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SPECIAL REPORT

Re-Identification of the Many-World Background of Special Relativity as
Four-World Background. Part I.

Akindele O. Joseph Adekugbe

Center for The Fundamental Theory, P. O. Box 2575, Akure, Ondo State 340001, Nigeria.
E-mail: adekugbe@alum.mit.edu

The pair of co-existing symmetrical universes, referred to as our (or positive) universe
and negative universe, isolated and shown to constitute a two-world background for
the special theory of relativity (SR) in previous papers, encompasses another pair of
symmetrical universes, referred to as positive time-universe and negative time-universe.
The Euclidean 3-spaces (in the context of SR) of the positive time-universe and the
negative time-universe constitute the time dimensions of our (or positive) universe and
the negative universe respectively, relative to observers in the Euclidean 3-spaces of
our universe and the negative universe and the Euclidean 3-spaces of our universe and
the negative universe constitute the time dimensions of the positive time-universe and
the negative time-universe respectively, relative to observers in the Euclidean 3-spaces
of the positive time-universe and the negative time-universe. Thus time is a secondary
concept derived from the concept of space according to this paper. The one-dimensional
particle or object in time dimension to every three-dimensional particle or object in 3-
space in our universe is a three-dimensional particle or object in 3-space in the positive
time-universe. Perfect symmetry of natural laws is established among the resulting
four universes and two outstanding issues about the new spacetime/intrinsic spacetime
geometrical representation of Lorentz transformation/intrinsic Lorentz transformation
in the two-world picture, developed in the previous papers, are resolved within the larger
four-world picture in this first part of this paper.

1 Origin of time and intrinsic time dimensions

1.1 Orthogonal Euclidean 3-spaces

Let us start with an operational definition of orthogonal Eucl-
idean 3-spaces. Given a three-dimensional Euclidean space
(or a Euclidean 3-space) IE3 with mutually orthogonal straight
line dimensions x1, x2 and x3 and another Euclidean 3-space
IE03 with mutually orthogonal straight line dimensions x01, x02

and x03, the Euclidean 3-space IE03 shall be said to be orthog-
onal to the Euclidean 3-space IE3 if, and only if, each dimen-
sion x0 j of IE03; j = 1, 2, 3, is orthogonal to every dimension
xi; i = 1, 2, 3 of IE3. In other words, IE03 shall be said to be or-
thogonal to IE3 if, and only if, x0 j ⊥ xi; i, j = 1, 2, 3, at every
point of the Euclidean 6-space generated by the orthogonal
Euclidean 3-spaces.

We shall take the Euclidean 3-spaces IE3 and IE03 to be the
proper (or classical) Euclidean 3-spaces of classical mechan-
ics (including classical gravity), to be re-denoted by Σ′ and
Σ0′ respectively for convenience in this paper. The reason for
restricting to the proper (or classical) Euclidean 3-spaces is
that we shall assume the absence of relativistic gravity while
considering the special theory of relativity (SR) on flat space-
time, as shall be discussed further at the end of this paper.

Graphically, let us consider the Euclidean 3-space Σ′ with
mutually orthogonal straight line dimensions x1′, x2′ and x3′

as a hyper-surface to be represented by a horizontal plane

surface and the Euclidean 3-space Σ0′ with mutually orthog-
onal straight line dimensions x01′, x02′ and x03′ as a hyper-
surface to be represented by a vertical plane surface. The
union of the two orthogonal proper (or classical) Euclidean
3-spaces yields a compound six-dimensional proper (or clas-
sical) Euclidean space with mutually orthogonal dimensions
x1′, x2′, x3′, x01′, x02′ and x03′ illustrated in Fig. 1.

As introduced (as ansatz) in [1] and as shall be derived
formally in the two parts of this paper, the hyper-surface (or
proper Euclidean 3-space) Σ′ along the horizontal is underlied
by an isotropic one-dimensional proper intrinsic space de-
noted by φρ′ (that has no unique orientation in the Euclidean
3-space Σ′). The vertical proper Euclidean 3-space Σ0′ is like-
wise underlied by an isotropic one-dimensional proper intrin-
sic space φρ0′ (that has no unique orientation in the Euclidean
3-space Σ0′). The underlying intrinsic spaces φρ′ and φρ0′ are
also shown in Fig. 1.

Inclusion of the proper time dimension ct′ along the verti-
cal, normal to the horizontal hyper-surface (or horizontal Eu-
clidean 3-space) Σ′ in Fig. 1, yields the flat four-dimensional
proper spacetime (Σ′, ct′) of classical mechanics (CM), (in-
cluding classical gravitation), of the positive (or our) universe
and inclusion of the proper intrinsic time dimension φcφt′

along the vertical, normal to the proper intrinsic space φρ′

along the horizontal, yields the flat 2-dimensional proper in-
trinsic spacetime (φρ′, φcφt′) of intrinsic classical mechanics
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Fig. 1: Co-existing two orthogonal proper Euclidean 3-spaces
(considered as hyper-surfaces) and their underlying isotropic one-
dimensional proper intrinsic spaces.

(φCM), (including intrinsic classical gravitation), of our uni-
verse. The proper Euclidean 3-space Σ′ and its underlying
one-dimensional proper intrinsic space φρ′ shall sometimes
be referred to as our proper (or classical) Euclidean 3-space
and our proper (or classical) intrinsic space for brevity.

The vertical proper Euclidean 3-space Σ0′ and its underly-
ing one-dimensional proper intrinsic space φρ0′ in Fig. 1 are
new. They are different from the proper Euclidean 3-space
−Σ′∗ and its underlying proper intrinsic space −φρ′∗ of the
negative universe isolated in [1] and [2]. The Euclidean 3-
space −Σ′∗ and its underlying proper intrinsic space −φρ′∗ of
the negative universe are “anti-parallel” to the Euclidean 3-
space Σ′ and its underlying intrinsic space φρ′ of the positive
universe, which means that the dimensions −x1′∗, −x2′∗ and
−x3′∗ of −Σ′∗ are inversions in the origin of the dimensions
x1′, x2′ and x3′ of Σ′.

There are likewise the proper Euclidean 3-space −Σ0′∗

and its underlying proper intrinsic space −φρ0′∗, which are
“anti-parallel” to the new proper Euclidean 3-space Σ0′ and
its underlying proper intrinsic space φρ0′ in Fig. 1. Fig. 1
shall be made more complete by adding the negative proper
Euclidean 3-spaces −Σ′∗ and −Σ0′∗ and their underlying one-
dimensional intrinsic spaces −φρ′∗ and −φρ0′∗ to it, yielding
Fig. 2.

The proper Euclidean 3-space Σ′ with dimensions x1′, x2′

and x3′ and the proper Euclidean 3-space Σ0′ with dimen-
sions x01′, x02′ and x03′ in Fig. 2 are orthogonal Euclidean
3-spaces, which means that x0 j′ ⊥ xi′; i, j = 1, 2, 3, as de-
fined earlier. The proper Euclidean 3-space −Σ′∗ with dimen-
sions −x1′∗, −x2′∗ and−x3′∗ and the proper Euclidean 3-space
−Σ0′∗ with dimensions −x01′∗, −x02′∗ and −x03′∗ are likewise
orthogonal Euclidean 3-spaces.

Should the vertical Euclidean 3-spaces Σ0′ and −Σ0′∗ and

Fig. 2: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic spaces, where the rest masses in the proper Euclidean 3-spaces
and the one-dimensional intrinsic rest masses in the intrinsic spaces
of a quartet of symmetry-partner particles or object are shown.

their underlying isotropic intrinsic spaces φρ0′ and −φρ0′∗ ex-
ist naturally, then they should belong to a new pair of worlds
(or universes), just as the horizontal proper Euclidean 3-space
Σ′ and −Σ′∗ and their underlying one-dimensional isotropic
proper intrinsic spaces φρ ′ and −φρ ′∗ exist naturally and be-
long to the positive (or our) universe and the negative universe
respectively, as found in [1] and [2]. The appropriate names
for the new pair of universes with flat four-dimensional proper
spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗) of classical mechan-
ics (CM) and their underlying flat two-dimensional proper
intrinsic spacetimes (φρ0′, φcφt0′) and (−φρ0′∗, −φcφt0′∗) of
intrinsic classical mechanics (φCM), where the time dimen-
sions and intrinsic time dimensions have not yet appeared in
Fig. 2, shall be derived later in this paper.

As the next step, an assumption shall be made, which
shall be justified with further development of this paper, that
the four universes encompassed by Fig. 2, with flat four- di-
mensional proper spacetimes (Σ′, ct′), (−Σ′∗,−ct ′∗), (Σ0′, ct0′)
and (−Σ0′∗,−ct0′∗) and their underlying flat proper intrinsic
spacetimes (φρ ′, φcφt′), (−φρ′∗,−φcφt′∗), (φρ0′, φcφt0′) and
(−φρ0′∗,−φcφt0′∗) respectively, where the proper time and
proper intrinsic time dimensions have not yet appeared in
Fig. 2, exist naturally and exhibit perfect symmetry of state
and perfect symmetry of natural laws. Implied by this as-
sumption are the following facts:

1. Corresponding to every given point P in our proper Eu-
clidean 3-space Σ′, there are unique symmetry- partner
point P0, P∗ and P0∗ in the proper Euclidean 3-spaces
Σ0′, −Σ′∗ and −Σ0′∗ respectively;

2. Corresponding to every particle or object of rest mass
m0 located at a point in our proper Euclidean 3-space
Σ′, there are identical symmetry-partner particles or ob-
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jects of rest masses to be denoted by m0
0,−m∗0 and −m0

0
∗

located at the symmetry-partner points in Σ0′, −Σ′∗ and
−Σ0′∗ respectively, as illustrated in Fig. 2 already and

3. Corresponding to motion at a speed v of the rest mass
m0 of a particle or object through a point along a di-
rection in our proper Euclidean space Σ′, relative to an
observer in Σ′, there are identical symmetry- partner
particles or objects of rest masses m0

0,−m∗0 and −m0
0
∗ in

simultaneous motions at equal speed v along identical
directions through the symmetry-partner points in the
proper Euclidean 3-spaces Σ0′, −Σ′∗ and −Σ0′∗ respec-
tively, relative to identical symmetry-partner observers
in the respective Euclidean 3-spaces.

4. A further requirement of the symmetry of state among
the four universes encompassed by Fig. 2 is that the
motion at a speed v of a particle along the X− axis,
say, of its frame in any one of the four proper Eu-
clidean 3-spaces, (in Σ0′, say), relative to an observer
(or frame of reference) in that proper Euclidean 3-space
(or universe), is equally valid relative to the symmetry-
partner observers in the three other proper Euclidean
3-spaces (or universes). Consequently the simultane-
ous rotations by equal intrinsic angle φψ of the intrinsic
affine space coordinates of the symmetry-partner par-
ticles’ frames φx̃′, φx̃0′, −φx̃′∗ and −φx̃0′∗ relative to
the intrinsic affine space coordinates of the symmetry-
partner observers’ frames φx̃, φx̃0, −φx̃∗ and −φx̃0∗ re-
spectively in the context of the intrinsic special theory
of relativity (φSR), as developed in [1], implied by item
3, are valid relative to every one of the four symmetry-
partner observers in the four proper Euclidean 3-spaces
(or universes). Thus every one of the four symmetry-
partner observers can validly draw the identical relative
rotations of affine intrinsic spacetime coordinates of
symmetry-partner frames of reference in the four uni-
verses encompassed by Fig. 2 with respect to himself
and construct φSR and consequently SR in his universe
with the diagram encompassing the four universes he
obtains.

Inherent in item 4 above is the fact that the four universes
with flat four-dimensional proper physical (or metric) space-
times (Σ′, ct′), (Σ0′, ct0′), (−Σ′∗, −ct′∗) and (−Σ0′∗,−ct0′∗) of
classical mechanics (CM) in the universes encompassed by
Fig. 2, (where the proper time dimensions have not yet ap-
peared), are stationary dynamically relative to one another at
all times. Otherwise the speed v of a particle in a universe
(or in a Euclidean 3-space in Fig. 2) relative to an observer
in that universe (or in that Euclidean 3-space), will be dif-
ferent relative to the symmetry-partner observer in another
universe (or in another Euclidean 3-space), who must obtain
the speed of the particle relative to himself as the resultant
of the particle’s speed v relative to the observer in the parti-
cle’s universe and the speed V0 of the particle’s universe (or

particle’s Euclidean 3-space) relative to his universe (or his
Euclidean 3-space). The simultaneous identical relative rota-
tions by equal intrinsic angle of intrinsic affine spacetime co-
ordinates of symmetry-partner frames of reference in the four
universes, which symmetry of state requires to be valid with
respect to every one of the four symmetry-partner observers
in the four universes, will therefore be impossible in the sit-
uation where some or all the four universes (or Euclidean 3-
spaces in Fig. 2) are naturally in motion relative to one an-
other.

Now the proper intrinsic metric space φρ0′ along the ver-
tical in the first quadrant is naturally rotated at an intrinsic
angle φψ0 = π

2 relative to the proper intrinsic metric space
φρ′ of the positive (or our) universe along the horizontal in
the first quadrant in Fig. 2. The proper intrinsic metric space
−φρ′∗ of the negative universe is naturally rotated at intrinsic
angle φψ0 = π relative to our proper intrinsic metric space
φρ′ and the proper intrinsic metric space −φρ0′∗ along the
vertical in the third quadrant is naturally rotated at intrinsic
angle φψ0 = 3π

2 relative to our proper intrinsic metric space
φρ′ in Fig. 2. The intrinsic angle of natural rotations of the
intrinsic metric spaces φρ0′,−φρ′∗ and −φρ0′∗ relative to φρ′

has been denoted by φψ0 in order differentiate it from the in-
trinsic angle of relative rotation of intrinsic affine spacetime
coordinates in the context of φSR denoted by φψ in [1].

The natural rotations of the one-dimensional proper in-
trinsic metric spaces φρ0′,−φρ′∗ and −φρ0′∗ relative to our
proper intrinsic metric space φρ′ at different intrinsic angles
φψ0 discussed in the foregoing paragraph, implies that the in-
trinsic metric spaces φρ0′, −φρ′∗ and −φρ0′∗ possess different
intrinsic speeds, to be denoted by φV0, relative to our intrin-
sic metric space φρ′. This is deduced in analogy to the fact
that the intrinsic speed φv of the intrinsic rest mass φm0 of
a particle relative to an observer causes the rotations of the
intrinsic affine spacetime coordinates φx̃′ and φcφt̃ ′ of the
particle’s intrinsic frame at equal intrinsic angle φψ relative
to the intrinsic affine spacetime coordinates φx̃ and φcφt̃ re-
spectively of the observe’s intrinsic frame in the context of
intrinsic special relativity (φSR), as developed in [1] and pre-
sented graphically in Fig. 8a of that paper.

Indeed the derived relation, sin φψ = φv/φc, between the
intrinsic angle φψ of inclination of the intrinsic affine space
coordinate φx̃′ of the particle’s intrinsic frame relative to the
intrinsic affine space coordinate φx̃ of the observer’s intrinsic
frame in the context of φSR, presented as Eq. (18) of [1], is
equally valid between the intrinsic angle φψ0 of natural ro-
tation of a proper intrinsic metric space φρ0′, say, relative to
our proper intrinsic metric space φρ′ in Fig. 2 and the implied
natural intrinsic speed φV0 of φρ0′ relative to φρ′. In other
words, the following relation obtains between φψ0 and φV0:

sin φψ0 = φV0/φc (1)

It follows from (1) that the intrinsic metric space φρ0′ nat-
urally possesses intrinsic speed φV0 = φc relative to our in-
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trinsic metric space φρ′, which is so since φρ0′ is naturally
inclined at intrinsic angle φψ0 = π

2 relative to φρ′; the proper
intrinsic metric space −φρ′∗ of the negative universe naturally
possesses zero intrinsic speed (φV0 = 0) relative to our proper
intrinsic metric space φρ′, since −φρ′∗ is naturally inclined at
intrinsic angle φψ0 = π relative to φρ′ and the intrinsic metric
space −φρ0′∗ naturally possesses intrinsic speed φV0 = −φc
relative to our intrinsic metric space φρ′, since −φρ0′∗ is nat-
urally inclined at φψ0 = 3π

2 relative to φρ′ in Fig. 2.
On the other hand, −φρ0′∗ possesses positive intrinsic

speed φV0 = φc relative to −φρ′∗, since −φρ0′∗ is naturally
inclined at intrinsic angle φψ0 = π

2 relative to −φρ′∗ and φρ0′

naturally possesses negative intrinsic speed φV0 = −φc rel-
ative to −φρ′∗, since φρ0′ is naturally inclined at φψ0 = 3π

2
relative to −φρ′∗ in Fig 2. These facts have been illustrated
in Figs. 10a and 10b of [1] for the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) within which the intrinsic angle φψ could

take on values with respect to 3-observers in the Euclidean
3-spaces Σ′ of the positive universe and −Σ′∗ of the negative
universe.

The natural intrinsic speed φV0 = φc of φρ0′ relative to
φρ′ will be made manifest in speed V0 = c of the Euclidean
3-space Σ0′ relative to our Euclidean 3-space Σ′; the natural
zero intrinsic speed (φV0 = 0) of the intrinsic space −φρ′∗ of
the negative universe relative to φρ′ will be made manifest in
natural zero speed (V0 = 0) of the Euclidean 3-space −Σ′∗

of the negative universe relative to our Euclidean 3-space Σ′

and the natural intrinsic speed φV0 = −φc of −φρ0′∗ relative
to φρ′ will be made manifest in natural speed V0 = −c of
the Euclidean 3-space −Σ0′∗ relative to our Euclidean 3-space
Σ′ in Fig. 2. By incorporating the additional information in
this and the foregoing two paragraphs into Fig. 2 we have
Fig. 3, which is valid with respect to 3-observers in our proper
Euclidean 3-spaces Σ′, as indicated.

There are important differences between the speeds V0 of
the Euclidean 3-spaces that appear in Fig. 3 and speed v of
relative motion of particles and objects that appear in the spe-
cial theory of relativity (SR). First of all, the speed v of rel-
ative motion is a property of the particle or object in relative
motion, which exists nowhere in the vast space outside the
particle at any given instant. This is so because there is noth-
ing (no action-at-a-distance) in relative motion to transmit the
velocity of a particle to positions outside the particle. On the
other hand, the natural speed V0 of a Euclidean 3-space is a
property of that Euclidean 3-space, which has the same mag-
nitude at every point of the Euclidean 3-space with or without
the presence of a particle or object of any rest mass.

The natural speed V0 of a Euclidean 3-space is isotropic.
This means that it has the same magnitude along every direc-
tion of the Euclidean 3-space. This is so because each dimen-
sion x0 j′; j = 1, 2, 3, of Σ0′ is rotated at equal angle ψ0 = π

2
relative to every dimension xi′; i = 1, 2, 3, of Σ′, (which im-
plies that each dimension x0 j′ of Σ0′ possesses speed V0 = c
naturally relative to every dimension xi′ of Σ′), thereby mak-

Fig. 3: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic spaces, where the speeds V0 of the Euclidean 3-spaces and the
intrinsic speeds φV0 of the intrinsic spaces, relative to 3-observers in
our proper Euclidean 3-space (considered as a hyper-surface along
the horizontal) in the first quadrant are shown.

ing Σ0′ an orthogonal Euclidean 3-space to Σ′. What should
be the natural velocity ~V0 of a Euclidean 3-space has com-
ponents of equal magnitude V0 along every direction and at
every point in that Euclidean 3-space. On the other hand,
the speed v of relative motion of a particle or object is not
isotropic because the velocity ~v of relative motion along a
direction in a Euclidean 3-space has components of differ-
ent magnitudes along different directions of that Euclidean 3-
space. Only the speed v = c of translation of light (or photon)
in space is known to be isotropic.

Now a material particle or object of any magnitude of rest
mass that is located at any point in a Euclidean 3-space ac-
quires the natural speed V0 of that Euclidean 3-space. Thus
the rest mass m0 of the particle or object located in our proper
Euclidean 3-space Σ′ possesses the spatially uniform natural
zero speed (V0 = 0) of Σ′ relative to every particle, object
or observer in Σ′ in Fig. 3. Likewise the rest mass m0

0 of a
particle or object located at any point in the proper Euclidean
3-space Σ0′ acquires the isotropic and spatially uniform nat-
ural speed V0 = c of Σ0′ relative to every particle, object or
observer in our Euclidean 3-space Σ′.

The rest mass −m∗0 located at any point in the proper Euc-
lidean 3-space −Σ′∗ of the negative universe acquires the spa-
tially uniform natural zero speed (V0 = 0) of −Σ′∗ relative to
all particles, objects and observers in our Euclidean 3-space
Σ′ and the rest mass −m0

0
∗ of a particle or object located at

any point in the proper Euclidean 3-space −Σ0′∗ acquires the
isotropic and spatially uniform natural speed V0 = −c of
−Σ0′∗ relative to all particles, objects and observers in our
Euclidean 3-space Σ′ in Fig. 3.

However, as deduced earlier, symmetry of state among
the four universes whose proper (or classical) Euclidean 3-
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spaces appear in Fig. 2 or 3 requires that the four universes
must be stationary relative to one another always. Then in
order to resolve the paradox ensuing from this and the fore-
going two paragraphs namely, all the four universes (or their
proper Euclidean 3-spaces in Fig. 2 or 3) are stationary rela-
tive to one another always (as required by symmetry of state
among the four universes), yet the two universes with flat
proper spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗) naturally pos-
sess constant speeds V0 = c and V0 = −c respectively relative
to the flat spacetime (Σ′, ct′) of our universe, we must con-
sider the constant speeds V0 = c and V0 = −c of the uni-
verses with the flat spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗)
respectively relative to our universe (or speeds V0 = c and
V0 = −c of the Euclidean 3-spaces Σ0′ and −Σ0′∗ respec-
tively relative to our Euclidean 3-space Σ′ in Fig. 3) as ab-
solute speeds of non-detectable absolute motion. This way,
although the two proper Euclidean 3-spaces Σ0′ and −Σ0′∗

naturally possess speeds V0 = c and V0 = −c respectively
relative to our proper Euclidean 3-space Σ′, the four proper
Euclidean 3-spaces encompassed by Fig. 2 or 3 are stationary
dynamically (or translation-wise) relative to one another, as
required by symmetry of state among the four universes with
the four proper Euclidean 3-spaces in Fig. 2 or Fig. 3.

The fact that the natural speed V0 = c of the proper Euc-
lidean 3-space Σ0′ relative to our proper Euclidean 3-space Σ′

or of the rest mass m0
0 in Σ0′ relative to the symmetry-partner

rest mass m0 in Σ′ is an absolute speed of non-detectable ab-
solute motion is certain. This is so since there is no relative
motion involving large speed V0 = c between the rest mass of
a particle in the particle’s frame and the rest mass of the par-
ticle in the observer’s frame, (where m0

0 is the rest mass of the
particle and Σ0′ in which m0

0 is in motion at speed V0 = c is
the particle’s frame, while m0 is the rest mass of the particle
located in the observer’s frame Σ′ in this analogy, knowing
that m0 and m0

0 are equal in magnitude).
The observer’s frame always contains special-relativistic

(or Lorentz transformed) coordinates and parameters in spe-
cial relativity. On the other hand, non-detectable absolute mo-
tion does not alter the proper (or classical) coordinates and
parameters, as in the case of the non-detectable natural abso-
lute motion at absolute speed V0 = c of m0

0 in Σ0′ relative to
m0 that possesses zero absolute speed (V0 = 0) in Σ′ in Fig. 3.

We have derived another important difference between the
natural speeds V0 of the Euclidean 3-spaces that appear in
Fig. 3 and the speeds v of relative motions of material par-
ticles and objects that appear in SR. This is the fact that the
isotropic and spatially uniform speed V0 of a Euclidean 3-
space is an absolute speed of non-detectable absolute motion,
while speed v of particles and objects is a speed of detectable
relative motion.

Thus the isotropic speed V0 = c acquired by the rest mass
m0

0 located in the proper Euclidean 3-space Σ0′ relative to its
symmetry-partner m0 and all other particles, objects and ob-
servers in our proper Euclidean 3-space Σ′ in Fig. 3 is a non-

detectable absolute speed. Consequently m0
0 in Σ0′ does not

propagate away at speed V0 = c in Σ0′ from m0 in Σ′ but
remains tied to m0 in Σ′ always, despite its isotropic abso-
lute speed c in Σ0′ relative to m0 in Σ′. The speed V0 = −c
acquired by the rest mass −m0

0
∗ in the proper Euclidean 3-

space −Σ0′∗ relative to its symmetry-partner rest mass m0 and
all other particles, objects and observers in our Euclidean
3-space Σ′ in Fig. 3 is likewise an absolute speed of non-
detectable absolute motion. Consequently −m0

0
∗ in −Σ0′∗ does

not propagate away at speed V0 = −c in −Σ0′∗ from m0 in Σ′

but remains tied to m0 in Σ′ always, despite the absolute speed
V0 = −c of −m0

0
∗ in −Σ0′∗ relative to m0 in Σ′.

On the other hand, the rest mass −m0
0
∗ in −Σ0′∗ possesses

positive absolute speed V0 = c and rest mass m0
0 in Σ0′ pos-

sesses negative absolute speed V0 = −c with respect to the
symmetry-partner rest mass −m∗0 and all other particles, ob-
jects and observers in −Σ′∗. This is so since the proper in-
trinsic space −φρ0′∗ underlying −Σ0′∗ is naturally rotated by
intrinsic angle φψ0 = π

2 relative to the proper intrinsic space
−φρ′∗ underlying −Σ′∗ and φρ0′ underlying Σ0′ is naturally
rotated by intrinsic angle φψ0 = 3π

2 relative to −φρ′∗, as men-
tioned earlier. Consequently −φρ0′∗ naturally possesses ab-
solute intrinsic speed φV0 = φc relative to −φρ′∗ and φρ0′

naturally possesses absolute intrinsic speed φV0 = −φc rel-
ative to −φρ′∗. These are then made manifest outwardly as
the absolute speed V0 = c of the Euclidean 3-space −Σ0′∗ and
absolute speed V0 = −c of the Euclidean 3-space Σ0′ respec-
tively relative to the Euclidean 3-space −Σ′∗ of the negative
universe.

Let the quartet of symmetry-partner particles or objects of
rest masses m0 in Σ′, m0

0 in Σ0′, −m∗0 in −Σ′∗ and −m0
0
∗ in −Σ0′∗

be located at initial symmetry-partner positions Pi, P0
i , P∗i

and P0
i
∗ respectively in their respective Euclidean 3-spaces.

Then let the particle or object of rest mass m0 in Σ′ be in mo-
tion at constant speed v along the x̃′−axis of its frame in our
proper Euclidean 3-space Σ′ relative to a 3-observer in Σ′.
The symmetry-partner particle or object of rest mass m0

0 in
Σ0′ will be in simultaneous motion at equal speed v along the
x̃0′−axis of its frame in Σ0′ relative to the symmetry-partner
observer in Σ0′; the symmetry-partner particle or object of
rest mass −m∗0 in −Σ′∗ will be in simultaneous motion at equal
speed v along the −x̃ ′∗−axis of its frame in −Σ′∗ relative to
the symmetry-partner 3-observer in −Σ′∗ and the symmetry-
partner particle or object of rest mass −m0

0
∗ in −Σ0′∗ will be in

simultaneous motion at equal speed v along the −x̃0′∗−axis of
its frame in −Σ0′∗ relative to the symmetry-partner 3-observer
in −Σ0′∗.

Thus after a period of time of commencement of mo-
tion, the quartet of symmetry-partner particles or objects have
covered equal distances along the identical directions of mo-
tion in their respective proper Euclidean 3-spaces to arrive at
new symmetry-partner positions P, P0, P∗ and P0∗ in their re-
spective proper Euclidean 3-spaces. This is possible because
the four Euclidean 3-spaces are stationary relative to one an-
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other always. The quartet of symmetry-partner particles or
objects are consequently located at symmetry-partner posi-
tions in their respective proper Euclidean 3-spaces always,
even when they are in motion relative to symmetry-partner
frames of reference in their respective proper Euclidean 3-
spaces.

The speed V0 = c of the proper Euclidean 3-space Σ0′

relative to our proper Euclidean 3-space Σ′ is the outward
manifestation of the intrinsic speed φV0 = φc of the intrin-
sic metric space φρ0′ underlying Σ0′ relative to our intrinsic
metric space φρ′ and relative to our Euclidean 3-space Σ′ in
Fig. 3. Then since V0 = c is absolute and is the same at
every point of the Euclidean 3-space Σ0′, the intrinsic speed
φV0 = φc of φρ0′ relative to φρ′ and Σ′ is absolute and is the
same at every point along the length of φρ0′. The intrinsic
speed φV0 = −φc of the intrinsic metric space −φρ0′∗ relative
to our intrinsic metric space φρ′ and relative to our Euclidean
3-space Σ′ is likewise an absolute intrinsic speed and is the
same at every point along the length of −φρ0′∗. The zero in-
trinsic speed (φV0 = 0) of the intrinsic metric space −φρ′∗ of
the negative universe relative to our intrinsic metric space φρ′

and relative to our Euclidean 3-space Σ′ is the same along the
length of −φρ′∗.

It follows from the foregoing paragraph that although the
proper intrinsic metric spaces φρ0′ and −φρ0′∗ along the verti-
cal possess intrinsic speeds φV0 = φc and φV0 = −φc respec-
tively, relative to our proper intrinsic metric space φρ′ and
relative to our Euclidean 3-space Σ′, the four intrinsic metric
spaces φρ′, φρ0′, −φρ′∗ and −φρ0′∗ in Fig. 3 are stationery
relative to one another always, since the intrinsic speeds φV0
= φc of φρ0′ and φV0 = −φc of −φρ′∗ relative to our intrinsic
metric space φρ′ and our Euclidean 3-space Σ′ are absolute
intrinsic speeds, which are not made manifest in actual intrin-
sic motion.

Likewise, although the intrinsic rest mass φm0
0 in φρ0′ ac-

quires the intrinsic speed φV0 = φc of φρ0′, it is not in in-
trinsic motion at the intrinsic speed φc along φρ0′, since the
intrinsic speed φc it acquires is an absolute intrinsic speed.
The absolute intrinsic speed φV0 = −φc acquired by the in-
trinsic rest mass −φm0

0
∗ in −φρ0′∗ is likewise not made mani-

fest in actual intrinsic motion of −φm0
0
∗ along −φρ0′∗. Conse-

quently the quartet of intrinsic rest masses φm0, φm0
0,−φm∗0

and −φm0
0
∗ of symmetry-partner particles or objects in the

quartet of intrinsic metric spaces φρ′, φρ0′, −φρ′∗ and −φρ0′∗,
are located at symmetry-partner points in their respective in-
trinsic spaces always, even when they are in intrinsic motions
relative to symmetry-partner frames of reference in their re-
spective Euclidean 3-spaces.

There is a complementary diagram to Fig. 3, which is
valid with respect to 3-observers in the proper Euclidean 3-
space Σ0′ along the vertical, which must also be drawn along
with Fig. 3. Now given the quartet of the proper physical (or
metric) Euclidean 3-spaces and their underlying one-dimen-
sional intrinsic metric spaces in Fig. 2, then Fig. 3 with the ab-

Fig. 4: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic metric spaces, where the speeds V0 of the Euclidean 3-spaces
and the intrinsic speeds φV0 of the intrinsic spaces, relative to 3-
observers in the proper Euclidean 3-space Σ0′ (considered as a
hyper-surface) along the vertical in the first quadrant are shown.

solute speeds V0 of the proper Euclidean 3-spaces and abso-
lute intrinsic speed φV0 of the proper intrinsic spaces assigned
with respect to 3-observers in the proper Euclidean 3-space Σ′

of the positive (or our) universe, ensues automatically.
On the other hand, the proper physical Euclidean 3-space

Σ0′ along the vertical in Fig. 2 possesses zero absolute speed
(V0 = 0) at every point of it and its underlying one- dimen-
sional intrinsic space φρ0′ possesses zero absolute intrinsic
speed (φV0 = 0) at every point along its length with respect
to 3-observers in Σ0′. This is so since φρ0′ must be considered
as rotated by zero intrinsic angle (φψ0 = 0) relative to itself
(or relative to the vertical) when the observers of interest are
the 3-observers in Σ0′. Then letting φψ0 = 0 in (1) gives zero
absolute intrinsic speed (φV0 = 0) at every point along φρ0′

with respect to 3-observers in Σ0′. The physical Euclidean
3-space Σ0′ then possesses zero absolute speed (V0 = 0) at
every point of it as the outward manifestation of φV0 = 0
at every point along φρ0′, with respect to 3-observers in Σ0′.
It then follows that Fig. 3 with respect to 3-observers in our
Euclidean 3-space Σ′ corresponds to Fig. 4 with respect to
3-observers in the Euclidean 3-space Σ0′.

It is mandatory to consider the intrinsic metric space φρ′

of the positive (or our) universe along the horizontal in the
first quadrant as naturally rotated clockwise by a positive in-
trinsic angle φψ0 = π

2 ; the intrinsic metric space −φρ0′∗ along
the vertical in the fourth quadrant as naturally rotated clock-
wise by a positive intrinsic angle φψ0 = π and the intrinsic
metric space −φρ′∗ of the negative universe along the hori-
zontal in the third quadrant as naturally rotated clockwise by
a positive intrinsic angle φψ0 = 3π

2 relative to φρ0′ along the
vertical in the first quadrant or with respect to 3-observers in
the Euclidean 3-space Σ0′, as indicated in Fig. 4. This way,
the positive signs of our proper intrinsic space φρ′ and of the
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dimensions x1′, x2′ and x3′ of our proper Euclidean 3-space
Σ′, as well as the positive signs of parameters in Σ′ in our
(or positive) universe in Fig. 3 are preserved in Fig. 4. The
negative signs of −φρ′∗,−Σ′∗ and of parameters in −Σ′∗ in the
negative universe in Fig. 3 are also preserved in Fig. 4, by
virtue of the clockwise sense of rotation by positive intrinsic
angle φψ0 of −φρ0′∗ and −φρ′∗ relative to φρ0′ or with respect
to 3-observers in Σ0′ in Fig. 4.

If the clockwise rotations of φρ′, −φρ0′∗ and −φρ′∗ rel-
ative to φρ0′ or with respect to 3-observers in Σ0′ in Fig. 4,
have been considered as rotation by negative intrinsic angles
φψ0 = − π2 , φψ0 = −π and φψ0 = − 3π

2 respectively, then the
positive sign of φρ′,Σ′ and of parameters in Σ′ of the posi-
tive (or our) universe in Fig. 3 would have become negative
sign in Fig. 4 and the negative sign of −φρ′∗ and −Σ′∗ and of
parameters in −Σ′∗ of the negative universe in Fig. 3 would
have become positive sign in Fig. 4. That is, the positions of
the positive and negative universes in Fig. 3 would have been
interchanged in Fig. 4, which must not be.

We have thus been led to an important conclusion that nat-
ural rotations of intrinsic metric spaces by positive absolute
intrinsic angle φψ0 (and consequently the relative rotations
of intrinsic affine space coordinates in the context of intrinsic
special relativity (φSR) by positive relative intrinsic angles,
φψ), are clockwise rotations with respect to 3-observers in
the proper Euclidean 3-spaces Σ0′ and −Σ0′∗ along the ver-
tical (in Fig. 4). Whereas rotation of intrinsic metric spaces
(and intrinsic affine space coordinates in the context of φSR)
by positive intrinsic angles are anti-clockwise rotations with
respect to 3-observers in the proper Euclidean 3-spaces Σ′ and
−Σ′∗ of the positive and negative universes along the horizon-
tal in Fig. 3.

The origin of the natural isotropic absolute speeds V0 of
every point of the proper Euclidean 3-spaces and of the nat-
ural absolute intrinsic speeds φV0 of every point along the
lengths of the one-dimensional proper intrinsic spaces with
respect to the indicated observers in Fig. 3 and Fig. 4, can-
not be exposed in this paper. It must be regarded as an out-
standing issue to be resolved elsewhere with further develop-
ment. Nevertheless, a preemptive statement about their origin
is appropriate at this point: They are the outward manifesta-
tions in the proper physical Euclidean 3-spaces and proper
intrinsic spaces of the absolute speeds with respect to the
indicated observers, of homogeneous and isotropic absolute
spaces (distinguished co-moving coordinate systems) that un-
derlie the proper physical Euclidean 3-spaces and their un-
derlying proper intrinsic spaces in nature, which have not yet
appeared in Figs. 3 and Fig. 4.

Leibnitz pointed out that Newtonian mechanics prescribes
a distinguished coordinate system (the Newtonian absolute
space) in which it is valid [3, see p. 2]. Albert Einstein said,
“Newton might no less well have called his absolute space
ether...” [4] and argued that the proper (or classical) physical
Euclidean 3-space (of Newtonian mechanics) will be impos-

sible without such ether. He also pointed out the existence of
ether of general relativity as a necessary requirement for the
possibility of that theory, just as the existence of luminiferous
ether was postulated to support the propagation of electro-
magnetic waves. Every dynamical or gravitational law (in-
cluding Newtonian mechanics) requires (or has) an ether. It
is the non-detectable absolute speeds of the ethers of classi-
cal mechanics (known to Newton as absolute spaces), which
underlie the proper physical Euclidean 3-spaces with respect
to the indicated observers in Fig. 3 and 4, that are made man-
ifest in the non-detectable absolute speeds V0 of the proper
Euclidean 3-spaces with respect to the indicated observers in
those figures. However this a matter to be formally derived
elsewhere, as mentioned above.

1.2 Geometrical contraction of the vertical Euclidean 3-
spaces to one-dimensional spaces relative to 3-obser-
vers in the horizontal Euclidean 3-spaces and con-
versely

Let us consider the x′y′−plane of our proper Euclidean 3-
space Σ′ in Fig. 3: Corresponding to the x′y′−plane of Σ′ is
the x0′y0′−plane of the Euclidean 3-space Σ0′. However since
Σ′ and Σ0′ are orthogonal Euclidean 3-spaces, following the
operational definition of orthogonal Euclidean 3-spaces at the
beginning of the preceding sub-section, the dimensions x0′

and y0′ of the x0′y0′−plane of Σ0′ are both perpendicular to
each of the dimensions x′ and y′ of Σ′. Hence x0′ and y0′ are
effectively parallel dimensions normal to the x′y′− plane of
Σ′ with respect to 3-observers in Σ′. Symbolically:

x0′⊥ x′ and y0′⊥ x′; x0′⊥y′ and y0′⊥y′ ⇒ x0′||y0′ (∗)

Likewise, corresponding to the x′z′−plane of Σ′ is the
x0′z0′−plane of Σ0′. Again the dimensions x0′ and z0′ of the
x0′z0′−plane of Σ0′ are both perpendicular to each of the di-
mensions x′ and z′ of the x′z′− plane of Σ′. Hence x0′ and y0′

are effectively parallel dimensions normal to the x′z′−plane
of Σ′ with respect to 3-observers in Σ′. Symbolically:

x0′⊥ x′ and z0′⊥ x′; x0′⊥z′ and z0′⊥z′ ⇒ x0′||z0′ (∗∗)

Finally, corresponding to the y′z′−plane of Σ′ is the y0′z0′-
plane of Σ0′. Again the dimensions y0′ and z0′ of the y0′z0′−
plane of Σ0′ are both perpendicular to each of the dimensions
y′ and z′ of the y′z′− plane of Σ′. Hence y0′ and z0′ are effec-
tively parallel dimensions normal to the y′z′−plane of Σ′ with
respect to 3-observers in Σ′. Symbolically:

y0′⊥y′ and z0′⊥y′; y0′⊥z′ and z0′⊥z′ ⇒ y0′||z0′ (∗ ∗ ∗)

Indeed x0′||y0′ and x0′||z0′ in (∗) and (∗∗) already implies
y0′||z0′ in (∗ ∗ ∗).

The combination of (∗), (∗∗) and (∗ ∗ ∗) give x0′||y0′||z0′

with respect to 3-observers in Σ′, which says that the mu-
tually perpendicular dimensions x0′, y0′ and z0′ of Σ0′ with
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Fig. 5: Given the two orthogonal proper Euclidean 3-spaces Σ0′ and
Σ′ of Fig. 1 then, (a) the mutually perpendicular dimensions of the
proper Euclidean 3-space Σ0′ with respect to 3-observers in it, are
naturally “bundle” into parallel dimensions relative to 3-observers
in our proper Euclidean 3-space Σ′ and (b) the mutually perpendic-
ular dimensions of our proper Euclidean 3-space Σ′ with respect to
3-observer in it are naturally “bundled” into parallel dimensions rel-
ative to 3-observers in the proper Euclidean 3-space Σ0′.

respect to 3-observers in Σ0′ are effectively parallel dimen-
sions with respect to 3-observers in our Euclidean 3-space Σ′.
In other words, the dimensions x0′, y0′ and z0′ of Σ0′ effec-
tively form a “bundle”, which is perpendicular to each of the
dimensions x′, y′ and z′ of Σ′ with respect to 3-observers in
Σ′ in Fig. 3. The “bundle” must lie along a fourth dimension
with respect to 3-observers in Σ′ consequently, as illustrated
in Fig. 5a, where the proper Euclidean 3-space Σ′ is consid-
ered as a hyper-surface represented by a horizontal plane sur-
face.

Conversely, the mutually perpendicular dimensions x′, y′

and z′ of our Euclidean 3-space Σ′ with respect to 3-observers
in Σ′ are effectively parallel dimensions with respect to 3-
observers in the Euclidean 3-space Σ0′ in Fig. 4. In other
words, the dimensions x′, y′ and z′ of Σ′ effectively form a
“bundle”, which is perpendicular to each of the dimensions
x0′, y0′ and z0′ of Σ0′ with respect to 3-observers in Σ0′ in
Fig. 4. The “bundle” of x′, y′ and z′ must lie along a fourth
dimension with respect to 3-observers in Σ0′ consequently,
as illustrated in Fig. 5b, where the proper Euclidean 3-space
Σ0′ is considered as a hyper-surface represented by a vertical
plane surface.

