imposed by a lower rank theory on pro-
perties of the corresponding limit of a higher rank the-
ory (see a discussion in the Introduction).

2. The need to prove consistency between the Euler-
Lagrange equation obtained from a Lagrangian density
and the quantum mechanical equation i @ =@t=H 
which holds for the corresponding Hamiltonian.

3. The field function  (x�) describes an elementary
pointlike particle (see the discussion near (2)).

Points 1 and 2 are useful for a theoretical evaluation of the
acceptability of specific physical ideas. Point 3 is useful for
finding an experimental support for these ideas.

The main results of the analysis presented in this work are
as follows: Dirac equation is theoretically consistent and has
an enormous experimental support. Second order quantum
mechanical equations (like the Klein-Gordon and the Higgs
equations) suffer from many theoretical problems and have no
experimental support. (�-mesons are not pointlike, therefore,
they are not genuine Klein-Gordon particles.) Real fields can-
not be used for a description of massive particles. The idea of
Vector Meson Dominance is inconsistent with Wigner’s anal-
ysis of the irreducible representations of the Poincaré group.
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Therefore, VMD is unacceptable and the Standard Model has
no theoretical explanation for the data of a scattering process
of an energetic photon on nucleon. Monopole theories that in-
troduce irregularities along strings are inconsistent with point
1 of this section and have no experimental support. The reg-
ular charge monopole theory [24–26] is consistent with point
1 and has experimental support.
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