The three dimensions x0′, y0′ and z0′ that are shown as
separated parallel dimensions, thereby constituting a “bun-
dle” along the vertical with respect to 3-observers in Σ′ in
Fig. 5a, are not actually separated. Rather they lie along the
singular fourth dimension, thereby constituting a one-dimen-
sional space to be denoted by ρ0′ with respect to 3-observers
in Σ′ in Fig. 5a. Likewise the “bundle” of parallel dimensions
x′, y′ and z′ effectively constitutes a one-dimensional space to
be denoted by ρ′ with respect to 3-observers in Σ0′ in Fig. 5b.
Thus Fig. 5a shall be replaced with the fuller diagram of
Fig. 6a, which is valid with respect to 3-observers in the Euc-
lidean 3-space Σ′, while Fig. 5b shall be replaced with the

Fig. 6: (a) The proper Euclidean 3-spaces Σ0′ and −Σ0′∗ along the
vertical in Fig. 3, are naturally contracted to one-dimensional proper
spaces ρ0′ and −ρ0′∗ respectively relative to 3-observers in the proper
Euclidean 3-spaces Σ′ and −Σ′∗ along the horizontal.

fuller diagram of Fig. 6b, which is valid with respect to 3-
observers in the proper Euclidean 3-space Σ0′.

Representation of the Euclidean spaces Σ′, −Σ′∗, Σ0′ and
−Σ0′∗ by plane surfaces in the previous diagrams in this pa-
per has temporarily been changed to lines in Figs. 6a and 6b
for convenience. The three-dimensional rest masses m0 and
−m∗0 in the Euclidean 3-spaces Σ′ and −Σ′∗ and m0

0 and −m0
0
∗

in Σ0′and −Σ0′∗ have been represented by circles to remind
us of their three-dimensionality, while the one-dimensional
intrinsic rest masses in the one-dimensional intrinsic spaces
φρ0′, −φρ0′∗, φρ′ and −φρ′∗ and the one-dimensional rest
masses in the one-dimensional spaces ρ0′, −ρ0′∗, ρ′ and −ρ′∗
have been represented by short line segments in Figs. 6a
and 6b.

Fig. 6: (b) The proper Euclidean 3-spaces Σ′ and −Σ′∗ along the hor-
izontal in Fig. 4, are naturally contracted to one-dimensional proper
spaces ρ′ and −ρ′∗ respectively relative to 3-observers in the proper
Euclidean 3-spaces Σ0′ and −Σ0′∗ along the vertical.
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Fig. 3 naturally simplifies as Fig. 6a with respect to 3-
observers in the proper Euclidean 3-space Σ′ of the positive
(or our) universe, while Fig. 4 naturally simplifies as Fig. 6b
with respect to 3-observers in the proper Euclidean 3-space
Σ0′ along the vertical. The vertical Euclidean 3-spaces Σ0′

and −Σ0′∗ in Fig. 3 have been geometrically contracted to
one-dimensional proper spaces ρ0′ and −ρ0′∗ respectively
with respect to 3-observers in the proper Euclidean 3-spaces
Σ′ and −Σ′∗ of the positive and negative universes and the
proper Euclidean 3-spaces Σ′ and −Σ′∗ of the positive and
negative universes along the horizontal in Fig. 4, have been
geometrically contracted to one-dimensional proper spaces ρ′

and −ρ′∗ respectively with respect to 3-observers in the ver-
tical proper Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 6b, as
actualization of the topic of this sub-section.

The isotropic absolute speed V0 = c of every point of the
Euclidean 3-space Σ0′ with respect to 3-observers in the Eu-
clidean 3-space Σ′ in Fig. 3 is now absolute speed V0 = c
of every point along the one-dimensional space ρ0′ with re-
spect to 3-observers in Σ′ in Fig. 6a. The isotropic absolute
speed V0 = −c of every point of the Euclidean 3-space −Σ0′∗

with respect to 3-observers in Σ′ in Fig. 3 is likewise abso-
lute speed V0 = −c of every point along the one-dimensional
space −ρ0′∗ with respect to 3-observers in Σ′ in Fig. 6a.

Just as the absolute speed V0 = c of every point along ρ0′

and the absolute intrinsic speed φV0 = φc of every point along
the intrinsic space φρ0′ with respect to 3-observers in Σ′ in
Fig. 6a are isotropic, that is, without unique orientation in the
Euclidean 3-space Σ0′ that contracts to ρ0′, with respect to 3-
observers in Σ′ and −Σ′∗, so are the one-dimensional space ρ0′

and the one-dimensional intrinsic space φρ0′ isotropic dimen-
sion and isotropic intrinsic dimension respectively with no
unique orientation in the Euclidean 3-space Σ0′, with respect
to 3-observers in the Euclidean 3-spaces Σ′ and −Σ′∗. The
one-dimensional space −ρ0′∗ and one-dimensional intrinsic
space −φρ0′∗ are likewise isotropic dimension and isotropic
intrinsic dimension respectively with no unique orientation in
the Euclidean 3-space −Σ0′∗ with respect to 3-observers in the
Euclidean 3-spaces Σ′ and −Σ′∗ in Fig. 6a.

The isotropic absolute speed V0 = c of every point of
the Euclidean 3-space Σ′ and the isotropic absolute speed
V0 = −c of every point of the Euclidean 3-space −Σ′∗ with
respect to 3-observers in Σ0′ in Fig. 4 are now absolute speed
V0 = c of every point along the one-dimensional space ρ′

and absolute speed V0 = −c of every point along the one-
dimensional space −ρ′∗ with respect to 3-observers in Σ0′

Fig. 6b. Again the one-dimensional metric spaces ρ′ and
−ρ′∗ and the one-dimensional intrinsic metric spaces φρ′ and
−φρ′∗ are isotropic dimensions and isotropic intrinsic dimen-
sions respectively with no unique orientations in the Euclidean
3-spaces Σ′ and −Σ′∗ that contract to ρ′ and −ρ′∗ respectively,
with respect to 3-observers in the vertical Euclidean 3-spaces
Σ0′ and −Σ0′∗ in Fig. 6b.

1.3 The vertical proper Euclidean 3-spaces as proper
time dimensions relative to 3-observers in the hori-
zontal proper Euclidean 3-spaces and conversely

Figs. 6a and 6b are intermediate diagrams. It shall be shown
finally in this section that the one-dimensional proper spaces
ρ0′ and −ρ0′∗ in Fig. 6a naturally transform into the proper
time dimensions ct′ and −ct′∗ respectively and their underly-
ing one-dimensional proper intrinsic spaces φρ0′ and −φρ0′∗

naturally transform into the proper intrinsic time dimensions
φcφt′ and −φcφt′∗ respectively with respect to 3-observers in
the proper Euclidean 3-spaces Σ′ and −Σ′∗ in that figure. It
shall also be shown that the one-dimensional proper spaces ρ′

and −ρ′∗ in Fig. 6b naturally transform into the proper time
dimensions ct0′ and −ct0′∗ respectively and their underlying
proper intrinsic spaces φρ′ and −φρ′∗ naturally transform into
proper intrinsic time dimensions φcφt0′ and −φcφt0′∗ respec-
tively with respect to 3-observers in the proper Euclidean 3-
spaces Σ0′ and −Σ0′∗ in that figure.

Now let us re-present the generalized forms of the intrin-
sic Lorentz transformations and its inverse derived and pre-
sented as systems (44) and (45) of [1] respectively as follows

φcφt̃ ′ = sec φψ(φcφt̃ − φx̃ sin φψ);
(w.r.t. 1 − observer in ct̃ );

φx̃′ = sec φψ(φx̃ − φcφt̃ sin φψ);
(w.r.t. 3 − observer in Σ̃)


(2)

and

φcφt̃ = sec φψ(φcφt̃ ′ + φx̃′ sin φψ);
(w.r.t. 3 − observer in Σ̃′);

φx̃ = sec φψ(φx̃′ + φcφt̃ ′ sin φψ);
(w.r.t. 1 − observer in ct̃ ′)


. (3)

As explained in [1], systems (2) and (3) can be applied for all
values of the intrinsic angle φψ in the first cycle, 0 ≤ φψ ≤ 2π,
except that φψ = π

2 and φψ = 3π
2 must be avoided.

One observes from system (2) that the pure intrinsic affine
time coordinate φcφt̃ ′ of the primed (or particle’s) intrinsic
frame with respect to an observer at rest relative to the par-
ticle’s frame, transforms into an admixture of intrinsic affine
time and intrinsic affine space coordinates of the unprimed
(or observer’s) intrinsic frame. The pure intrinsic affine space
coordinate φx̃′ of the primed (or particle’s) frame likewise
transforms into an admixture of intrinsic affine space and in-
trinsic affine time coordinates of the unprimed (or particle’s)
intrinsic frame, when the particle’s frame is in motion relative
to the observer’s frame. The inverses of these observations
obtain from system (3), which is the inverse to system (2).

The observations made from system (2) and system (3)
described in the foregoing paragraph make the concept of in-
trinsic affine spacetime induction relevant in relative intrinsic
motion of two intrinsic spacetime frames of reference. In or-
der to make this more explicit, let us re-write systems (2) and
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(3) respectively as follows

φcφt̃ ′ = sec φψ(φcφt̃ + φcφt̃i);
(w.r.t. 1 − observer in ct̃ );

φx̃′ = sec φψ(φx̃ + φx̃i);
(w.r.t. 3 − observer in Σ̃)


(4)

and
φcφt̃ = sec φψ(φcφt̃ ′ + φcφt̃ ′i);

(w.r.t. 3 − observer in Σ̃′);

φx̃ = sec φψ(φx̃′ + φx̃′i);
(w.r.t. 1 − observer in ct̃ ′)


. (5)

A comparison of systems (4) and (2) gives the relations
for the induced unprimed intrinsic affine spacetime coordi-
nates φcφt̃i and φx̃i as follows

φcφt̃i = φx̃ sin(−φψ) = −φx̃ sin φψ = −φv
φc
φx̃; (6)

w.r.t. 1 − observer in ct̃ and

φx̃i = φcφt̃ sin(−φψ) = −φcφt̃ sin φψ =

−φv
φc
φcφt̃ = −φvφt̃; (7)

w.r.t 3 − observer in Σ̃.
Diagrammatically, the induced unprimed intrinsic affine

time coordinate, φcφt̃i = φx̃ sin(−φψ) in (6), appears in the
fourth quadrant in Fig. 9a of [1] as φx̃∗ sin(−φψ) and the in-
duced unprimed intrinsic affine space coordinate, φx̃i = φcφt̃
sin(−φψ) in (7), appears in the second quadrant in Fig. 9b
of [1] as φcφt̃ ∗ sin(−φψ).

And a comparison of systems (5) and (3) gives the rela-
tions for the induced primed intrinsic affine spacetime coor-
dinates φcφt̃ ′i and φx̃′i as follows

φcφt̃ ′i = φx̃′ sin φψ =
φv

φc
φx̃′; (8)

w.r.t. 3 − observer in Σ̃′ and

φx̃′i = φcφt̃ ′ sin φψ =
φv

φc
φcφt̃ ′ = φvφt̃ ′; (9)

w.r.t. 1 − observer in ct̃′.
Diagrammatically, the induced primed intrinsic affine ti-

me coordinate, φcφt̃ ′i = φx̃′ sin φψ in Eq. (8), appears in
the fourth quadrant in Fig. 8b of [1], where it is written as
φx̃ ′∗ sin φψ and the induced primed intrinsic affine space co-
ordinate, φx̃′i = φcφt̃ ′ sin φψ in (9), appears in the second
quadrant in Fig. 8a of [1], where it is written as φcφt̃ ′∗ sin φψ.

The intrinsic affine time induction relation (6) states that
an intrinsic affine space coordinate φx̃ of the unprimed in-
trinsic frame, which is inclined at negative intrinsic angle
−φψ relative to the intrinsic affine space coordinate φx̃′ of the

primed intrinsic frame, due to the negative intrinsic speed −φv
of the unprimed intrinsic frame relative to the primed intrin-
sic frame, projects (or induces) a negative unprimed intrinsic
affine time coordinate, φcφt̃i = φx̃ sin(−φψ) = −φx̃ sin φψ,
along the vertical relative to the 1-observer in ct̃.

The intrinsic affine space induction relation (7) states that
an intrinsic affine time coordinate φcφt̃ of the observer’s (or
unprimed) intrinsic frame, which is inclined at negative in-
trinsic angle −φψ relative to the intrinsic affine time coordi-
nate φcφt̃ ′ of the particle’s (or primed) intrinsic frame along
the vertical, due to the negative intrinsic speed −φv of the
intrinsic observer’s frame relative to the intrinsic particle’s
frame, induces a negative unprimed intrinsic affine space co-
ordinate, φx̃i = φcφt̃ sin(−φψ) = −φcφt̃ sin φψ, along the hor-
izontal relative to 3-observer in Σ̃.

The intrinsic affine time induction relation (8) states that
an intrinsic affine space coordinate φx̃′ of the particle’s (or
primed) intrinsic frame, which is inclined relative to the in-
trinsic affine space coordinate φx̃ of the observer’s (or un-
primed) intrinsic frame at a positive intrinsic angle φψ, due
to the intrinsic motion of the particle’s (or primed) intrinsic
frame at positive intrinsic speed φv relative to the observer’s
(or unprimed) intrinsic frame, induces positive primed intrin-
sic affine time coordinate, φcφt̃ ′i = φx̃′ sin φψ, along the ver-
tical relative to the 3-observer in Σ̃′.

Finally the intrinsic affine space induction relation (9) sta-
tes that an intrinsic affine time coordinate φcφt̃ ′ of the primed
intrinsic frame, which is inclined at positive intrinsic angle φψ
relative to the intrinsic affine time coordinate φcφt̃ along the
vertical of the primed intrinsic frame, due to the intrinsic mo-
tion of the primed intrinsic frame at positive intrinsic speed
φv relative to the unprimed intrinsic frame, induces positive
primed intrinsic affine space coordinate, φx̃′i = φcφt̃ ′ sin φψ,
along the horizontal relative to the 1-observer in ct̃ ′.

The outward manifestations on flat four-dimensional
affine spacetime of the intrinsic affine spacetime induction
relations (6)–(9) are given by simply removing the symbol
φ from those relations respectively as follows

ct̃i = x̃ sin(−ψ) = −x̃ sinψ = − v
c

x̃; (10)

w.r.t. 1 − observer in ct̃;

x̃i = ct̃ sin(−ψ) = −ct̃ sinψ = − v
c

ct̃ = −vt̃; (11)

w.r.t. 3 − observer in Σ̃;

ct̃ ′i = x̃′ sinψ =
v

c
x̃′; (12)

w.r.t. 3 − observer in Σ̃′ and

x̃′i = ct̃ ′ sinψ =
v

c
ct̃ ′ = vt̃ ′; (13)

w.r.t. 1 − observer in ct̃ ′.
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Fig. 7: Proper intrinsic metric time dimension and proper metric
time dimension are induced along the vertical with respect to 3-
observers in the proper Euclidean 3-space Σ′ (as a hyper-surface rep-
resented by a line) along the horizontal, by a proper intrinsic metric
space that is inclined to the horizontal.

However the derivation of the intrinsic affine spacetime
induction relations (6)–(9) in the context of φSR and their
outward manifestations namely, the affine spacetime induc-
tion relations (10)–(13) in the context of SR, are merely to
demonstrate explicitly the concept of intrinsic affine space-
time induction that is implicit in intrinsic Lorentz transfor-
mation (φLT) and its inverse in the context of φSR and affine
spacetime induction that is implicit in Lorentz transformation
(LT) and its inverse in the context of SR.

On the other hand, our interest in this sub-section is in
intrinsic metric time induction that arises by virtue of posses-
sion of absolute intrinsic speed φV0 naturally at every point
along the length of a proper intrinsic metric space, φρ0′, say,
relative to another proper intrinsic metric space, φρ′, say, in
Fig. 3. Let us assume, for the purpose of illustration, that
a proper intrinsic metric space φρ0′ possesses an absolute
intrinsic speed φV0 < φc naturally at every point along its
length relative to our proper intrinsic metric space φρ′ along
the horizontal, instead of the absolute intrinsic speed φV0 =

φc of every point along the length of φρ0′ relative to φρ′ in
Fig. 3. Then φρ0′ will be inclined at an absolute intrinsic an-
gle φψ0 <

π
2 relative to φρ′ along the horizontal, as illustrated

in Fig. 7, instead of inclination of φρ0′ to the horizontal by
absolute intrinsic angle φψ0 = π

2 in Fig. 3.
As shown in Fig. 7, the inclined proper intrinsic metric

space φρ0′ induces proper intrinsic metric time dimension
φcφt′i along the vertical with respect to 3-observers in our
proper Euclidean 3-space Σ′ along the horizontal. The intrin-
sic metric time induction relation with respect to 3-observers
in Σ′ in Fig. 7, takes the form of the primed intrinsic affine
time induction relation (8) with respect to 3-observer in Σ̃′ in
the context of φSR. We must simply replace the primed in-
trinsic affine spacetime coordinates φcφt̃′i and φx̃′ by proper
intrinsic metric spacetime dimensions φcφt′i and φρ0′ respec-
tively and the relative intrinsic angle φψ and relative intrinsic
speed φv by absolute intrinsic angle φψ0 and absolute intrinsic
speed φV0 in (8) to have as follows

φcφt′i = φρ0′ sin φψ0 =
φV0

φc
φρ0′; (14)

w.r.t. all 3 − observers in Σ′. And the outward manifestation
of (14) is

ct′i = ρ0′ sinψ0 =
V0

c
ρ0′; (15)

w.r.t. all 3 − observers in Σ′.
The induced proper intrinsic metric time dimension φcφt′i

along the vertical in (14) is made manifest in induced proper
metric time dimension ct′i in (15) along the vertical, as shown
in Fig. 7. As indicated, relations (14) and (15) are valid with
respect to all 3-observers in our proper Euclidean 3-space Σ′

overlying our proper intrinsic metric space φρ′ along the hor-
izontal in Fig. 7.

As abundantly stated in [1] and under systems (2) and (3)
earlier in this paper, the relative intrinsic angle φψ = π

2 cor-
responding to relative intrinsic speed φv = φc, is prohibited
by the intrinsic Lorentz transformation (2) and its inverse (3)
in φSR and consequently φψ = π

2 or φv = φc is prohibited
in the intrinsic affine time and intrinsic affine space induction
relations (6) and (7) and their inverses (8) and (9) in φSR.
Correspondingly, the angle ψ = π

2 or speed v = c is prohibited
in the affine time and affine space induction relations (10) and
(11) and their inverses (12) and (13) in SR.

On the other hand, the absolute intrinsic speed φV0 can
be set equal to φc and hence the absolute intrinsic angle φψ0
can be set equal to π

2 in (14). This is so since, as prescribed
earlier in this paper, the proper intrinsic metric space φρ0′ ex-
ists naturally along the vertical as in Fig. 3, corresponding
to φV0 = φc and φψ0 = π

2 naturally in (14) with respect to
3-observers in Σ′. More over, as mentioned at the end of sub-
section 1.1 and as shall be developed fully elsewhere, the ab-
solute intrinsic speed φV0 of every point of the inclined φρ0′

with respect to all 3-observers in Σ′ in Fig. 7, being the out-
ward manifestation in φρ0′ of the absolute speed of the New-
tonian absolute space (the ether of classical mechanics), it can
take on values in the range 0 ≤ φV0 ≤ ∞, since the maximum
speed of objects in classical mechanics is infinite speed. Thus
by letting φV0 = φc and φψ0 = π

2 in (14) we have

φcφt′i ≡ φcφt′ = φρ0′;

for φV0 = φc or φψ0 =
π

2
in Fig. 7; (16)

w.r.t. all 3 − observers in Σ′.
While relation (14) states that a proper intrinsic metric

space φρ0′, which is inclined to φρ′ along the horizontal at
absolute intrinsic angle φψ0 < π

2 , induces proper intrinsic
metric time dimension φcφt′i along the vertical, whose length
is a fraction φV0/φc or sin φψ0 times the length of φρ0′, with
respect to all 3-observers in our proper Euclidean 3-space Σ′

along the horizontal, relation (16) states that a proper intrin-
sic metric space φρ0′, which is naturally inclined at intrinsic
angle φψ0 = π

2 relative to φρ′ along the horizontal, thereby ly-
ing along the vertical, induces proper intrinsic metric time di-
mension φcφt′i ≡ φcφt′ along the vertical, whose length is the
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length of φρ0′, with respect to all 3-observers in our proper
Euclidean 3-space Σ′ along the horizontal.

The preceding paragraph implies that a proper intrinsic
metric space φρ0′ that is naturally rotated along the vertical is
wholly converted (or wholly transformed) into proper intrin-
sic metric time dimension φcφt′ relative to all observers in
our Euclidean 3-space Σ′ (along the horizontal). Eq. (16) can
therefore be re-written as the transformation of proper intrin-
sic metric space into proper intrinsic metric time dimension:

φρ0′ → φcφt′;
for φV0 = φc or φψ0 = π/2 in Fig. 7; (17)

w.r.t. all 3 − observers in Σ′ and the outward manifestation of
Eq. (17) is the transformation of the one-dimensional proper
metric space ρ0′ into proper metric time dimension ct′:

ρ0′ → ct′;
for V0 = c or ψ0 = π/2 in Eq.(15); (18)

w.r.t. all 3 − observers in Σ′.
The condition required for the transformations (17) and

(18) to obtain are naturally met by φρ0′ and ρ0′ in Fig. 6a.
This is the fact that they are naturally inclined at absolute in-
trinsic angle φψ0 = π

2 and absolute angle ψ0 = π
2 respectively

relative to our proper intrinsic space φρ′ along the horizon-
tal and consequently they naturally possess absolute intrinsic
speed φV0 = φc and absolute speed V0 = c respectively at
every point along their lengths with respect to all 3-observers
in our proper Euclidean 3-space Σ′ in that diagram.

The transformations (17) and (18) with respect to 3-obser-
vers in our proper Euclidean 3-space Σ′ correspond to the fol-
lowing with respect to 3-observers in the proper Euclidean
3-space −Σ′∗ of the negative universe in Fig. 6a:

−φρ0′∗ → −φcφt′∗;
for φV0 = φc or φψ0 = π/2; (19)

w.r.t. all 3 − observers in − Σ′∗ and

−ρ0′∗ → −ct′∗;
for V0 = c or ψ0 = π/2; (20)

w.r.t. all 3 − observers in − Σ′∗.
The counterparts of transformations (17) and (18), which

are valid with respect to 3-observers in the proper Euclidean
3-space Σ0′ in Fig. 6b are the following

φρ′ → φcφt0′;
for φV0 = φc or φψ0 = π/2; (21)

w.r.t. all 3 − observers in Σ0′ and

ρ′ → ct0′;
for V0 = c or ψ0 = π/2; (22)

Fig. 8: a) The one-dimensional proper spaces ρ0′ and −ρ0′∗ in Fig. 6a
transform into proper time dimensions ct′ and −ct′∗ respectively and
the proper intrinsic spaces φρ0′ and −φρ0′∗ in Fig. 6a transform into
proper intrinsic time dimensions φcφt′ and −φcφt′∗ respectively, rel-
ative to 3-observers in the proper Euclidean 3-spaces Σ′ and −Σ′∗

(represented by lines) along the horizontal.

w.r.t. all 3 − observers in Σ0′ and the counterparts of trans-
formations (19) and (20), which are valid with respect to 3-
observers in the proper Euclidean 3-space −Σ0′∗ in Fig. 6b are
the following

−φρ′∗ → −φcφt0′∗;
for V0 = c or ψ0 = π/2; (23)

w.r.t. all 3 − observers in − Σ0′∗ and

−ρ′∗ → −ct0′∗;
for V0 = c or ψ0 = π/2; (24)

w.r.t. all 3 − observers in − Σ0′∗.
Application of transformations (17)–(20) on Fig. 6a gives

Fig. 8a and application of transformation (21)–(24) on Fig.
6b gives Fig. 8b. Again representation of Euclidean 3-spaces
by plane surfaces in the previous diagrams in this paper has
temporarily been changed to lines in Figs. 8a and 8b, as done
in Figs. 6a and 6b, for convenience.

The three-dimensional rest masses of the symmetry-part-
ner particles or objects in the proper Euclidean 3-spaces and
the one-dimensional rest masses in the proper time dimen-
sions, as well as their underlying one-dimensional intrinsic
rest masses in the proper intrinsic spaces and proper intrinsic
time dimensions have been deliberately left out in Figs. 8a
and 8b, unlike in Figs. 6a and 6b where they are shown. This
is necessary because of further discussion required in locat-
ing the one-dimensional particles or objects in the time di-
mensions, which shall be done later in this paper. As in-
dicated in Figs. 8a and 8b, the proper time dimensions ct′

and ct0′ possess absolute speed V0 = c at every point along
their lengths, relative to 3-observers in the proper Euclidean
3-spaces Σ′ and Σ0′ respectively, like the one-dimensional
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Fig. 8: b) The one-dimensional proper spaces ρ′ and −ρ′∗ in Fig. 6b
transform into proper time dimensions ct0′ and −ct0′∗ respectively
and the proper intrinsic spaces φρ′ and −φρ′∗ in Fig. 6b transform
into proper intrinsic time dimensions φcφt0′ and −φcφt0′∗ respec-
tively relative to 3-observers in the proper Euclidean 3-spaces Σ0′

and −Σ0′∗ (represented by lines) along the vertical.

spaces ρ0′ and ρ′ in Figs. 6a and 6b that transform into ct′

and ct0′ respectively in Figs. 8a and 8b. As also indicated in
Figs. 8a and 8b, the proper intrinsic time dimensions φcφt′

and φcφt0′ possess absolute intrinsic speed φV0 = φc at every
point along their lengths relative to 3-observers in the proper
Euclidean 3-spaces Σ′ and Σ0′ respectively, like the intrinsic
spaces φρ0′ and φρ′ in Figs. 6a and 6b that transform into
φcφt′ and φcφt0′ respectively in Figs. 8a and 8b. The time di-
mensions ct′ and ct0′ and the intrinsic time dimensions φcφt′

and φcφt0′ are isotropic dimensions (with no unique orienta-
tions in the proper Euclidean 3-spaces Σ0′ and Σ′ that trans-
form into ct′ and ct0′ respectively). These follow from the
isotropy of the one-dimensional spaces ρ0′ and ρ′ in the Eu-
clidean 3-spaces Σ0′ and Σ′ respectively in Figs. 6a and 6b
that transform into ct′ and ct0′ respectively in Figs. 8a and 8b
and from the isotropy of the one-dimensional intrinsic spaces
φρ0′ and φρ′ in the Euclidean 3-spaces Σ0′ and Σ′ respec-
tively in Figs. 6a and 6b that transform into φcφt′ and φcφt0′

respectively in Figs. 8a and 8b.
Fig. 8a is the final form to which the quartet of mutually

orthogonal proper Euclidean 3-spaces and underlying one-
dimensional proper intrinsic spaces in Fig. 2 naturally sim-
plify with respect to 3-observers in the proper Euclidean 3-
spaces Σ′ and −Σ′∗ of the positive (or our) universe and the
negative universe and Fig. 8b is the final form to which the
quartet of proper Euclidean 3-spaces and underlying one-di-
mensional proper intrinsic spaces in Fig. 2 naturally simplify
with respect to 3-observers in the proper Euclidean 3-spaces
Σ0′ and −Σ0′∗ of the positive and negative time-universes.

It follows from the natural simplification of Fig. 2 to Figs.
8a and 8b that the concept of time is secondary to the concept
of space. Indeed the concept of time had evolved from the
concept of space and the concept of intrinsic time had evolved

from the concept of intrinsic space. This is so since given
the quartet of mutually orthogonal proper metric Euclidean
3-spaces/underlying one-dimensional proper intrinsic metric
spaces in Fig. 2, then the straight line one-dimensional proper
metric time manifolds (or proper metric time dimensions)
evolve automatically relative to 3-observers in the proper
Euclidean 3-spaces, as illustrated in Figs. 8a and 8b. Thus
one could ask for the origin of space without at the same time
asking for the origin of time in the present picture. The origin
of time and intrinsic time dimensions, which we seek in this
section, has been achieved.

2 Perfect symmetry of natural laws among the isolated
four universes

The four universes encompassed by Figs. 8a and 8b are the
positive (or our) universe with flat proper spacetime (Σ′, ct′)
of SR and its underlying flat two-dimensional proper intrin-
sic spacetime (φρ′, φcφt′) of φSR in Fig. 8a and the negative
universe with flat proper spacetime (−Σ′∗,−ct′∗) of SR and
its underlying two-dimensional flat proper intrinsic spacetime
(−φρ′∗,−φcφt′∗) of φSR in Fig. 8a.

The third universe is the one with flat proper spacetime
(Σ0′, ct0′) of SR and its underlying flat proper intrinsic space-
time (φρ0′, φcφt0′) of φSR in Fig. 8b. This third universe shall
be referred to as the positive time-universe, since its proper
Euclidean 3-space Σ0′ and its proper intrinsic space φρ0′ are
the proper time dimension ct′ and proper intrinsic time di-
mension φcφt′ respectively of the positive (or our) universe.

The fourth universe is the one with flat proper spacetime
(−Σ0′∗,−ct0′∗) of SR and its underlying flat proper intrinsic
spacetime (−φρ0′∗,−φcφt0′∗) of φSR in Fig. 8b. This fourth
universe shall be referred to as the negative time-universe,
since its proper Euclidean 3-space −Σ0′∗ and its proper in-
trinsic space −φρ0′∗ are the proper time dimension −ct′∗ and
proper intrinsic time dimension −φcφt′∗ respectively of the
negative universe.

As prescribed earlier in this paper, the four worlds (or
universes) encompassed by Figs. 8a and 8b, listed above, co-
exist in nature and exhibit perfect symmetry of natural laws
and perfect symmetry of state among themselves. Perfect
symmetry of laws among the four universes shall be demon-
strated hereunder, while perfect symmetry of state among the
universes shall be be demonstrated in the second part of this
paper.

Demonstration of perfect symmetry of natural laws be-
tween the positive (or our) universe and the negative universe
in [1] and [2] involves three steps. In the first step, the affine
spacetime/intrinsic affine spacetime diagrams of Figs. 8a and
8b and Figs. 9a and 9b of [1] are derived upon the metric
spacetimes/intrinsic metric spacetimes of the positive (or our)
universe and the negative universe of Fig. 8a above, (which
was prescribed to exist in nature and constitute a two-world
background of SR in [1]).

Adekugbe A.O.J. Re-Identification of the Many-World Background of Special Relativity as Four-World Background. Part I 15



Volume 1 PROGRESS IN PHYSICS January, 2011

Physical quantity Symbol Intrinsic Sign
or constant quantity positive negative

or constant time- time-

universe universe

Distance (or dimension)
of space dx0 or x0 dφx0 or φx0 + −
Interval (or dimension)
of time dt0 or t0 dφt0 or φt0 + −
Mass m0 φm0 + −
Electric charge q q + or − − or +

Absolute entropy S 0 φS 0 + −
Absolute temperature T T + +

Energy (total, kinetic) E0 φE0 + −
Potential energy U0 φU0 + or − − or +

Radiation energy hν0 hφν0 + −
Electrostatic potential Φ0

E φΦ0
E + or − + or −

Gravitational potential Φ0 φΦ0 − −
Electric field ~E0 φE0 + or − − or +

Magnetic field ~B0 φB0 + or − − or +

Planck constant h h + +

Boltzmann constant k φk + −
Thermal conductivity k φk + −
Specific heat capacity cp φcp + +

velocity ~v φv + or − + or −
speeds of particles v φv + +

Speed of light c φc + +

Electric permittivity εo
o φεo

o + +

Magnetic permeability µo
o φµo

o + +

Angular measure θ, ϕ φθ, φϕ + or − + or −
Parity Π φΠ + or − − or +

...
...

...
...

...

Table 1. Signs of spacetime/intrinsic spacetime dimensions, some physical parameters/intrinsic parameters
and some physical constants/intrinsic constants in the positive time-universe and negative time-universe.

The intrinsic Lorentz transformation/Lorentz transformation
(φLT/LT) was then derived from those diagrams in the posi-
tive and negative universes, thereby establishing intrinsic Lo-
rentz invariance (φLI) on flat two-dimensional intrinsic space-
times and Lorentz invariance (LI) on flat four-dimensional
spacetimes in the two universes in [1].

The first step in demonstrating perfect symmetry of laws
between the positive (or our) universe and the negative uni-
verse in Fig. 8a of this paper described above, applies di-
rectly between the positive time-universe and the negative
time-universe. The counterparts of Figs. 8a, 8b, 9a and 9b of
[1], drawn upon the metric spacetimes/intrinsic metric space-
times of the positive and negative universes of Fig. 8a of this
paper in that paper, can be drawn upon the metric space-
times/intrinsic spacetimes of the positive time-universe and
negative time-universe in Figs. 8b of this paper and intrin-
sic Lorentz transformations/Lorentz transformation (φLT/LT)
derived from them in the positive time-universe and the neg-
ative time-universe, as shall not be done here in order to con-

serve space. Intrinsic Lorentz invariance (φLI) on flat two-
dimensional intrinsic spacetimes and Lorentz invariance (LI)
on flat four-dimensional spacetimes in the positive and neg-
ative time-universes then follow with respect to observers in
those universes.

The second step in demonstrating the symmetry of laws
between the positive (or our) universe and the negative uni-
verse in [1] and [2], involves the derivation of the relative
signs of physical parameters and physical constants and of in-
trinsic parameters and intrinsic constants between the positive
and negative universes in [2], summarized in Table 1 of that
paper. Again this second step applies directly between the
positive time-universe and the negative time-universe. The
relative signs of physical parameters and physical constants
and of intrinsic parameters and intrinsic constants derivable
between the positive time-universe and the negative time-uni-
verse, summarized in Table 1 here, follow directly from the
derived signs of physical parameters and physical constants
and of intrinsic parameters and intrinsic constants in the pos-
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itive and negative universes, summarized in Table 1 of [2].
Table 1 here is the same as Table 1 in [2]. The super-

script “0” that appears on dimensions/intrinsic dimensions
and some parameters/intrinsic parameters and constants/in-
trinsic constants in Table 1 here is used to differentiate the di-
mensions/intrinsic dimensions, parameters/intrinsic parame-
ters and constants/intrinsic constants of the positive time-uni-
verse and negative time-universe from those of the positive
(or our) universe and the negative universe in Table 1 of [2].

The third and final step in demonstrating the symmetry
of natural laws between the positive (or our) universe and the
negative universe in [1] and [2], consists in replacing the pos-
itive spacetime dimensions and the physical parameters and
physical constants that appear in (the instantaneous differ-
ential) natural laws in the positive universe by the negative
spacetime dimensions and physical parameters and physical
constants of the negative universe (with the appropriate signs
in Table 1 of [2]), and showing that these operations leave all
natural laws unchanged in the negative universe, as done in
section 5 of [2].

The third step in the demonstration of the perfect sym-
metry of natural laws between the positive and negative uni-
verses described in the foregoing paragraph, applies directly
between the positive time-universe and the negative time-uni-
verse as well. Having established Lorentz invariance between
the positive time-universe and negative time-universe at the
first step, it is straight forward to use Table 1 above and fol-
low the procedure in section 5 of [2] to demonstrate the in-
variance of natural laws between the positive time-universe
and negative time-universe.

Symmetry of natural laws must be considered to have
been established between the positive time-universe and the
negative time-universe. A more detailed presentation than
done above will amount to a repetition of the demonstration
of symmetry of natural laws between the positive and nega-
tive universes in [1] and [2].

Finally the established validity of Lorentz invariance in
the four universes encompassed by Figs. 8a and 8b, coupled
with the identical signs of spacetime dimensions, physical pa-
rameters and physical constants in the positive (or our) uni-
verse and the positive time-universe and the identical signs
of spacetime dimensions, physical parameters, physical con-
stants in the negative universe and negative time-universe in
Table 1 of [2] and Table 1 above, guarantee the invariance
of natural laws between the positive (or our) universe and
the positive time-universe and between the negative universe
and the negative time-universe. This along with the estab-
lished invariance of natural laws between the positive (or our)
universe and the negative universe and between the positive
time-universe and the negative time-universe, guarantees in-
variance of natural laws among the four universes.

Symmetry of natural laws among the four universes en-
compassed by Figs. 8a and 8b of this paper namely, the pos-
itive (or our) universe and the negative universe (in Fig. 8a),

the positive time-universe and the negative time-universe (in
Fig. 8b), has thus been shown. Perfect symmetry of state
among the universes shall be demonstrated in the second part
of this paper, as mentioned earlier.

3 Origin of one-dimensional particles, objects and ob-
servers in the time dimension and (3+1)-dimension-
ality of particles, objects and observers in special rel-
ativity

An implication of the geometrical contraction of the three di-
mensions x01′, x02′ and x03′ of the proper Euclidean 3-space
Σ0′ of the positive time-universe in Fig. 2 or Fig. 3 into a one-
dimensional space ρ0′ relative to 3-observers in our proper
Euclidean 3-space Σ′ in Fig. 6a, which ultimately transforms
into the proper time dimension ct′ relative to 3-observers in
Σ′ in Fig. 8a, is that the dimensions of a particle or object,
such as a box of rest mass m0

0 and proper (or classical) dimen-
sions ∆x0′, ∆y0′ and ∆z0′ in Σ0′ with respect to 3-observers
in Σ0′, are geometrically “bundled” parallel to one another,
thereby effectively becoming a one-dimensional box of equal
rest mass m0

0 and proper (or classical) length ∆ρ0′ along ρ0′

in Fig. 6a, which transforms into an interval c∆t′ containing
rest mass m0

0 along the proper time dimension ct′ in Fig. 8a,
relative to 3-observers in our Euclidean 3-space Σ′, where
c∆t′ = ∆ρ0′ =

√
(∆x0′)2 + (∆y0′)2 + (∆z0′)2.

Likewise all radial directions of a spherical particle or ob-
ject of rest mass m0

0 and proper (or classical) radius r0′ in the
proper Euclidean 3-space Σ0′ of the positive time-universe,
with respect to 3-observers in Σ0′, are “bundled” parallel to
one another, thereby becoming a one-dimensional particle or
object of proper (or classical) length, ∆ρ0′ = r0′, along ρ0′ in
Fig. 6a, which ultimately transforms into interval c∆t′ (= r0′)
containing rest mass m0

0 along the proper time dimension ct′

in Fig. 8a, with respect to 3-observers in our proper Euclidean
3-space Σ′.

A particle or object of rest mass m0
0 with arbitrary shape

located in the proper Euclidean 3-space Σ0′ of the positive
time-universe with respect to 3-observers in Σ0′, will have
the lengths (or dimensions) from its centroid to its boundary
along all directions geometrically “bundled” parallel to one
another, thereby effectively becoming a one-dimensional par-
ticle or object of equal rest mass m0

0 along the proper time
dimension ct′ with respect to 3-observers in Σ′ in Fig. 8a.

The one-dimensional rest mass m0
0 of proper length c∆t′

of a particle, object or observer in our proper time dimen-
sion ct′ with respect to 3-observers in our Euclidean 3-space
Σ′ in Fig. 8a, will acquire the absolute speed V0 = c, which
the proper time dimension possesses at every point along its
length with respect to 3-observers in Σ′. Consequently it will
possess energy m0

0V2
0 = m0

0c2 = E′ in ct′ with respect to 3-
observers in Σ′. Indeed the one-dimensional rest mass m0

0 in
ct′ will be made manifest in the state of energy E′ = m0

0c2

by virtue of its absolute speed c in ct′ and not in the state
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of rest mass m0
0. In other words, instead of locating one-

dimensional rest mass m0
0 along the proper time dimension

ct′ in Fig. 8a, as done along the one-dimensional space ρ0′ in
Fig. 6a, we must locate one-dimensional equivalent rest mass
E′/c2 (= m0) along ct′ with respect to 3-observers in Σ′, as the
symmetry-partner in ct′ to the three-dimensional rest mass m0
in Σ′.

It follows from the foregoing that as the proper Euclidean
3-space Σ0′ of the positive time-universe in Fig. 2 or 3 is ge-
ometrically contracted to one-dimensional space ρ0′ with re-
spect to 3-observers in our proper Euclidean 3-space Σ′ in
Fig. 6a, the three-dimensional rest mass m0

0 in Σ0′ with re-
spect to 3-observers in Σ0′ in Fig. 2 or Fig. 3, contracts to
one-dimensional rest mass m0

0 located in the one-dimensional
space ρ0′ with respect to 3-observers in our proper Euclidean
3-space Σ′ in Fig. 6a. And as the one-dimensional proper
space ρ0′ in Fig. 6a ultimately transforms into the proper time
dimension ct′ with respect to 3-observers in our Euclidean
3-space Σ′, the one-dimensional rest mass m0

0 in ρ0′ trans-
forms into one-dimensional equivalent rest mass E′/c2, (i.e.
m0

0 → E′/c2), located in the proper time dimension ct′ in
Fig. 8a with respect to 3-observers in our Euclidean 3-space
Σ′, (although E′/c2 has not been shown in ct′ in Fig. 8a).

It must be noted however that since the speed V0 = c ac-
quired by the rest mass m0

0 in the proper time dimension ct′

is an absolute speed, which is not made manifest in actual
motion (or translation) of m0

0 along ct′, the energy m0
0c2 = E′

possessed by m0
0 in ct′ is a non-detectable energy in the proper

time dimension. Important to note also is the fact that the
equivalent rest mass E′/c2 of a particle or object in the proper
time dimension ct′ is not an immaterial equivalent rest mass.
Rather it is a quantity of matter that possesses inertia (like
the rest mass m0

0) along the proper time dimension. This
is so because the speed c in m0

0c2 = E′, being an absolute
speed, is not made manifest in motion of m0

0 along ct′, as
mentioned above. On the other hand, the equivalent mass,
m0γ = E′γ/c

2 = hν0/c2, of a photon is purely immaterial,
since the speed c in m0γc2 = hν0 is the speed of actual trans-
lation through space of photons and only a purely immaterial
particle can attain speed c of actual translation in space or
along the time dimension. While the material equivalent rest
mass E′/c2(≡ m0

0) in ct′ can appear as rest mass in SR, the
immaterial equivalent mass E′0γ/c

2 (≡ m0γ) of photon cannot
appear in SR.

Illustrated in Fig. 9a are the three-dimensional rest mass
m0 of a particle or object at a point of distance d′ from a point
of reference or origin in our proper Euclidean 3-space Σ′ and
the symmetry-partner one-dimensional equivalent rest mass
E′/c2 at the symmetry-partner point of distance d0′ along
the proper time dimension ct′ from the point of reference or
origin, where the distances d′ and d0′ are equal. The three-
dimensional rest mass m0 in Σ′ is underlied by its one-dimen-
sional intrinsic rest mass φm0 in the one-dimensional proper

intrinsic space φρ′ and the one-dimensional equivalent rest
mass E′/c2 in ct′ is underlied by its one-dimensional equiv-
alent intrinsic rest mass φE′/φc2 in the proper intrinsic time
dimension φcφt′ in Fig. 9a.

Fig. 9a pertains to a situation where the three-dimensional
rest mass m0 of the particle or object is at rest relative to the 3-
observer in the proper Euclidean 3-space Σ′ and consequently
its one-dimensional equivalent rest mass E′/c2 is at rest in the
proper time dimension ct′ relative to the 3-observer in Σ′. On
the other hand, Fig. 9b pertains to a situation where the three-
dimensional rest mass m0 of the particle or object is in motion
at a velocity~v relative to the 3-observer in Σ′, thereby becom-
ing the special-relativistic mass, m = γm0 in Σ′, relative to
the 3-observer in Σ′ and consequently the one-dimensional
equivalent rest mass E′/c2 of the particle or object is in mo-
tion at speed v = |~v | in the proper time dimension ct′ rel-
ative to the 3-observer in Σ′, thereby becoming the special-
relativistic equivalent mass E/c2 = γE′/c2 in ct′ relative to
the 3-observer in Σ′.

The one-dimensional equivalent rest mass E′/c2 of proper
(or classical) length c∆t′ = d0′ located at a point in the proper
time dimension ct′ with respect to 3-observers in the proper
Euclidean 3-space Σ′ in Fig. 9a, acquires the absolute speed
V0 = c of ct′. However, since the absolute speed V0 = c of
ct′ is not made manifest in the flow of ct′ with respect to 3-
observers in Σ′, it is not made manifest in translation of E′/c2

along ct′ with respect to the 3-observers in Σ′. Moreover the
equivalent rest mass E′/c2 possesses zero speed (v = 0) of
motion in ct′ relative to the 3-observer in Σ′, just as the rest
mass m0 possesses zero speed of motion in the Euclidean 3-
space Σ′ relative to the 3-observer in Σ′. Consequently m0 and
E′/c2 remain stationary at their symmetry-partner locations
in Σ′ and ct′ respectively relative to the 3-observer in Σ′ in
Fig. 9a.

Likewise the equivalent intrinsic rest mass φE′/φc2 of
proper intrinsic length φc∆φt′ = φd0′ located at a point in
the proper intrinsic time dimension φcφt′ with respect to 3-
observers in the proper Euclidean 3-space Σ′ in Fig. 9a, ac-
quires the absolute intrinsic speed φV0 = φc of φcφt′. How-
ever, since the absolute intrinsic speed φc of φcφt′ is not
made manifest in the intrinsic flow of φcφt′ with respect to
3-observers in Σ′, it is not made manifest in intrinsic transla-
tion of φE′/φc2 along φcφt′ with respect to the 3-observers in
Σ′. Moreover the equivalent intrinsic rest mass φE′/φc2 pos-
sesses zero intrinsic speed (φv = 0) of intrinsic translation in
φcφt′ relative to the 3-observer in Σ′, just as the intrinsic rest
mass φm0 possesses zero intrinsic speed of intrinsic transla-
tion in the proper intrinsic space φρ′ underlying Σ′ relative
to the 3-observer in Σ′. Consequently φm0 and φE′/φc2 re-
main stationary at their symmetry-partner locations in φρ′ and
φcφt′ respectively relative to the 3-observer in Σ′ in Fig. 9a.

In a situation where the rest mass m0 of the particle or
object is in motion at a velocity ~v in the proper Euclidean 3-
space Σ′ and the one-dimensional equivalent rest mass E′/c2
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Fig. 9: The three-dimensional mass of an object at a position in the Euclidean 3-space and its one-dimensional equivalent mass at the
symmetry-partner position in the time dimension, along with the underlying one-dimensional intrinsic mass of the object in intrinsic space
and its equivalent intrinsic mass in the intrinsic time dimension, in the situations where (a) the object is stationary relative to the observer
and (b) the object is in motion relative to the observer.

is in motion at speed v = |~v | in the proper time dimension ct′

relative to the 3-observer in Σ′ in Fig. 9b, on the other hand,
the special-relativistic equivalent mass E/c2 = γE′/c2, ac-
quires the absolute speed V0 = c of the proper time dimension
ct′, which is not made manifest in motion of γE′/c2 along ct′

and as well possesses speed v of translation along ct′ relative
to the 3-observer in Σ′.

During a given period of time, the relativistic equivalent
mass γE′/c2 has translated at constant speed v from an ini-
tial position P0

1 to another position P0
2 along the proper time

dimension ct′, while covering an interval P0
1P0

2 of ct′. Dur-
ing the same period of time, the special-relativistic mass m =

γm0, has translated at equal constant speed v = |~v | from an ini-
tial position P1 to another position P2 in the proper Euclidean
3-space Σ′, while covering a distance P1P2 in Σ′, where the
interval P0

1P0
2 covered along ct′ by γE′/c2 is equal to the dis-

tance P1P2 covered in Σ′ by γm0 and positions P1 and P2 in
Σ′ are symmetry-partner positions to positions P0

1 and P0
2 re-

spectively in ct′. Consequently γm0 and γE′/c2 are always
located at symmetry-partner positions in Σ′ and ct′ respec-
tively in the situation where they are in motion at any speed v
in their respective domains relative to the 3-observer in Σ′ in
Fig. 9b.

It shall be reiterated for emphasis that the equivalent mass
E′/c2 or γE′/c2 in our proper metric time dimension ct′ with
respect to 3-observers in our proper Euclidean 3-space Σ′, of a
particle, object or observer in Figs. 9a and 9b, is actually the
three-dimensional mass m0

0 or γm0
0 of the symmetry-partner

particle, object or observer in the proper Euclidean 3-space
Σ0′ of the positive time-universe with respect to 3-observers
in Σ0′. This is the origin of the the one-dimensional particle,
object or observer (or 1-particle, 1-object or 1-observer) in
the time dimension to every 3-dimensional particle, object or
observers (or 3-particle, 3-object or 3-observer) in 3-space in
our universe.

Just as the proper time dimension ct′(≡ x0′) is added to
the three dimensions x1′, x2′ and x3′ of the proper Euclidean

3-space Σ′ to have the four dimensions x0′, x1′, x2′ and x3′

of the flat four-dimensional proper metric spacetime, the one-
dimensional equivalent rest mass E′/c2 of a particle, object
or observer in the proper time dimension ct′ must be added to
the three-dimensional rest mass m0 of its symmetry-partner
particle, object or observer in the proper Euclidean 3-space
Σ′ to have a 4-dimensional particle, object or observer of rest
mass (m0, E′/c2) on the flat four-dimensional proper space-
time (Σ′, ct′) in our notation.

However it is more appropriate to refer to 4-dimensional
particles, objects and observers on flat 4-dimensional space-
time as (3+1)-dimensional particles, objects and observers,
because the one-dimensional particles, objects and observers
(or 1-particles, 1-objects and 1-observers) in the time dimen-
sion ct′ are themselves distinct particles, objects and obser-
vers, (which are geometrically contracted from three-dimen-
sional particles, objects and observers in the Euclidean 3-
space Σ0′ of the positive time-universe), which are separated
in the time dimension ct′ from their symmetry-partner three-
dimensional continuum particles, objects and observers (or
3-particles, 3-objects and 3-observers) in the continuum Eu-
clidean 3-space Σ′.

The 1-particle, 1-object or 1-observer in the time dimen-
sion can be thought of as weakly bonded to the 3-particle, 3-
object or 3-observer in the Euclidean 3-space to form a (3+1)-
dimensional particle, object or observer in spacetime and a
(3+1)-dimensional particle, object or observer can be decom-
posed into its component 1-particle, 1-object or 1-observer
in the time dimension and 3-particle, 3-object or 3-observer
in the Euclidean 3-space. On the other hand, what should
be referred to as a continuum 4-dimensional particle, object
or observer (or 4-particle, 4-object or 4-observer) on four-
dimensional spacetime continuum should be non-decompo-
sable into its component dimensions, just as a continuum 3-
dimensional particle, object or observer in the Euclidean 3-
space continuum cannot be decomposed into its component
dimensions.
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There are no continuum non-decomposable four-dimen-
sional particles, objects and observers on four-dimensional
spacetime in the context of the present theory. Rather there
are (3+1)-dimensional particles, objects and observers that
can be decomposed into one-dimensional particles, objects
and observers in the time dimension and three-dimensional
particles, objects and observers in the Euclidean 3-space. Rel-
ativistic physics must be formulated partially with respect to
1-observers in the time dimension as distinct from relativis-
tic physics formulated partially with respect to 3-observers in
the Euclidean 3-space. The partial physics formulated with
respect to 1-observer in the time dimension and 3-observer
in the Euclidean 3-space must then be composed into the full
relativistic physics on four-dimensional spacetime.

It is also important to note that it is the partial physics
formulated with respect to 1-observers in the time dimen-
sion, which, of course, contains component of physics pro-
jected from the Euclidean 3-space in relativistic physics, is
what the 1-observers in the time dimension could observe.
It is likewise the partial physics formulated with respect to 3-
observers in the Euclidean 3-space, which, of course, contains
component of physics projected from the time dimension in
relativistic physics, that the 3-observers in the Euclidean 3-
space could observe.

The foregoing paragraph has been well illustrated with
the derivation of the intrinsic Lorentz transformation of sys-
tem (13) of [1] as combination of partial intrinsic Lorentz
transformation (11) derived from Fig. 8a with respect to the
3-observer (Peter) in the Euclidean 3-space Σ̃ and partial in-
trinsic Lorentz transformation (12) derived from Fig. 8b with
respect to the 1-observer (P̃eter) in the time dimension ct̃ in
that paper. The Lorentz transformation of system (28) of [1],
as the outward manifestation on flat four-dimensional space-
time of the intrinsic Lorentz transformation (11) in that paper,
has likewise been composed from partial Lorentz transforma-
tion with respect to the 3-observer in Σ̃ and partial Lorentz
transformation with respect to the 1-observer in the time di-
mension ct̃.

Let us collect the partial Lorentz transformations derived
with respect to the 1-observer in ct̃ in the LT and its inverse
of systems (28) and (29) of [1] to have as follows

ct̃ ′ = ct̃ secψ − x̃ tanψ;
x̃ = x̃′ secψ + ct̃ tanψ; ỹ = ỹ′; z̃ = z̃ ′;

(w.r.t. 1 − observer in ct̃ )

 . (25)

These coordinate transformations simplify as follows from
the point of view of what can be measured with laboratory
rod and clock discussed in detail in sub-section 4.5 of [1]:

t̃ = t̃ ′ cosψ; x̃ = x̃′ secψ; ỹ = ỹ′; z̃ = z̃ ′ (26)

w.r.t. 1 − observer in ct̃.
System (26) derived with respect to the 1-observer in ct̃,

corresponds to system (42) of [1], derived with respect to 3-
observer in Σ̃ in that paper, which shall be re-presented here

as follows

t̃ = t̃ ′ secψ; x̃ = x̃′ cosψ; ỹ = ỹ′; z̃ = z̃ ′ (27)

w.r.t. 3 − observer in Σ̃.
We find from systems (26) and (27) that while 3-observers

in the Euclidean 3-space observe length contraction and time
dilation of relativistic events, their symmetry-partner 1-obser-
vers in the time dimension observe length dilation and time
contraction of relativistic events.

It is clear from all the foregoing that a 3-observer in the
Euclidean 3-space and his symmetry-partner 1-observer in
the time dimension are distinct observers who can be com-
posed (or “weakly bonded”) into a (3+1)-dimensional ob-
server that can be decomposed back into its component 3-
observer and 1-observer for the purpose of formulating rel-
ativistic physics, which is composed from partial relativistic
physics formulated separately with respect to 3-observers in
the Euclidean 3-space and 1-observers in the time dimension.

Every parameter in the Euclidean 3-space has its counter-
part (or symmetry-partner) in the time dimension. We have
seen the case of rest mass m0 in the proper Euclidean 3-space
Σ′ and its symmetry-partner one-dimensional equivalent rest
mass E′/c2 in the proper time dimension ct′, as illustrated in
Figs. 9a and 9b. A classical three-vector quantity ~q ′ in the
proper Euclidean 3-space Σ′ has its symmetry-partner clas-
sical scalar quantity q0′ in the proper time dimension ct′.
The composition of the two yields what is usually referred
to as four-vector quantity denoted by q′λ = (q0′, ~q ′) or q′λ =

(q0′, q1′, q2′, q3′). We now know that the scalar components
q0′ in the time dimension ct′ of four-vector quantities in the
positive (or our) universe are themselves three-vector quan-
tities ~q 0′ in the Euclidean 3-space Σ0′ of the positive time-
universe with respect to 3-observers in Σ0′. The three-vector
quantities ~q 0′ in Σ0′, (which are identical symmetry-partners
to the three-vector quantities ~q ′ in our Euclidean 3-space Σ′),
become contracted to one-dimensional scalar quantities q0′ =

|~q 0′| in the time dimension ct′ relative to 3-observers in Σ′,
even as the proper Euclidean 3-space Σ0′ containing ~q 0′ be-
comes contracted to the proper time dimension ct′ relative to
3-observers in Σ′.

4 Final justification for the new spacetime/intrinsic spa-
cetime diagrams for Lorentz transformation/intrinsic
Lorentz transformation in the four-world picture

New geometrical representations of Lorentz transformation
and intrinsic Lorentz transformation (LT/φLT) and their in-
verses were derived and presented as Figs. 8a and 8b and
Figs. 9a and 9b within the two-world picture isolated in [1].
However at least two outstanding issues about those diagrams
remain to be resolved in order to finally justify them. The first
issue is the unexplained origin of Fig. 8b that must necessarily
be drawn to complement Fig. 8a of [1] in deriving φLT/LT.
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The second issue is the unspecified reason why anticlock-
wise relative rotations of intrinsic affine spacetime coordi-
nates are positive rotations (involving positive intrinsic angles
φψ) with respect to 3-observers in the Euclidean 3-spaces Σ′

and −Σ′∗ in Fig. 8a of [1], while, at the same time, clockwise
relative rotations of intrinsic affine spacetime coordinates are
positive rotations (involving positive intrinsic angles φψ) with
respect to 1-observers in the time dimensions ct′ and −ct′∗ in
Fig. 8b of [1]. These two issues shall be resolved within the
four-world picture encompassed by Figs. 8a and 8b of this
paper in this section.

Let us as done in deriving Figs. 8a and 8b and their in-
verses Figs. 9a and 9b of [1] towards the derivation of intrin-
sic Lorentz transformation/Lorentz transformation (φLT/LT)
and their inverses in the positive and negative universes in [1],
prescribe particle’s (or primed) frame and observer’s (or un-
primed) frame in terms of extended affine spacetime coordi-
nates in the positive (or our) universe as (x̃′, ỹ′, z̃ ′, ct̃ ′) and
(x̃, ỹ, z̃, ct̃ ) respectively. They are underlied by intrinsic par-
ticle’s frame and intrinsic observer’s frame in terms of ex-
tended intrinsic affine coordinates (φx̃′, φcφt̃ ′) and (φx̃, φcφt̃ )
respectively.

The prescribed perfect symmetry of state between the
positive and negative universes in [1] implies that there are
identical symmetry-partner particle’s frame and observer’s
frame (−x̃ ′∗, −ỹ′∗, −z̃ ′∗, −ct̃ ′∗) and (−x̃∗, −ỹ∗, −z̃∗, −ct̃ ∗)
respectively, as well as their underlying identical symmetry-
partner intrinsic particle’s frame and symmetry-partner intrin-
sic observer’s frame (−φx̃ ′∗,−φcφt̃ ′∗) and (−φx̃∗,−φcφt̃ ∗) re-
spectively in the negative universe.

Let us consider the motion at a constant speed v of the rest
mass m0 of the particle along the x̃′−axis of its frame and the
underlying intrinsic motion at constant intrinsic speed φv of
the intrinsic rest mass φm0 of the particle along the intrinsic
space coordinate φx̃′ of its frame relative to a 3-observer in
the positive universe. Again the prescribed perfect symmetry
of state between the positive and negative universes implies
that the rest mass −m∗0 of the symmetry-partner particle is
in simultaneous motion at equal constant speed v along the
−x̃ ′∗−axis of its frame of reference and its intrinsic rest mass
−φm∗0 is in simultaneous intrinsic motion at equal intrinsic
speed φv along the intrinsic space coordinate −φx̃′∗−axis of
its frame relative to the symmetry-partner 3-observer in the
negative universe.

As developed in sub-section 4.4 of [1], the simultaneous
identical motions of the symmetry-partner particles’ frames
relative to the symmetry-partner observers’ frames in the pos-
itive and negative universes, described in the foregoing para-
graph, give rise to Fig. 8a of [1] with respect to 3-observers
in the Euclidean 3-spaces Σ′ and −Σ′∗, which shall be repro-
duced here as Fig. 10a.

The diagram of Fig. 10a involving relative rotations of ex-
tended intrinsic affine spacetime coordinates, has been drawn
upon the flat four-dimensional proper metric spacetime of

classical mechanics (CM) and its underlying flat two-dimen-
sional proper intrinsic metric spacetime of intrinsic classical
mechanics (φCM) of the positive (or our) universe and the
negative universe contained in Fig. 8a of this paper. The pre-
scribed symmetry of state among the four universes encom-
passed by Figs. 8a and 8b of this paper, implies that identical
symmetry-partner particles undergo identical motions simul-
taneously relative to identical symmetry-partner observers (or
frames of reference) in the four universes. It follows from
this that Fig. 10b drawn upon the flat four-dimensional proper
metric spacetime of CM and its underlying flat two-dimen-
sional proper intrinsic metric spacetime of φCM of the pos-
itive time-universe and the negative time-universe contained
in Fig. 8b of this paper, co-exists with Fig. 10a in nature.

Fig. 10b is valid with respect to 3-observers in the Eu-
clidean 3-spaces Σ0′ of the positive time-universe and −Σ0′∗

of the negative time-universe as indicated. It must be noted
that the anti-clockwise rotations of primed intrinsic coordi-
nates φx̃′ and φcφt̃ ′ relative to the unprimed intrinsic coor-
dinates φx̃ and φcφt̃ respectively by positive intrinsic angle
φψ with respect to 3-observers in the Euclidean 3-space Σ′

and −Σ′∗ in Fig. 10a, correspond to clockwise rotations of the
primed intrinsic coordinates φx̃0′ and φcφt̃ 0′ relative to the
unprimed intrinsic coordinates φx̃ 0 and φcφt̃ 0 respectively by
positive intrinsic angle φψ with respect to 3-observers in Σ0′

and −Σ0′∗ in Fig. 10b.
Fig. 10b co-exists with Fig. 10a in nature and must com-

plement Fig. 10a towards deriving intrinsic Lorentz transfor-
mation/Lorentz transformation (φLT/LT) graphically in the
positive (or our) universe and the negative universe by physi-
cists in our universe and the negative universe. However Fig.
10b in its present form cannot serve a complementary role
to Fig. 10a, because it contains the spacetime and intrinsic
spacetime coordinates of the positive time-universe and the
negative time-universe, which are elusive to observers in our
(or positive) universe and the negative universe, or which can-
not appear in physics in the positive and negative universes.

In order for Fig. 10b to be able to serve a complementary
role to Fig. 10a towards deriving the φLT/LT in the positive
and negative universes, it must be appropriately modified. As
found earlier in this paper, the proper Euclidean 3-spaces Σ0′

and −Σ0′∗ of the positive and negative time-universes with
respect to 3-observers in them, are proper time dimensions
ct′ and −ct′∗ respectively with respect to 3-observers in the
proper Euclidean 3-spaces Σ′ and −Σ′∗ of our universe and
the negative universe and the proper time dimensions ct0′ and
−ct0′∗ of the positive and negative time-universes with respect
to 3-observers in the proper Euclidean 3-spaces Σ0′ and −Σ0′∗

of the positive and negative time-universes, are the proper Eu-
clidean 3-spaces Σ′ and −Σ′∗ of our universe and the negative
universes respectively with respect to 3-observers in Σ′ and
−Σ′∗.

As follows from the foregoing paragraph, Fig. 10b will
contain the spacetime and intrinsic spacetime coordinates of
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Fig. 10: a) Relative rotations of intrinsic affine spacetime coordinates of a pair of frames in the positive (or our) universe and of the
symmetry-partner pair of frames in the negative universe, which are valid relative to symmetry-partner 3-observers in the Euclidean 3-
spaces in the positive and negative universes. b) Relative rotations of intrinsic affine spacetime coordinates of a pair of frames in the
positive time-universe and of the symmetry-partner pair of frames in the negative time-universe, which are valid relative to symmetry-
partner 3-observers in the Euclidean 3-spaces in the positive and negative time-universes.

our (or positive) universe and the negative universe solely by
performing the following transformations of spacetime and
intrinsic spacetime coordinates on it with respect to 3-obser-
vers in the Euclidean 3-spaces Σ′ and −Σ′∗ of our universe
and the negative universe:

Σ̃0 → ct̃; ct̃ 0 → Σ̃; −Σ̃0∗ → −ct̃ ∗;
−ct̃ 0∗ → −Σ̃∗.

φx̃0 → φcφt̃; φcφt̃ 0 → φx̃;
−φx̃0∗ → −φcφt̃ ∗;
−φcφt̃ 0∗ → −φx̃∗.

φx̃0′ → φcφt̃ ′; φcφt̃ 0′ → φx̃′;
−φx̃0′∗ → −φcφt̃ ′∗;
−φcφt̃ 0′∗ → −φx̃ ′∗.



(28)

By implementing the coordinate/intrinsic coordinate transfor-
mations of systems (28) on Fig. 10b we have Fig. 11a.

Fig. 11a is valid with respect to 1-observers in the proper
time dimensions ct′ and −ct′∗ of the positive and negative
universes as indicated, where these 1-observers are the 3-
observers in the Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 10b.
Since Fig. 11a contains the spacetime/intrinsic spacetime co-
ordinates of the positive (or our) universe and the negative
universe solely, it can serve as a complementary diagram to
Fig. 10a towards the deriving φLT/LT in the positive (or our)
universe and the negative universe. Indeed Fig. 10a and Fig.
11a are the same as Figs. 8a and 8b of [1], with which the
φLT/LT were derived in the positive (or our) universe and the
negative universe in that paper, except for intrinsic spacetime
projections in Figs. 8a and 8b of [1], which are not shown in
Figs. 10a and Fig. 11a here.

On the other hand, Fig. 10a will contain the spacetime/in-
trinsic spacetime coordinates of the positive time-universe

and the negative time-universe solely, as shown in Fig. 11b,
by performing the inverses of the transformations of space-
time and intrinsic spacetime coordinates of system (28), (that
is, by reversing the directions of the arrows in system (28)) on
Fig. 10a. Just as Fig. 11a must complement Fig. 10a for the
purpose of deriving the φLT/LT in the positive (or our) uni-
verse and the negative universe, as presented in sub-section
4.4 of [1], Fig. 11b must complement Fig. 10b for the pur-
pose of deriving the φLT/LT in the positive time-universe and
the negative time-universe.

The clockwise sense of relative rotations of intrinsic affine
spacetime coordinates by positive intrinsic angles φψ with
respect to 1-observers in the time dimension ct̃ and −ct̃ ∗ in
Fig. 11a follows from the validity of the clockwise sense of
relative rotations of intrinsic affine spacetime coordinates by
positive intrinsic angle φψ with respect to 3-observers in the
Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 10b. The 1-obser-
vers in ct̃ and −ct̃ ∗ in Fig. 11a are what the 3-observers in Σ̃0

and −Σ̃0∗ in Fig. 10b transform into, as noted above.
Thus the second outstanding issue about the diagrams of

Figs. 8a and 8b of [1], mentioned at the beginning of this sec-
tion namely, the unexplained reason why anti-clockwise rel-
ative rotations of intrinsic affine spacetime coordinates with
respect to 3-observers in the Euclidean 3-spaces Σ′ and −Σ′∗

are positive rotations involving positive intrinsic angles φψ in
Fig. 8a of [1], while, at the same time, clockwise relative ro-
tations of intrinsic affine spacetime coordinates with respect
to 1-observers in the time dimensions ct′ and −ct′∗ are posi-
tive rotations involving positive intrinsic angles φψ in Fig. 8b
of [1], has now been resolved.

Since Fig. 8b of [1] or Fig. 11a of this paper has been
shown to originate from Fig. 10b of this paper, which is valid
with respect to 3-observers in the Euclidean 3-spaces Σ0′ and
−Σ0′∗ of the positive and negative time-universes, the origin
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Fig. 11: a) Complementary diagram to Fig. 10a obtained by transforming the spacetime/intrinsic spacetime coordinates of the positive
time-universe and the negative time-universe in Fig. 10b into the spacetime/intrinsic spacetime coordinates of the positive (or our) universe
and the negative universe; is valid with respect to 1-observers in the time dimensions of our universe and the negative universe. b)
Complementary diagram to Fig. 10b obtained by transforming the spacetime/intrinsic spacetime coordinates of the positive (or our) universe
and the negative universe in Fig. 10a into the spacetime/intrinsic spacetime coordinates of the positive time-universe and the negative time-
universe; is valid with respect to 1-observers in the time dimensions of the positive time-universe and the negative time-universe.

from the positive time-universe and negative time-universe of
Fig. 8b of [1] (or Fig. 11a of this paper), which must neces-
sarily be drawn to complement Fig. 8a of [1] (or Fig. 10a of
this paper) in deriving the φLT/LT in our (or positive) uni-
verse and the negative universe, has been shown. Thus the
first outstanding issue about Figs. 8a and 8b of [1], which
was unresolved in [1], mentioned at the beginning of this sec-
tion, namely the unexplained origin of Fig. 8b that must al-
ways be drawn to complement Fig. 8a in [1] in deriving the
φLT/LT, has now been resolved. The four-world background
of Figs. 8a and its complementary diagram of Fig. 8b in [1]
(or Fig. 10a and Fig. 11a of this paper), has thus been demon-
strated.

The new geometrical representation of the intrinsic
Lorentz transformation/Lorentz transformation (φLT/LT) of
Figs. 8a and 8b in [1] (or Fig. 10a and Fig. 11a of this paper),
which was said to rest on a two-world background in [1] and
[2], because those diagrams contain the spacetime/intrinsic
spacetime coordinates of the positive (or our) universe and
the negative universe solely and the origin of Fig. 8b in [1]
(or Fig. 11a of this paper) from the diagram of Fig. 10b of
this paper in the positive time-universe and the negative time-
universe was unknown in [1]. The φLT/LT and consequently
the intrinsic special theory of relativity/special theory of rel-
ativity (φSR/SR) shall be said to rest on a four-world back-
ground henceforth.

5 Invariance of the flat four-dimensional proper (or cla-
ssical) metric spacetime in the context of special rela-
tivity

The flat four-dimensional proper physical (or metric) space-
time, which is composed of the proper Euclidean 3-space

Σ′ and the proper time dimension ct′ in the first quadrant
in Fig. 8a of this paper, is the flat four-dimensional proper
metric spacetime of classical mechanics (including classical
gravitation), of the positive (or our) universe, usually denoted
by (x0′, x1′, x2′, x3′), where the dimension x0′ is along the
one-dimensional proper space ρ0′ in Fig. 6a, which trans-
forms into the proper time dimension ct′ in Fig. 8a; hence
x0′ = ct′ and x1′, x2′ and x3′ are the dimensions of the proper
Euclidean 3-space Σ′. The notation (Σ′, ct′) for the flat four-
dimensional proper physical (or metric) spacetime adopted
in [1] and [2], (although the prime label on Σ′ and ct′ did not
appear in those papers), is being adhered to in this paper for
convenience.

When the special theory of relativity operates on the flat
four-dimensional proper metric spacetime (x0′, x1′, x2′, x3′);
x0′ = ct′ (or (Σ′, ct′) in our notation), it is the extended intrin-
sic affine spacetime coordinates φx̃′ and φcφt̃ ′ of the primed
(or particle’s) frame that are rotated relative to their projective
extended affine intrinsic spacetime coordinates φx̃ and φcφt̃
of the unprimed (or observer’s) frame. It is consequently the
primed intrinsic affine coordinates φx̃′ and φcφt̃ ′ that trans-
form into the unprimed intrinsic affine coordinates φx̃ and
φcφt̃ in intrinsic Lorentz transformation (φLT) in the context
of intrinsic special theory of relativity (φSR).

It is the extended affine spacetime coordinates ct̃ ′, x̃′, ỹ′

and z̃ ′ of the primed frame on the flat four-dimensional proper
physical (or metric) spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′)
in our notation) that transform into the extended affine space-
time coordinates ct̃, x̃, ỹ and z̃ of the unprimed frame, also on
the flat four-dimensional proper physical (or metric) space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation) in Lorentz
transformation (LT) in the context of the special theory of
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relativity (SR).
The special theory of relativity, as an isolated phenomen-

on, cannot transform the extended flat proper metric space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation) on which
it operates, to an extended flat relativistic metric spacetime
(x0, x1, x2, x3) (or (Σ, ct) in our notation), because SR in-
volves the transformation of extended affine spacetime coor-
dinates with no physical (or metric) quality. Or because the
spacetime geometry associated with SR is affine spacetime
geometry. A re-visit to the discussion of affine and metric
spacetimes in sub-section 4.4 of [1] may be useful here. The
primed coordinates x̃′, ỹ′, z̃ ′ and ct̃ ′ of the particle’s frame
and the unprimed coordinates x̃, ỹ, z̃ and ct̃ of the observer’s
frame in the context of SR are affine coordinates with no met-
ric quality, both of which exist on the flat proper (or clas-
sical) metric spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our
notation).

It is gravity (a metric phenomenon) that can transform
extended flat four-dimensional proper (or classical) metric
spacetime (with prime label) (x0′, x1′, x2′, x3′) (or (Σ′, ct′)
in our notation) into extended four-dimensional “relativistic”
spacetime (x0, x1, x2, x3) (or (Σ, ct)), (without prime label),
where (x0, x1, x2, x3) (or (Σ, ct)) is known to be curved in all
finite neighborhood of a gravitation field source in the con-
text of the general theory of relativity (GR). The rest mass
m0 of a test particle on the flat proper (or classical) metric
spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′)) is also known to
transform into the inertial mass m on the curved “relativis-
tic” physical (or metric) spacetime (x0, x1, x2, x3) (or (Σ, ct))
in the context of GR, where m is known to be trivially related
to m0 as m = m0, by virtue of the principle of equivalence of
Albert Einstein [5].

However our interest in [1] and [2] and in the two parts of
this paper is not in the metric phenomenon of gravity, but in
the special theory of relativity (with affine spacetime geome-
try), as an isolated subject from gravity. We have inherently
assumed the absence of gravity by restricting to the extended
flat four-dimensional proper (or classical) metric spacetime
(x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation), as the met-
ric spacetime that supports SR in the absence of relativistic
gravity in [1] and [2] and up to this point in this paper. The
transformation of the flat proper (or classical) metric space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′)) into “relativistic” met-
ric spacetime (x0, x1, x2, x3) (or (Σ, ct)) in the context of a
theory of gravity, shall be investigated with further develop-
ment within the present four-world picture, in which four-
dimensional spacetime is underlined by two-dimensional in-
trinsic spacetime in each of the four symmetrical worlds (or
universes).

This first part of this paper shall be ended at this point,
while justifications for the co-existence in nature of the four
symmetrical worlds (or universes) in Figs. 8a and 8b of this
paper, as the actual background of the special theory of rela-
tivity in each universe, shall be concluded in the second part.
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The re-identification of the many-world background of the special theory of relativ-
ity (SR) as four-world background in the first part of this paper (instead of two-wold
background isolated in the initial papers), is concluded in this second part. The flat two-
dimensional intrinsic spacetime, which underlies the flat four-dimensional spacetime in
each universe, introduced as ansatz in the initial paper, is derived formally within the
four-world picture. The identical magnitudes of masses, identical sizes and identical
shapes of the four members of every quartet of symmetry-partner particles or objects in
the four universes are shown. The immutability of Lorentz invariance on flat spacetime
of SR in each of the four universes is shown to arise as a consequence of the perfect
symmetry of relative motion at all times among the four members of every quartet of
symmetry-partner particles and objects in the four universes. The perfect symmetry of
relative motions at all times, coupled with the identical magnitudes of masses, identical
sizes and identical shapes, of the members of every quartet of symmetry-partner parti-
cles and objects in the four universes, guarantee perfect symmetry of state among the
universes.

1 Isolating the two-dimensional intrinsic spacetime that
underlies four-dimensional spacetime

1.1 Indispensability of the flat 2-dimensional intrinsic
spacetime underlying flat 4-dimensional spacetime

The flat two-dimensional proper intrinsic metric spacetimes
denoted by (φρ′, φcφt′) and (−φρ′∗,−φcφt′∗), which underlies
the flat four-dimensional proper metric spacetimes (Σ′, ct′)
and (−Σ′∗,−ct′∗) of the positive and negative universes re-
spectively, were introduced as ansatz in sub-section 4.4 of
[1]. They have proved very useful and indispensable since
their introduction. For instance, the new spacetime/intrinsic
spacetime diagrams for the derivation of Lorentz transforma-
tion/intrinsic Lorentz transformation and their inverses in the
four-world picture, (referred to as two-world picture in [1]),
derived and presented as Figs. 8a and 8b of [1] (or Figs. 10a
and 11a of part one of this paper [3]) and their inverses namely,
Figs. 9a and 9b of [1], involve relative rotations of intrinsic
affine spacetime coordinates, without any need for relative
rotations of affine spacetime coordinates.

Once the intrinsic Lorentz transformation (φLT) and its
inverse have been derived graphically as transformation of the
primed intrinsic affine spacetime coordinates φx̃′ and φcφt̃′ of
the intrinsic particle’s frame into the unprimed intrinsic affine
spacetime coordinates φx̃ and φcφt̃ of the intrinsic observer’s
frame and its inverse, then Lorentz transformation (LT) and
its inverse in terms of primed affine spacetime coordinates
x̃′, ỹ′, z̃′ and ct̃′ of the particle’s frame and the unprimed affine
spacetime coordinates x̃, ỹ, z̃ and ct̃ of the observer’s frame
can be written straight away, as the outward manifestations

on flat four-dimensional spacetime of the intrinsic Lorentz
transformation (φLT) and its inverse on flat two-dimensional
intrinsic spacetime, as demonstrated in sub-section 4.4 of [1].

The indispensability of the flat two-dimensional proper
intrinsic metric spacetime (φρ′, φcφt′) underlying flat four-
dimensional proper metric spacetime (Σ′, ct′), arises from the
fact that it is possible for the intrinsic affine spacetime coordi-
nates φx̃′ and φcφt̃′ of the intrinsic particle’s frame (φx̃′, φcφt̃′)
that contains the one-dimensional intrinsic rest mass φm0 of
the particle in the intrinsic affine space coordinate φx̃′, to ro-
tate anti-clockwise by an intrinsic angle φψ relative to the
horizontal and vertical respectively and thereby project the in-
trinsic affine spacetime coordinates φx̃ and φcφt̃ of the intrin-
sic observer’s frame (φx̃, φcφt̃) along the horizontal and ver-
tical respectively, where the projective intrinsic affine space
coordinate φx̃ of the observer’s frame along the horizontal
contains the one-dimensional intrinsic relativistic mass, φm =

γφm0, of the particle, as happens in the first and second quad-
rants in Fig. 8a of [1], although the intrinsic rest mass φm0 in
the inclined φx̃′ and intrinsic relativistic mass φm in the pro-
jective φx̃ along the horizontal are not shown in that diagram.

The projective unprimed intrinsic affine coordinates φx̃
and φcφt̃ that constitute the observer’s intrinsic frame, con-
taining one-dimensional intrinsic relativistic mass φm of the
particle in φx̃, are then made manifest outwardly in the un-
primed affine spacetime coordinates x̃, ỹ, z̃ and ct̃ of the ob-
server’s fame on flat four-dimensional spacetime, containing
the three-dimensional relativistic mass, m = γm0, of the par-
ticle in affine 3-space Σ̃(x̃, ỹ, z̃) of the observer’s frame.

On the other hand, diagrams obtained by replacing the

Adekugbe A.O.J. Re-Identification of the Many-World Background of Special Relativity as Four-World Background. Part II. 25



Volume 1 PROGRESS IN PHYSICS January, 2011

inclined primed intrinsic affine coordinates φx̃′, φcφt̃′,−φx̃′∗

and −φcφt̃′∗ of the symmetry-partner intrinsic particles’ fra-
mes (φx̃′, φcφt̃′) and (−φx̃′∗,−φcφt̃′∗) by inclined primed affine
spacetime coordinates x̃′, ct̃′,−x̃′∗ and −ct̃′∗ respectively of
the symmetry-partner particles’ frames (x̃′, ỹ′, z̃′, ct̃′) and
(−x̃′∗,−ỹ′∗,−z̃′∗, −ct̃′∗) in the positive and negative universes
in Figs. 8a and 8b of [1], that is, by letting φx̃′ → x̃′; φcφt̃′ →
ct̃′; −φx̃′∗ → −x̃′∗; −φcφt̃′∗ → −ct̃′∗; φx̃ → x̃; φcφt̃ → ct̃;
−φx̃∗ → −x̃∗ and −φcφt̃∗ → −ct̃∗ in those diagrams, as would
be done in the four-world picture in the absence of the intrin-
sic spacetime coordinates, are invalid or will not work.

The end of the foregoing paragraph is so since the affine
space coordinates ỹ′ and z̃′ of the particle’s frame are not ro-
tated along with the affine space coordinate x̃′ from affine 3-
space Σ̃′(x̃′, ỹ′, z̃′) of the particle’s frame (as a hyper-surface)
along the horizontal towards the time dimension ct̃ along the
vertical. And the only rotated coordinate x̃′, which is in-
clined at angle ψ to the horizontal, cannot contain the three-
dimensional rest mass m0 of the particle, which can then be
“projected” as three-dimensional relativistic mass, m = γm0,
into the projective affine 3-space Σ̃(x̃, ỹ, z̃) of the observer’s
frame (as a hyper-surface) along the horizontal. It then fol-
lows that the observational fact of the evolution of the rest
mass m0 of the particle into relativistic mass, m = γm0, in SR,
is impossible in the context of diagrams involving rotations
of the affine spacetime coordinates x̃′ and ct̃′ of the particle’s
frame relative to the affine spacetime coordinates x̃ and ct̃ of
the observer’s frame, which are in relative motion along their
collinear x̃′− and x̃−axes in the four-world picture. This rules
out the possibility (or validity) of such diagrams in the four-
world picture. As noted in [1], if such diagrams are drawn, it
must be understood that they are hypothetical or intrinsic (i.e.
non-observable).

Further more, it is possible for the intrinsic affine space-
time coordinates φx̃′ and φcφt̃′ of the particle’s intrinsic fra-
me (φx̃′, φcφt̃′), containing the one-dimensional intrinsic rest
mass φm0 of the particle in the intrinsic affine space coor-
dinate φx̃′, to rotate relative to their projective affine intrin-
sic spacetime coordinates φx̃ and φcφt̃ of the observer’s in-
trinsic frame (φx̃, φcφt̃), that contains the ‘projective’ one-
dimensional intrinsic relativistic mass, φm = γφm0, of the
particle in the projective intrinsic affine space coordinate φx̃,
by intrinsic angles φψ larger that π

2 , that is, in the range π
2 <

φψ ≤ π, (assuming rotation by φψ = π
2 can be avoided), in

Fig. 8a of [1]. This will make the particle’s intrinsic frame
(φx̃′, φcφt̃′) containing the positive intrinsic rest mass φm0 of
the particle in the inclined affine intrinsic coordinate φx̃′ in
the positive universe to make transition into the negative uni-
verse through the second quadrant to become particle’s intrin-
sic frame (−φx̃′∗,−φcφt̃′∗) containing negative intrinsic rest
mass −φm∗0 of the particle in the negative intrinsic affine space
coordinate −φx̃′∗, as explained in section 2 of [2].

The negative intrinsic affine spacetime coordinates −φx̃′∗

and −φcφt̃′∗ of the intrinsic particle’s frame, into which the

positive intrinsic affine coordinates φx̃′ and φcφt̃′ of the par-
ticle’s intrinsic frame in the positive universe transform upon
making transition into the negative universe through the sec-
ond quadrant, will be inclined intrinsic affine coordinates in
the second quadrant and the third quadrant respectively. They
will project intrinsic affine coordinates −φx̃∗ and −φcφt̃∗ of
the observer’s intrinsic frame along the horizontal and vertical
respectively in the third quadrant. Thus the observer’s intrin-
sic frame (−φx̃∗,−φcφt̃∗) containing negative intrinsic rela-
tivistic mass, −φm∗ = −γφm∗0, in the intrinsic affine space co-
ordinate −φx̃∗, will automatically appear in the negative uni-
verse, upon the particle’s intrinsic frame (φx̃′, φcφt̃′) contain-
ing positive intrinsic rest mass φm0 of the particle in the first
quadrant making transition into the second quadrant. The ob-
server’s intrinsic frame (−φx̃∗,−φcφt̃∗) containing relativistic
intrinsic mass −φm∗ = −γφm∗0 in −φx∗ will then be made
manifest in observer’s frame (−x̃∗, −ỹ∗, −z̃∗, −ct̃∗) on flat
spacetime of the negative universe, containing negative three-
dimensional relativistic mass, −m∗ = −γm∗0, of the particle.

It is therefore possible for a particle in relative motion
in the positive universe to make transition into the negative
universe in the context of the geometrical representation of
φLT/LT in the two-world picture (now re-identified as four-
world picture) in Figs. 8a and 8b of [1], assuming rotation
of intrinsic affine spacetime coordinates φx̃′ and φcφt̃′ of the
particle’s intrinsic frame relative to the intrinsic affine space-
time coordinates φx̃ and φcφt̃ of the observer’s intrinsic frame
by intrinsic angle φψ = π

2 , corresponding to intrinsic speed
φv = φc of relative intrinsic motion, can be avoided in the
process of rotation by φψ > π

2 .
On the other hand, letting the affine spacetime coordinates

x̃′ and ct̃′ of the particle’s frame (x̃′, ỹ′, z̃′, ct̃′) to rotate rela-
tive to the affine spacetime coordinates x̃ and ct̃ respectively
of the observer’s frame (x̃, ỹ, z̃, ct̃) in the positive universe
by angle ψ larger than π

2 , that is in the range π
2 < ψ ≤ π, (as-

suming ψ = π
2 can be avoided), will cause the affine spacetime

coordinates x̃′ and ct̃′ to make transition into the negative uni-
verse through the second quadrant to become inclined affine
coordinates −x̃′∗ and −ct̃′∗ in the second and third quadrants
respectively. However the non-rotated affine space coordi-
nates ỹ′ and z̃′ of the particle’s frame will remain along the
horizontal in the first quadrant in the positive universe. This
situation in which only two of four coordinates of a frame
make transition from the positive universe into the negative
universe is impossible.

Moreover since the three-dimensional rest mass m0 of the
particle cannot be contained in the only rotated affine space
coordinate x̃′, the rest mass of the particle will be unable to
make transition into the negative universe with the rotated co-
ordinates x̃′ and ct̃′. It is therefore impossible for a particle
in relative motion in the positive universe to make transition
into the negative universe in the context of diagrams involv-
ing rotation of affine spacetime coordinates x̃′ and ct̃′ of the
particle’s frame relative to affine spacetime coordinates x̃ and

26 Adekugbe A.O.J. Re-Identification of the Many-World Background of Special Relativity as Four-World Background. Part II.



January, 2011 PROGRESS IN PHYSICS Volume 1

ct̃ of the observer’s frame, where the two frames are in mo-
tion along their collinear x̃′− and x̃−axes, in the two-world
picture (now re-identified as four-world picture). This further
renders such diagrams ineffective and impossible.

Relative rotations of intrinsic affine spacetime coordinates
in the spacetime/intrinsic spacetime diagrams for deriving in-
trinsic Lorentz transformation/Lorentz transformation are un-
avoidable in the present many-world picture. This makes
the flat two-dimensional intrinsic metric spacetime underly-
ing flat four-dimensional metric spacetime indispensable in
the context of the present theory.

1.2 Origin of the intrinsic space and intrinsic time di-
mensions

It has been shown that the quartet of Euclidean 3-spaces and
underlying one-dimensional intrinsic spaces in Fig. 2 of part
one of this paper [3], simplifies naturally as Figs. 6a and
6b of that paper, where Fig. 6a is valid with respect to 3-
observers in our proper Euclidean 3-space Σ′ and 3-observer*
in the proper Euclidean 3-space −Σ′∗ of the negative universe
and Fig. 6b is valid with respect to 3-observers in the proper
Euclidean 3-space Σ0′ of the positive time-universe and 3-
observer* in the proper Euclidean 3-space −Σ0′∗ of the neg-
ative time-universe, as indicated in those diagrams. Figs. 6a
and 6b of [3] ultimately transform into Figs. 8a and 8b re-
spectively of that paper naturally with respect to the same 3-
observers in the proper Euclidean 3-spaces with respect to
whom Figs. 6a and 6b are valid.

The one-dimensional proper intrinsic spaces underlying
the proper Euclidean 3-spaces have been introduced without
deriving them in the first part of this paper [3]. Now let us
assume that the underlying one-dimensional proper intrinsic
spaces have not been known in Figs. 6a and 6b of [3]. Then
let us reproduce the first quadrant of those figures without the
intrinsic spaces as Figs. 1a and 1b respectively here.

The one-dimensional proper (or classical) space ρ0′ along
the vertical in Fig. 1a (to which the proper Euclidean 3-space
Σ0′ of the positive time-universe naturally contracts with re-
spect to 3-observers in our proper Euclidean 3-space Σ′), pro-
jects a component to be denoted by ρ′ into our proper Eu-
clidean 3-space Σ′ (considered as a hyper-surface along the
horizontal), which is given as follows:

ρ′ = ρ0′ cosψ0 = ρ0′ cos
π

2
= 0 (1)

where the fact that ρ0′ is naturally inclined at absolute angle
ψ0 = π

2 to the horizontal, corresponding to absolute speed
V0 = c of every point along ρ0′ relative to 3-observers in Σ′

(discussed extensively in sub-section 1.1 of [3]) has been used
in (1).

Equation (1) states that the one-dimensional space ρ0′

along the vertical projects zero component (or nothing) into
the Euclidean 3-space Σ′ (as a hyper-surface) along the hor-
izontal. However we shall not ascribe absolute nothingness

Fig. 1: (a) The proper Euclidean 3-space of our universe Σ′ (as
a hyper-surface along the horizontal), containing the rest mass m0

of an object and the one-dimensional proper space ρ0′ containing
the one-dimensional rest mass m0

0 of the symmetry-partner object
in the positive time-universe relative to 3-observers in Σ′; ρ0′ con-
taining one-dimensional m0

0 being the proper Euclidean 3-space Σ0′

of the positive time-universe containing three-dimensional rest mass
m0

0 with respect to 3-observers in Σ0′. (b) The proper Euclidean
3-space of the positive time-universe Σ0′ (as a hyper-surface along
the vertical), containing the rest mass m0

0 of an object and the one-
dimensional proper space ρ′ containing the one-dimensional rest
mass m0 of the symmetry-partner object in our universe relative
to 3-observers in Σ0′; ρ′ containing one-dimensional m0 being the
proper Euclidean 3-space Σ′ of the positive (or our) universe con-
taining three-dimensional rest mass m0 with respect to 3-observers
in Σ′.

to the projection of the physical one-dimensional space ρ0′

along the vertical into the Euclidean 3-space Σ′ along the hor-
izontal in Fig. 1a. The one-dimensional space ρ0′ certainly
“casts a shadow” into Σ′.

Actually, it is the factor cos π
2 that vanishes in (1) and not

ρ0′ multiplying it. Thus let us re-write (1) as follows:

ρ′ = ρ0′ cos
π

2
= 0 × ρ0′ ≡ φρ′ (2)

where φρ′ is without the superscript “0” label because it lies
in (or underneath) our Euclidean 3-space Σ′ (without super-
script “0” label) along the horizontal.

Thus instead of associating absolute nothingness to the
projection of ρ0′ along the vertical into the Euclidean 3-space
Σ′ along the horizontal, as done in (1), a dimension φρ′ of
intrinsic (that is, non-observable and non-detectable) quality,
has been attributed to it in (2). Hence φρ′ shall be referred to
as intrinsic space. It is proper (or classical) intrinsic space by
virtue of its prime label.

Any interval of the one-dimensional intrinsic space (or
intrinsic space dimension) φρ′ is equivalent to zero interval
of the one-dimensional physical space ρ0′, (as follows from
φρ′ ≡ 0 × ρ0′ in (2)). It then follows that any interval of the
proper intrinsic space φρ′ is equivalent to zero distance of the
physical proper Euclidean 3-space Σ′. Or any interval of φρ′

is no interval of space. The name nospace shall be coined
for φρ′ from the last statement, as an alternative to intrinsic
space, where φρ′ is proper (or classical) nospace by virtue of
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the prime label on it.
As derived in sub-section 1.2 of the first part of this paper

[3], the Euclidean 3-space Σ0′ of the positive time-universe
is geometrically contracted to the one-dimensional space ρ0′

with respect to 3-observers in our Euclidean 3-space Σ′ be-
tween Fig. 3 and Fig. 6a of [3], where ρ0′ can be considered
to be along any direction of the Euclidean 3-space Σ0′ that
contracts to it, with respect to 3-observers in Σ′. Thus ρ0′

is an isotropic one-dimensional space with no unique orien-
tation in the Euclidean 3-space Σ0′ that contracts to it with
respect to 3-observers in Σ′. The one-dimensional intrinsic
space (or one-dimensional nospace) φρ′, which ρ0′ projects
into the Euclidean 3-space Σ′, is consequently an isotropic in-
trinsic space dimension with no unique orientation in Σ′ with
respect to 3-observers in Σ′.

The one-dimensional proper (or classical) space ρ′ along
the horizontal in Fig. 1b, to which our proper Euclidean 3-
space Σ′ geometrically contracts with respect to 3-observers
in the proper Euclidean 3-space Σ0′ of the positive time-uni-
verse, as explained between Fig. 4 and Fig. 6b in sub-section
1.2 of [3], likewise projects one-dimensional proper intrinsic
space (or proper nospace) φρ0′ into the proper Euclidean 3-
space Σ0′ of the positive time-universe along the vertical in
Fig. 1b (not yet shown in Fig. 1b), where φρ0′ is an isotropic
one-dimensional intrinsic space dimension (with no unique
orientation) in Σ0′ with respect to 3-observers in Σ0′.

As follows from all the foregoing, Fig. 1a must be re-
placed with Fig. 2a, where the one-dimensional proper intrin-
sic space φρ′ projected into the proper Euclidean 3-space Σ′

by the one-dimensional proper space ρ0′ with respect to 3-
observers in Σ′ has been shown. Fig. 1b must likewise be re-
placed with Fig 2b, where the one-dimensional proper intrin-
sic space (or proper nospace) φρ0′ projected into the proper
Euclidean 3-space Σ0′ by the one-dimensional proper space
ρ′ with respect to 3-observers in Σ0′ has been shown.

The one-dimensional isotropic proper (or classical) intrin-
sic space φρ′ underlying the proper (or classical) Euclidean
3-space Σ′ of the positive (or our) universe with respect to 3-
observers in Σ′ and the one-dimensional isotropic proper (or
classical) intrinsic space φρ0′ underlying the proper (or classi-
cal) Euclidean 3-space Σ0′ of the positive time-universe with
respect to 3-observers in Σ0′, have thus been derived. The
derivations of the proper intrinsic space −φρ′∗ underlying the
proper Euclidean 3-space −Σ′∗ of the negative universe with
respect to 3-observers in −Σ′∗ and of −φρ0′∗ underlying the
proper Euclidean 3-space −Σ0′∗ of the negative time-universe
with respect to 3-observers* in −Σ′0∗, follow directly from
the derivations of φρ′ underlying Σ′ and φρ0′ underlying Σ0′

above.
Following the introduction of the flat 2-dimensional pro-

per intrinsic spacetimes (φρ′, φcφt′) and (−φρ′∗, −φcφt′∗) that
underlie the flat four-dimensional proper spacetimes (Σ′, ct′)
and (−Σ′∗,−ct′∗) of the positive (or our) universe and the neg-
ative universe respectively as ansatz in sub-section 4.4 of [1],

Fig. 2: (a) The one-dimensional proper space ρ0′ containing
one-dimensional rest mass m0

0 along the vertical, projects one-
dimensional proper intrinsic space φρ′ containing one-dimensional
intrinsic rest mass φm0 into the proper Euclidean 3-space Σ′ (as
a hyper-surface) containing the rest mass m0 along the horizontal,
with respect to 3-observers in Σ′. (b) The one-dimensional proper
space ρ′ containing one-dimensional rest mass m0 along the horizon-
tal, projects one-dimensional proper intrinsic space φρ0′ containing
one-dimensional intrinsic rest mass φm0

0 into the proper Euclidean
3-space Σ0′ (as a hyper-surface) containing rest mass m0

0 along the
vertical, with respect to 3-observers in Σ0′

the one-dimensional proper intrinsic spaces φρ′ and −φρ′∗
underlying the proper Euclidean 3-spaces Σ′ and −Σ′∗ of the
positive and negative universes and the proper intrinsic spaces
φρ0′ and −φρ0′∗ underlying the proper Euclidean 3-spaces Σ0′

and −Σ0′∗ of the positive and negative time-universes were
introduced without deriving them in Figs. 2, 3 and 4 and
Figs. 6a and 6b of the first part of this paper [3]. The ex-
istence in nature of the one-dimensional isotropic intrinsic
spaces underlying the physical Euclidean 3-spaces has now
been validated.

1.3 Origin of one-dimensional intrinsic rest mass in one-
dimensional proper intrinsic space underlying rest
mass in proper Euclidean 3-space

The one-dimensional proper space ρ0′, being orthogonal to
the proper Euclidean 3-space Σ′ (as a hyper-surface) along
the horizontal, possesses absolute speed V0 = c at every point
along its length with respect to 3-observers in Σ′, as has been
well discussed in sub-section 1.1 of [3]. Consequently, the
one-dimensional rest mass m0

0 of a particle or object in ρ0′

acquires the absolute speed V0 = c of ρ0′ with respect to 3-
observers in Σ′ in Figs. 1a and 2a.

On the other hand, the Euclidean 3-space Σ′ being along
the horizontal (as a hyper-surface), possesses zero absolute
speed (V0 = 0) at every point of it with respect to 3-observers
in Σ′. The projective intrinsic space (or nospace) φρ′, being
along the horizontal, likewise possesses zero absolute intrin-
sic speed (φV0 = 0) at every point along its length with re-
spect to 3-observers in Σ′ in Fig. 2a.

The one-dimensional rest mass m0
0 in the one-dimension-

al proper space ρ0′ along the vertical in Figs. 1a or 2a, can
be said to be in non-detectable absolute motion at constant
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absolute speed V0 = c along ρ0′ with respect to 3-observers
in the proper Euclidean 3-space Σ′ in that figure. There is a
mass relation in the context of absolute motion that can be ap-
plied for the non-detectable absolute motion at absolute speed
V0 = c of m0

0 along ρ0′, which shall be derived elsewhere in
the systematic development of the present theory. It shall be
temporarily written hereunder because of the need to use it at
this point.

Let us revisit Fig. 7 of part one of this paper [3], drawn to
illustrate the concept of time and intrinsic time induction only.
It is assumed that the proper intrinsic metric space φρ0′ pos-
sesses absolute intrinsic speed φV0 < φc at every point along
its length, thereby causing φρ0′ to be inclined at a constant
absolute intrinsic angle, φψ0 < π

2 , relative to its projection
φρ′ along the horizontal in that figure. This is so since the
uniform absolute intrinsic speed φV0 along the length of φρ0′

is related to the constant absolute intrinsic angle φψ0 of incli-
nation to the horizontal of φρ0′ as, sin φψ0 = φV0/φc, (see Eq.
(1) of [3]). It follows from this relation that when the inclined
φρ0′ lies along the horizontal, thereby being the same as its
projection φρ′ along the horizontal, it possesses constant zero
absolute intrinsic speed (φV0 = 0) at every point along its
length along the horizontal with respect to the 3-observer in
Σ′ in that figure, just as it has been said that the projective φρ′

along the horizontal possesses absolute intrinsic speed V0 = 0
at every point along its length with respect to 3-observers Σ′

in Fig. 2a earlier. And for φρ0′ to lie along the vertical in
Fig. 7 of [3], it possesses constant absolute intrinsic speed
φV0 = φc at every point along its length with respect to the
3-observer in Σ′.

Now let a one-dimensional intrinsic rest mass φm0
0 be lo-

cated at any point along the inclined proper intrinsic metric
space φρ0′ in Fig. 7 of [3]. Then φm0

0 will acquire absolute in-
trinsic speed φV0 < φc along the inclined φρ0′. It will project
another intrinsic rest mass φm0 (since it is not in relative mo-
tion) into the proper intrinsic space φρ′, which the inclined
φρ0′ projects along the horizontal. The relation between the
‘projective’ intrinsic rest mass φm0 in the projective proper
intrinsic space φρ′ along the horizontal and the intrinsic rest
mass φm0

0 along the inclined proper intrinsic space φρ0′ (not
shown in Fig. 7 of [3]), is the intrinsic mass relation in the
context of absolute intrinsic motion to be derived formally
elsewhere. It is given as follows:

φm0 = φm0
0 cos2 φψ0 = φm0

0

1 −
φV2

0

φc2

 (3)

The outward manifestation in the proper 3-dimensional
Euclidean space Σ′ (in Fig. 7 of [3]) of Eq. (3), obtained by
simply removing the symbol φ, is the following

m0 = m0
0 cos2 ψ0 = m0

0

1 −
V2

0

c2

 (4)

Corresponding to relations (3) and (4) in the contexts of
absolute intrinsic motion and absolute motion, there are the

intrinsic mass relation in the context of relative intrinsic mo-
tion (or in the context of intrinsic special theory of relativity
(φSR)) and mass relation in the context of relative motion (or
in the context of SR). The generalized forms involving in-
trinsic angle φψ and angle ψ of intrinsic mass relation in the
context of φSR and mass relation in the context of SR, de-
rived and presented as Eqs. (15) and (16) in section 3 of [2]
are the following

φm = φm0 sec φψ = φm0

(
1 − φv

2

φc2

)−1/2

(5)

and

m = m0 secψ = m0

(
1 − v

2

c2

)−1/2

(6)

One finds that relations (3) and (4) in the context of absolute
intrinsic motion and absolute motion differ grossly from the
corresponding relations (5) and (6) in relative intrinsic motion
(or in the context of φSR) and in relative motion (or in the
context of SR).

Since the one-dimensional rest mass m0
0 possesses abso-

lute speed V0 = c of non-detectable absolute motion along
ρ0′ with respect to 3-observers in Σ′ in Fig. 2a, relation (4)
can be applied for the “projection” of m0

0 into the Euclidean
3-space Σ′ with respect to 3-observers in Σ′ in that figure. We
must simply let ψ0 = π

2 and V0 = c in Eq. (4) to have

m0 = m0
0 cos2 π

2
= m0

0

(
1 − c2

c2

)
= 0 (7)

Equation (7) states that the one-dimensional rest mass m0
0

in the one-dimensional space ρ0′ along the vertical in Fig. 2a,
(to which the three-dimensional rest mass m0

0 in the proper
Euclidean 3-space Σ0′ of the positive time-universe with re-
spect to 3-observers in Σ0′ contracts relative to 3-observers in
our Euclidean 3-space Σ′), projects zero rest mass (or noth-
ing) into our Euclidean 3-space Σ′ along the horizontal. How-
ever the one-dimensional rest mass m0

0 in ρ0′ along the verti-
cal certainly ‘casts a shadow’ into the Euclidean 3-space Σ′

considered as a hyper-surface along the horizontal in Fig. 2a.
It is the factor cos2 π

2 or (1 − c2/c2) that vanishes and not
the rest mass m0

0 multiplying it in Eq. (7). Thus let us re-write
Eq. (7) as follows:

m0 = m0
0 cos2 π

2
= 0 × m0

0 ≡ φm0 (8)

Instead of ascribing absolute nothingness to the “projection”
of the one-dimensional rest mass m0

0 in the one-dimensional
space ρ0′ along the vertical into our proper Euclidean 3-space
as a hyper-surface Σ′ along the horizontal in Fig. 2a in Eq. (7),
a one-dimensional quantity φm0 of intrinsic (that is, nonob-
servable and non-detectable) quality has been ascribed to it in
Eq. (8). Hence φm0 shall be referred to as intrinsic rest mass.

Any quantity of the one-dimensional intrinsic rest mass
φm0 is equivalent to zero quantity of the one-dimensional rest
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Fig. 3: (a) The proper intrinsic space φρ0′ containing intrinsic rest
mass φm0

0, projected into the proper Euclidean 3-space Σ0′ along
the vertical by one-dimensional proper space ρ′ containing one-
dimensional rest mass m0 along the horizontal in Fig. 2b, is added to
Fig. 2a, where it lies parallel to ρ0′ along the vertical, giving rise
to a flat four-dimensional proper space (Σ′, ρ0′) underlied by flat
two-dimensional proper intrinsic space (φρ′, φρ0′) with respect to
3-observers in Σ′. (b) The proper intrinsic space φρ′ containing in-
trinsic rest mass φm0, projected into the proper Euclidean 3-space
Σ′ along the horizontal by one-dimensional proper space ρ0′ con-
taining one-dimensional rest mass m0

0 along the vertical in Fig. 2a, is
added to Fig. 2b, where it lies parallel to ρ′ along the horizontal, giv-
ing rise to a flat four-dimensional proper space (Σ0′, ρ′) underlied by
flat two-dimensional proper intrinsic space (φρ0′, φρ′) with respect
to 3-observers in Σ0′.

mass m0
0 in the one-dimensional space ρ0′, as follows from

φm0 ≡ 0 × m0
0 in Eq. (8). It then follows that any quantity

of the intrinsic rest mass φm0 is equivalent to zero quantity
of three-dimensional rest mass m0 in Σ′. Or any quantity of
intrinsic rest mass is no rest mass. An alternative name coined
from the preceding statement namely, nomass, shall be given
to the intrinsic rest mass φm0. The intrinsic rest mass φm0
in the proper (or classical) intrinsic space is the proper (or
classical) nomass.

The ‘projective’ intrinsic rest mass (or proper nomass)
φm0 in the projective proper intrinsic space φρ′, lies directly
underneath the rest mass m0 in the proper Euclidean 3-space
Σ′, as already shown in Fig. 2a. The one-dimensional rest
mass m0 in the one-dimensional proper (or classical) space ρ′

along the horizontal in Fig. 2b, likewise “projects” intrinsic
rest mass (or proper nomass) φm0

0 into the projective proper
(or classical) intrinsic space φρ0′, which lies directly under-
neath the rest mass m0

0 in the proper Euclidean 3-space Σ0′ of
the positive time-universe with respect to 3-observers in Σ0′,
as already shown in Fig. 2b.

Now the proper Euclidean 3-space Σ0′ of the positive time-
universe with respect to 3-observers in it in Fig. 2b, is what
appears as one-dimensional proper space ρ0′ along the ver-
tical with respect to 3-observers in our proper Euclidean 3-
space Σ′ in Fig. 2a. The one-dimensional proper intrinsic
space φρ0′ projected into (or underneath) Σ0′ by ρ′ along
the horizontal in Fig. 2b, must be added to Fig. 2a, where
it must lie parallel to ρ0′ along the vertical, thereby convert-
ing Fig. 2a to Fig. 3a with respect to 3-observers in Σ′. The

Fig. 4: (a) The one-dimensional proper space ρ0′ and the proper
intrinsic space φρ0′ along the vertical with respect to 3-observers
in Σ′ in Fig. 3a, transform into the proper time dimension ct′ and
proper intrinsic time dimension φcφt′ respectively, giving rise to
a flat four-dimensional proper spacetime (Σ′, ct′) underlied by flat
two-dimensional proper intrinsic spacetime (φρ′, φcφt′) with respect
to 3-observers in Σ′. (b) The one-dimensional proper space ρ′ and
the proper intrinsic space φρ′ along the horizontal with respect to 3-
observers in Σ0′ in Fig. 3b, transform into the proper time dimension
ct0′ and proper intrinsic time dimension φcφt0′ respectively, giving
rise to a flat four-dimensional proper spacetime (Σ0′, ct0′) under-
lied by flat two-dimensional proper intrinsic spacetime (φρ0′, φcφt0′)
with respect to 3-observers in Σ0′.

one-dimensional proper intrinsic space φρ′ projected into (or
underneath) our proper Euclidean 3-space Σ′ by ρ0′ along the
vertical in Fig. 2a, must likewise be added to Fig. 2b, where it
must lie parallel to ρ′ along the horizontal, thereby converting
Fig. 2b to Fig. 3b with respect to 3-observers in Σ0′.

Finally, as explained for the transformations of Figs. 6a
and 6b into Figs. 8a and 8b respectively in sub-section 1.3 of
part one of this paper [3], the one-dimensional proper (or clas-
sical) space ρ0′ and the one-dimensional proper (or classical)
intrinsic space φρ0′ lying parallel to it along the vertical in
Fig. 3a, transform into the proper time dimension ct′ and the
proper intrinsic time dimension φcφt′ of the positive (or our)
universe with respect to 3-observers in our proper Euclidean
3-space Σ′, thereby converting Fig. 3a to the final Fig. 4a.

The one-dimensional proper (or classical) space ρ′ and
the one-dimensional proper (or classical) intrinsic space φρ′

lying parallel to it along the horizontal in Fig. 3b, likewise
transform into the proper time dimension ct0′ and the proper
intrinsic time dimension φcφt0′ of the positive time-universe
with respect to 3-observers in the proper Euclidean 3-space
Σ0′ of the positive time-universe, thereby converting Fig. 3b
to the final Fig. 4b.

As also explained in drawing Figs. 9a and 9b of [3], the
one-dimensional rest mass m0

0 in the one-dimensional proper
(or classical) space ρ0′ and the one-dimensional intrinsic rest
mass φm0

0 in the proper (or classical) intrinsic space φρ0′ in
Fig. 3a must be replaced by one-dimensional equivalent rest
mass E′/c2, where E′ = m0

0c2, in the proper time-dimension
ct′ and one-dimensional equivalent intrinsic rest mass
φE′/φc2, where φE′ = φm0

0φc2, in the proper intrinsic time
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dimension φcφt′ respectively, as done in Fig. 4a. The one-
dimensional rest mass m0 in ρ′ and the intrinsic rest mass
φm0 in φρ′ along the horizontal in Fig. 3b must likewise be re-
placed by E0′/c2; E0′ = m0c2, in ct0′ and φE0′/φc2; φE0′ =

φm0φc2, in φcφt0′ respectively, as done in Fig. 4b.
Fig. 4a now has flat two-dimensional proper intrinsic spa-

cetime (or proper nospace-notime) (φρ′, φcφt′), containing in-
trinsic rest mass (or proper nomass) φm0 (in φρ′) and equi-
valent intrinsic rest mass φE′/φc2 (in φcφt′), underlying flat
four-dimensional proper spacetime (Σ′, ct′), containing rest
mass m0 (in Σ′) and equivalent rest mass E′/c2 (in ct′), of the
positive (or our) universe. Fig. 4b likewise now has flat two-
dimensional proper intrinsic spacetime (φρ0′, φcφt0′), con-
taining intrinsic rest mass φm0

0 (in φρ0′) and equivalent in-
trinsic rest mass φE0′/φc2 (in φcφt0′), underlying flat proper
spacetime (Σ0′, ct0′), containing rest mass m0

0 (in Σ0′) and
equivalent rest mass E0′/c2 (in ct0′), of the positive time-
universe.

In tracing the origin of the proper intrinsic space φρ′ and
the intrinsic rest mass φm0 contained in it in Fig. 4a, we find
that the one-dimensional proper space ρ0′ containing one-
dimensional rest mass m0

0 along the vertical with respect to
3-observers in the proper Euclidean 3-space Σ′ of the positive
(or our) universe in Fig. 2a or 3a, projects proper intrinsic
space φρ′ containing intrinsic rest mass φm0 into the proper
Euclidean 3-space Σ′. Then as ρ0′ containing m0

0 along the
vertical in Fig. 2a or 3a (being along the vertical) naturally
transforms into proper time dimension ct′ containing equiv-
alent rest mass E′/c2 with respect to 3-observers in Σ′ in
Fig. 4a, its projection φρ′ containing φm0 into Σ′ along the
horizontal (being along the horizontal) remains unchanged
with respect to 3-observers in Σ′.

The conclusion then is that the proper Euclidean 3-space
Σ0′ of the positive time-universe with respect to 3-observers
in Σ0′, (which is one-dimensional space ρ0′ with respect to
3-observers in our proper Euclidean 3-space Σ′), is ultimately
the origin of the one-dimensional proper intrinsic space φρ′

underlying the proper Euclidean 3-space Σ′ of our universe
and the three-dimensional rest mass m0

0 of a particle of ob-
ject in the proper Euclidean 3-space Σ0′ of the positive time-
universe with respect to 3-observers in Σ0′ is the origin of
the one-dimensional intrinsic rest mass φm0 in the proper in-
trinsic space φρ′ lying directly underneath the rest mass m0
of the symmetry-partner particle or object in the proper Eu-
clidean 3-space Σ′ of our universe. In other words, the proper
Euclidean 3-space Σ0′ containing the three-dimensional rest
mass m0

0 of a particle or object in the positive time-universe,
“casts a shadow” of one-dimensional isotropic proper intrin-
sic space φρ′ containing one-dimensional intrinsic rest mass
φm0 into the proper Euclidean 3-space Σ′ containing the rest
mass m0 of the symmetry-partner particle or object in our uni-
verse, where φm0 in φρ′ lies directly underneath m0 in Σ′.

And in tracing the origin of the proper intrinsic time di-
mension φcφt′ that contains the equivalent intrinsic rest mass

φE′/φc2, lying parallel to the proper time dimension ct′ con-
taining the equivalent rest mass E′/c2 in Fig. 4a, we find that
the one-dimensional proper space ρ′ containing one-dimen-
sional rest mass m0 along the horizontal with respect to 3-
observers in the proper Euclidean 3-space Σ0′ of the positive
time-universe in Fig. 2b or 3b, where ρ′ is the Euclidean 3-
space Σ′ of our universe with respect to 3-observers in Σ′,
as derived between Fig. 4 and Fig. 6b in sub-section 1.2 of
[3], projects one-dimensional proper intrinsic space φρ0′ con-
taining intrinsic rest mass φm0

0 underneath the proper Eu-
clidean 3-space Σ0′ containing rest mass m0

0 of the positive
time-universe with respect to 3-observers in Σ0′ in Fig. 2b
or 3b. The proper Euclidean 3-space Σ0′ containing the rest
mass m0

0 and its underlying proper intrinsic space φρ0′ con-
taining intrinsic rest mass φm0

0 with respect to 3-observers in
the proper Euclidean 3-space Σ0′ of the positive time-universe
in Fig. 3b, are the proper time dimension ct′ of our universe
containing equivalent rest mass E′/c2 and its underlying
proper intrinsic time dimension φcφt′ of our universe con-
taining equivalent intrinsic rest mass φE′/φc2 with respect to
3-observers in Σ′ in Fig. 4a.

The conclusion then is that the proper Euclidean 3-space
Σ′ of the positive (or our) universe is the origin of the proper
intrinsic time dimension φcφt′ that lies parallel to the proper
time dimension ct′ of the positive (or our) universe in Fig. 4a.
The three-dimensional rest mass m0 of a particle or object in
the proper Euclidean 3-space Σ′ of our universe is the origin
of the one-dimensional equivalent intrinsic rest mass φE′/φc2

in the proper intrinsic time dimension φcφt′ that lies besides
the one-dimensional equivalent rest mass E′/c2 in the proper
time dimension ct′ of our universe in Fig. 4a.

The two-dimensional proper intrinsic metric spacetime
(or proper metric nospace-notime) (φρ′, φcφt′), containing in-
trinsic rest mass φm0 in φρ′ and equivalent intrinsic rest mass
φE/φc2 in φcφt′, which underlies the flat proper metric space-
time (Σ′, ct′), containing rest mass m0 in Σ′ and equivalent rest
mass E′/c2 in ct′, has thus been derived within the four-world
picture. The intrinsic special theory of relativity (φSR) oper-
ates on the flat proper intrinsic metric spacetime (φρ′, φcφt′)
and the special theory of relativity (SR) operates on the flat
proper metric spacetime (Σ′, ct′) in the absence of relativistic
gravitational field. The flat two-dimensional proper intrinsic
spacetime was introduced as ansatz in section 4.4 of [1] and
it has proved indispensable in the present theory since then,
as discussed fully earlier in sub-section 1.1 of this paper.

The derivations of the flat two-dimensional proper intrin-
sic spacetime (φρ′, φcφt′) containing intrinsic rest masses
(φm0, φE′/φc2) of particles and bodies, which underlies the
flat four-dimensional proper spacetime (Σ′, ct′) containing the
rest masses (m0, E′/c2) of particles and bodies in our uni-
verse and in the other three universes, as presented in this
sub-section, is the best that can be done at the present level
of the present evolving theory. The derivations certainly de-
mystify the concepts of intrinsic spacetime and intrinsic mass
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introduced as ansatz in section 4 of [1]. There are, however,
more formal and more complete derivations of these concepts
along with the concepts of absolute intrinsic spacetime con-
taining absolute intrinsic rest mass, which underlies absolute
spacetime containing absolute rest mass and relativistic in-
trinsic spacetime containing relativistic intrinsic mass, which
underlies relativistic spacetime containing relativistic mass,
to be presented elsewhere with further development.

2 Validating perfect symmetry of state among the four
universes isolated

Perfect symmetry of natural laws among the four universes
namely, the positive universe, the negative universe, the posi-
tive time-universe and the negative time-universe, whose met-
ric spacetimes and underlying intrinsic metric spacetimes are
depicted in Figs. 8a and 8b of the first part of this paper [3],
has been demonstrated in section 2 of that paper. Perfect sym-
metry of state among the universes shall now be demonstrated
in this section. Perfect symmetry of state exists among the
four universes if the masses of the four members of every
quartet of symmetry-partner particles or objects in the four
universes have identical magnitudes, shapes and sizes and if
they perform identical relative motions in their universes at
all times. These conditions shall be shown to be met in this
section.

2.1 Identical magnitudes of masses and of shapes and
sizes of the members of every quartet of symmetry-
partner particles or objects in the four universes

As illustrated in Fig. 2a or 3a, the one-dimensional intrinsic
rest mass (or proper nomass) φm0 “projected” into the pro-
jective isotropic one-dimensional proper (or classical) intrin-
sic space (or proper nospace) φρ′, lies directly underneath
the three-dimensional rest mass m0 in the proper (or clas-
sical) Euclidean 3-space Σ′ of the positive (or our) universe
with respect to 3-observers in Σ′. Likewise the “projective”
one-dimensional intrinsic rest mass φm0

0 in the projective one-
dimensional isotropic proper intrinsic space φρ0′ lies directly
underneath the three-dimensional rest mass m0

0 in the proper
(or classical) Euclidean 3-space Σ0′ of the positive time-uni-
verse with respect to 3-observers in Σ0′ in Fig. 2b or 3b.

Now the rest mass m0 is the outward (or physical) man-
ifestation in the proper (or classical) physical Euclidean 3-
space Σ′ of the one-dimensional intrinsic rest mass φm0 in
the one-dimensional proper (or classical) intrinsic space φρ′

lying underneath m0 in Σ′ in Fig. 2a or 3a. It then follows that
m0 and φm0 are equal in magnitude, that is, m0 = |φm0 |.

But the one-dimensional intrinsic rest mass φm0 in φρ′

along the horizontal is equal in magnitude to the one-dimen-
sional rest mass m0

0 in the one-dimensional space ρ0′ along
the vertical that ‘projects’ φm0 contained in φρ′ along the
horizontal in Fig. 2a or 3a. That is, m0

0 = |φm0 |. By combin-
ing this with m0 = |φm0 | derived in the preceding paragraph,

we have the equality in magnitude of the three-dimensional
rest mass m0 of a particle or object in our proper Euclidean
3-space Σ′ and the one-dimensional rest mass m0

0 of the sym-
metry-partner particle or object in the one-dimensional proper
(or classical) space ρ0′ (with respect to 3-observers in Σ′) in
Fig. 2a or 3a. That is, m0 = m0

0.
Finally the one-dimensional rest mass m0

0 of a particle or
object in the one-dimensional proper space ρ0′ along the ver-
tical with respect to 3-observers in our proper Euclidean 3-
space Σ′ in Fig. 2a or 3a, is what 3-observers in the proper
Euclidean 3-space Σ0′ of the positive time-universe observe
as three-dimensional rest mass m0

0 of the particle or object
in Σ0′. Consequently the one-dimensional rest mass m0

0 of
the particle or object in ρ0′ in Fig. 2a or 3a is equal in mag-
nitude to the three-dimensional rest mass m0

0 of the particle
or object in the proper Euclidean 3-space Σ0′. This is cer-
tainly so since the geometrical contraction of the Euclidean
3-space Σ0′ to one-dimensional space ρ0′ and the consequent
geometrical contraction of the three-dimensional rest mass m0

0
in Σ0′ to one-dimensional rest mass m0

0 in ρ0′ with respect to
3-observers in our Euclidean 3-space Σ′, does not alter the
magnitude of the rest mass m0

0.
In summary, we have derived the simultaneous relations

m0 = |φm0 | and m0
0 = |φm0 |, from which we have, m0 = m0

0
in the above. Also since m0

0 in Σ0′ is the outward manifes-
tation of φm0

0 in φρ0′ in Fig. 2b or 3b, we have the equality
in magnitude of m0

0 and φm0
0, that is, m0

0 = |φm0
0 |, which,

along with m0
0 = |φm0 | derived above, gives φm0

0 = φm0. The
conclusion then is that the rest mass m0 of a particle or ob-
ject in the proper Euclidean 3-space Σ′ of our (or positive)
universe with respect to 3-observers in Σ′, is equal in mag-
nitude to the rest mass m0

0 of the symmetry-partner particle
or object in the proper Euclidean 3-space Σ0′ of the positive
time-universe with respect to 3-observers in Σ0′. The one-
dimensional intrinsic rest mass φm0 of the particle or object in
our proper intrinsic space φρ′ underlying m0 in Σ′ in Fig. 2a,
3a or 4a is equal in magnitude to the intrinsic rest mass φm0

0 of
the symmetry-partner particle or object in the proper intrinsic
space φρ0′ underlying m0

0 in Σ0′ in Fig. 2b, 3b or 4b.
By repeating the derivations done between the positive (or

our) universe and the positive time-universe, which lead to
the conclusion reached in the foregoing paragraph, between
the negative universe and the negative time-universe, (which
shall not be done here in order to conserve space), we are also
led to the conclusion that the rest mass −m∗0 of a particle or
object in the proper Euclidean 3-space −Σ′∗ of the negative
universe with respect to 3-observers in −Σ′∗, is equal in mag-
nitude to the rest mass −m0

0
∗ of the symmetry-partner particle

or object in the proper Euclidean 3-space −Σ0′∗ of the nega-
tive time-universe with respect to 3-observers in −Σ0′∗. The
one-dimensional intrinsic rest mass −φm∗0 of the particle or
object in the proper intrinsic space −φρ′∗ of the negative uni-
verse underlying −m∗0 in −Σ′∗, is equal in magnitude to the
intrinsic rest mass −φm0

0
∗ of the symmetry-partner particle or

32 Adekugbe A.O.J. Re-Identification of the Many-World Background of Special Relativity as Four-World Background. Part II.



January, 2011 PROGRESS IN PHYSICS Volume 1

object in the proper intrinsic space −φρ0′∗ underlying −m0
0
∗

in −Σ0′∗ in the negative time-universe.
The perfect symmetry of state between the positive (or

our) universe and the negative universe prescribed in [1], re-
mains a prescription so far. It implies that the rest mass m0
of a particle or object in the proper Euclidean 3-space Σ′ of
the positive (or our) universe, is identical in magnitude to the
rest mass −m∗0 of the symmetry-partner particle or object in
the proper Euclidean 3-space −Σ′∗ of the negative universe,
that is, m0 = | − m∗0 |. The corresponding (prescribed) per-
fect symmetry of state between positive time-universe and
the negative time-universe likewise implies that the rest mass
m0

0 of a particle or object in the proper Euclidean 3-space
Σ0′ of the positive time-universe is identical in magnitude to
the rest mass−m0

0
∗ of its symmetry-partner in the proper Eu-

clidean 3-space −Σ0′∗ of the negative time-universe, that is,
m0

0 = | − m0
0
∗ |.

The equality of magnitudes of symmetry-partner rest
masses, m0 = | − m∗0 |, that follows from the prescribed per-
fect symmetry of state between the positive (or our) universe
and the negative universe and m0

0 = | − m0
0
∗ | that follows

from the prescribed symmetry of state between the positive
time-universe and the negative time-universe, discussed in the
foregoing paragraph, are possible of formal proof, as shall
be presented elsewhere. By combining these with m0 = m0

0
and −m∗0 = −m0

0
∗ derived from Figs. 2a and 2b above, we

obtain the equality of magnitudes of the rest masses of the
four symmetry-partner particles or objects in the four uni-
verses, that is, m0 = | − m∗0 | = m0

0 = | − m0
0
∗ |. Conse-

quently there is equality of magnitudes of the intrinsic rest
masses in the one-dimensional intrinsic spaces of the quartet
of symmetry-partner particles or objects in the four universes,
that is, |φm0 | = | − φm∗0 | = |φm0

0 | = | − φm0
0
∗ |.

Having demonstrated the equality of magnitudes of the
rest masses of the members of every quartet of symmetry-
partner particles or objects in the four universes, (to the extent
that m0 = | − m∗0 | between the positive (or our) universe and
the negative universe and m0

0 = | − m0
0
∗ | between the positive

and negative time-universes are valid), let us also show their
identical shapes and sizes.

Now the rest mass m0 being the outward manifestation
in our proper Euclidean 3-space Σ′ of the intrinsic rest mass
φm0 of intrinsic length ∆φρ′ in the one-dimensional proper
intrinsic space φρ′ and the three-dimensional rest mass m0

0 in
the proper Euclidean 3-space Σ0′ with respect to 3-observers
in Σ0′, being what geometrically contracts to the one-dimen-
sional rest mass m0

0 of length ∆ρ0′ in ρ0′ with respect to 3-
observers in our Euclidean 3-space Σ′ and since ∆ρ0′ along
the vertical projects ∆φρ′ into Σ′ along the horizontal, then
the length ∆ρ0′ of the one-dimensional rest mass m0

0 in ρ0′ has
the same magnitude as the intrinsic length ∆φρ′ of the intrin-
sic rest mass φm0 in φρ′, that is, ∆ρ0′ = |∆φρ′ |. Consequently
the volume ∆Σ0′ of the Euclidean 3-space Σ0′ occupied by the
three-dimensional rest mass m0

0 with respect to 3-observers in

Σ0′ has the same magnitude as the volume ∆Σ′ of the Eu-
clidean 3-space Σ′ occupied by the rest mass m0 with respect
to 3-observers in Σ′; ∆Σ′ occupied by m0 being the outward
manifestation of ∆φρ′ occupied by φm0. In other words, the
rest mass m0 in Σ′ has the same size as its symmetry-partner
m0

0 in Σ0′.
Further more, the shape of the outward manifestation of

φm0 in the proper Euclidean 3-space Σ′, that is, the shape
of m0 in Σ′, with respect to 3-observers in Σ′, is the same
as the shape of the three-dimensional rest mass m0

0 in the
proper Euclidean 3-space Σ0′ with respect to 3-observers in
Σ0′. In providing justification for this, let us recall the dis-
cussion leading to Fig. 6a and 6b of [1], that the intrinsic rest
masses φm0 of particles and objects, which appear as lines
of intrinsic rest masses along the one-dimensional isotropic
proper intrinsic space φρ′ relative to 3-observers in the proper
Euclidean 3-space Σ′, as illustrated for a few objects in Fig. 6a
of [1], are actually three-dimensional intrinsic rest masses
φm0 in three-dimensional proper intrinsic space φΣ′ with re-
spect to three-dimensional intrinsic-rest-mass-observers (or
3-intrinsic-observers) in φΣ′, as also illustrated for a few ob-
jects in Fig. 6b of [1]. The shape of the three-dimensional
intrinsic rest mass φm0 of an object or particle in the three-
dimensional intrinsic space φΣ′ with respect to 3-intrinsic-
observers in φΣ′, is the same as the shape of its outward
manifestation in the proper Euclidean 3-space Σ′, that is, the
same as the shape of the rest mass m0 in Σ′, with respect to
3-observers in Σ′.

Since the line of intrinsic rest mass φm0 in one-dimen-
sional proper intrinsic space φρ′ relative to 3-observers in
Σ′, (which is a three-dimensional intrinsic rest mass φm0 in
three-dimensional proper intrinsic space φΣ′ with respect to
3-intrinsic-observers in φΣ′), is the projection along the hor-
izontal of the line of rest mass m0

0 in the one-dimensional
proper space ρ0′ along the vertical relative to 3-observers in
our proper Euclidean 3-space Σ′, (which is a 3-dimensional
rest mass m0

0 in the proper Euclidean 3-space Σ0′ of the pos-
itive time-universe with respect to 3-observers in Σ0′), the
shape of the three-dimensional intrinsic rest mass φm0 in φΣ′

with respect to 3-intrinsic-observers in φΣ′ is the same as the
shape of the three-dimensional rest mass m0

0 in Σ0′ with re-
spect to 3-observers in Σ0′. It then follows from this and the
conclusion (that the shape of φm0 in φΣ′ is the same as the
shape of m0 in Σ′) reached in the preceding two paragraphs,
that the shapes of the rest masses m0 in our proper Euclidean
3-space Σ′ and m0

0 in the proper Euclidean 3-space Σ0′ of the
positive time-universe are the same, as stated earlier.

The identical sizes and shapes of the the rest mass m0
of a particle or object in the proper Euclidean 3-space Σ′

of our universe and of the rest mass m0
0 of its symmetry-

partner in the proper Euclidean 3-space Σ0′ of the positive
time-universe, concluded from the foregoing, is equally true
between the rest mass −m∗0 in the Euclidean 3-space −Σ′∗ of
the negative universe and its symmetry-partner −m0

0
∗ in the
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Euclidean 3-space −Σ0′∗ of the negative time-universe.
When the preceding paragraph is combined with the iden-

tical shapes and sizes of the rest mass m0 of a particle or ob-
ject in the proper Euclidean 3-space Σ′ of the positive (or our)
universe and of the rest mass −m∗0 of its symmetry-partner in
the proper Euclidean 3-space −Σ′∗ of the negative universe,
which the so far prescribed perfect symmetry of state between
our universe and the negative universe implies, as well as the
identical shapes and sizes of the rest mass m0

0 of a particle
or object in the proper Euclidean 3-space Σ0′ of the posi-
tive time-universe and of the rest mass −m0

0
∗ of its symmetry-

partner in the proper Euclidean 3-space −Σ0′∗ of the negative
time-universe, which the so far prescribed perfect symmetry
of state between positive time-universe and the negative time-
universe implies, we have the identical shapes and sizes of the
four members of the quartet of symmetry-partner particles or
objects in the four universes, and this is true for every such
quartet of symmetry-partner particles or objects.

2.2 Perfect symmetry of relative motions always among
the members of every quartet of symmetry-partner
particles or objects in the four universes

As mentioned at the beginning of this section, the second
condition that must be met for symmetry of state to obtain
among the four universes isolated in part one of this paper
[3] and illustrated in Figs. 8a and 8b of that paper namely,
the positive (or our) universe, the negative universe, the pos-
itive time-universe and the negative time-universe, is that the
members of every quartet of symmetry-partner particles or
objects in the universes, now shown to have identical mag-
nitudes of masses, identical sizes and identical shapes, are
involved in identical motions relative to identical symmetry-
partner observers or frames of reference in the universes at
all times. The reductio ad absurdum method of proof shall
be applied to show that this second condition is also met. We
shall assume that the quartet of symmetry-partner particles or
objects in the four universes are not involved in identical rela-
tive motions and show that this leads to a violation of Lorentz
invariance.

Let us start with the assumption that the members of a
quartet of symmetry-partner particles or objects in the four
universes are in arbitrary motions at different speeds relative
to the symmetry-partner observers of frames of reference in
their respective universes at every given moment. This as-
sumption implies that given an object on earth in our universe
in motion at a speed vx+ along the north pole of the earth,
say, relative to our earth at a given instant, then its symmetry-
partner on earth in the negative universe is in motion at a
speed vx− along the north pole relative to the earth of the nega-
tive universe at the same instant; the symmetry-partner object
on earth in the positive time-universe is motion at a speed vx0+

along the north pole relative to the earth of the positive time-
universe at the same instant and the symmetry-partner object

on earth in the negative time-universe is in motion at a speed
vx0− along the north pole relative to the earth of the negative
time-universe at the same instant, where it is being assumed
that the speeds vx+ , vx− , vx0+ and vx0− have different magni-
tudes and each could take on arbitrary values lower than c,
including zero. They may as well be assumed to be moving
along arbitrary directions on earths in their respective uni-
verses.

The geometrical implication of the assumption made in
the foregoing paragraph is that the equal intrinsic angle φψ of
relative rotations of intrinsic affine space and intrinsic affine
time coordinates in the four quadrants, drawn upon the proper
(or classical) metric spacetimes/intrinsic spacetimes of the
positive (or our) universe and the negative universe in Fig. 8a
of [3], as Fig. 10a of that paper, and upon the proper (or clas-
sical) metric spacetimes/intrinsic spacetimes of the positive
time-universe and negative time-universe in Fig. 8b of [3], as
Fig. 10b of that paper, will take on different values φψ+

x , φψ−x ,
φψ+

t , φψ−t , φψ+
x0 , φψ−x0 , φψ+

t0 and φψ−t0 as depicted in Figs. 5a
and 5b.

The rotations of φx̃′ by intrinsic angle φψ+
x relative to

φx̃ along the horizontal in the first quadrant and the rota-
tion of φcφt̃′ by intrinsic angle φψ+

t relative to φcφt̃ along
the vertical in the second quadrant are valid with respect to
the 3-observer in Σ̃ in Fig. 5a, where sin φψ+

x = φvx+/φc and
sin φψ+

t = φvt+/φc. On the other hand, the rotation of −φx̃′∗

at intrinsic angle φψ−x relative to −φx̃∗ along the horizontal
in the third quadrant and the rotation of −φcφt̃′∗ by intrinsic
angle φψ−t relative to −φcφt̃∗ along the vertical in the fourth
quadrant in Fig. 5a are valid with respect to the 3-observer*
in −Σ̃∗, where sin φψ−x = φvx−/φc and sin φψ−t = φvt−/φc.

The rotations of φx̃0′ by intrinsic angle φψx0+ relative to
φx̃0 along the vertical in the first quadrant and the rotation
of φcφt̃0′ by intrinsic angle φψt0+ relative to φcφt̃0 along the
horizontal in the fourth quadrant are valid with respect to the
3-observer in Σ̃0 in Fig. 5b, where sin φψ+

x0 = φvx0+/φc and
sin φψ+

t0 = φvt0+/φc. On the other hand, the rotation of −φx̃0′∗

at intrinsic angle φψ−x0 relative to −φx̃0∗ along the vertical in
the third quadrant and the rotation of −φcφt̃0′∗ by intrinsic
angle φψ−t0 relative to −φcφt̃0∗ along the vertical in the second
quadrant in Fig. 5b are valid with respect to the 3-observer*
in −Σ̃0∗, where sin φψ−x0 = φvx0−/φc and sin φψ−t0 = φvt0−/φc.

Although the intrinsic angles φψ+
x , φψ

−
x , φψ

+
t and φψ−t ,

which are related to the intrinsic speeds φvx+ , φvx− , φvt+ and
φvt− , as sin φψ+

x = φvx+/φc; sin φψ−x = φvx−/φc; sin φψ+
t =

φvt+/φc; and sin φψ−t = φvt−/φc respectively in Fig. 5a, are
different in magnitude as being assumed and although the in-
trinsic angles φψ+

x0 , φψ
−
x0 , φψ

+
t0 , φψ−t0 , which are related to in-

trinsic speeds φvx0+ , φvx0− , φvt0+ and φvt0− as sin φψ+
x0 =

φvx0+/φc; sin φψ−x0 = φvx0−/φc; sin φψ+
t0 = φvt0+/φc; and sin φψ−t0

= φvt0−/φc respectively in Fig. 5b, are different in magnitude
as being assumed, it must be remembered that the intrinsic
angles φψ+

x , φψ
−
x , φψt+ , φψ−t in Fig. 5a are equal to the intrin-
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Fig. 5: (a) Rotations of intrinsic affine spacetime coordinates of intrinsic particle’s frame relative to intrinsic observer’s frame due to
assumed non-symmetrical motions of symmetry-partner particles relative to symmetry-partner observers in the four universes, with respect
to 3-observers in the Euclidean 3-spaces in the positive (or our) universe and the negative universe.

Fig. 5: (b) Rotations of intrinsic affine spacetime coordinates of intrinsic particle’s frame relative to intrinsic observer’s frame due to
assumed non-symmetrical motions of symmetry-partner particles relative to symmetry-partner observers in the four universes, with respect
to 3-observers in the Euclidean 3-spaces in the positive time-universe and the negative time-universe.

Adekugbe A.O.J. Re-Identification of the Many-World Background of Special Relativity as Four-World Background. Part II. 35



Volume 1 PROGRESS IN PHYSICS January, 2011

sic angles φψ+
t0 , φψ

−
t0 , φψ

+
x0 , φψ−x0 respectively in Fig. 5b.

That is, φψ+
x = φψ+

t0 ; φψ−x = φψ−t0 ; φψ+
t = φψ+

x0 and φψ−t =

φψ−x0 in Figs. 5a and 5b. Consequently the intrinsic speeds
φvx+ , φvx− , φvt+ and φvt− in Fig. 5a are equal to φvt0+ , φvt0− ,
φvx0+ and φvx0− respectively in Fig. 5b. That is, φvx+ = φvt0+ ;
φvx− = φvt0− ; φvt+ = φvx0+ and φvt− = φvx0+ in Figs. 5a and 5b.

By following the procedure used to derive partial intrinsic
Lorentz transformation with respect to the 3-observer in Σ̃

from Fig. 8a of [1], the unprimed intrinsic affine coordinate
φx̃ along the horizontal is the projection of the inclined φx̃′ in
the first quadrant in Fig. 5a. That is, φx̃ = φx̃′ cos φψ+

x . Hence
we can write

φx̃′ = φx̃ sec φψ+
x

This is all the intrinsic coordinate transformation that could
have been possible with respect to the 3-observer in Σ̃ along
the horizontal in the first quadrant in Fig. 5a, but for the fact
that the inclined negative intrinsic coordinate −φcφt̃′∗ of the
negative universe in the fourth quadrant also projects a com-
ponent −φcφt̃′ sin φψ−t along the horizontal, which must be
added to the right-hand side of the last displayed equation to
have

φx̃′ = φx̃ sec φψ+
x − φcφt̃′ sin φψ−t ; (∗)

w.r.t 3 − observer in Σ̃.
As mentioned in the derivation of (∗), but for φψ+

x =

φψ−x = φψ with Fig. 8a in [1], the dummy star label on the
component−φcφt̃′∗ sin φψ−t projected along the horizontal has
been removed, since the projected component is now an in-
trinsic coordinate in the positive universe.

But φcφt̃ = φcφt̃′ cos φψ+
t or φcφt̃′ = φcφt̃ sec φψ+

t along
the vertical in the second quadrant in the same Fig. 5a. By
replacing φcφt̃′ by φcφt̃ sec φψ+

t at the right-hand side of (∗)
we have

φx̃′ = φx̃ sec φψ+
x − φcφt̃ sec φψ+

t sin φψ−t ; (9)

w.r.t 3 − observer in Σ̃. Eq. (9) is the final form of the par-
tial intrinsic Lorentz transformation that the 3-observer in Σ̃

in our universe could derive along the horizontal in the first
quadrant from Fig. 5a.

By applying the same procedure used to derive Eq. (9)
from the first and fourth quadrants of Fig. 5a to the first and
second quadrants of Fig. 5b, the counterpart of Eq. (9) that is
valid with respect to the 3-observer in Σ̃0 in that figure is the
following:

φx̃0′ = φx̃0 sec φψ+
x0 − φcφt̃0 sec φψ+

t0 sin φψ−t0 ; (10)

w.r.t 3 − observer in Σ̃0.Again Eq. (10) is the final form of the
partial intrinsic Lorentz transformation that the 3-observer in
Σ̃0 in the positive time-universe could derive along the vertical
in the first quadrant from Fig. 5b. By collecting Eqs. (9) and

(10) we have

φx̃′ = φx̃ sec φψ+
x − φcφt̃ sec φψ+

t sin φψ−t ;
(w.r.t 3 − observer in Σ̃);

φx̃0′ = φx̃0 sec φψ+
x0 − φcφt̃0 sec φψ+

t0 sin φψ−t0 ;
(w.r.t 3 − observer in Σ̃0)


. (11)

However system (11) is useless because it is neither the
full intrinsic Lorentz transformation in our (or positive) uni-
verse nor in the the positive time-universe. This is so because
the second equation of system (11) contains intrinsic coordi-
nates of the positive time-universe, which are elusive to ob-
servers in our universe or which cannot appear in physics in
our universe. On the other hand, the first equation contains
the intrinsic spacetime coordinates of our universe, which
cannot appear in physics in the positive time-universe.

In order to make system (11) a valid full intrinsic space-
time coordinate transformation (i.e. to make it full intrin-
sic Lorentz transformation) in our universe, we must trans-
form the intrinsic spacetime coordinates of the positive time-
universe in the second equation into the intrinsic spacetime
coordinates of our universe. As derived in part one of this pa-
per [3], we must let φx̃0′ → φcφt̃′, φx̃0 → φcφt̃ and φcφt̃0 →
φx̃ in the second equation of system (11), thereby converting
system (11) to the following

φx̃′ = φx̃ sec φψ+
x − φcφt̃ sec φψ+

t sin φψ−t ;
(w.r.t 3 − observer in Σ̃);

φcφt̃′ = φcφt̃ sec φψ+
t − sec φψ+

x sin φψ−x ;
(w.r.t 1 − observer in ct̃)


. (12)

Fig. 5b cannot serve the role of a complementary diagram
to Fig. 5a because it contains spacetime and intrinsic space-
time coordinates of the positive time-universe and negative
time-universe that are elusive to observers in our universe and
negative universe. This has been discussed for Figs. 10a and
10b of [3]. In order to make Fig. 5b a valid complementary
diagram to Fig. 5a, the spacetime/intrinsic spacetime coordi-
nates of the positive and negative time-universes in it must be
transformed into those of our universe and the negative uni-
verse, as done between Fig. 10b and Fig. 11a of [3], to have
Fig. 5c.

Fig. 5c containing spacetime/intrinsic spacetime coordi-
nates of the positive (or our) universe and negative universe
(obtained from Fig. 5b) is now a valid complementary dia-
gram to Fig. 5a for the purpose of deriving the φLT/LT in our
universe and negative universe. Observe that the 3-observers
in the Euclidean 3-spaces Σ̃0 and −Σ̃0∗ of the positive and
negative time-universes in Fig. 5b have transformed into 1-
observers in the time dimensions ct̃ and −ct̃∗ of our universe
and the negative universe in Fig. 5c.

The second equation of system (12) has been derived from
Fig. 5c with respect to the 1-observer in the time dimension ct̃
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Fig. 5: (c) Complementary diagram to Fig. 5a obtained by transforming the spacetime/intrinsic spacetime coordinates of the positive
time-universe and the negative time-universe in Fig. 5b into the spacetime/intrinsic spacetime coordinates of our universe and the negative
universe.

in that diagram. It is a valid complementary partial intrinsic
spacetime transformation to the first equation of system (12)
or to Eq. (10) derived with respect to 3-observer in the Eu-
clidean 3-space Σ̃ from Fig. 5a. Thus system (12) is the com-
plete intrinsic Lorentz transformation derivable from Figs. 5a
and 5c with respect to 3-observer in Σ̃ and 1-observer in ct̃.

By using the definitions given earlier namely,

sin φψ+
x = sin φψ+

t0 = φvx+/φc;
sin φψ−x = sin φψ−t0 = φvx−/φc;
sin φψ+

x0 = sin φψ+
t = φvt+/φc and

sin φψ−x0 = sin φψ−t = φvt−/φc;

system (12) is given explicitly in terms of intrinsic speeds as
follows:

φx̃′ =

1 −
φv2

x+

φc2


− 1

2

φx̃−

−
1 −

φv2
t+

φc2


− 1

2

(φvt−)φt̃;

(w.r.t. 3 − observer in Σ̃)

φt̃′ =

1 −
φv2

t+

φc2


− 1

2

φt̃−

−
1 −

φv2
x+

φc2


− 1

2 φvx−

φc2 φx̃;

(w.r.t. 1 − observer in ct̃)



(13)

The outward manifestation on the flat four-dimensional
spacetime of systems (12) and (13) are given respectively as

follows:

x̃′ = x̃ secψ+
x − ct̃ secψ+

t sinψ−t ;
ỹ′ = ỹ; z̃′ = z̃;
(w.r.t 3 − observer in Σ̃);

ct̃′ = ct̃ secψ+
t − x̃ secψ+

x sinψ−x ;
(w.r.t 1 − observer in ct̃)



(14)

and

x̃′ =

1 −
v2

x+

c2


− 1

2

x̃ −
1 −

v2
t+

c2


− 1

2

(vt− )t̃;

ỹ′ = ỹ; z̃′ = z̃;
(w.r.t. 3 − observer in Σ̃)

t̃′ =

1 −
v2

t+

c2


− 1

2

t̃ −
1 −

v2
x+

c2


− 1

2 vx−

c2 x̃;

(w.r.t. 1 − observer in ct̃)



. (15)

As can be easily shown, system (12) or (13) contradicts
(or does not lead to) intrinsic Lorentz invariance (φLI) for
φψ+

x , φψ−x , φψ+
t , φψ−t (or for φvx+ , φvx− , φvt+ , φvt−).

System (14) or (15) likewise does not lead to Lorentz invari-
ance (LI) for ψ+

x , ψ−x , ψ+
t , ψ−t (or vx+ , vx− , vt+ , vt−).

Even if only one of the four intrinsic angles φψ+
x , φψ

−
x , φψ

+
t

and φψ−t is different from the rest (or if only one of the four
intrinsic speeds φvx+ , φvx− , φvt+ and φvt− is different from the
rest), system (12) or (13) still contradicts φLI. And even if
only one of the four angles ψ+

x , ψ
−
x , ψ

+
t and ψ−t is different

from the rest (or if only one of the four speeds vx+ , vx− , vt+

and vt− is different from the rest), system (14) or (15) still
contradicts the LI.

The assumption made initially that members of a quartet
of symmetry-partner particles or objects in the four universes
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are in non-symmetrical relative motions in their universes,
which gives rise to Fig. 5a-c, has led to the non-validity of in-
trinsic Lorentz invariance in intrinsic special relativity (φSR)
and of Lorentz invariance in special relativity (SR) in our uni-
verse and indeed in the four universes. This invalidates the
initial assumption, since Lorentz invariance is immutable on
the flat four-dimensional spacetime of the special theory of
relativity. The conclusion then is that all the four members
of every quartet of symmetry-partner particles or objects in
the four universes are in identical (or symmetrical) relative
motions at all times.

Having shown that the members of every quartet of sym-
metry-partner particles or objects in the four universes have
identical magnitudes of masses, identical shapes and iden-
tical sizes, (in so far as the prescribed identical magnitudes
of masses, identical shapes and identical sizes of symmetry-
partner particles or objets in the positive (or our) universe and
the negative universe is valid), in the preceding sub-section
and that they are involved in identical relative motions at all
times in this sub-section, the perfect symmetry of state among
the four universes has been demonstrated. Although gravity
is being assumed to be absent in this and the previous papers
[1-3], it is interesting to note that gravitational field sources of
identical magnitudes of masses, identical sizes and identical
shapes, which hence give rise to identical gravitational fields,
are located at symmetry-partner positions in spacetimes in the
four universes.

3 Summary and conclusion

This section is for the two parts of the initial paper [1] and
[2], this paper and its first part [3]. The co-existence in na-
ture of four symmetrical universes identified as positive (or
our) universe, negative universe, positive time-universe and
negative time-universe in different spacetime/intrinsic space-
time domains, have been exposed in these papers. The four
universes exhibit perfect symmetry of natural laws and per-
fect symmetry of state. This implies that natural laws take
on identical forms in the four universes and that all mem-
bers of every quartet of symmetry-partner particles or objects
in the four universes have identical magnitudes of masses,
identical shapes and identical sizes and that they are involved
in identical relative motions in their universes at all times,
as demonstrated. The four universes constitute a four-world
background to the special theory of relativity in each universe.

The flat two-dimensional intrinsic spacetime of the intrin-
sic special theory of relativity (φSR), containing one-dimen-
sional intrinsic masses of particles and objects in one-dimen-
sional intrinsic space, which underlies the flat four-dimen-
sional spacetime of the special theory of relativity (SR) con-
taining three-dimensional masses of particles and objects in
Euclidean 3-space in each universe, introduced (as ansatz in
the first paper [1], is isolated in this fourth paper. The two-
dimensional intrinsic spacetime is indispensable in special

relativity/intrinsic special relativity (SR/φSR) in the four-
world picture, because the new set of spacetime/intrinsic
spacetime diagrams for deriving Lorentz transformation/in-
trinsic Lorentz transformation (LT/φLT) and their inverses in
the four-world picture, involve relative rotations of intrinsic
spacetime coordinates of two frames in relative motion.

The LT/φLT and their inverses are derived from a new set
of spacetime/intrinsic spacetime diagrams on the combined
spacetimes/intrinsic spacetimes of the positive (or our) uni-
verse and the negative universe as one pair of universes and
on combined spacetimes/intrinsic spacetimes of the positive
time-universe and the negative time-universe as another pair
of universes. The two pairs of spacetimes/intrinsic space-
times co-exist in nature, consequently the spacetime/intrinsic
spacetime diagram drawn on one pair co-exists with and must
complement the spacetime/intrinsic spacetime diagram
drawn on the other pair in deriving the LT/φLT and their in-
verses (with a set of four diagrams in all) in each universe, as
done in the first paper [1] and validated formally in the third
paper [3].

The proper (or classical) Euclidean 3-space Σ0′ of the
positive time-universe with respect to 3-observers in it, is
what appears as the proper time dimension ct′ of the posi-
tive (or our) universe relative to 3-observers in the proper Eu-
clidean 3-space Σ′ of our universe and the proper Euclidean
3-space Σ′ of the positive (or our) universe with respect to 3-
observers in it, is what appears as the proper time dimension
ct0′ of the positive time-universe relative to 3-observers in the
proper Euclidean 3-space Σ0′ of the positive time-universe.
The proper Euclidean 3-space −Σ0′∗ of the negative time-
universe is likewise the proper time dimension −ct′∗ of the
negative universe and the proper Euclidean 3-space −Σ′∗ of
the negative universe is the proper time dimension −ct0′∗ of
the negative time-universe. The important revelation in this
is that time is not a fundamental (or “created”) concept, but
a secondary concept that evolved from the concept of space.
Time dimension does not exist in an absolute sense, as does
3-space, but in a relative sense.

The positive time-universe cannot be perceived better
than the time dimension ct′ of the positive (or our) universe by
3-observers in the Euclidean 3-space Σ′ of our universe and
the negative time-universe cannot be perceived better
than the time dimension −ct′∗ of the negative universe by 3-
observers in the Euclidean 3-space −Σ′∗ of the negative uni-
verse. Conversely, the positive (or our) universe cannot be
perceived better than the time dimension ct0′ of the positive
time-universe by 3-observers in the Euclidean 3-space Σ0′ of
the positive time-universe and the negative universe cannot
be perceived better than the time dimension −ct0′∗ of the neg-
ative time-universe by 3-observers in the Euclidean 3-space
−Σ0′∗ of the negative time-universe. It can thus be said that
the positive time-universe and the negative time-universe are
imperceptibly hidden in the time dimensions of the positive
(or our) universe and the negative universe respectively rela-
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tive to 3-observers in the Euclidean 3-spaces in our universe
and the negative universe and conversely.

Physicists in our (or positive) universe and negative uni-
verse can formulate special relativity and special-relativistic
physics in general in terms of the spacetime/intrinsic space-
time dimensions (or coordinates) and physical parameters/in-
trinsic parameters of our universe and the negative universe
only. Physicists in the positive time-universe and the negative
time-universe can likewise formulate special relativity and
special-relativistic physics in general in terms of the space-
time/intrinsic spacetime dimensions (or coordinates) and pa-
rameters/intrinsic parameters of the positive and the negative
time-universes only. It is to this extent that it can still be
said that special relativity and special-relativistic physics in
general, pertain to a two-world background, knowing that the
two-world picture actually encompasses four universes; two
of them being imperceptibly hidden in the time dimensions.

Experimental validation ultimately of the co-existence in
nature of four symmetrical universes will give a second testi-
mony to their isolation theoretically in these papers. The next
natural step is to investigate the possibility of subsuming the
theory of relativistic gravity into the four-world picture.
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Missing Measurements of Weak-Field Gravity

Richard J. Benish
Eugene, Oregon, USA. E-mail: rjbenish@teleport.com

For practical and historical reasons, most of what we know about gravity is based on
observations made or experiments conducted beyond the surfaces of dominant massive
bodies. Although the force of gravity inside a massive body can sometimes be mea-
sured, it remains to demonstrate the motion that would be caused by that force through
the body’s center. Since the idea of doing so has often been discussed as a thought
experiment, we here look into the possibility of turning this into a real experiment. Fea-
sibility is established by considering examples of similar experiments whose techniques
could be utilized for the present one.

1 Introduction

A recent paper in this journal (M. Michelini [1]) concerned
the absence of measurements of Newton’s constant, G, within
a particular range of vacuum pressures. Important as it may
be to investigate the physical reasons for this, a gap of equal,
if not greater importance concerns the absence of gravity ex-
periments that probe the motion of test objects through the
centers of larger massive bodies. As is the case for most mea-
surements of G, the apparatus for the present experimental
idea is also a variation of a torsion balance. Before describ-
ing the modifications needed so that a torsion balance can
measure through-the-center motion, let’s consider the context
in which we find this gap in experimentation.

Often found in undergraduate physics texts [2–5] is the
following problem, discussed in terms of Newtonian grav-
ity: A test object is dropped into an evacuated hole spanning
a diameter of an otherwise uniformly dense spherical mass.
One of the reasons this problem is so common is that the
answer, the predicted equation of motion of the test object,
is yet another instance of simple harmonic motion. What is
rarely pointed out, however, is that we presently lack direct
empirical evidence to verify the theoretical prediction. Con-
fidence in the prediction is primarily based on the success of
Newton’s theory for phenomena that test the exterior solu-
tion. Extrapolating Newton’s law to the interior is a worth-
while mathematical excercise. But a theoretical extrapolation
is of lesser value than an empirical fact.

Essentially the same prediction follows from general rel-
ativity [6–9]. In this context too, the impression is sometimes
given that the predicted effect is a physical fact. A notewor-
thy example is found in John A. Wheeler’s book, “A Jour-
ney into Gravity and Spacetime”, in which he refers to the
phenomenon as “boomeranging”. Wheeler devotes a whole
(10-page) chapter to the subject because, as he writes, “Few
examples of gravity at work are easier to understand in New-
tonian terms than boomeranging. Nor do I know any easier
doorway to Einstein’s concept of gravity as manifestation of
spacetime curvature” [10]. But nowhere in Wheeler’s book is
there any discussion of empirical evidence for “boomerang-

ing”. No doubt, Newton, Einstein and Wheeler would all have
been delighted to see the simple harmonic motion demon-
strated as a laboratory experiment.

2 Feasibility

Since the predicted effect has never been observed at all, our
initial goal should simply be to ascertain that the oscillation
prediction is a correct approximation. After laying out a basic
strategy for doing the experiment, this paper concludes with
a few additional remarks concerning motivation.

Apparatus that would have sufficed for our purpose were
considered in the 1960s–1970s to measure G. Y. T. Chen
discusses these through-the-center oscillation devices in his
1988 review paper on G measurements [11]. Each exam-
ple in this group of proposals was intended for space-borne
satellite laboratories. The original motivation for these ideas
was to devise ways to improve the accuracy of our knowledge
of G by timing the oscillation period of the simple harmonic
motion. Though having some advantages over Earth-based
G measurements, they also had drawbacks which ultimately
prohibited them from ever being carried out.

What distinguishes these proposals from experiments that
have actually been carried out in Earth-based laboratories is
that the test objects were to be allowed to fall freely back
and forth between extremities inside a source mass the whole
time. Whereas G measurements conducted on Earth typically
involve restricting the test mass’s movement and measuring
the force needed to do so. The most common, and historically
original, method for doing this is to use a torsion balance in
which a fiber provides a predetermined resistance to rotation.
Torsion balances have also been used to test Einstein’s Equiv-
alence Principle (e.g. Gundlach et al. [12]). Another distin-
guishing characteristic of Earth-based G measurements and
Equivalence Principle tests is that the test masses typically
remain outside the larger source masses. Since movement
of the test masses is restricted to a small range of motion,
these tests can be characterized as static measurements. Tor-
sion balance experiments in which the test mass is inside the
source mass have also been performed (for example, Spero
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Fig. 1: Schematic of modified Cavendish balance. Since the idea is
to demonstrate the simple harmonic motion only as a first approx-
imation, deviation due to the slight arc in the trajectory is inconse-
quential.

et al. [13] and Hoskins et al. [14]). These latter experiments
were tests of the inverse square law.

All three of these types of experiments — G measure-
ments, Equivalence Principle and inverse-square law tests —
however, are static measurements in the sense that the test
masses were not free to move beyond a small distance com-
pared to the size of the source mass. The key innovation in
the present proposal is that we want to see an object fall ra-
dially as long as it will; we want to eliminate (ideally) or
minimize (practically) any obstacle to the radial free-fall tra-
jectory. Space-based experiments would clearly be the opti-
mal way to achieve this. But a reasonably close approxima-
tion can be achieved with a modified Cavendish balance in an
Earth-based laboratory.

As implied above, the key is to design a suspension sys-
tem which, instead of providing a restoring force that prevents
the test masses from moving very far, allows unrestricted or
nearly unrestricted movement. Two available possibilities are
fluid suspensions and magnetic suspensions (or a combina-
tion of these). In 1976 Faller and Koldewyn succeeded in
using a magnetic suspension system to get a G measurement
[15, 16]. The experiment’s accuracy was not an improvement
over that gotten by other methods, but was within 1.5% of the
standard value.

As Michelini pointed out in his missing vacuum range
discussion, in most G measurements the source masses are lo-
cated outside an enclosure. Even in the apparatus Cavendish
used for his original G measurement at atmospheric pressure,
the torsion arm and test masses were isolated from the source
masses by a wooden box. In Faller and Koldewyn’s experi-
ment the arm was isolated from the source masses by a vac-
uum chamber. The modified design requires that there be no
such isolation, as the arm needs to swing freely through the
center of the source masses (see Fig. 1). Given the modest
goal of the present proposal, it is reasonable to expect that the

technology used by Faller and Koldewyn could be adapted to
test the oscillation prediction. Moreover, it seems reasonable
to expect that advances in technology since 1976 (e.g. better
magnets, better electronics, etc.), would make the experiment
quite doable for an institution grade physics laboratory.

3 Motivation: Completeness and Aesthetics

One hardly needs to mention the many successes of Newto-
nian gravity. By success we mean, of course, that empirical
observations match the theoretical predictions. Einsteinian
gravity is even more successful. The purpose of many con-
temporary gravity experiments is to detect physical manifes-
tations of the differences between Newton’s and Einstein’s
theories. In every case Einstein’s theory has proven to be
more accurate. This is impressive. Given the level of thor-
oughness and sophistication in gravity experimentation these
days, one may be taken aback to realize that Newton’s and
Einstein’s theories both remain untested with regard to the
problem discussed above. The simple harmonic motion pre-
diction is so common and so obvious that we have come to
take it for granted. When discussing the prediction for this ba-
sic experiment in weak field gravity, it would surely be more
satisfactory if we could at the same time cite the physical ev-
idence.

The Newtonian explanation for the predicted harmonic
motion is that a massive sphere produces a force (or potential)
of gravitational attraction. The corresponding general rela-
tivistic explanation is that the curvature of spacetime causes
the motion. Specifically, the predicted effect is due to the
slowing of clock rates toward the center of the sphere. A
physical demonstration of the effect would thus indirectly,
though convincingly, support general relativity’s prediction
that the rate of a clock at the body’s center is a local minimum
— a prediction that has otherwise not yet been confirmed.

In summary, if R represents the surface of a spherical
mass, our empirical knowledge of how things move because
of the mass within R is essentially confined to the region,
r & R. The region 0 ≤ r . R is a rather fundamental and
a rather large gap. It is clearly the most ponderable part of the
domain. Why not fill this gap?

One of the distinctive features of the kind of experiment
proposed above is that its result is, in principle, independent
of size. The satellite versions mentioned by Chen were thus
referred to as “clock mode” experiments. The determining
factor in the oscillation period is the density of the source
mass. If the source mass is made of lead (density, ρ ≈ 11, 000
kg / m3) the oscillation period is about one hour. Would it not
be fascinating to observe for an hour, to watch the oscillation
take place, knowing that the mass of the larger body is the
essential thing making it happen? In my opinion this would
be a beautiful sight. Beautiful for completing the domain,
0 ≤ r . R, and beautiful simply to see what no human being
has seen before.
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An experiment that confirms the Fresnel drag formalism in RF coaxial cables is re-
ported. The Fresnel ‘drag’ in bulk dielectrics and in optical fibers has previously been
well established. An explanation for this formalism is given, and it is shown that there
is no actual drag phenomenon, rather that the Fresnel drag effect is merely the conse-
quence of a simplified description of EM scattering within a dielectric in motion wrt the
dynamical 3-space. The Fresnel drag effect plays a critical role in the design of various
light-speed anisotropy detectors.

1 Introduction

In 2002 it was discovered that the Michelson-Morley 1887
light-speed anisotropy experiment [1], using the interferom-
eter in gas mode, had indeed detected anisotropy, by taking
account of both a physical Lorentz length contraction effect
for the interferometer arms, and the refractive index effect of
the air in the light paths [2, 3]. The observed fringe shifts
corresponded to an anisotropy speed in excess of 300 km/s.
While confirmed by numerous later experiments, particularly
that of Miller [4], see [6] for an overview, the most accurate
analysis used the Doppler shifts from spacecraft earth-flybys
[5, 6], which gave the solar-system a galactic average speed
through 3-space of 486 km/s in the direction RA = 4.29h,
Dec = −75.0◦, a direction within 5◦ of that found by Miller
in his 1925/26 gas-mode Michelson interferometer experi-
ment∗. In vacuum mode a Michelson interferometer cannot
detect the anisotropy, nor its turbulence effects, as shown by
the experiments in [7–12], actually using resonant orthogonal
cavities. These experiments show, overall, the difference be-
tween Lorentzian Relativity (LR) and Special Relativity (SR).
In LR the length contraction effect is caused by motion of a
rod, say, through the dynamical 3-space, whereas in SR the
length contraction is only a perspective effect, occurring only
when the rod is moving relative to an observer. This was fur-
ther clarified when an exact mapping between Galilean space
and time coordinates and the Minkowski-Einstein spacetime
coordinates was recently discovered [13]. This demonstrates
that the SR time dilation and space contraction effects are
merely the result of using an unphysical choice of space and
time coordinates that, by construction, makes the speed of
light in vacuum an invariant, but only wrt to that choice of
coordinates. Such a contrived invariance has no connection
with whether light speed anisotropy is detectable or not —
that is to be determined by experiments.

∗This speed and direction is very different to the CMB speed and direc-
tion — which is an unrelated phenomenon.

The detection of light speed anisotropy — revealing a
flow of space past the detector, is now entering an era of pre-
cision measurements. These are particularly important be-
cause experiments have shown large turbulence effects in the
flow, and are beginning to characterise this turbulence. Such
turbulence can be shown to correspond to what are, conven-
tionally, known as gravitational waves, although not those
implied by General Relativity, as they are much larger than
these [14–16].

The detection and characterisation of these wave/ turbu-
lence effects requires the development of small and cheap de-
tectors, such as optical fiber Michelson interferometers [18].
However in all detectors the EM signals travel through a di-
electric, either in bulk or optical fiber or through RF coaxial
cables. For this reason it is important to understand the so-
called Fresnel drag effect. In optical fibers the Fresnel drag
effect has been established [17]. This is important in the op-
eration of Sagnac optical fiber gyroscopes, for then the cali-
bration is independent of the fiber refractive index. The Fres-
nel drag speed is a phenomenological formalism that char-
acterises the effect of the absolute motion of the propaga-
tion medium upon the speed of the EM radiation within that
medium.

The Fresnel drag expression is that a dielectric in absolute
motion through space at speed v causes the EM radiation to
travel at speed

V(v) =
c
n

+ v

(
1 − 1

n2

)
(1)

wrt the dielectric, when V and v have the same direction. Here
n is the dielectric refractive index. The 2nd term is known as
the Fresnel drag, appearing to show that the moving dielec-
tric “drags” the EM radiation, although below we show that
this is a misleading interpretation. That something unusual
was happening followed from the discovery of stellar aberra-
tion by Bradley in 1725. Here the direction of the telescope
must be varied over a year when observing a given star. This
is caused by the earth’s orbital speed of 30 km/s. Then Airy
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Fig. 1: Schematic layout for measuring the one-way speed of light
in either free-space, optical fibers or RF coaxial cables, without re-
quiring the synchronisation of the clocks C1 and C2. Here τ is the
unknown offset time between the clocks, and tA, tB + τ, tC + τ, tD are
the observed clock times, while tB, tC are, a priori, unknown true
times. V is the light speed in (1), and v is the speed of the apparatus
through space, in direction θ.

in 1871 demonstrated that the same aberration angle occurs
even when the telescope is filled with water. This effect is
explained by the Fresnel expression in (1), which was also
confirmed by the Fizeau experiment in 1851, who used two
beams of light travelling through two tubes filled with flow-
ing water, with one beam flowing in the direction of the water,
and the other counterflowing. Interferometric means permit-
ted the measurement of the travel time difference between the
two beams, confirming (1), with v the speed of the water flow
relative to the apparatus. This arrangement cannot detect the
absolute motion of the solar system, as this contribution to
the travel time difference cancels because of the geometry of
the apparatus.

There have been various spurious “derivations” of (1),
some attempting to construct a physical “drag” mechanism,
while another uses the SR addition formula for speeds. How-
ever that well-known addition formula is merely a mathe-
matical manifestation of using the unphysical Minkowski-
Einstein coordinates noted above, and so is nothing but a co-
ordinate effect, unrelated to experiment. Below we give a
simple heuristic derivation which shows that there is no ac-
tual “drag” phenomenon. But first we show the unusual con-
sequences of (1) in one-way speed of EM radiation experi-
ments. It also plays a role in 2nd order v/c experiments, such
as the optical-fiber Michelson interferometer [18].

2 One-way Speed of Light Anisotropy Measurements

Fig.1 shows the arrangement for measuring the one-way speed
of light, either in vacuum, a dielectric, or RF coaxial cable. It
is usually argued that one-way speed of light measurements
are not possible because the clocks cannot be synchronised.
Here we show that this is false, and at the same time show an
important consequence of (1). In the upper part of Fig.1 the
actual travel time tAB from A to B is determined by

V(v cos(θ))tAB = |L′| (2)

where |L′| = |L + vtAB| ≈ L + v cos(θ)tAB + .. is the actual dis-
tance travelled, at speed V(v cos(θ)), using vtAB � L, giving

V(v cos(θ))tAB = L + v cos(θ)tAB + ... (3)

where the 2nd term comes from, approximately, the end B
moving an additional distance v cos(θ)tAB during the true time
interval tAB. This gives

tAB ≈ L
V(v cos(θ)) − v cos(θ)

=
nL
c

+
v cos(θ)L

c2 + .. (4)

on using (1) and expanding to 1st oder in v/c. If we ignore
the Fresnel drag term in (1) we obtain, instead,

tAB ≈ L
c/n − v cos(θ)

=
nL
c

+
n2v cos(θ)L

c2 + .. (5)

The 1st important observation is that the v/c component in
(4) is independent of the dielectric refractive index n. This
is explained in the next section. If the clocks were synchro-
nised tAB would be known, and by changing direction of the
light path, that is varying θ, the magnitude of the 2nd term
may be separated from the magnitude of the 1st term. If the
clocks are not synchronised, then the measured travel time
tAB = (tB + τ) − tA = tAB + τ, where τ is the unknown, but
fixed, offset between the two clocks. But this does not change
the above argument. The magnitude of v and the direction of
v can be determined by varying θ. For a small detector the
change in θ can be achieved by a direct rotation. But for a
large detector, such as De Witte’s [19] 1.5 km RF coaxial ca-
ble experiment, the rotation was achieved by that of the earth.
The reason for using opposing propagation directions, as in
Fig.1, and then measuring travel time differences, is that local
temperature effects cancel. This is because a common tem-
perature change in the two adjacent cables changes the speed
to the same extent, whereas absolute motion effects cause op-
posite signed speed changes. Then the temperature effects
cancel on measuring differences in the travel times, whereas
absolute motion effects are additive. Finally, after the abso-
lute motion velocity has been determined, the two spatially
separated clocks may be synchronised.

That the v/c term in tAB in (4) is independent of n means
that various techniques to do a 1st order in v/c experiment that
involves using two dielectrics with different values of n fail.
One such experiment was by Trimmer et al [20], who used
a triangular interferometer, with the light path split into one
beam passing through vacuum, and the other passing through
glass. No 1st order effect was seen. This is because the v-
dependent travel times through the glass, and corresponding
vacuum distance, have the same value to 1st order in v/c. On
realising this Trimmer et al. subsequently withdrew their pa-
per, see reference [21]. Cahill [22] performed a dual optical-
fiber/RF coaxial cable experiment that was supposedly 1st or-
der in v/c. If the Fresnel drag formalism applies to both op-
tical fibers and RF coaxial cables, then again there could not
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have been any v/c signal in that experiment, and the observed
effects must have been induced by temperature effects. All
this implies that because of the Fresnel drag effect it appears
not possible to perform a v/c experiment using one clock —
rather two must be used, as in Fig.1. This, as noted above,
does not require clock synchronisation, but it does require
clocks that very stable. To use one “clock” appears then to
require 2nd order in v/c detectors, but then the effect is some
1000 times smaller, and requires interferometric methods to
measure the very small travel time differences, as in gas-mode
and optical-fiber Michelson interferometers. It is indeed for-
tuitous that the early experiments by Michelson and Morley,
and by Miller, were in gas mode, but not by design.

The Krisher optical fiber 1st order v/c experiment [23]
measured the phase differences φ1 and φ2 between the two
signals travelling in different directions through very long op-
tical fibers, rather than the travel time variations, as the earth
rotated. This involves two phase comparators, with one at
each end of the fibers. However the phases always have a
multiple of 2π phase ambiguity, and in the Krisher experi-
ment this was overlooked. However the timing of the max-
ima/minima permitted the Right Ascension (RA) of the di-
rection of v to be determined, as the direction of propagation
is changed by rotation, and the result agreed with that found
by Miller; see [6] for plots of the Krisher data plotted against
local sidereal times.

3 Deriving the Fresnel Drag Formalism

Here we give a heuristic derivation of the Fresnel drag speed
formalism in a moving dielectric, with the dielectric modeled
by random geometrical-optics paths, see Fig.2. These may be
thought of as modelling EM wave scatterings, and their as-
sociated time delays. The slab of dielectric has length L and
travels through space with velocity v, and with EM radiation
traveling, overall, from A to B. The top of Fig.2 shows the
microscopic heuristic model of propagation through the di-
electric with EM radiation traveling at speed c wrt space be-
tween scattering events, being scattered from random sites —
atoms, moving through space with velocity v. The bottom of
Fig.2 shows the macroscopic description with EM radiation
effectively traveling in a straight line directly from A to B,
with effective linear speed V(v cos(θ)), and with the dielectric
now described by a refractive index n.

The key insight is that when a dielectric has absolute ve-
locity v through space, the EM radiation travels at speed c
wrt space, between two scattering events within the dielec-
tric. Consider a straight line propagation between scattering
events e and f , with angle φ to v, see Fig.2. Consider the paths
from the rest frame of the space. The EM wave must travel
to a point in space f ′, and then the distance travelled dl′, at
speed c, is determined by the vector sum dl′ = dl + vdt, with
dl the distance between scattering points e and f , defined in
the rest frame of the matter, and vdt is the displacement of f

φ
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v

V(v cos(θ))
n

A B
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¾ L -
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Fig. 2: Slab of dielectric, length L, traveling through space with
velocity v, and with EM radiation traveling, overall, from A to B,
drawn in rest frame of slab. Top: Microscopic model showing scat-
tering events, with free propagation at speed c relative to the space,
between scattering events. Bottom: The derived macroscopic phe-
nomenological description showing the signal travelling at speed
V(v cos(θ)), as given by the Fresnel drag expression in (1). The di-
electric refractive index is n.

to f ′, because of the absolute motion of the scattering atoms.
Then the travel time to 1st order in v/c is

dt =
dl′

c
≈ dl

c
+
v cos(φ)dt

c
+ ..., giving (6)

dt ≈ dl
c

+
vdl cos(φ)

c2 + ... =
dl
c

+
v · dl

c2 + ... (7)

We ignore Lorentz length contraction of the slab as this only
contributes at 2nd order in v/c. Summing over paths to get
total travel time from A to B

tAB =

∫ B

A

dl
c

+

∫ B

A

v · dl
c2 + ...

=
l
c

+
Lv cos(θ)

c2 + ...

=
nL
c

+
Lv cos(θ)

c2 + ..., (8)

where L is the straight line distance from A to B in the matter
rest frame, and n = l/L defines the refractive index of the di-
electric in this treatment, as when the dielectric is at rest the
effective speed of EM radiation through matter in a straight
line from A to B is defined to be c/n. Note that tAB does not
involve n in the v dependent 2nd term. This effect is actu-
ally the reason for the Fresnel drag formalism. The macro-
scopic treatment, which leads to the Fresnel drag formalism,
involves the sum |L′| = |L + vtAB|, for the macrosocopic dis-
tance traveled, which gives for the travel time

tAB =
L′

V
≈ L

V(v cos(θ))
+
v cos(θ)tAB

V(v cos(θ))
, giving

tAB =
L

V(v cos(θ))
+

Lv cos(θ)
V(v cos(θ))2 + ... (9)

where V(v cos(θ)) is the effective linear speed of EM radi-
ation in direction AB at angle θ to v, and v cos(θ)tAB is the
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Fig. 3: Photograph of the RF coaxial cables arrangement, based upon 16×1.85 m lengths of phase stabilised Andrew HJ4-50 coaxial cable.
These are joined to 16 lengths of FSJ1-50A cable, in the manner shown schematically in Fig.4. The 16 HJ4-50 coaxial cables have been
tightly bound into a 4×4 array, so that the cables, locally, have the same temperature, with cables in one of the circuits embedded between
cables in the 2nd circuit. This arrangement of the cables permits the cancellation of temperature effects in the cables. A similar array of
the smaller diameter FSJ1-50A cables is located inside the grey-coloured conduit boxes. This arrangement has permitted the study of the
Fresnel drag effect in RF coaxial cables, and revealed that the usual Fresnel drag speed expression applies.

extra distance travelled, caused by the end B moving. This
form assumes that the total distance L′ is travelled at speed
V(v cos(θ)). This reproduces the microscopic result (8) only
if V(v) = c/n + v(1 − 1/n2), which is the Fresnel drag ex-
pression. The key point is that the Fresnel drag formalism
is needed to ensure, despite appearances, that the extra dis-
tance traveled due to the absolute motion of the dielectric, is
travelled at speed c, and not at speed c/n, even though the
propagation is within the dielectric. Hence there is no actual
drag phenomenon involved, and so the nomenclature “Fresnel
drag” is misleading.

However it was not clear that the same analysis applied
to RF coaxial cables, because of the possible effects of the
conduction electrons in the inner and outer conductors. The
dual coaxial cable experiment reported herein shows that the
Fresnel drag expression also applies in this case. The Fresnel
drag effect is a direct consequence of the absolute motion of
the slab of matter through space, with the speed of EM ra-
diation being c wrt space itself. A more complete derivation
based on the Maxwell-Hertz equations is given in Drezet [24].

4 Fresnel Drag Experiment in RF Coaxial Cables

We now come to the 1st experiment that has studied the Fres-
nel drag effect in RF coaxial cables. This is important for
any proposed EM anisotropy experiment using RF coaxial
cables. The query here is whether the presence of the con-
ductors forming the coaxial cables affects the usual Fresnel
drag expression in (1), for a coaxial cable has an inner and
outer conductor, with a dielectric in between.

Fig.4 shows the schematic arrangement using two differ-
ent RF coaxial cables, with two separate circuits, and Fig.3 a
photograph. One measures the travel time difference of two
RF signals from a Rubidium frequency standard (Rb) with a
Digital Storage Oscilloscope (DSO). In each circuit the RF
signal travels one-way in one type of coaxial cable, and re-
turns via a different kind of coaxial cable. Two circuits are
used so that temperature effects cancel — if a temperature
change alters the speed in one type of cable, and so the travel
time, that travel time change is the same in both circuits, and
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Fig. 4: Top: Data, from May17-19, 2010, from the dual RF coax-
ial cable experiment enabling Fresnel drag in coaxial cables to be
studied: Red plot is relative 10 MHz RF travel times between the
two circuits, and blue plot is temperature of the air (varying from
19 to 23◦C) passing into the LeCroy DSO, scaled to fit the travel
time data. The black plot is travel time differences after correcting
for DSO temperature effects. The dashed plot is time variation ex-
pected using spacecraft earth-flyby Doppler shift determined veloc-
ity, if the Fresnel drag effect is absent in RF coaxial cables. Bottom:
Schematic layout of the coaxial cables. This ensures two opposing
circuits that enable cancellation of local temperature effects in the
cables. In practice the cables are divided further, as shown in Fig.3.

cancels in the difference. Even though phase-stabilised coax-
ial cables are used, the temperature effects need to be can-
celled in order to be able to reliably measure time differences
at ps levels. To ensure cancellation of temperature effects, and
also for practical convenience, the Andrew HJ4-50 cables are
cut into 8×1.85 m shorter lengths in each circuit, correspond-
ing to a net length of L = 8×1.85 = 14.8 m. The curved parts
of the Andrew FSJ1-50A cables contribute only at 2nd order
in v/c.

To analyse the experimental data we modify the Fresnel
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drag speed expression in (1) to

V(v) =
c
ni

+ v

1 − 1
m2

i

 (10)

for each cable, i = 1, 2, where mi = ni gives the normal Fres-
nel drag, while mi = 1 corresponds to no Fresnel drag. Re-
peating the derivation leading to (4) we obtain to 1st order in
v/c the travel time difference between the two circuits,

∆t =
2Lv cos(θ)

c2


n2

1

m2
1

− n2
2

m2
2

 (11)

The apparatus was orientated NS and used the rotation of the
earth to change the angle θ. Then θ varies between λ + δ −
90◦ = 20◦ and λ − δ + 90◦ = 50◦, where λ = 35◦ is the
latitude of Adelaide, and δ = 75◦ is the declination of the
3-space flow from the flyby Doppler shift analysis, and with
a speed of 486 km/s.. Then if mi , ni a signal with period
24 h should be revealed. We need to compute the magnitude
of the time difference signal if there is no Fresnel drag effect.
The FSJ1-50A has an effective refractive index n1 = 1.19,
while the HJ4-50 has n2 = 1.11, and then ∆t would change
by 8.7 ps over 24 hours, and have the phase shown in Fig.4.
However while cable temperature effects have been removed
by the cable layout, another source of temperature effects is
from the LeCroy WaveRunner WR6051A DSO. To achieve
ps timing accuracy and stability the DSO was operated in
Random Interleaved Sampling (RIS) mode. This uses many
signal samples to achieve higher precision. However in this
mode the DSO temperature compensation re-calibration fa-
cility is disabled. To correct for this it was discovered that the
timing errors between the two DSO channels very accurately
tracked the temperature of the cooling air being drawn into
the DSO. Hence during the experiment that air temperature
was recorded. The Rb frequency standard was a Stanford Re-
search Systems FS725. The results for 48 hours in mid May,
2010, are shown in Fig. 4: The red plot, with glitch, shows
the DSO measured time difference values, while the blue plot
shows the temperature variation of the DSO air-intake tem-
perature, scaled to the time data. We see that the time data
very closely tracks the air-intake temperature. Subtracting
this temperature effect we obtain the smaller plot, which has a
range of 5 ps, but showing no 24 h period. The corrected tim-
ing data may still have some small temperature effects. The
glitch in the timing data near local time of 34 h was proba-
bly caused by a mechanical stress-release event in the cables.
Hence the data implies that there is no 1st order effect in v/c,
and so, from (11), that n1/m1 = n2/m2, with the simplest in-
terpretation being that, in each cable m = n. This means that
the Fresnel drag effect expression in (1) applies to RF coaxial
cables.

5 Conclusions

The first experiment to study the Fresnel drag effect in RF
coaxial cables has revealed that these cables exhibit the same

effect as seen in bulk dielectrics and in optical fibers, and so
this effect is very general, and in the case of the RF coax-
ial cables, is not affected by the conductors integral to RF
coaxial cables. Because this experiment is a null experiment,
after correcting for temperature effects in the DSO, its impli-
cations follow only when the results are compared with non-
null experiments. Here we have compared the results with
those from the spacecraft earth-flyby Doppler shift data re-
sults. Then we can deduce that the null result is caused by
the Fresnel drag effect in the cables, and not by the absence
of light speed anisotropy. This is to be understood from the
heuristic derivation given herein, where it was shown that the
Fresnel drag expression actually involves no drag effect at all,
rather its form is such as to ensure that between scatterings the
EM waves travel at speed c wrt to the 3-space, that is, that the
“speed of light” is not an invariant. This experiment, as have
many others, shows that the speed of light, as measured by an
observer, actually depends on the speed of that observer wrt
to 3-space. We have also shown how the speed of light may
be measured in a one-way 1st order in v/c experiment, using
spatially separated clocks that are not a priori synchronised,
by rotating the apparatus. Subsequently, once the velocity of
space past the detector is known, the clocks may be synchro-
nised by light speed signalling.
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Numerous experiments and observations have confirmed the existence of a dynamical
3-space, detectable directly by light-speed anisotropy experiments, and indirectly by
means of novel gravitational effects, such as bore hole g anomalies, predictable black
hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all
without dark matter and dark energy. The dynamics for this 3-space follows from a
unique generalisation of Newtonian gravity, once that is cast into a velocity formalism.
This new theory of gravity is applied to the solar model of the sun to compute new
density, pressure and temperature profiles, using polytrope modelling of the equation of
state for the matter. These results should be applied to a re-analysis of solar neutrino
production, and to stellar evolution in general.

1 Introduction

It has been discovered that Newton’s theory of gravity [1]
missed a significant dynamical process, and a uniquely de-
termined generalisation to include this process has resulted
in the explanation of numerous gravitational anomalies, such
as bore hole g anomalies, predictable black hole masses, flat
spiral-galaxy rotation curves, and the expansion of the uni-
verse, all without dark matter and dark energy [2–4]. This
theory of gravity arises from the dynamical 3-space, described
by a dynamical velocity field, when the Schrödinger equation
is generalised to take account of the propagation of quantum
matter in the dynamical 3-space. So gravity is now an emer-
gent phenomenon, together with the equivalence principle.

The dynamical 3-space has been directly observed using
various light-speed anisotropy experiments, dating from the
1st detection by Michelson and Morley in 1887 [5,6], giving a
speed in excess of 300 km/s, after re-calibrating the gas-mode
interferometer for actual length contraction effects, to the lat-
est using spacecraft earth-flyby Doppler shift data [7]. Over-
all these experiments reveal that relativistic effects are caused
by the absolute motion of rods and clocks wrt the dynamical
3-space, essentially Lorentzian Relativity (LR), rather than
the Special Relativity (SR) formalism, which has recently
been shown by means of an exact change of space and time
variables, to be equivalent to Galilean Relativity [8].

Here we apply the new gravity theory to the internal dy-
namics of the sun, and compute new density, pressure and
temperature profiles, using the polytrope model for the equa-
tion of state of the matter. These results should then be ap-
plied to a re-analysis of neutrino production [9]. In general
the Newtonian-gravity based standard model of stellar evolu-
tion also needs re-examination.

2 Dynamical 3-Space

Newton’s inverse square law of gravity has the differential
form

∇ · g = −4πGρ, ∇ × g = 0, (1)

for the acceleration field g(r, t), assumed to be fundamental
and existing within Newton’s model of space, which is Eu-
clidean, static, and unobservable. Application of this to spiral
galaxies and the expanding universe has lead to many prob-
lems, including, in part, the need to invent dark energy and
dark matter∗. However (1) has a unique generalisation that
resolves these and other problems. In terms of a velocity field
v(r, t) (1) has an equivalent form [2, 3]

∇ ·
(
∂v
∂t

+ (v · ∇)v
)

= −4πGρ, ∇ × v = 0, (2)

where now

g =
∂v
∂t

+ (v · ∇)v, (3)

is the well-known Galilean covariant Euler acceleration of the
substratum that has velocity v(r, t). Because of the covariance
of g under a change of the spatial coordinates only relative in-
ternal velocities have an ontological existence — the coordi-
nates r then merely define a mathematical embedding space.

We give a brief review of the concept and mathemati-
cal formalism of a dynamical flowing 3-space, as this is of-
ten confused with the older dualistic space and aether ideas,
wherein some particulate aether is located and moving through
an unchanging Euclidean space — here both the space and

∗The Friedmann equation for the expanding universe follow trivially
from (1), as shown in [4], but then needs “dark matter” and “dark energy” to
fit the cosmological data.
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the aether were viewed as being ontologically real. The dy-
namical 3-space is different: here we have only a dynamical
3-space, which at a small scale is a quantum foam system
without dimensions and described by fractal or nested homo-
topic mappings [2]. This quantum foam is not embedded in
any space — the quantum foam is all there is, and any met-
ric properties are intrinsic properties solely of that quantum
foam. At a macroscopic level the quantum foam is described
by a velocity field v(r, t), where r is merely a [3]-coordinate
within an embedding space. This embedding space has no
ontological existence — it is merely used to (i) record that
the quantum foam has, macroscopically, an effective dimen-
sion of 3, and (ii) to relate other phenomena also described by
fields, at the same point in the quantum foam. The dynamics
for this 3-space is easily determined by the requirement that
observables be independent of the embedding choice, giving,
for zero-vorticity dynamics and for a flat embedding space,
and preserving the inverse square law outside of spherical
masses, at least in the usual cases, such as planets,

∇ ·
(
∂v
∂t

+ (v · ∇)v
)

+
α

8

(
(trD)2 − tr(D2)

)
= −4πGρ,

∇ × v = 0, Di j =
1
2

(
∂vi

∂x j
+
∂v j

∂xi

)
, (4)

where ρ(r, t) is the matter and EM energy densities, expressed
as an effective matter density. Borehole g measurements and
astrophysical black hole data has shown that α ≈ 1/137 is the
fine structure constant to within observational errors [2,3,10].
For a quantum system with mass m the Schrödinger equation
is uniquely generalised [10] with the new terms required to
maintain that the motion is intrinsically wrt the 3-space, and
not wrt the embedding space, and that the time evolution is
unitary:

i~
∂ψ(r, t)
∂t

= − ~
2

2m
∇2ψ(r, t) − i~

(
v · ∇ +

1
2
∇ · v

)
ψ(r, t). (5)

The space and time coordinates {t, x, y, z} in (4) and (5) ensure
that the separation of a deeper and unified process into differ-
ent classes of phenomena — here a dynamical 3-space (quan-
tum foam) and a quantum matter system, is properly tracked
and connected. As well the same coordinates may be used by
an observer to also track the different phenomena. However
it is important to realise that these coordinates have no onto-
logical significance — they are not real. The velocities v have
no ontological or absolute meaning relative to this coordinate
system — that is in fact how one arrives at the form in (5),
and so the “flow” is always relative to the internal dynamics
of the 3-space. A quantum wave packet propagation analy-
sis of (5) gives the acceleration induced by wave refraction to
be [10]

g =
∂v
∂t

+ (v · ∇)v + (∇ × v) × vR,

vR(ro(t), t) = vo(t) − v(ro(t), t), (6)

where vR is the velocity of the wave packet relative to the lo-
cal 3-space, and where vo and ro are the velocity and position
relative to the observer, and the last term in (6) generates the
Lense-Thirring effect as a vorticity driven effect. Together
(4) and (6) amount to the derivation of gravity as a quantum
effect, explaining both the equivalence principle (g in (6) is
independent of m) and the Lense-Thirring effect. Overall we
see, on ignoring vorticity effects, that

∇ · g = −4πGρ − 4πGρDM , (7)

where
ρDM =

α

32πG

(
(trD)2 − tr(D2)

)
. (8)

This is Newtonian gravity but with the extra dynamical term
which has been used to define an effective “dark matter” den-
sity. This is not real matter, of any form, but is the matter den-
sity needed within Newtonian gravity to explain the flat rota-
tion curves of spiral galaxies, large light bending and lensing
effects from galaxies, and other effects. Here, however, it is
purely a space self-interaction effect. This new dynamical ef-
fect also explains the bore hole g anomalies, and the black
hole “mass spectrum”. Eqn.(4), even when ρ = 0, has an
expanding universe Hubble solution that fits the recent su-
pernovae data in a parameter-free manner without requiring
“dark matter” nor “dark energy”, and without the accelerat-
ing expansion artifact [4]. However (7) cannot be entirely
expressed in terms of g because the fundamental dynamical
variable is v. The role of (7) is to reveal that if we analyse
gravitational phenomena we will usually find that the matter
density ρ is insufficient to account for the observed g. Until
recently this failure of Newtonian gravity has been explained
away as being caused by some unknown and undetected “dark
matter” density. Eqn.(7) shows that to the contrary it is a
dynamical property of 3-space itself. Significantly the quan-
tum matter 3-space-induced ‘gravitational’ acceleration in (6)
also follows from maximising the elapsed proper time wrt the
wave-packet trajectory ro(t), see [2],

τ =

∫
dt

√
1 − v2

R(ro(t), t)
c2 , (9)

and then taking the limit vR/c → 0. This shows that (i) the
matter ‘gravitational’ geodesic is a quantum wave refraction
effect, with the trajectory determined by a Fermat maximised
proper-time principle, and (ii) that quantum systems undergo
a local time dilation effect. Significantly the time dilation ef-
fect in (9) involves matter motion wrt the dynamical 3-space,
and not wrt the observer, and so distinguishing LR from SR.
A full derivation of (9) requires the generalised Dirac equa-
tion, with the replacement ∂/∂t → ∂/∂t + v · ∇, as in (5). In
differential form (9) becomes

dτ2 = gµνdxµdxν = dt2 − 1
c2 (dr − v(r(t), t)dt)2, (10)
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which introduces a curved spacetime metric gµν that emerges
from (4). However this spacetime has no ontological signif-
icance — it is merely a mathematical artifact, and as such
hides the underlying dynamical 3-space. This induced met-
ric is not determined by the Einstein-Hilbert equations, which
originated as a generalisation of Newtonian gravity, but with-
out the knowledge that a dynamical 3-space had indeed been
detected by Michelson and Morley in 1887 by detecting light
speed anisotropy. In special circumstances, and with α = 0,
they do yield the same effective spacetime metric. However
the dynamics in (4) is more general, as noted above, and has
passed more tests.

3 New Gravity Equation for a Spherically Symmetric
System

For the case of zero vorticity the matter acceleration in (6)
gives

g(r, t) =
∂v
∂t

+
∇v2

2
(11)

For a time independent flow we introduce a generalised grav-
itational potential, which gives a microscopic explanation for
that potential,

Φ(r) = − v
2

2
. (12)

For the case of a spherically symmetric and time independent
inflow we set v(r, t) = −r̂v(r), then (4) becomes, with v′ =

dv/dr,

α

2r

(
v2

2r
+ vv′

)
+

2
r
vv′ + (v′)2 + vv′′ = −4πGρ (13)

which can be written as

1
r2

d
dr

(
r2− α

2
d
dr

(
r
α
2 Φ

))
= 4πGρ (14)

This form suggests that the new dynamics can be incorpo-
rated into the space metric, in that the 3-space α-term appears
to lead to a fractal dimension of 3 − α/2 = 2.996, see [10].
The velocity flow description of space is completely equiva-
lent to Newtonian gravity when the α dependent term in (4) is
removed. In this case setting α = 0 reduces (14) to the Pois-
son equation of Newtonian gravity for the case of spherical
symmetry.

4 Solutions to New Gravity Equation for Non-Uniform
Density

The solutions to (14) for a uniform density distribution are
published in [2]. For variable density ρ(r) the exact solution

to (14) is∗

Φ(r) = − β

r
α
2
− G

(1 − α
2 )r

∫ r

0
4πs2ρ(s)ds

− G
(1 − α

2 )r
α
2

∫ ∞

r
4πs1+ α

2 ρ(s)ds, (15)

When ρ(r) = 0 for r > R, this becomes

Φ(r) =



− β
r
α
2
− G

(1 − α
2 )r

∫ r

0
4πs2ρ(s)ds

− G
(1 − α

2 )r
α
2

∫ R

r
4πs1+ α

2 ρ(s)ds, 0 < r ≤ R

− β
r
α
2
− γ

r
, r > R

(16)

where

γ =
G

(1 − α
2 )

∫ R

0
4πs2ρ(s)ds =

GM
(1 − α

2 )
(17)

Here M is the total matter mass, and β is a free parameter. The
term β/rα/2 describes an inflow singularity or “black hole”
with arbitrary strength. This is unrelated to the putative black
holes of General Relativity. This corresponds to a primor-
dial black hole. As well the middle term in (16) also has a
1/rα/2 inflow-singularity, but whose strength is mandated by
the matter density, and is absent when ρ(r) = 0 everywhere.
This is a minimal “black hole”, and is present in all matter
systems. The β/rα/2 term will produce a long range gravita-
tional acceleration g = β/r1+α/2, as observed in spiral galax-
ies. For the region outside the sun (r > R) Keplerian orbits are
known to well describe the motion of the planets within the
solar system, apart from some small corrections, such as the
Precession of the Perihelion of Mercury, which follow from
relativistic effects from (9). Thus is the case β = 0, and the
sun has only an induced ‘Minimal Attractor’. These minimal
black holes contribute to the external g = K/r2 gravitational
acceleration, through an effective mass

MBH =
M

1 − α
2
− M =

α

2
M

1 − α
2
≈ α

2
M (18)

as previously reported [2]. These induced black hole “ effec-
tive” masses have been detected in numerous globular clus-
ters and spherical galaxies and their predicted effective masses
have been confirmed in some 19 such cases [11]. These gave
the value α =≈ 1/137 [12]. The induced black hole dynam-
ics at the center of the sun is responsible for the new density,
pressure and temperature profiles computed herein.

∗Eqn (14) also permits a −γ/r term in (16). However this is not valid, as
the full [3] version of (14) would then involve a point mass at r = 0, because
∇2(1/|r|) = −4πδ(r), and in (16) all the mass is accounted for by ρ(r). See [2]
for a detailed discussion.
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5 Polytropic Models using Dynamical 3-Space Theory

For a star to be in hydrostatic equilibrium the inward force of
gravity must match the net outward effect of the pressure,

dP
dr

= −dΦ

dr
ρ (19)

Here we use the polytrope modelling of the pressure-density
equation of state.

P = Kρ1+ 1
n (20)

where n is the polytropic index, and K is a constant. This
was introduced by Eddington, and was extensively used by
Chandrasekhar [13–16], but these analyses only apply in the
case of Newtonian gravity. The new theory of gravity requires
a new treatment.

The polytropic relation between pressure and density (20)
gives

dP
dr

=
K(n + 1)

n
ρ

1
n

dρ
dr

(21)

and (19) gives

dΦ

dr
= −K(n + 1)

n
ρ

1
n−1 dρ

dr
(22)

Integration gives

Φ = −K(n + 1)ρ
1
n + C (23)

Here it will be useful to define the gravitational potential
at the sun’s surface ΦR = Φ(R) = C as the value of the inte-
gration constant, and so we obtain for the density

ρ =

(
ΦR − Φ

K(n + 1)

)n

(24)

One of the characteristics of the new gravity is that all
spherical objects contain induced black holes. In the context
of polytrope models this presents the problem that the central
value of the potential cannot be used, as in the Lane-Emden
equation. We can however impose the polytropic condition
from (24) onto numerical solutions to iteratively solve the
problem. Multiplying (24) by 4πr2 and integrating yields

M =

∫ R

0
4πr2ρdr =

∫ R

0
4πr2

(
ΦR − Φ)
K(n + 1)

)n

dr (25)

and then

K =
1

(n + 1)M1/n

(∫ R

0
4πr2(ΦR − Φ)ndr

)1/n

(26)

A new density distribution and K value can now be calcu-
lated from an initial density distribution by cycling through

Fig. 1: Gravity and density plots for a polytropic model for the sun
with n = 3. The effective dark matter distribution is shown in the
density plot.

the following relations iteratively

Φ(r) =
−G

(1 − α
2 )

(
1
r

∫ r

0
4πs2ρ(s)ds+

+
1
r
α
2

∫ R

r
4πs1+ α

2 ρ(s)ds
)

K =
1

(n + 1)M1/n

(∫ R

0
4πr2(ΦR − Φ)ndr

)1/n

ρ(r) =

(
ΦR − Φ(r)
K(n + 1)

)n

(27)

6 Polytropic Solar Models

For the sun a polytrope model with n = 3 is known to give
a good approximation to conditions in the solar core as com-
pared with the Standard Solar Model [16]. This is known as
the Eddington Standard Model. The polytrope model does
well in comparison with the Standard Solar Model [17]. To
test the calculation method, setting α = 0 should reproduce
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Fig. 2: Top graph shows difference in density ρ(r) between new
gravity and Newtonian modeling. Bottom graph show the difference
in weighted density 4πr2ρ(r).

the results from the Lane-Emden equation, which is based
on Newtonian gravity. The results of starting with a uniform
density and then iteratively finding the solution agree with the
values published by Chandrasekhar [13]. The density distri-
bution also matched numerical solutions produced in Mathe-
matica to the Lane-Emden equation.

Results from solving the equations in (27) iteratively, until
convergence was achieved, are shown in Figs.1-3 for various
quantities, and compared with the results for Newtonian grav-
ity. For the new gravity (α = 1/137) we see a marked increase
in the gravity strength g(r) near the center, Fig.1, caused by
the induced black hole at the center, which is characteristic
of the new gravity theory, and which draws in the matter to
enhance the matter density near the center.

The new model of gravity has been used to explain away
the need for dark matter in astrophysics [4]. Here we find
the effective “dark matter” distribution that would need to be
added to the matter distribution to create these gravitational
effects in Newtonian Gravity. From (8) and (12) we obtain

ρDM(r) = − α

8πGr

(
Φ

r
+

dΦ

dr

)
. (28)

Fig. 3: The pressure and temperature in the center of the sun is pre-
dicted to be much larger in the new model.

Using (16) we then obtain

ρDM(r) =
α

2
r−2−α/2

∫ R

r
s1+α/2ρ(s)ds. (29)

This effective “dark matter” distribution is shown in Fig.1 for
the polytropic sun model. This then gives the total “dark mat-
ter”

MDM =

∫ R

0
4πr2ρDM(r)dr =

α

2
M

1 − α
2

(30)

in agreement with (18). The “dark matter” effect is the same
as the induced “black hole” effect, in the new gravity theory.

The matter density has increased towards the center, as
seen in Fig.2, and so necessarily there is a slightly lower mat-
ter density in the inner middle region. This effect is more
clearly seen in the plot of 4πr2ρ(r). The “dark matter”/”black
hole” effect contributes to the external gravitational acceler-
ation, and so the total mass of the sun, defined as its matter
content, is lower than computed using Newtonian gravity, see
(17). The total mass is now 0.37% (≡ α/(2 − α)) smaller.

The pressure and temperature generated by the new grav-
ity is shown in Fig.3. The pressure comes from the poly-
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trope relation, (20), and closely follows the density distribu-
tion. The temperature can be calculated from the ideal gas
equation, with µ = 0.62 corresponding to a ratio of 7:3 of
Hydrogen to Helium, to obtain

T (r) =
Pmpµ

kρ
(31)

where mp is the mass of a proton, k is Boltzmann’s constant
and µ is the mass ratio. Unlike the pressure and density, the
temperature is increased in the middle region as well as the
inner region.

7 Conclusions

The discovery of the dynamical 3-space changes most of
physics. This space has been repeatedly detected in light-
speed anisotropy experiments. The dynamics of this space
follow from a unique generalisation of Newtonian gravity,
once that is expressed in a velocity framework. Then the
gravitational acceleration field g(r, t) is explained as the lo-
cal acceleration of the structured space, with evidence that
the structure is fractal. This space is the local absolute frame
of reference. Uniquely incorporating this space into a gen-
eralised Schrödinger equation shows that, up to vorticity ef-
fects and relativistic effects, the quantum matter waves are
refracted by the space, and yield that quantum matter has the
same acceleration as that of space itself. So this new physics
provides a quantum theory derivation of the phenomenon of
gravity. The 3-space dynamics involves G and the fine struc-
ture constant α, with this identification emerging from the
bore hole gravity anomalies, and from the masses of the mini-
mal “black holes” reported for globular clusters and spherical
galaxies. There are numerous other phenomena that are now
accounted for, including a parameter-free account of the su-
pernova red-shift — magnitude data. The occurrence of α
implies that we are seeing evidence of a new unified physics,
where space and matter emerge from a deeper theory. One
suggestion for this theory is Process Physics.

Herein we have reported the consequences of the new,
emergent, theory of gravity, when applied to the sun. This
theory predicts that the solar core, which extends to approxi-
mately 0.24 of the radius, is hotter, more dense and of higher
pressure than current Newtonian-gravity based models. Thus
a new study is now needed on how these changes will affect
the solar neutrino output. It is also necessary to revisit the
stellar evolution results.
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Particles and Antiparticles in the Planck Vacuum Theory
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This short note sheds some light on the negative energy vacuum state by expanding the
Planck vacuum (PV) model and taking a closer look at the particle-antiparticle nature
of the Dirac equation. Results of the development are briefly discussed with regard to
the complexity of the PV interaction with the massless free charge, the Dirac electron,
and the proton; an exercise that may lead to a better proton model.

The negative energy PV model [1] can be expanded to in-
clude negative energy particle states in the following manner:
the structure of the PV is related to the string of Compton
relations

remec2 = · · · = rpmpc2 = · · · = r∗m∗c2 = e2
∗ = c~ (1)

where the subscripts represent respectively the electron, pro-
ton, Planck particle, and their antiparticles; and where the
dots represent any number of intermediate particle-antipar-
ticle states. The re and me, etc., are the Compton radii and
masses of the various particles, c is the speed of light, and
~ is Planck’s constant. The bare charge e∗ is assumed to be
massless and is related to the elementary charge e observed in
the laboratory via e2 = αe2

∗, where α is he fine structure con-
stant. The particle-antiparticle masses are the result of their
bare charges being driven by ultra-high-frequency zero-point
fields that exist in free space [2, 3]. The charge on the Planck
particles within the PV is negative. It is assumed that positive
charges are holes that exist within the negative energy PV,
an assumption that is supported by the Dirac equation and its
negative energy solution [4].

The relation of positive and negative particles and antipar-
ticles to the Compton relations in (1) is easily explained. In
the above scheme, negatively charged particles or antiparti-
cles exist in free space and exert a perturbing force [1]

(−e∗)(−e∗)
r2 − mc2

r
(2)

on the PV, where m is the particle-antiparticle mass. The first
charge on the left is due to the free particle or antiparticle and
the second to the Planck particles within the PV. The hole
exerts a corresponding force within the PV equal to

(+e∗)(−e∗)
r2 − (−mc2)

r
(3)

where the effective positive charge on the left is due to the
missing negative charge (the hole) in the PV sea and the neg-
ative mass energy (−mc2) is due to the hole belonging to a
negative energy state. The radius r at which (2) and (3) vanish
is the particle or antiparticle Compton radius rc (= e2

∗/mc2).
The more complete form for (1) can then be expressed as

re(±mec2)=· · ·=rp(±mpc2)=· · ·=r∗(±m∗c2)= ± e2
∗ (4)

which renders its application to both particles and antipar-
ticles more explicit and transparent. The positive mass en-
ergies belong to the negatively charged free-space particles
or antiparticles, while the negative mass energies belong to
the PV holes which are responsible for the ficticious posi-
tively charged particles or antiparticles imagined to exist in
free space. Both equations in (4) lead back to the single equa-
tion (1) which defines ~.

The preceding ideas are illustrated using the Dirac equa-
tion and provide a clearer view of that equation as it is related
to the concept of Dirac holes. The Dirac equation for the
electron can be expressed as [4, 5]

(
c ~α · p̂e + βmec2

)
ψe = Eeψe (5)

where the momentum operator and energy are given by

p̂e =
~∇
i

=
(−e∗)(−e∗)∇

ic
and Ee = +

√
m2

ec4 + c2 p2
e (6)

and where ~α and β are defined in [5]. The relativistic momen-
tum is pe (= mev/

√
1 − v2/c2 ). The shift from the positive-

energy electron solution to the negative-energy hole (po-
sitron) solution proceeds as follows:

Ee −→ Eh = −Ee (7)

mec2 −→ mhc2 = −mec2 (8)

pe =
mev√

1 − v2/c2
→ ph =

−mhv√
1 − v2/c2

= −pe, (9)

p̂e =
(−e∗)(−e∗)∇

ic
→ p̂h =

(+e∗)(−e∗)∇
ic

= −p̂e. (10)

Substituting equations (7) through (10) into (5) yields
(
c ~α · p̂h + βmhc2

)
ψh = Ehψh (11)

for the hole solution, where Eh = −(m2
hc4 + c2 p2

h)1/2. From
(5) and (11) and mh = me it follows that the electron and hole
satisfy the same Dirac equation of motion with Eh = −Ee. Al-
though the hole exists in the PV, it appears experimentally in
free space as a positron due to the hole’s field permeating that
space. In turn, the positron’s deflection in a free-space mag-
netic field is due to that field permeating the PV and affecting
the hole.
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From the development of the PV theory so far, the Dirac
equation appears to be part of a succession of equations in-
volving an increasingly more complicated interaction be-
tween the free-space particle and the PV. For example, the
interaction of a massless point charge traveling at a constant
velocity results in the relativistic electric and magnetic fields
(and by inference the Lorentz transformation) that can be eas-
ily calculated directly from the charge’s Coulomb field (the
first term in (2)) and its interaction with the PV [1, Section 4].
The Dirac electron (a massive point charge) is next in com-
plexity to the point charge and perturbs the PV with the total
force in (2), leading to the Dirac equation (and the quantum
fields associated with it) which represents the PV reaction to
the moving Dirac electron [4].

The proton is the next more complex and stable parti-
cle whose properties are shaped by its interaction with the
PV. Being in essence a more complicated PV hole than the
positron, the proton exhibits some structure as witnessed by
its three-quark nature associated (it seems correct to assume)
with the hole. The calculational difficulties besetting quantum
chromodynamics [6, p.70] attest to the idea expressed above
that things are getting more complex in the progression from
leptons to hadrons and their PV interactions. Perhaps these
difficulties can be resolved by a better model for the heavy
particles based on the PV theory.

Submitted on September 5, 2010 /Accepted on September 7, 2010

References
1. Daywitt W. C. The Planck vacuum. Progress in Physics, 2009, v. 1, 20–

26.

2. Puthoff H. E. Gravity as a zero-point-fluctuation force. Physical Review
A, 1989, v. 39, no. 5, 2333–2342.

3. Daywitt W. C. The source of the quantum vacuum. Progress in Physics,
2009, v. 1, 27–32.

4. Daywitt W. C. The Dirac electron in the Planck vacuum theory.
Progress in Physics, 2010, v. 4, 69–71.

5. Gingrich D. M. Practical quantum electrodynamics. CRC, The Taylor
& Francis Group, Boca Raton, 2006.

6. Giunti C., Kim C. W. Fundamentals of neutrino physics and astro-
physics. Oxford Univ. Press, Oxford, 2007.

56 William C. Daywitt. Particles and Antiparticles in the Planck Vacuum Theory



January, 2011 PROGRESS IN PHYSICS Volume 1

Wave Particle Duality and the Afshar Experiment
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We analyze the experiment realized in 2003-2004 by S. Afshar et al. [1] in order to refute
the principle of complementarity. We discuss the general meaning of this principle and
show that contrarily to the claim of the authors Bohr’s complementarity is not in danger
in this experiment.

1 Introduction

In an interesting series of articles published few years ago
Afshar and coworkers [1,2] reported an optical experiment in
which they claimed to refute the well known N. Bohr prin-
ciple of complementarity [3, 4]. Obviously this result, if jus-
tified, would constitute a serious attack against the orthodox
interpretation of quantum mechanics (known as the Copen-
hagen interpretation). This work stirred much debate in dif-
ferent journals (see for examples references [5–12]).
We think however that there are still some important misun-
derstandings concerning the interpretation of this experiment.
In a preprint written originally in 2004 [5] (and following
some early discussions with Afshar) we claimed already that
the interpretation by Afshar et al. can be easily stated if we
stay as close as possible from the texts written by Bohr. The
aim of the present article (which was initially written in 2005
to precise a bit the thought developed in [5]) is to comment
the interpretation discussed in [1]. We will in the following
analyze the meaning of Bohr principle and show that far from
disproving its content the experiment [1] is actually a com-
plete confirmation of its general validity.
The difficulties associated with the understanding of this prin-
ciple are not new and actually complementarity created trou-
bles even in Einstein mind [3] so that we are here in good
company. To summarize a bit emphatically Bohr’s comple-
mentarity we here remind that this principle states that if one
of a pair of non commuting observables of a quantum object
is known for sure, then information about the second (com-
plementary) is lost [3, 4, 15, 16]. This can be equivalently
expressed as a kind of duality between different descriptions
of the quantum system associated with different experimen-
tal arrangements which mutually exclude each other (read in
particular [3,4]). Later in the discussion we will try to precise
this definition but for the moment it is enough to illustrate the
concepts by examples
Consider for instance the well known Young double-pinholes
interference experiment made with photons. The discrete na-
ture of light precludes the simultaneous observation of a same
photon in the aperture plane and in the interference pattern:
the photon cannot be absorbed twice. This is already a trivial
manifestation of the principle of Bohr. Here it implies that the
two statistical patterns associated with the wave in the aper-
ture plane and its Fourier (i. e., momentum) transform require

necessarily different photons for their recording. It is in that
sense that each experiment excludes and completes recipro-
cally the other. In the case considered before the photon is
absorbed during the first detection (this clearly precludes any
other detection). However even a non-destructive solution for
detection implying entanglement with other quantum systems
has a radical effect of the same nature: the complementarity
principle is still valid. For example, during their debate Bohr
and Einstein [3] discussed an ideal which-way experiment in
which the recoil of the slits is correlated to the motion of the
photon. Momentum conservation added to arguments based
on the uncertainty relations are sufficient to explain how such
entanglement photon-slits can erase fringes [15–19]. It is
also important for the present discussion to remind that the
principle of complementarity has a perfidious consequence
on the experimental meaning of trajectory and path followed
by a particle. Indeed the unavoidable interactions existing
between photons and detectors imply that a trajectory exist-
ing independently of any measurement process cannot be un-
ambiguously defined. This sounds even like a tragedy when
we consider once again the two-holes experiment. Indeed
for Bohr this kind of experiments shows definitely the es-
sential element of ambiguity which is involved in ascribing
conventional physical attributes to quantum systems. Intu-
itively (i. e., from the point of view of classical particle dy-
namic) one would expect that a photon detected in the focal
plane of the lens must have crossed only one of the hole 1
or 2 before to reach its final destination. However, if this is
true, one can not intuitively understand how the presence of
the second hole (through which the photon evidently did not
go) forces the photon to participate to an interference pat-
tern (which obviously needs an influence coming from both
holes). Explanations to solve this paradox have been pro-
posed by de Broglie, Bohm, and others using concepts such
as empty waves or quantum potentials [20, 21]. However
all these explanations are in agreement with Bohr principle
(since they fully reproduce quantum predictions) and can not
be experimentally distinguished. Bohr and Heisenberg pro-
posed for all needed purposes a much more pragmatic and
simpler answer: don’t bother, the complementarity principle
precludes the simultaneous observation of a photon trajectory
and of an interference pattern. For Bohr [3]: This point is of
great logical consequence, since it is only the circumstance
that we are presented with a choice of either tracing the path
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Fig. 1: The experiment described in [1]. Photons coming from pin-
holes 1 and 2 interfere in the back-focal plane of a lens (Fourier
plane) whereas they lead to two isolated narrow spots in the image
plane (the image plane is such that its distance p′ to the lens is re-
lated to the distance p between the lens and the apertures screen by
1/p + 1/p′ = 1/ f , where f is the focal length). The wire grid in the
back focal plane, distant of f from the lens, is passing through the
minima of the interference pattern. The subsequent propagation of
the wave is consequently not disturbed by the grid.

of a particle or observing interference effects, which allows
us to escape from the paradoxical necessity of concluding
that the behaviour of an electron or a photon should depend
on the presence of a slit in the diaphragm through which it
could be proved not to pass. From such an analysis it seems
definitively that Nature resists to deeper experimental inves-
tigation of its ontological level. As summarized elegantly by
Brian Greene [22]: Like a Spalding Gray soliloquy, an exper-
imenter’s bare-bones measurement are the whole show. There
isn’t anything else. According to Bohr, there is no backstage.
In spite of its interest it is however not the aim of the present
article to debate on the full implications of such strong philo-
sophical position.

2 Complementarity versus the experiments

2.1 A short description of the Afshar et al. experiment

The experiment reported in [1] (see Fig. 1) is actually based
on a modification of a gedanken experiment proposed origi-
nally by Wheeler [23]. In the first part of their work, Afshar et
al. used an optical lens to image the two pinholes considered
in the Young interference experiment above mentioned. De-
pending of the observation plane in this microscope we can
then obtain different complementary information.

If we detect the photons in the focal plane of the lens (or
equivalently just in front of the lens [24]) we will observe, i.e,
after a statistical accumulation of photon detection events, the
interference fringes. However, if we record the particles in the
image plane of the lens we will observe (with a sufficiently
high numerical aperture) two sharp spots 1’ and 2’ images of

the pinholes 1 and 2. Like the initial Young two-holes exper-
iment this example illustrates again very well the principle of
Bohr. One has indeed complete freedom for measuring the
photon distribution in the image plane instead of detecting
the fringes in the back focal plane. However, the two kinds
of measurements are mutually exclusive: a single photon can
participate only to one of these statistical patterns.

In the second and final part of the experiment, Afshar et
al. included a grid of thin absorbing wires located in the in-
terference fringes plane. Importantly, in the experiment the
wires must be located at the minimum of the interference pat-
tern in order to reduce the interaction with light. In the fol-
lowing we will consider a perfect interference profile (with
ideal unit visibility V = (Imax − Imin)/(Imax + Imin) = 1) to
simplify the discussion. If additionally the geometrical cross
section of each wire tends ideally to zero then the interfer-
ence behavior will, at the limit, not be disturbed and the sub-
sequent wave propagation will be kept unchanged. This im-
plies that the photon distributions 1’ and 2’, located in the
image plane optically conjugated with the aperture plane, are
not modified by the presence, or the absence, of the infinitely
thin wire grid. Naturally, from practical considerations an in-
finitely thin dielectric wire is not interacting with light and
consequently produces the same (null) effect whatever its lo-
cation in the light path (minimum or maximum of the inter-
ference for example). In order to provide a sensible probe for
the interference pattern, necessary for the aim of the experi-
ment considered, we will suppose in the following idealized
wires which conserve a finite absorbtion efficiency and this
despite the absence of any geometrical transversal extension.
We will briefly discuss later what happens with spatially ex-
tended scattering wires with finite cross section, but this point
is not essential to understand the essential of the argumenta-
tion. With such wires, and if we close one aperture (which
implies that there is no interference fringes and thus that a fi-
nite field impinges on the wires) the scattering and absorbtion
strongly affect the detection behavior in the image plane. As
it is seen experimentally [1, 2] the scattering by the wire grid
in general produces a complicated diffraction pattern and not
only an isolated narrow peak in 1’ or 2’ as it would be without
the grid.

In such conditions, the absence of absorbtion by the wires
when the two apertures are open is a clear indication of the
existence of the interference fringes zeros, i.e., of a wave-like
character, and this even if the photon is absorbed in the im-
age plane in 1’ or 2’. Following Afshar et al., this should be
considered as a violation of complementarity since the same
photons have been used for recording both the ‘path’ and the
wave-like information. The essential questions are however
what we mean precisely here by path and wave-like informa-
tion and what are the connections of this with the definition
of complementarity. As we will see hereafter it is by finding a
clear answer to these questions that the paradox and the con-
tradictions with Bohr’s complementarity are going to vanish.
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2.2 The wave-particle duality mathematical relation

At that stage, it is important to point out that the principle of
complementarity is actually a direct consequence of the math-
ematical formalism of quantum mechanics and of its statisti-
cal interpretation [4]. It is in particular the reason why the
different attempts done by Einstein to refute complementar-
ity and the Heisenberg uncertainty relations always failed: the
misinterpretations resulted indeed from a non-cautious intro-
duction of classical physics in the fully consistent quantum
mechanic formalism [3]. For similar reasons here we show
that a problem since Afshar et al. actually mixed together,
i.e imprudently, argumentations coming from classical and
quantum physics. We will show that this mixing results into
an apparent refutation of the complementarity principle.

After this remark we now remind that a simple mathemat-
ical formulation of complementarity exists in the context of
two path interferometry [25–28]. For example in the Young
double-apertures experiment considered previously the field
amplitudes C1 and C2 associated with the two narrow aper-
tures, separated by the distance d, allow us to define the wave
function in the two-apertures plane by:

ψ(x) ∼ C1δ(x − d/2) + C2δ(x + d/2). (1)

From this formula one can easily introduce the “distinguisha-
bility”

K =
||C1|2 − |C2|2|
|C1|2 + |C2|2 . (2)

This quantity can be physically defined by recording the pho-
tons distribution in the aperture plane and constitutes an ob-
servable measure of the “path” distinguishability (see how-
ever section 3.3 ). The interpretation of K is actually clear,
and in particular if K = 0 each apertures play a symmetrical
role, whereas if K = 1 one of the two apertures is necessarily
closed. Naturally, like in the Afshar experiment, K can also
be measured by recording photons in the image plane of the
lens in 1’ and 2’. Equations (1) and (2) are still valid, with
the only differences that: i) we have now a diffraction spot
(like an Airy disk) instead of a Dirac distribution in equation
(1), and ii) that the spatial variables are now magnified by the
lens.

Instead of the spatial representation one can also consider
the Fourier transform corresponding to the far field interfer-
ence pattern recorded at large distance of the two-slits screen:

ψ(k) ∼ C1 · eikd/2 + C2 · e−ikd/2. (3)

Such a wave is associated with an oscillating intensity in the
k-space given by

I(k) ∼ 1 + V cos (kd + χ) (4)

where χ = arg (C1) − arg (C2) and V is the fringe visibility

V =
2|C1| · |C2|
|C1|2 + |C2|2 . (5)

This quantity is also a physical observable which can defined
by recording the photons in the far-field, or, like in the Afshar
et al. first experiment, by recording the photons fringes in
the back focal plane of the lens (the back focal plane is the
plane where the momentum distribution ~k is experimentally
and rigorously defined [16]). Like it is for K, the meaning
of V is also very clear: if V = 1 both apertures must play a
symmetrical role, whereas if V = 0 only one aperture is open.

A direct mathematical consequence of equations (2) and
(5) is the relation

V2 + K2 = 1, (6)

which expresses the duality [25, 26] between the two math-
ematical measures K and V associated with the two mutu-
ally exclusive (i.e., complementary) experiments in the di-
rect and Fourier space respectively. A particularly impor-
tant application of equation (6) concerns which-path exper-
iments. In such experiments, we wish to observe the inter-
ference pattern, and to find through each hole each photon
is going through. As we explained before, a photon can not
be observed twice, and this represents in general a fatal end
for such expectations. There is however an important excep-
tion in the particular case with only one aperture open (i.e.,
K = 1). Indeed, in such case it is not necessary to record
the photon in the aperture plane to know its path since if it is
detected (in the back focal plane) it necessarily means that it
went through the opened aperture. Of course, from equation
(6) we have in counterpart V = 0, which means that fringes
are not possible.
This dilemma, can not be solved by considering less invasive
methods, like those using entanglement between the photon
and an other quantum system or an internal degree of free-
dom (such as polarization or spins). To see that we consider
a wave function |Ψ〉 describing the entanglement between the
photon and these others quantum variables defining a which-
path detector. We write

|Ψ〉 =

∫
[C1δ(x − d/2)|x〉|γ1〉 + C2δ(x + d/2)|x〉|γ2〉]dx

=

∫
[C1 · eikd/2|k〉|γ1〉 + C2 · e−ikd/2|k〉|γ2〉]dp (7)

where |γ1〉 and |γ2〉 are the quantum state of the which-path
detector if the photon is going through the aperture 1 or 2.
Consider now the kind of information one can extract from
|Ψ〉. First, by averaging (tracing) over the detector degrees of
freedom we can define the total probability P(x) = Tr[ρ̂|x〉〈x|]
of detecting a photon in the aperture plane in x by

P(x) ∝ |C1|2〈γ1|γ1〉(δ(x − d/2))2

+|C2|2〈γ2|γ2〉(δ(x + d/2))2. (8)

with ρ̂ = |Ψ〉〈Ψ| is the total density matrix. By analogy with
equation (2) the total distinguishability is then defined by

K =
||C1|2〈γ1|γ1〉 − |C2|2〈γ2|γ2〉|
|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉 . (9)

Aurélien Drezet. Wave Particle Duality and the Afshar Experiment 59



Volume 1 PROGRESS IN PHYSICS January, 2011

Same as for equations (3-5) we can define the total probability
to detect a photon of (transverse) wave vector k by

P(k) = Tr[ρ̂|k〉〈k|] ∝ 1 + V cos (kx + φ), (10)

where the visibility V is written

V =
2|C1| · |C2| · |〈γ1|γ2〉|

|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉 . (11)

By combining V and K we deduce immediately K2 + V2 =

η2 ≤ 1 with

η2 = 1 − 4|C1|2 · |C2|2 · (〈γ1|γ1〉〈γ2|γ2〉 − |〈γ1|γ2〉|2)
(|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉)2 (12)

and where the inequality results from the Cauchy-Schwartz
relation 〈γ1|γ1〉〈γ2|γ2〉 − |〈γ1|γ2〉|2 ≥ 0.
However, we can remark that by tracing over the degrees of
freedom associated with the detector we did not consider a
which-path experiment but simply decoherence due to entan-
glement. In order to actually realize such a which-path ex-
periment we need to calculate the joint probability associated
with a recording of the photon in the state |x〉 (or |k〉) in co-
incidence with a measurement of the detector in the eigen-
state |λ〉 corresponding to one of its observable. These joint
probabilities read P(x, λ) = Tr[ρ̂|x〉〈x||λ〉〈λ|] and P(k, λ) =

Tr[ρ̂|k〉〈k||λ〉〈λ| with

P(x, λ) ∝ |C1|2|〈λ|γ1〉|2(δ(x − d/2))2

+|C2|2|〈λ|γ2〉|2(δ(x + d/2))2

P(k, λ) =∝ 1 + Vλ cos (kx + φλ). (13)

Indeed, the aim of such entanglement with a degree of free-
dom |λ〉 (produced for example by inserting polarization con-
verters like quarter or half wave-plates just after the aper-
tures [32]) is to generate a wave function

ψλ(x) ∼ C1,λδ(x − d/2) + C2,λδ(x + d/2) (14)

with either C1,λ or C2,λ (but not both) equal to zero. A subse-
quent projection on |λ〉will reveal the path information. How-
ever, from the duality relation given by equation (5) applied
to ψλ(x) it is now obvious that we did not escape from the pre-
vious conclusion. Indeed, while the photon was not destroyed
by the entanglement with the which-path detector, we unfor-
tunately only obtained path distinguishability (Kλ = 1) at the
expense of losing the interference behavior (Vλ = 0).
From all these experiments, it is clear that the discreteness of
photon, and more generally of every quantum object, is the
key element to understand complementarity. This was evi-
dent without entanglement, since the only way to observe a
particle is to destroy it. However, even the introduction of a
‘which-path’ quantum state |λ〉 does not change the rule of
the game, since at the end of journey we necessarily need to

project, that is to kill macroscopically, the quantum system.
This fundamental fact, was already pointed out many times
by Bohr in his writings when he considered the importance
of separating the macroscopic world of the observer from the
microscopic quantum system observed, and also when he in-
sisted on the irreversible act induced by the observer on the
quantum system during any measurement process [4].

Let now return to the interpretation of Afshar et al. ex-
periments. In the configuration with the lens and without the
grid, we have apparently a new aspect of the problem since
the fringes occur in a plane located before the imaging plane.
Contrarily to the which-path experiments above mentioned,
where the destructive measurements occurred in the interfer-
ence plane, we have a priori here the freedom to realize a
‘fringes-interaction free-experiment’ which aim is to observe
the fringes without detecting the particle in the back focal
plane whereas the destructive measurement will occur in the
image plane (i.e., in 1’ or 2’). The role of the grid is expected
to provide such information necessary for the interference re-
construction. Due to the absence of disturbance by the grid,
Afshar et al. logically deduce that the field equals zero at the
wires locations. If we infer the existence of an interference
pattern with visibility V we must have

V =
(Imax − Imin)
(Imax + Imin)

=
(Imax − 0)
(Imax + 0)

= 1, (15)

since Imin = 0. This means that we can obtain the value of the
visibility only from the two assumptions that (i) the form of
the profile should be a ‘cos’ function given by equation (4),
and that (ii) no photon have been absorbed by the wires. Fi-
nally in this experiment, we record the photons in the area 1’
(or 2’) and consequently we have at the same time the path in-
formation. Importantly, following Afshar et al. we here only
consider one image spot 1’ or 2’ (since each photon impinges
one only one of these two regions) and we deduce therefore
K = 1. Together with the interference visibility V = 1 this
implies

K2 + V2 = 2, (16)

in complete contradiction with the bound given by equation
(6).

In the previous analysis we only considered the infinitely
thin wires to simplify the discussion. Actually, this is how-
ever the only experimental configuration in which the Afshar
experiment is easily analyzable since it is only in such case
that the duality relation can be defined. Indeed, scattering
by the wire always results into complicated diffraction pat-
tern in the image plane and the simple mathematical deriva-
tion [25–28] leading to equations 2, 5, and 6 is not possible.
We will then continue to consider the idealized case of the in-
finitely thin wires in the rest of the paper since it is this ideal
limit that the authors of [1]wanted obviously to reach.
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3 The rebuttal: Inference and Complementarity

3.1 Duality again

There are several reasons why the analysis by Afshar et al.
actually fails. First, from a mathematical point of view it
is not consistent to write K2 + V2 = 2. Indeed, in all the
experiments previously discussed (excluding the Afshar ex-
periments) it was necessary to consider statistics on all the
recorded photons in order to observe either the interference or
the path information (in the case were entanglement was in-
volved only the photons tagged by |λ〉 have to be considered).
Same here, if one consider all the detected photons one will
deduce K = 0 and equation (6) will be respected. Actually,
this results directly from the experimental method considered
by the authors of [1]. Indeed, if somebody is accepting the ex-
istence of an interference pattern he or she needs to know the
complete distribution 1’ and 2’ recorded in the image plane.
This is necessary in order to deduce that the wire grid didn’t
caused any disturbances on the propagation. Indeed, the dis-
turbance could have no consequence in 1’ but yet have some
effects in 2’. Consequently, ignoring 2’ does not allow us to
deduce that the experiment with the grid is interaction-free.
For this reason, it is unjustified to write K = 1, that is to con-
sider only one half of the detected photon population, while
we actually need both pinhole images to deduce the value of
V (this is also in agreement with the obvious fact that an in-
terference pattern requires the two apertures 1 and 2 opened
for its existence).

There is an other equivalent way to see why the choice
K = 0 is the only one possible. Indeed, having measured in
the image plane the two distributions 1’ and 2’ with intensity
|C1|2 and |C2|2 we can, by applying the laws of optics, prop-
agate backward in time the two converging beams until the
interference plane (this was done by Afshar et al.). In this
plane equation (4) and (5), which are a direct consequence
of these above mentioned optical laws, are of course valid.
Since we have |C1|2 = |C2|2, we deduce (from equations (2)
and (5)) that K = 0 and V = 1 in full agreement with the
duality relation (6). It is important to remark that since the
phase of C1 and C2 are not know from the destructive mea-
surements in the image plane, we cannot extrapolate the value
of χ = arg (C1) − arg (C2). However, the presence of the grid
give us access to this missing information since it provides
the points where I(k) = 0 (for example if I(π/d) = 0 then
χ = 2π · N with N =0, 1, ...). We can thus define com-
pletely the variable V and χ without recording any photon in
the Fourier plane. It is clear, that this would be impossible
if the duality condition K2 + V2 = 1 was not true since this
relation is actually a direct consequence of the law of optics
used in our derivations as well as in the one by Afshar et al..

To summarize the present discussion, we showed that Af-
shar et al. reasoning is obscured by a misleading interpreta-
tion of the duality relation given by equation (6). We however
think that this problem is not so fundamental for the discus-

sion of the experiment. Actually, we can restate the complete
reasoning without making any reference to this illusory vio-
lation of equation (6). After doing this we think that the error
in the deductions by Afshar et al. should become very clear.
Let then restate the story:
A) First, we record individuals photons in the regions 1’ and
2’. We can then keep a track or a list of each detection event,
so that, for each photon, we can define its ‘path’ information.
However, this individual property of each photon is not en-
tering in conflict with the statistical behavior, which in the
limit of large number, give us the two narrow distribution in
1’ and 2’. That is, the value K = 0 is not in conflict with the
existence of a which-path information associated with each
photon. This situation differs strongly from usual which-path
experiments in which the path detection, or tagging, is done
before the interference plane. As we explained before in these
experiments the value K = 1 was a necessary consequence
of the preselection procedure done on the photon population.
This point also means that we have to be very prudent when
we use the duality relation in experimental situations differ-
ent from the ones for which a consensus has already been
obtained.
B) Second, we apply the laws of optics backward in time to
deduce the value of the visibility V . Inferring the validity of
such optical laws we can even reconstruct completely the in-
terference profile thanks to the presence of wire grid.
C) Finally, we can check that indeed K2+V2 = 1 in agreement
with the duality relation.

Having elucidated the role of the duality relation, the
question that we have still to answer is what are the impli-
cations of this experiment for complementarity. What has in-
deed been shown by Afshar et al. is that each photon detected
in the image plane is associated with a wave behavior since
none of them crossed the wires. Using the laws of optics
backward in time allow us to deduce the precise shape of in-
tensity profile in the back focal plane but this is a theoretical
inference and actually not a measurement. We will now show
that this is the weak point.

3.2 Classical versus quantum inferences

In classical physics, such an inference (i.e., concerning inter-
ference) is of no consequence since we can always, at least
in principle, imagine a test particle or detector to check the
validity of our assumptions concerning the system. However,
in quantum mechanics we are dealing with highly sensitive
systems and this modify the rules of the game.

In quantum mechanics it is common to say that the wave
function represents the catalog of all the potentiality accessi-
ble to the system. Due to the very nature of this theory there
are however some (complementary) pages which can not be
read at the same time without contradictions. In the Afshar
experiment, we do not have indeed the slightest experimental
proof that the observed photons did participate to the “cos”
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Fig. 2: Different possible intensity profiles in the Fourier plane.
Each profile f (k) obeys to the condition f (k) = 0 on the wires. (a) A
continuous periodic function. (b) The diffractive interference profile
predicted by quantum mechanics. (c) A discontinuous profile inten-
sity. Each profile is ‘apriori’ equiprobable for an observer which has
no knowledge in optics and quantum mechanics.

interference pattern given by equations (3) and (4). Further-
more, by detecting the photons in the image plane, we only
know from the experiment that the photons never crossed the
wires but this is not sufficient to rebuild objectively the com-
plete interference pattern.

We can go further in this direction by using information
theory. Indeed, from the point of view of the information
theory of Gibbs [33], Shannon [34], and Jaynes [35], every
interference patterns, such that I(k) = 0 on the wires, are
equiprobable (see Fig. 2). However, there are an infinity of
such profiles, so that our information is rather poor. More
precisely, let write ρ[ f (k)] the functional giving the density
of probability associated with the apriori likelihood of hav-
ing the interference profile f (k) located in an infinitely small
(functional) volume D[ f (k)]. We write Σ[ f (x)] the space of
all this interference profiles obeying to the condition f (k) = 0
on the wires. We have thus ρ[ f (k)] = 1/Σ (equiprobabil-
ity) for the function f contained in Σ, and ρ[ f (k)] = 0 for
the function outside Σ (that are functions which do not sat-
isfy the requirements f (k) = 0 on the wires). The Shannon
entropy [33–35] S [ f (x)] associated with this distribution is
given by

S [ f (x)] = −
∫

(Σ)
D[ f (k)]ρ[ f (k)] ln (ρ[ f (k)])

= ln (Σ[ f (k)])→ +∞, (17)

which expresses our absence of objective knowledge con-
cerning f (k). In this reasoning, we used the concept of prob-
ability taken in the Bayesian sense, that is in the sense of
decision-maker theory used for example by poker players.
For an observer which do not have any idea concerning quan-
tum mechanics and the laws of optics, this equiprobability is
the most reasonable guess if he wants only to consider the

photons he actually detected. Of course, by considering a dif-
ferent experiment, in which the photons are recorded in the
Fourier plane, the observer might realize what is actually the
interference pattern. However (and this is essential for under-
standing the apparent paradox discussed in reference 1) it will
be only possible by considering different recorded photons in
full agreement with the principle of complementarity.
Let now summarize a bit our analysis. We deduced that in
the experiment discussed in [1] the photons used to measure
objectively the interference pattern i.e. to calculate the vis-
ibility V = 1 are not the same than those used to measure
the distribution in the image plane and calculate the distin-
guishability K = 0. This is strictly the same situation than
in the original two-holes experiment already mentioned. It
is in that sense that the relationship (6) represents indeed a
particular formulation of complementarity [25–28]. Actually
(as we already commented before) the value V = 1 obtained
in [1] does not result from a measurement but from an extrap-
olation. Indeed, from their negative measurement Afshar et
al. recorded objectively Imin = 0. If we suppose that there
is a hidden sinusoidal interference pattern in the plane of the
wires we can indeed write

V = (Imax − Imin) / (Imax + Imin) = Imax/Imax = 1. (18)

However to prove experimentally that such sinusoidal inter-
ference pattern actually exists we must definitively record
photons in the rest of the wires plane. This is why the ex-
periment described in [1] does not constitutes a violation of
complementarity.
It is finally interesting to remark that similar analysis could be
easily done already in the Young two-holes experiment. In-
deed, suppose that we record the photon interference fringes
after the holes. We can thus measure V = 1. However,
if we suppose that the sinusoidal oscillation of the intensity
results from the linear superposition of waves coming from
holes 1 and 2 then from equation 5 we deduce |C1|2 + |C2|2 −
2|C1||C2| = 0 i. e., |C1| = |C2|. From equation 2 this implies
K = 0. Reasoning like Afshar et al. we could be tempted
to see once again a violation of complementarity since we
deduced the distinguishability without disturbing the fringes!
However, we think that our previous analysis sufficiently clar-
ified the problem so that paradoxes of that kind are now nat-
urally solved without supplementary comments.

3.3 The objectivity of trajectory in quantum mechanics

At the end of section 2.1 we shortly pointed that the concept
of trajectory is a key issue in the analysis of the experiment
reported in reference 1. This was also at the core of most
commentaries (e.g. references [6–14]) concerning the work
by Afshar et al.. As a corollary to the previous analysis we
will now make a brief comment concerning the concept of
path and trajectory in quantum mechanics since we think that
a lot of confusion surrounds this problem. This is also im-
portant because Afshar et al. claimed not only that they can

62 Aurélien Drezet. Wave Particle Duality and the Afshar Experiment



January, 2011 PROGRESS IN PHYSICS Volume 1

Fig. 3: Illustration of the counterintuitive paths followed by photons
if we accept the ontological interpretation given by de Broglie and
Bohm. The photons coming from aperture 1 or 2 reach the ‘wrong’
detector 2’ or 1’.

circumvent complementarity but that additionally they deter-
mine the path chosen by the particle. Following here an in-
tuitive assumption they accepted that with the two pinholes
open a photon trajectory (if trajectory there is) connects nec-
essarily a pinhole to its optical image like it is in geometrical
optics. They called that intuition (probably in analogy with
what occurs in classical physics) a ‘consequence of momen-
tum conservation’. However, the meaning of momentum and
trajectory is not the same in quantum and classical mechanics.
Actually, as it was realized by several physicists the connec-
tion 1 to 1’ and 2 to 2’ is a strong hypothesis which depends
of our model of (hidden) reality and which can not in general
be experimentally tested (read for example [29, 36]).

Actually nothing in this experiment with two holes for-
bids a photon coming from one pinhole to go in the wrong de-
tector associated with the second pinhole. This is the case for
example in the hidden variable theory of de Broglie-Bohm
in which every photons coming from the aperture 1 (respec-
tively 2) is reaching the wrong image spot 2’(respectively
1’) [29, 36] as shown in figure 3. This is counter intuitive
but not in contradiction with experiments since we can not
objectively test such hidden variable model [36]. In partic-
ular closing one pinhole will define unambiguously the path
followed by the particle. However this is a different experi-
ment and the model shows that the trajectories are modified
(in general non locally) by the experimental context. The very
existence of a model like the one of de Broglie and Bohm
demonstrates clearly that in the (hidden) quantum reality a
trajectory could depend of the complete context of the exper-
iment. For this reason we must be very prudent and conser-
vative when we interpret an experiment: Looking the image
of a pinhole recorded in a statistical way by a cascade of pho-
ton will not tell us from which pinhole an individual photon
come from but only how many photons crossed this pinhole.
In counterpart of course we can not see the fringes and the
complementarity principle of Bohr will be, as in every quan-
tum experiment, naturally respected. It is thus in general dan-
gerous to speak unambiguously of a which-path experiment

and this should preferably be avoided from every discussions
limited to empirical facts. As claimed by Bohr the best em-
pirical choice is in such conditions to accept that it is wrong
to think that the task of physics is to find out how Nature is.
Physics concerns what we can say about Nature [4].

4 Conclusion

To conclude, in spite of some claims we still need at least two
complementary experiments in order to exploit the totality of
the phenomenon in Young-like interferometers. Actually, as
pointed out originally by Bohr, we can not use information
associated with a same photon event to reconstruct in a sta-
tistical way (i.e. by a accumulation of such events) the two
complementary distributions of photons in the image plane
of the lens and in the interference plane. The presence of
the wires inserted in reference 1 does not change anything to
this fact since the information obtained by adding the wires
is too weak and not sufficient to rebuild objectively (i. e. , un-
ambiguously from experimental data) the whole interference
pattern. The reasoning of Afshar et al. is therefore circular
and the experiment is finally in complete agreement with the
principle of complementarity.
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The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is
investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic
field. Both the average current and the transport noise (Fano factor) characteristics are
expressed in terms of the tunneling probability for the respective scattering channels.
For spin transport induced by microwave and infrared radiation, a random oscillatory
behavior of the Fano factor is observed. These oscillations are due to constructive and
destructive spin interference effects. While for the case of ultraviolet radiation, the Fano
factor becomes constant. This is due to that the oscillations has been washed out by
phase averaging (i.e. ensemble dephasing) over the spin transport channels. The present
investigation is very important for quantum computing and information processing.

1 Introduction

The field of spintronics is devoted to create, store, manipu-
late at a given location, and transport coherent electron spin
states through dilute magnetic semiconductors and conven-
tional semiconductor heterostructure [1]. The two principle
challenges for new generation of spintronics devices are ef-
ficient injection of spins into various semiconductor nano-
structures and coherent control of spin. In particular, preserv-
ing spin coherence, which enables coherent superpositions of
states a |↑〉 + b |↓〉 and corresponding quantum-interference
effects, is essential for both quantum computing with spin-
based qubits [2, 3]. The electrical control of spin via Rashba
spin-orbit coupling [4], which arises due to inversion asym-
metry of the confining electric potential for tow-dimensional
electron gas (2DEG), is very important physical parameter
when dealing with semiconductor spintronics. The pursuit of
fundamental spin interference effects, as well as spin transis-
tors with unpolarized charge currents [3, 5–10] has generated
considerable interest to demonstrate the Aharonov-Casher
effect via transport experiments in spin-orbit coupled semi-
conductor nanostructures [7, 11].

The ballistic spin-resolved shot noise and consequently
Fano factor in Aharonov-Casher semiconducting ring is in-
vestigated in the present paper. The effects of both electro-
magnetic field of wide range of frequencies and magnetic
field are taken into consideration.

2 Theoretical Formulation

It is well known that shot noise and consequently Fano factor
is a powerful quantity to give information about controlling
decoherence of spin dependent phenomena [12, 13]. So we
shall deduce an expression for both shot noise and Fano fac-
tor for spintronic device considered in the paper [10]. This
device is modeled as follows: Aharonov-Casher interferome-
ter ring in which a semiconductor quantum dot is embedded

Fig. 1: The variation of Fano factor with gate voltage at different
photon energies.

in one arm of the ring. The form of the confining potential
is modulated by an external gate electrode allowing for direct
control of the electron spin-orbit coupling. The effect of elec-
tromagnetic field of wide range of frequencies (microwave,
infrared, ultraviolet) is taken into consideration.

The spin dependent shot noise S σσ′
αβ (t − t′) is expressed

in terms of the spin resolved currents I (↑), and I (↓) due to
the flow of spin-up ↑ and spin-down ↓ electrons through the
terminals of the present device [14] as

S σσ′
αβ

(
t − t′

)
=

1
2

〈
δÎσα (t) δÎσ

′
β

(
t′
)

+ δÎσ
′

β

(
t′
)
δÎσα (t)

〉
(1)

where Îσα (t) is the quantum mechanical operator of the spin
resolved (σ ⇒↑, ↓) current in left lead α, Îσ

′
β (t′) is the same
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Fig. 2: The variation of Fano factor with magnetic field at different
photon energies.

definition of Îσα (t), but for the right lead β. In Eq. (1), the
parameter δÎσα (t) represents the current fluctuation operator
at time t in the left lead α with spin state σ (up or down) and
is given by

δÎσα (t) = Îσα (t) −
〈
Îσα (t)

〉
(2)

where 〈−−〉 denotes an ensemble average. The Fourier trans-
form of Eq.(1), which represents the spin resolved noise po-
wer between the left and right terminals of the device, is given
by

S σσ′
αβ (ω) = 2

∫
d
(
t − t′

)
e−iω(t−t′)S σσ′

αβ

(
t − t′

)
. (3)

Since the total spin dependent current is given by

Iα = I↑α + I↓α, (4)

the corresponding noise power is expressed as

S αβ (ω) = S ↑↑αβ (ω) + S ↓↓αβ (ω) + S ↑↓αβ (ω) + S ↓↑αβ (ω) . (5)

Now, expressing the spin-resolved current Îσα (t) in terms of
the creation and annihilation operators of the incoming elec-
trons âσ+

α (E), âσα (E′) and for the outgoing electrons
b̂σ+
α (E + n~ω), b̂σα (E′ + n~ω) [15], as follows:

Îσα (t) =
e
h

∑

n

∫ ∫
dEdE′ei(E−E′)t/~ ×

[
âσ+
α (E) âσα

(
E′

) − b̂σ+
α (E + n~ω) b̂σα

(
E′ + n~ω

)]
. (6)

Now, in order to evaluate the shot noise spectrum S αβ (ω)
this can be achieved by substituting Eq.(6) into Eq.(1), and us-
ing the transmission eigenfunctions [10] through the present
spintronic device, we can determine the expectation value

Fig. 3: The variation of Fano factor with frequency ωS oc at different
photon energies.

[15, 16]. We get an expression for the shot noise spectrum
S αβ (ω) as follows:

S αβ (ω) =
2eP0

h

∑

σ

∞∫

0

dE
∣∣∣Γµ with photon (E)

∣∣∣2 ×

fαFD (E) ×
[
1 − fβFD (E + n~ω)

]
(7)

where
∣∣∣Γµ with photon (E)

∣∣∣2 is the tunneling probability induced
by the external photons, and fαFD (E), fβFD (E + n~ω) are the
Fermi distribution functions, and P0 is the Poissonian shot
noise spectrum [15].

The tunneling probability
∣∣∣Γµ with photon (E)

∣∣∣2 has been de-
termined previously by the authors [10]

The Fano factor, F, of such mesoscopic device is given
by [17]:

F =
S αβ (ω)

2eI
. (8)

The explicit expression for the Fano factor, F, can be
written as, after some algebraic computation of Eqs.(7, 8),
[18, 19]:

F =

[∑
n

∑
µ

∣∣∣Γµ with photon (E)
∣∣∣2

(
1 −

∣∣∣Γµ with photon (E)
∣∣∣2
)]

∑
n

∑
µ

∣∣∣Γµ with photon (E)
∣∣∣2

. (9)

3 Results and Discussion

The Fano factor F Eq.(9) has been computed numerically as
a function of the gate voltage Vg magnetic field B and func-
tion of the frequency ωS oc due to spin-orbit coupling. These
calculations are performed over a wide range of frequencies
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of the induced electromagnetic field (microwave, MW, in-
frared, IR, and ultraviolet, UV). We use the semiconductor
heterostructures as InGaAs/InAlAs as in the paper [10]. The
main features of the present obtained results are:

(1) Fig.1, shows the dependence of Fano factor on the
gate voltage Vg at photon energies for microwave, infrared,
and ultraviolet. As shown from the figure that, the Fano fac-
tor fluctuates between maximum and minimum values for the
two cases microwave and infrared irradiation. While for the
case of ultraviolet irradiation, the Fano factor is constant and
approximately equals ∼1.

(2) Fig.2, shows the dependence of Fano factor on the
magnetic field B at photon energies for microwave, infrared,
and ultraviolet. The trend of this dependence is similar in a
quite fair to the trend and behavior of Fig.1.

(3) Fig.3, shows the dependence of Fano factor on the fre-
quency ωS oc associated with the spin-orbit coupling at pho-
ton energies for microwave, infrared, and ultraviolet. An os-
cillatory behavior for this dependence for the two cases mi-
crowave and infrared are shown. While for the case of ultra-
violet, the Fano factor is constant and approximately equals
∼1 as in Figs. 1, 2.

These results might be explained as follows: Computa-
tions show that the average current suppression is accompa-
nied by a noise maxima and remarkably low minima (Fano
factor). These cases are achieved when the electron spin
transport is influenced by both microwave and infrared pho-
tons. Such results have been observed previously by the au-
thors [20–22]. The random oscillatory behavior of the Fano
factor can be understood as the strength of the spin-orbit cou-
pling is modified by the gate electrode covering the Aha-
ronov-Casher ring to tune constructive and destructive spin
interference effect [10]. For the case of the induced ultravi-
olet radiation, the results show that the Fano factor becomes
approximately constant. These results have been observed
previously by the authors [23,24]. The constancy of Fano fac-
tor might be due to washing out of the oscillations by phase
averaging (i.e. ensemble dephasing) over the spin transport
channels [23, 24].

We conclude that these phenomena can be used to devise
novel spintronic devices with a priori controllable noise lev-
els. The present investigation is very important for quantum
computing and quantum information processing.

Submitted on September 9, 2010 / Accepted on September 14, 2010

References
1. Zutic I., Fabian J., Das Sarma S. Spintronics: Fundamentals and Appli-

cations. Review of Modern Physics, 2004, v. 76, 323–410.

2. Nikolic B. K., Zarbo L. P., Souma S. Imaging Mesoscopic Spin Hall
Flow: Spatial Distribution of Local Spin Currents and Spin Densities
in and out of Multiterminal Spin-Orbit Coupled Semiconductor Nanos-
tructures. Physical Review B, 2006, v. 73, 075303.

3. Fabian J., Matos-Abiaguea A., Ertlera C., Stano P., Zutic I. Semicon-
ductor Spintronics. Acta Physica Slovaca, 2007, v. 57, 565–907.

4. Rashba E. I. Electron Spin Operation by Electric Fields: Spin Dynamics
and Spin Injection. Physica E, 2004, v. 20, 189–195.

5. Nitta J., Meijer F. E., Takayanagi H. Spin Interference Device. Applied
Physics Letters, 1999, v. 75, 695–697.

6. Nitta J., Bergsten T. Time Reversal Aharonov-Casher Effect Using
Rashba Spin-Orbit Interaction. New Journal of Physics, 2007, v.9, 341–
352.

7. Frustaglia D., Richter K. Spin Interference Effects in Ring Conductors
Subject to Rashba Coupling. Physical Review B, 2004, v.69, 235310.

8. Zein W. A., Phillips A. H., Omar O. A. Quantum Spin Transport in
Mesoscopic Interferometer. Progress in Physics, 2007, v. 4, 18–21.

9. Zein W. A., Phillips A. H., Omar O. A. Spin Coherent Transport in
Mesoscopic Interference Device. NANO, 2007, v. 2, no. 6, 389–392.

10. Zein W. A., Ibrahim N. A., Phillips A. H. Spin Dependent Transport
through Aharonov-Casher Ring Irradiated by an Electromagnetic Field.
Progress in Physics, 2010, v. 4, 78–81.

11. Konig M., Tschetschetkin A., Hankiewicz E. M., Sinova J., Hock V.,
Daumer V., Schafer M., Beacker C. R., Buhmann H., Molenkamp L. W.
Direct Observation of the Aharonov-Casher Phase. Physical Review
Letters, 2006, v. 96, 076804.

12. Awschalom D. D., Flatte M. E. Challenges for Semiconductor Spintron-
ics. Nature Physics, 2007, v. 3, 153–159.

13. Sukhorukov E. V., Burkard G., Loss D. Noise of a Quantum dot System
in the Cotunneling Regime. Physical Review B, 2001, v. 63, 125315.

14. Sauret O., Feinberg D. Spin-Current Shot Noise as a probe of Inter-
actions in Mesoscopic Systems. Physical Review Letters, 2004, v. 92,
106601.

15. Mina A. N., Phillips A. H. Frequency Resolved Detection over a Large
Frequency Range of the Fluctuations in an Array of Quantum Dots.
Progress in Physics, 2006, v. 4, 11–17.

16. Beenakker C. W. J., Buttiker M. Suppression of Shot Noise in Metallic
Diffusive Conductors. Physical Review B, 1992, v. 46, R1889.

17. Blanter Ya. M., Buttiker M., Shot Noise in Mesoscopic Conductors.
Physics Reports, 2000, v. 336, 1–166.

18. Dragomirova R. L., Nikolic B. K. Shot Noise of Spin Polarized Charge
Currents as a Probe of Spin Coherence in Spin-Orbit Coupled Nanos-
tructures. Physical Review B, 2007, v. 75, 085328.

19. Liang-Zhong L., Rui Z., Wen-Ji D. Shot Noise in Aharonov-Casher
Rings. Chinese Physics Letters, 2010, v. 27, no. 6, 067306.

20. Camalet S., Lehmann J., Kohler S., Hanggi P. Current Noise in ac-
driven Nanoscale Conductors. Physical Review Letters, 2003, v. 90,
210602.

21. Camalet S., Kohler S., Hanggi P. Shot Noise Control in AC-driven
Nanoscale Conductors. Physical Review B, 2004, v. 70, 155326.

22. Sanchez R., Kohler S., Platero G. Spin Correlation in Spin Blockade.
New Journal of Physics, 2008, v. 10, 115013.

23. Souma S., Nikolic B. K. Modulating unpolarized Current in Quan-
tum Spintronics: Visibility of Spin Interfering Effects in Multichannel
Aharonov-Casher Mesoscopic Rings. Physical Review B, 2004, v. 70,
195346.

24. Padurariu C., Amin A. F., Kleinekathofer U. Laser-Assisted Electron
Transport in Nanoscale Devices, in: Radons G., Rumpf B., Schus-
ter H. G (Editors), Nonlinear Dynamics of Nanosystems, Wiley-VCH,
2009.

Walid A. Zein et al. Noise and Fano-factor Control in AC-Driven Aharonov-Casher Ring 67



Volume 1 PROGRESS IN PHYSICS January, 2011

Smarandache’s Minimum Theorem in the Einstein Relativistic Velocity Model
of Hyperbolic Geometry

Cătălin Barbu
“Vasile Alecsandri” College — Bacău, str. Vasile Alecsandri, nr.37, 600011, Bacău, Romania. E-mail: kafka mate@yahoo.com.

In this note, we present a proof to the Smarandache’s Minimum Theorem in the Einstein
Relativistic Velocity Model of Hyperbolic Geometry.

1 Introduction

Hyperbolic Geometry appeared in the first half of the 19th

century as an attempt to understand Euclid’s axiomatic basis
of Geometry. It is also known as a type of non-Euclidean Ge-
ometry, being in many respects similar to Euclidean Geom-
etry. Hyperbolic Geometry includes similar concepts as dis-
tance and angle. Both these geometries have many results in
common but many are different. There are known many mod-
els for Hyperbolic Geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic veloc-
ity model, etc. Here, in this study, we give hyperbolic version
of Smarandache minimum theorem in the Einstein relativis-
tic velocity model of hyperbolic geometry. The well-known
Smarandache minimum theorem states that if ABC is a tri-
angle and AA′, BB′, CC ′ are concurrent cevians at P , then

PA
PA′ · PB

PB′ · PC
PC′ ≥ 8

and

PA
PA′ + PB

PB′ + PC
PC′ ≥ 6

(see [1]).
Let D denote the complex unit disc in complex z-plane,

i.e.
D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the
Möbius transformation of the disc to be viewed as a Möbius
left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈
D, and z0 is the complex conjugate of z0. Let Aut(D,⊕) be
the automorphism group of the grupoid (D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyrocommutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:
(1) gyr[u,v]a·gyr[u,v]b = a · b for all points
a,b,u,v ∈G.
(2) G admits a scalar multiplication, ⊗, possessing the fol-
lowing properties. For all real numbers r, r1, r2 ∈ R and all
points a ∈G:

(G1) 1⊗ a = a
(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a
(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)
(G4) |r|⊗a

‖r⊗a‖ = a
‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖
of onedimensional “vectors”

‖G‖ = {±‖a‖ : a ∈ G} ⊂ R
with vector addition ⊕ and scalar multiplication ⊗, such that
for all r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ 6 ‖a‖ ⊕ ‖b‖

Theorem 1. (Ceva’s theorem for hyperbolic triangles). If
M is a point not on any side of an gyrotriangle ABC in a
gyrovector space (Vs,⊕,⊗), such that AM and BC meet in
A′, BM and CA meet in B′, and CM and AB meet in C ′,
then

γ|AC′| |AC ′|
γ|BC′| |BC ′| ·

γ|BA′| |BA′|
γ|CA′| |CA′| ·

γ|CB′| |CB′|
γ|AB′| |AB′| = 1,

where γv = 1q
1− ‖v‖2

s2

.

(See [2, p. 564].) For further details we refer to the recent
book of A.Ungar [3].

Theorem 2. (Van Aubel’s theorem in hyperbolic geometry).
If the point P does lie on any side of the hyperbolic triangle
ABC, and BC meets AP in D, CA meets BP in E, and
AB meets CP in F , then

γ|AP | |AP |
γ|PD| |PD| =

γ|BC| |BC|
2

(
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|

)
+

γ|BC| |BC|
2

(
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD|

)
.

(See [4].)
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2 Main result

In this section, we prove Smarandache’s minimum theorem
in the Einstein relativistic velocity model of hyperbolic ge-
ometry.

Theorem 3. If ABC is a gyrotriangle and AA′, BB′, CC ′

are concurrent cevians at P , then

γ|AP | |AP |
γ|PA′| |PA′| ·

γ|BP | |BP |
γ|PB′| |PB′| ·

γ|CP | |CP |
γ|PC′| |PC ′| > 1,

and

γ|AP | |AP |
γ|PA′| |PA′| +

γ|BP | |BP |
γ|PB′| |PB′| +

γ|CP | |CP |
γ|PC′| |PC ′| > 3.

Proof. We set

|A′C| = a1, |BA′| = a2, |B′A| = b1,

|B′C| = b2, |C ′B| = c1, |C ′A| = c2,

γ|AP | |AP |
γ|PA′| |PA′| ·

γ|BP | |BP |
γ|PB′| |PB′| ·

γ|CP | |CP |
γ|PC′| |PC ′| = P,

γ|AP | |AP |
γ|PA′| |PA′| +

γ|BP | |BP |
γ|PB′| |PB′| +

γ|CP | |CP |
γ|PC′| |PC ′| = S.

If we use the Van Aubel’s theorem in the gyrotriangle ABC
(See Theorem 2), then

γ|AP ||AP |
γ|P A′||PA′| = γ|BC||BC|

2

(
γ|AB′||AB′|
γ|CB′||CB′| · 1

γ|BA′||BA′|

)

+γ|BC||BC|
2

(
γ|AC′||AC′|
γ|BC′||BC′| · 1

γ|CA′||CA′|

)

=
γaa

2

[
γb1b1

γb2b2
· 1
γa2a2

+
γc2c2

γc1c1
· 1
γa1a1

]
, (1)

and
γ|BP ||BP |

γ|P B′||PB′| = γ|CA||CA|
2

(
γ|BC′||BC′|
γ|AC′||AC′| · 1

γ|CB′||CB′|

)
+

γ|CA||CA|
2

(
γ|BA′||BA′|
γ|CA′||CA′| · 1

γ|AB′||AB′|

)

=
γbb

2

[
γc1c1

γc2c2
· 1
γb2b2

+
γa2a2

γa1a1
· 1
γb1b1

]
, (2)

and
γ|CP ||CP |

γ|P C′||PC′| = γ|AB||AB|
2

(
γ|CA′||CA′|
γ|BA′||BA′| · 1

γ|AC′||AC′|

)
+

γ|AB||AB|
2

(
γ|CB′||CB′|
γ|AB′||AB′| · 1

γ|BC′||BC′|

)

=
γcc

2

(
γa1a1

γa2a2
· 1
γc2c2

+
γb2b2

γb1b1
· 1
γc1c1

)
. (3)

If we use the Ceva’s theorem in the gyrotriangle ABC (See
Theorem 1), we have

γ|CA′| |CA′|
γ|BA′| |BA′| ·

γ|AB′| |AB′|
γ|CB′| |CB′| ·

γ|BC′| |BC ′|
γ|AC′| |AC ′| =

γa1a1

γa2a2
· γb1b1

γb2b2
· γc1c1

γc2c2
= 1. (4)

From (1) and (4), we have

γ|AP | |AP |
γ|PA′| |PA′| =

γaa

2

(
γb1b1γc2c2

γa2a2γb2b2γc2c2

)
+

γaa

2

(
γb1b1γc2c2

γa1a1γb1b1γc1c1

)
=

γaa

2
· 2γb1b1γc2c2

γa2a2γb2b2γc2c2

=
γaaγb1b1γc2c2

γa2a2γb2b2γc2c2
. (5)

Similary we obtain that

γ|BP | |BP |
γ|PB′| |PB′| =

γbbγc1c1γa2a2

γa2a2γb2b2γc2c2
, (6)

and
γ|CP | |CP |
γ|PC′| |PC ′| =

γccγa1a1γb2b2

γa2a2γb2b2γc2c2
. (7)

From the relations (5), (6) and (7) we get

P =
γaaγb1b1γc2c2 · γbbγc1c1γa2a2 · γccγa1a1γb2b2

(γa2a2γb2b2γc2c2)
3 =

=
γaaγbbγcc

γa2a2γb2b2γc2c2
(8)

and

S =
γaaγb1b1γc2c2 + γbbγc1c1γa2a2 + γccγa1a1γb2b2

γa2a2γb2b2γc2c2
.

(9)
Because γa > γa2 , γb > γb2 , and γc > γc2 result

γaγbγc > γa2γb2γc2 . (10)

Therefore
γaaγbbγcc

γa2a2γb2b2γc2c2
> 1. (11)
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From the relations (8) and (11), we obtain that P > 1. If
we use the inequality of arithmetic and geometric means, we
obtain

S > 3 3

√
γaaγb1b1γc2c2 · γbbγc1c1γa2a2 · γccγa1a1γb2b2

(γa2a2γb2b2γc2c2)
3 =

= 3 3

√
γaaγbbγcc

γa2a2γb2b2γc2c2
. (12)

From the relations (11) and (12), we obtain that S > 3.

3 Conclusion

The special theory of relativity as was originally formulated
by Einstein in 1905, [8], to explain the massive experimental
evidence against ether as the medium for propagating elec-
tromagnetic waves, and Varičak in 1908 discovered the con-
nection between special theory of relativity and hyperbolic
geometry, [9]. The Einstein relativistic velocity model is an-
other model of hyperbolic geometry. Many of the theorems
of Euclidean geometry are relatively similar form in the Ein-
stein relativistic velocity model, Smarandache minimum the-
orem is an example in this respect. In the Euclidean limit of
large s, s → ∞, gamma factor γv reduces to 1, so that the
gyroinequalities (11) and (12) reduces to the

PA

PA′
· PB

PB′ ·
PC

PC ′
> 1,

and
PA

PA′
+

PB

PB′ +
PC

PC ′
> 3,

in Euclidean geometry. We observe that the previous inequal-
ities are “weaker” than the inequalities of Smarandache’s the-
orem of minimum.
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S-Denying a Theory

Florentin Smarandache
Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA. E-mail: smarand@unm.edu

In this paper we introduce the operators of validation and invalidation of a proposition,
and we extend the operator of S-denying a proposition, or an axiomatic system, from
the geometric space to respectively any theory in any domain of knowledge, and show
six examples in geometry, in mathematical analysis, and in topology.

1 Definitions

Let T be a theory in any domain of knowledge, endowed with
an ensemble of sentences E, on a given space M.

E can be for example an axiomatic system of this theory, or
a set of primary propositions of this theory, or all valid logi-
cal formulas of this theory, etc. E should be closed under the
logical implications, i.e. given any subset of propositions P1,
P2, ... in this theory, if E is a logical consequence of them
then Q must also belong to this theory.

A sentence is a logic formula whose each variable is quanti-
fied {i.e. inside the scope of a quantifier such as: ∃ (exist),
∀ ( f orall), modal logic quantifiers, and other various modern
logics’ quantifiers}.
With respect to this theory, let P be a proposition, or a sen-
tence, or an axiom, or a theorem, or a lemma, or a logical
formula, or a statement, etc. of E.

It is said that P is S-denied∗ on the space M if P is valid for
some elements of M and invalid for other elements of M, or
P is only invalid on M but in at least two different ways.

An ensemble of sentences E is considered S-denied if at least
one of its propositions is S-denied.

And a theory T is S-denied if its ensemble of sentences is S-
denied, which is equivalent to at least one of its propositions
being S-denied.

The proposition P is partially or totally denied/negated on M.
The proposition P can be simultaneously validated in one way
and invalidated in (finitely or infinitely) many different ways
on the same space M, or only invalidated in (finitely or in-
finitely) many different ways.

The invalidation can be done in many different ways.

For example the statement A = “x , 5” can be invalidated as
“x = 5” (total negation), but “x ∈ {5, 6}” (partial negation).

(Use a notation for S-denying, for invalidating in a way, for
invalidating in another way a different notation; consider it as

∗The multispace operator S-denied (Smarandachely-denied) has been
inherited from the previously published scientific literature (see for example
Ref. [1] and [2]).

an operator: neutrosophic operator? A notation for invalida-
tion as well.)

But the statement B = “x > 3” can be invalidated in many
ways, such as “x ≤ 3”, or “x = 3”, or “x < 3”, or “x = -7”, or
“x = 2”, etc. A negation is an invalidation, but not reciprocally
– since an invalidation signifies a (partial or total) degree of
negation, so invalidation may not necessarily be a complete
negation. The negation of B is ¬B = “x ≤ 3”, while “x = -7”
is a partial negation (therefore an invalidation) of B.

Also, the statement C = “John’s car is blue and Steve’s car is
red” can be invalidated in many ways, as: “John’s car is yel-
low and Steve’s car is red”, or “John’s car is blue and Steve’s
car is black”, or “John’s car is white and Steve’s car is or-
ange”, or “John’s car is not blue and Steve’s car is not red”,
or “John’s car is not blue and Steve’s car is red”, etc.

Therefore, we can S-deny a theory in finitely or infinitely
many ways, giving birth to many partially or totally denied
versions/deviations/alternatives theories: T1, T2, . . . . These
new theories represent degrees of negations of the original
theory T.

Some of them could be useful in future development of sci-
ences.

Why do we study such S-denying operator? Because our
reality is heterogeneous, composed of a multitude of spaces,
each space with different structures. Therefore, in one space
a statement may be valid, in another space it may be invalid,
and invalidation can be done in various ways. Or a proposi-
tion may be false in one space and true in another space or
we may have a degree of truth and a degree of falsehood and
a degree of indeterminacy. Yet, we live in this mosaic of dis-
tinct (even opposite structured) spaces put together.

S-denying involved the creation of the multi-space in geome-
try and of the S-geometries (1969).

It was spelt multi-space, or multispace, of S-multispace, or
mu-space, and similarly for its: multi-structure, or multistruc-
ture, or S-multistructure, or mu-structure.
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2 Notations

Let <A> be a statement (or proposition, axiom, theorem,
etc.).

a) For the classical Boolean logic negation we use the
same notation. The negation of <A> is noted by ¬A and
¬A = <nonA>.

An invalidation of <A> is noted by i(A), while a valida-
tion of <A> is noted by v(A):

i(A) ⊆ 2<nonA>\ {∅} and v(A) ⊆ 2<A>\ {∅}
where 2X means the power-set of X, or all subsets of X.

All possible invalidations of <A> form a set of invalidations,
notated by I(A). Similarly for all possible validations of <A>
that form a set of validations, and noted by V(A).

b) S-denying of <A> is noted by S¬(A). S-denying of
<A> means some validations of <A> together with some in-
validations of <A> in the same space, or only invalidations
of <A> in the same space but in many ways.

Therefore, S¬(A) ⊆ V(A) ∪I(A) or S¬(A) ⊆ I(A)k, for k ≥ 2.

3 Examples

Let’s see some models of S-denying, three in a geometrical
space, and other three in mathematical analysis (calculus) and
topology.

3.1 The first S-denying model was constructed in 1969.
This section is a compilation of ideas from paper [1].

An axiom is said Smarandachely denied if the axiom behaves
in at least two different ways within the same space (i.e., val-
idated and invalided, or only invalidated but in multiple dis-
tinct ways).
A Smarandache Geometry [SG] is a geometry which has at
least one Smarandachely denied axiom.
Let’s note any point, line, plane, space, triangle, etc. in such
geometry by s-point, s-line, s-plane, s-space, s-triangle re-
spectively in order to distinguish them from other geometries.
Why these hybrid geometries? Because in reality there do not
exist isolated homogeneous spaces, but a mixture of them, in-
terconnected, and each having a different structure.
These geometries are becoming very important now since
they combine many spaces into one, because our world is not
formed by perfect homogeneous spaces as in pure mathemat-
ics, but by non-homogeneous spaces. Also, SG introduce the
degree of negation in geometry for the first time [for example
an axiom is denied 40% and accepted 60% of the space] that’s
why they can become revolutionary in science and it thanks to
the idea of partial denying/accepting of axioms/propositions
in a space (making multi-spaces, i.e. a space formed by com-
bination of many different other spaces), as in fuzzy logic the
degree of truth (40% false and 60% true).

They are starting to have applications in physics and engi-
neering because of dealing with non-homogeneous spaces.
The first model of S-denying and of SG was the following:
The axiom that through a point exterior to a given line there is
only one parallel passing through it [Euclid’s Fifth Postulate],
was S-denied by having in the same space: no parallel, one
parallel only, and many parallels.
In the Euclidean geometry, also called parabolic geometry,
the fifth Euclidean postulate that there is only one parallel to
a given line passing through an exterior point, is kept or vali-
dated.
In the Lobachevsky-Bolyai-Gauss geometry, called hyper-
bolic geometry, this fifth Euclidean postulate is invalidated in
the following way: there are infinitely many lines parallels to
a given line passing through an exterior point.
While in the Riemannian geometry, called elliptic geometry,
the fifth Euclidean postulate is also invalidated as follows:
there is no parallel to a given line passing through an exterior
point.
Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-
Gauss, and Riemannian geometries may be united altogether,
in the same space, by some SG’s. These last geometries can
be partially Euclidean and partially Non-Euclidean simulta-
neously.

3.2 Geometric Model (particular case of SG)

Suppose we have a rectangle ABCD.

Fig. 1.

In this model we define as:
Point = any point inside or on the sides of this rectangle;
Line = a segment of line that connects two points of opposite
sides of the rectangle;
Parallel lines = lines that do not have any common point (do
not intersect);
Concurrent lines = lines that have a common point.

Let’s take the line MN, where M lies on side AD and N on
side BC as in the above Fig. 1. Let P be a point on side BC,
and R a point on side AB.

Through P there are passing infinitely many parallels (PP1,
. . . , PPn, . . . ) to the line MN, but through R there is no par-
allel to the line MN (the lines RR1, . . . , RRn cut line MN).
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Therefore, the Fifth Postulate of Euclid (that though a point
exterior to a line, in a given plane, there is only one parallel
to that line) in S-denied on the space of the rectangle ABCD
since it is invalidated in two distinct ways.

3.3 Another Geometric Model (another particular case
of SG)

We change a little the Geometric Model 1 such that:

The rectangle ABCD is such that side AB is smaller than side
BC. And we define as line the arc of circle inside (and on the
borders) of ABCD, centered in the rectangle’s vertices A, B,
C, or D.

Fig. 2.

The axiom that: through two distinct points there exists
only one line that passes through is S-denied (in three differ-
ent ways):

a) Through the points A and B there is no passing line in
this model, since there is no arc of circle centered in A, B, C,
or D that passes through both points. See Fig. 2.

b) We construct the perpendicular EF ⊥ AC that passes
through the point of intersection of the diagonals AC and BD.
Through the points E and F there are two distinct lines the
dark green (left side) arc of circle centered in C since CE ≡
FC, and the light green (right side) arc of circle centered in
A since AE ≡ AF, and because the right triangles t COE,
t COF, t AOE, and t AOF are all four congruent, we get
CE ≡ FC ≡ AE ≡ AF.

c) Through the points G and H such that CG ≡ CH (their
lengths are equal) there is only one passing line (the dark
green arc of circle GH, centered in C) since AG , AH (their
lengths are different), and similarly BG , BH and DG , DH.

3.4 Example for the Axiom of Separation

The Axiom of Separation of Hausdorff is the following:

∀ x,y ∈ M ∃ N(x), N(y): N(x) ∩N(y) = ∅,
where N(x) is a neighborhood of x, and respectively N(y) is a
neighborhood of y.

We can S-deny this axiom on a space M in the following way:

a) ∃ x1, y1 ∈ M: ∃ N1 (x1), N1 (y1): N1 (x1) ∩ N1 (y1) = ∅
where N1 (x1) is a neighborhood of x1, and respectively N1
(y1) is a neighborhood of y1; [validated].

b) ∃ x2, y2 ∈ M: ∀ N2 (x2), N2 (y2): N2 (x2) ∩ N2 (y2) ,
∅; where N2 (x2) is a neighborhood of x2, and respectively N2
(y2) is a neighborhood of y2; [invalidated].

Therefore we have two categories of points in M: some points
that verify The Axiom of Separation of Hausdorff and other
points that do not verify it. So M becomes a partially separa-
ble and partially inseparable space, or we can see that M has
some degrees of separation.

3.5 Example for the Norm

If we remove one or more axioms (or properties) from the def-
inition of a notion <A> we get a pseudo-notion <pseudoA>.

For example, if we remove the third axiom (inequality of the
triangle) from the definition of the <norm> we get a
<pseudonorm>.

The axioms of a norm on a real or complex vectorial space V
over a field F, x 7→ ||.||, are the following:

a) ||x|| = 0⇔ x = 0.
b) ∀ x ∈ V, ∀ α ∈ F, ||α·x|| = |α| · ||x||.
c) ∀ x, y ∈ V, ||x + y|| ≤ ||x|| · ||y|| (inequality of the

triangle).

For example, a pseudo-norm on a real or complex vectorial
space V over a field F, x 7→p ||.||, may verify only the first two
above axioms of the norm.

A pseudo-norm is a particular case of an S-denied norm since
we may have vectorial spaces over some given scalar fields
where there are some vectors and scalars that satisfy the third
axiom [validation], but others that do not satisfy [invalida-
tion]; or for all vectors and scalars we may have either
||x + y|| = 5·||x||·||y|| or ||x + y|| = 6·||x||·||y||, so invalidation
(since we get ||x + y|| > ||x||·||y||) in two different ways.

Let’s consider the complex vectorial space

C = { a+b·i, where a, b ∈ R, i =
√−1 }

over the field of real numbers R.

If z = a+b·i ∈ C then its pseudo-norm is || z || =
√

a2 + b2.
This verifies the first two axioms of the norm, but does not
satisfy the third axiom of the norm since:

For x = 0 + b·i and y = a + 0·i we get:

||x + y|| = ||a + b · i|| =
√

a2 + b2 ≤ ||x||·||y||
= ||0 + b · i|| · ||a + 0 · i|| = |a · b|, or a2 + b2 ≤ a2 · b2.

But this is true for example when a = b ≥ √2 (validation), and
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false if one of a or b is zero and the other is strictly positive
(invalidation).
Pseudo-norms are already in use in today’s scientific research,
because for some applications the norms are considered too
restrictive.

Similarly one can define a pseudo-manifold (relaxing some
properties of the manifold), etc.

3.6 Example in Topology

A topology O on a given set E is the ensemble of all parts of
E verifying the following properties:

a) E and the empty set ∅ belong to O .
b) Intersection of any two elements of O belongs to O too.
c) Union of any family of elements of O belongs to O too.

Let’s go backwards. Suppose we have a topology O1 on
a given set E1, and the second or third (or both) previous
axioms have been S-denied, resulting an S-denied topology
S ¬(O1) on the given set E1.

In general, we can go back and ”recover” (reconstruct) the
original topology O1 from S ¬(O1) by recurrence: if two ele-
ments belong to S ¬(O1) then we set these elements and their
intersection to belong to O1, and if a family of elements be-
long to S ¬(O1) then we set these family elements and their
union to belong to O1; and so on: we continue this recurrent
process until it does not bring any new element to O1.

Conclusion

Decidability changes in an S-denied theory, i.e. a defined
sentence in an S-denied theory can be partially deducible and
partially undeducible (we talk about degrees of deducibility
of a sentence in an S-denied theory).

Since in classical deducible research, a theory T of language
L is said complete if any sentence of L is decidable in T, we
can say that an S-denied theory is partially complete (or has
some degrees of completeness and degrees of incomplete-
ness).
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On the Quantum Mechanical State of the ∆++ Baryon
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The ∆++ and the Ω− baryons have been used as the original reason for the construction
of the Quantum Chromodynamics theory of Strong Interactions. The present analy-
sis relies on the multiconfiguration structure of states which are made of several Dirac
particles. It is shown that this property, together with the very strong spin-dependent
interactions of quarks provide an acceptable explanation for the states of these baryons
and remove the classical reason for the invention of color within Quantum Chromody-
namics. This explanation is supported by several examples that show a Quantum Chro-
modynamics’ inconsistency with experimental results. The same arguments provide an
explanation for the problem called the proton spin crisis.

1 Introduction

It is well known that writing an atomic state as a sum of
terms, each of which belongs to a specific configuration is
a useful tool for calculating electronic properties of the sys-
tem. This issue has already been recognized in the early days
of quantum mechanics [1]. For this purpose, mathematical
tools (called angular momentum algebra) have been devel-
oped mainly by Wigner and Racah [2]. Actual calculations
have been carried out since the early days of electronic com-
puters [3]. Many specific properties of atomic states have
been proven by these calculations. In particular, these cal-
culations have replaced guesses and conjectures concerning
the mathematical form of atomic states by evidence based on
a solid mathematical basis. In this work, a special emphasis
is given to the following issue: Contrary to a naive expec-
tation, even the ground state of a simple atom is written as
a sum of more than one configuration. Thus, the apparently
quite simple closed shell ground state of the two electron He
atom, having Jπ = 0+, disagrees with the naive expectation
where the two electrons are just in the 1s2 state. Indeed, other
configurations where individual electrons take higher angular
momentum states (like 1p2, 1d 2, etc.) have a non-negligible
part of the state’s description [3]. The multiconfiguration de-
scription of the ground state of the He atom proves that shell
model notation of state is far from being complete. Nota-
tion of this model can be regarded as an anchor configuration
defining the Jπ of the state. Therefore, all relevant config-
urations must have the same parity and their single-particle
angular momentum must be coupled to the same J.

This paper discusses some significant elements of this sci-
entific knowledge and explains its crucial role in a quantum
mechanical description of the states of the ∆++, the ∆− and the
Ω− baryons. In particular, it is proved that these baryons do
not require the introduction of new structures (like the S U(3)
color) into quantum mechanics. A by-product of this analysis
is the settlement of the “proton spin crisis” problem.

The paper is organized as follows. The second section
describes briefly some properties of angular momentum al-

gebra. It is proved in the third section that ordinary laws of
quantum mechanics explain why the states of the ∆++, ∆−

and Ω− baryons are consistent with the Pauli exclusion prin-
ciple. This outcome is used in the fourth section for show-
ing that QCD does not provide the right solution for hadronic
states. The problem called “proton spin crisis” is explained
in the fifth section. The last section contains concluding re-
marks.

2 Some Features of Angular Momentum Algebra

Consider the problem of a bound state of N Dirac particles.
(Baryonic states are extremely relativistic. Therefore, a rel-
ativistic formulation is adopted from the beginning.) This
system is described as an eigenfunction of the Hamiltonian.
Thus, the time variable is removed and one obtains a problem
of 3N spatial variables for each of the four components of a
Dirac wave function. It is shown here how angular momen-
tum algebra can be used for obtaining a dramatic simplifica-
tion of the problem.

The required solution is constructed as a sum of terms,
each of which depends on all the independent variables men-
tioned above. Now angular momentum is a good quantum
number of a closed system and parity is a good quantum num-
ber for systems whose state is determined by strong or elec-
tromagnetic interactions. Thus, one takes advantage of this
fact and uses only terms that have the required angular mo-
mentum and parity, denoted by Jπ. (Later, the lower case jπ

denotes properties of a bound spin-1/2 single particle.)
The next step is to write each term as a product of N sin-

gle particle Dirac functions, each of which has a well de-
fined angular momentum and parity. The upper and lower
parts of a Dirac function have opposite parity [4, see p. 53].
The angular coordinates of the two upper components of the
Dirac function have angular momentum l and they are cou-
pled with the spin to an overall angular momentum j = l ±
1/2 ( j > 0). The two lower components have angular mo-
mentum (l±1)≥ 0 and together with the spin, they are coupled
to the same j. The spatial angular momentum eigenfunctions
having an eignevalue l, make a set of (2l + 1) members de-
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noted by Ylm(θ, φ), where θ, φ denote the angular coordinates
and −l ≤ m ≤ l [2].

It is shown below how configurations can be used for de-
scribing a required state whose parity and overall spin are
known.

3 The ∆++ State

The purpose of this section is to describe how the state of
each of the four ∆ baryons can be constructed in a way that
abides by ordinary quantum mechanics of a system of three
fermions. Since the ∆++(1232) baryon has 3 valence quarks
of the u flavor, the isospin I = 3/2 of all four ∆ baryons is
fully symmetric. Therefore, the space-spin components of
the 3-particle terms must be antisymmetric. (An example of
relevant nuclear states is presented at the end of this section.)
Obviously, each of the 3-particle terms must have a total spin
J = 3/2 and an even parity. For writing down wave functions
of this kind, single particle wave functions having a definite
jπ and appropriate radial functions are used. A product of
n specific jπ functions is called a configuration and the total
wave function takes the form of a sum of terms, each of which
is associated with a configuration. Here n=3 and only even
parity configurations are used. Angular momentum algebra
is applied to the single particle wave functions and yields an
overall J = 3/2 state. In each configuration, every pair of the
∆++ u quarks must be coupled to an antisymmetric state. r j

denotes the radial coordinate of the jth quark.
Each of the A-D cases described below contains one con-

figuration and one or several antisymmetric 3-particle terms.
The radial functions of these examples are adapted to each
case.

Notation: fi(r j), gi(r j), hi(r j) and vi(r j) denote radial
functions of Dirac single particle 1/2+, 1/2−, 3/2− and 3/2+

states, respectively. The index i denotes the excitation level
of these functions. Each of these radial functions is a two-
component function, one for the upper 2-component spin and
the other for the lower 2-component spin that belong to a 4-
component Dirac spinor.

A. In the first example all three particles have the same jπ,

f0(r0) f1(r1) f2(r2) 1/2+ 1/2+ 1/2+. (1)

Here the spin part is fully symmetric and yields a total
spin of 3/2. The spatial state is fully antisymmetric. It
is obtained from the 6 permutations of the three orthog-
onal fi(r j) functions divided by

√
6. This configuration

is regarded as the anchor configuration of the state.
B. A different combination of ji = 1/2 can be used,

f0(r0)g0(r1)g1(r2) 1/2+ 1/2− 1/2−. (2)

Here, the two single particle 1/2− spin states are cou-
pled symmetrically to j=1 and they have two orthogo-
nal radial functions gi. The full expression can be anti-
symmetrized.

C. In this example, just one single particle is in an angular
excitation state,

f0(r0) f0(r1)v0(r2) 1/2+ 1/2+ 3/2+. (3)

Here we have two 1/2+ single particle functions hav-
ing the same non-excited radial function. These spins
are coupled antisymmetrically to a spin zero two parti-
cle state. These spins have the same non-excited radial
function. The third particle yields the total J = 3/2
state. The full expression can be antisymmetrized.

D. Here all the three single particle jπ states take different
values. Therefore, the radial functions are free to take
the lowest level,

f0(r0)g0(r1)h0(r2) 1/2+ 1/2− 3/2−. (4)

Due to the different single particle spins, the antisym-
metrization task of the spin coordinates can easily be
done. (The spins can be coupled to a total J = 3/2
state in two different ways. Hence, two different terms
belong to this configuration.)

The examples A-D show how a Hilbert space basis for
the Jπ = 3/2+ state can be constructed for three identical
fermions. Obviously, more configurations can be added and
the problem can be solved by ordinary spectroscopic meth-
ods. It should be noted that unlike atomic states, the very
strong spin dependent interactions of hadrons are expected to
yield a higher configuration mixture.

It is interesting to note that a similar situation is found in
nuclear physics. Like the u,d quarks, the proton and the neu-
tron are spin-1/2 fermions belonging to an isospin doublet.
This is the basis for the common symmetry of isospin states
described below. Table 1 shows energy levels of each of the
four A=31 nuclei examined [5, see p. 357]. Each of these
nuclei has 14 protons and 14 neutrons that occupy a set of in-
ner closed shells and three nucleons outside these shells. (The
closed shells are 1/2+, 3/2−, 1/2−, and 5/2+. The next shells
are the 1/2+ that can take 2 nucleons of each type and the

Table 1: Nuclear A=31 Isospin State Energy levels (MeV)

Jπ I (T)a 31Si 31P 31S 31Clb

1/2+ 1/2 — 0 0 —

3/2+ 3/2 0 6.38 6.27 0

1/2+ 3/2 0.75 7.14 7.00 —

a I,T denote isospin in particle physics
and nuclear physics, respectively.

b The 31Cl data is taken from [6].
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3/2+ shell that is higher than the 1/2+ shell. [7, See p. 245].
The state is characterized by these three nucleons that define
the values of total spin, parity and isospin. The first line of
table 1 contains data of the ground states of the I = 1/2 31P
and 31S nuclei. The second line contains data of the lowest
level of the I = 3/2 state of the four nuclei. The quite small
energy difference between the 31P and 31S excited states illus-
trates the quite good accuracy of the isospin approximation.
The third line of the table shows the first excited I = 3/2
state of each of the four nuclei. The gap between states of
the third and the second lines is nearly, but not precisely, the
same. It provides another example of the relative goodness of
the isospin approximation.

The nuclear states described in the first and the second
lines of table 1 are relevant to the nucleons and the ∆ baryons
of particle physics. Indeed, the states of both systems are
characterized by three fermions that may belong to two differ-
ent kinds and where isospin is a useful quantum number. Here
the neutron and the proton correspond to the ground state of
31P and 31S, respectively, whereas energy states of the sec-
ond line of the table correspond to the four ∆ baryons. Every
nuclear energy state of table 1 has a corresponding baryon
that has the same spin, parity, isospin and the Iz isospin com-
ponent. Obviously, the dynamics of the nuclear energy lev-
els is completely different from hadronic dynamics. Indeed,
the nucleons are composite spin-1/2 particles whose state is
determined by the strong nuclear force. This is a residual
force characterized by a rapidly decaying attractive force at
the vicinity of the nucleon size and a strong repulsive force
at a smaller distance [7, see p. 97]. On the other hand, the
baryonic quarks are elementary pointlike spin-1/2 particles
whose dynamics differs completely from that of the strong
nuclear force. However, both systems are made of fermions
and the spin, parity and isospin analogy demonstrates that the
two systems have the same internal symmetry.

The following property of the second line of table 1 is in-
teresting and important. Thus, all nuclear states of this line
have the same symmetric I = 3/2 state. Hence, due to the
Pauli exclusion principle, all of them have the same antisym-
metric space-spin state. Now, for the 31P and 31S nuclei, this
state is an excited state because they have lower states having
I = 1/2. However, the 31Si and 31Cl nuclei have no I = 1/2
state, because their Iz = 3/2. Hence, the second line of table
1 shows the ground state of the Iz = 3/2 nuclei. It will be
shown later that this conclusion is crucial for having a good
understanding of an analogous quark system. Therefore it is
called Conclusion A.

Now, the 31Si has three neutrons outside the 28 nucleon
closed shells and the 31Cl has three protons outside these
shells. Hence, the outer shell of these two nuclear states
consists of three identical fermions which make the required
ground state. Relying on this nuclear physics example, one
deduces that the Pauli exclusion principle is completely con-
sistent with three identical fermions in a Jπ = 3/2+ and I =

3/2 ground state. The data of table 1 are well known in nu-
clear physics.

A last remark should be made before the end of this sec-
tion. As explained in the next section, everything said above
on the isospin quartet Jπ = 3/2+ states of the three ud quark
flavor that make the four ∆ baryons, holds for the full decu-
plet of the three uds quarks, where, for example, the Ω− state
is determined by the three sss quarks. In particular, like the
∆++ and the ∆−, theΩ− baryon is the ground state of the three
sss quarks and each of the baryons of the decuplet has an an-
tisymmetric space-spin wave function.

4 Discussion

It is mentioned above that spin-dependent interactions are
much stronger in hadronic states than in electronic states.
This point is illustrated by a comparison of the singlet and
triplet states of the positronium [8] with the π0 and ρ0 mesons
[9]. The data are given in table 2. The fourth column of the
table shows energy difference between each of the Jπ = 1−

states and the corresponding Jπ = 0− state. The last column
shows the ratio between this difference and the energy of the
Jπ = 0− state.

Both electrons and quarks are spin-1/2 pointlike particles.
The values of the last column demonstrate a clear difference
between electrically charged electrons and quarks that partic-
ipate in strong interactions. Indeed, the split between the two
electronic states is very small. This is the reason for the no-
tation of fine structure for the spin dependent split between
electronic states of the same excitation level [10, see p. 225].
Table 2 shows that the corresponding situation in quark sys-
tems is larger by more than 9 orders of magnitude. Hence,
spin dependent interactions in hadrons are very strong and
make an important contribution to the state’s energy.

Now, electronic systems in atoms satisfy the Hund’s rules
[10, see p. 226]. This rule says that in a configuration, the
state having the highest spin is bound stronger. Using this
rule and the very strong spin-dependent hadronic interaction
which is demonstrated in the last column of table 2, one con-

Table 2: Positronium and meson energy (MeV)

Particle Jπ Mass M(1−) −M(0−) ∆M/M(0−)

e+e− 0− ∼ 1.022 — —

e+e− 1− ∼ 1.022 8.4×10−10 8.2×10−10

π0 0− 135 — —

ρ0 1− 775 640 4.7
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cludes that the anchor configuration A of the previous section
really describes a very strongly bound state of the∆++ baryon.
In particular, the isospin doublet Jπ = 1/2+ state of the neu-
tron and the proton correspond to the same Jπ = 1/2+ of the
ground state of the A = 31 nuclei displayed in the first line of
table 1. The isospin quartet of the ∆ baryons correspond to
the isospin quartet of the four nuclear states displayed in the
second line of table 1.

Here the significance of Conclusion A of the previous sec-
tion becomes clear. Indeed, an analogy is found between the
two nuclear states of the I = 3/2 and Iz = ±1/2, namely the
31P and the 31S are excited states of these nuclei whereas the
I = 3/2 and Iz = ±3/2, namely the 31Si and the 31Cl states are
the ground states of these nuclei. The same pattern is found in
the particle physics analogue. The ∆+ and the ∆0 are excited
states of the proton and the neutron, respectively. This state-
ment relies on the fact that both the proton and the ∆+ states
are determined by the uud quarks. Similarly, the neutron and
the ∆0 states are determined by the udd quarks. On the other
hand, in the case of the 31Si and the 31Cl nuclei, the I = 3/2
and Jπ = 3/2+ states are the ground states of these nuclei.
The same property holds for the ∆++ and the ∆−, which are
the ground states of the uuu and ddd quark systems, respec-
tively.

The relationship between members of the lowest energy
Jπ = 1/2+ baryonic octet and members of the Jπ = 3/2+

baryonic decuplet can be described as follows. There are
7 members of the decuplet that are excited states of corre-
sponding members of the octet. Members of each pair are
made of the same specific combination of the uds quarks. The
∆++, ∆− and Ω− baryons have no counterpart in the octet.
Thus, in spite of being a part of the decuplet whose members
have space-spin antisymmetric states, these three baryons are
the ground state of the uuu, ddd and sss quarks, respectively.

This discussion can be concluded by the following state-
ments: The well known laws of quantum mechanics of identi-
cal fermions provide an interpretation of the ∆++, ∆− andΩ−

baryons, whose state is characterized by three uuu, ddd and
sss quarks, respectively. There is no need for any fundamen-
tal change in physics in general and for the invention of color
in particular. Like all members of the decuplet, the states of
these baryons abide by the Pauli exclusion principle. Hence,
one wonders why particle physics textbooks regard precisely
the same situation of the four ∆ baryons as a fiasco of the
Fermi-Dirac statistics [11, see p. 5].

The historic reasons for the QCD creation are the states
of the ∆++ and theΩ− baryons. These baryons, each of which
has three quarks of the same flavor, are regarded as the classi-
cal reason for the QCD invention [12, see p. 338]. The anal-
ysis presented above shows that this argument does not hold
water. For this reason, one wonders whether QCD is really a
correct theory. This point is supported by the following exam-
ples which show that QCD is inconsistent with experimental
results.

1. The interaction of hard real photons with a proton is
practically the same as its interaction with a neutron
[13]. This effect cannot be explained by the photon
interaction with the nucleons’ charge constituents, be-
cause these constituents take different values for the
proton and the neutron. The attempt to recruit Vector
Meson Dominance (VMD) for providing an explana-
tion is unacceptable. Indeed, Wigner’s analysis of the
irreducible representations of the Poincare group [14]
and [15, pp. 44–53] proves that VMD, which mixes a
massive meson with a massless photon, is incompatible
with Special relativity. Other reasons of this kind also
have been published [16].

2. QCD experts have predicted the existence of strongly
bound pentaquarks [17, 18]. In spite of a long search,
the existence of pentaquarks has not been confirmed
[19]. By contrast, correct physical ideas used for pre-
dicting genuine particles, like the positron and the Ω−,
have been validated by experiment after very few years
(and with a technology which is very very poor with
respect to that used in contemporary facilities).

3. QCD experts have predicted the existence of chunks of
Strange Quark Matter (SQM) [20]. In spite of a long
search, the existence of SQM has not been confirmed
[21].

4. QCD experts have predicted the existence of glueballs
[22]. In spite of a long search, the existence of glueballs
has not been confirmed [9].

5. For a very high energy, the proton-proton (pp) total and
elastic cross section increase with collision energy [9]
and the ratio of the elastic cross section to the total
cross section is nearly a constant which equals about
1/6. This relationship between the pp cross sections
is completely different from the high energy electron-
proton (ep) scattering data where the total cross section
decreases for an increasing collision energy and the
elastic cross section’s portion becomes negligible [23].
This effect proves that the proton contains a quite solid
component that can take the heavy blow of the high en-
ergy collision and keep the entire proton intact. This
object cannot be a quark, because in energetic ep scat-
tering, the electron strikes a single quark and the rel-
ative part of elastic events is negligible. QCD has no
explanation for the pp cross section data [24].

5 The Proton Spin Crisis

Another problem which is settled by the physical evidence
described above is called the proton spin crisis [25,26]. Here
polarized muons have been scattered by polarized protons.
The results prove that the instantaneous quark spin sums up
to a very small portion of the entire proton’s spin. This out-
come, which has been regarded as a surprise [26], was later

78 Eliahu Comay. On the Quantum Mechanical State of the ∆++ Baryon



January, 2011 PROGRESS IN PHYSICS Volume 1

supported by other experiments. The following lines contain
a straightforward explanation of this phenomenon.

The four configurations A-D that are a part of the Hilbert
space of the ∆++ baryon are used as an illustration of the prob-
lem. Thus, in configuration A, all single particle spins are
parallel to the overall spin. The situation in configuration B is
different. Here the single particle function jπ = 1/2− is a cou-
pling of l = 1 and s = 1/2. This single particle coupling has
two terms whose numerical values are called Clebsh-Gordan
coefficients [2]. In one of the coupling terms, the spin is par-
allel to the overall single particle angular momentum and in
the other term it is antiparallel to it. This is an example of an
internal partial cancellation of the contribution of the single
particle spin to the overall angular momentum. (As a matter
of fact, this argument also holds for the lower pair of com-
ponents of each of Dirac spinor of configuration A. Here the
lower pair of the high relativistic system is quite large and it is
made of l = 1 s = 1/2 coupled to J = 1/2.) In configuration
C one finds the same effect. Spins of the first and the second
particles are coupled to j01 = 0 and cancel each other. In
the third particle the l = 2 spatial angular momentum is cou-
pled with the spin to j = 3/2. Here one also finds two terms
and the contribution of their single-particle spin-1/2 partially
cancels. The same conclusion is obtained from an analogous
analysis of the spins of configuration D.

It should be pointed out that the very large hadronic spin-
dependent interaction which is demonstrated by the data of
table 2, proves that in hadronic states, one needs many con-
figurations in order to construct a useful basis for the Hilbert
space of a baryon. It follows that in hadrons the internal sin-
gle particle cancellation seen in configurations of the previous
section, is expected to be quite large.

Obviously, the configuration structure of the proton relies
on the same principles. Here too, many configurations, each
of which has the quantum numbers Jπ = 1/2+, are needed for
the Hilbert space. Thus, a large single particle spin cancella-
tion is obtained. Therefore, the result of [25] is obvious. It
should make neither a crisis nor a surprise.

On top of what is said above, the following argument in-
dicates that the situation is more complicated and the number
of meaningful configurations is even larger. Indeed, it has
been shown that beside the three valence quarks, the proton
contains additional quark-antiquark pair(s) whose probabil-
ity is about 1/2 pair [23, see p. 282]. It is very reasonable to
assume that all baryons share this property. The additional
quark-antiquark pair(s) increase the number of useful config-
urations and of their effect on the ∆++ ground state and on the
proton spin as well.

6 Concluding Remarks

Relying on the analysis of the apparently quite simple ground
state of the He atomic structure [3], it is argued here that
many configurations are needed for describing a quantum me-

chanical state of more than one Dirac particle. This effect is
much stronger in baryons. where, as shown in table 2, spin-
dependent strong interactions are very strong indeed. This
effect and the multiconfiguration basis of hadronic states do
explain the isospin quartet of the J = 3/2+ ∆ baryons. Here
the ∆0 and the ∆+ are excited states of the neutron and the pro-
ton, respectively whereas their isospin counterparts, the ∆++

and the ∆− are ground states of the uuu and the ddd quark sys-
tems, respectively. Analogous conclusions hold for all mem-
bers of the J = 3/2+ baryonic decuplet that includes the Ω−

baryon. It is also shown that states of four A = 31 nuclei
are analogous to the nucleons and the ∆s isospin quartet (see
table 1).

The discussion presented above shows that there is no
need for introducing a new degree of freedom (like color) in
order to settle the states of ∆++, ∆− and Ω− baryons with the
Pauli exclusion principle. Hence, there is no reason for the
QCD invention. Several inconsistencies of QCD with experi-
mental data support this conclusion.

Another aspect of recognizing implications of the multi-
configuration structure of hadrons is that the proton spin crisis
experiment, which shows that instantaneous spins of quarks
make a little contribution to the proton’s spin [25], creates
neither a surprise nor a crisis.
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We present a new model for solids which is based on the stimulated vibration of inde-
pendent neutral Fermi-atoms, representing independent harmonic oscillators with natu-
ral frequencies, which are excited by actions of the longitudinal and transverse elastic
waves. Due to application of the principle of elastic wave-particle duality, we predict
that the lattice of a solid consists of two type Sound Boson-Particles with spin 1 with fi-
nite masses. Namely, these lattice Boson-Particles excite the longitudinal and transverse
phonons with spin 1. In this letter, we estimate the masses of Sound Boson-Particles
which are around 500 times smaller than the atom mass.

1 Introduction

The original theory proposed by Einstein in 1907 was of great
historical relevance [1]. In the Einstein model, each atom os-
cillates relatively to its neighbors in the lattice which execute
harmonic motions around fixed positions, the knots of the lat-
tice. He treated the thermal property of the vibration of a lat-
tice of N atoms as a 3N harmonic independent oscillator by
identical own frequency Ω0 which was quantized by appli-
cation of the prescription developed by Plank in connection
with the theory of Black Body radiation. The Einstein model
could obtain the Dulong and Petit prediction at high temper-
ature but could not reproduce an adequate representation of
the the lattice at low temperatures. In 1912, Debye proposed
to consider the model of the solid [2], by suggestion that the
frequencies of the 3N harmonic independent oscillators are
not equal as it was suggested by the Einstein model. In ad-
dition to his suggestion, the acoustic spectrum of solid may
be treated as if the solid represented a homogeneous medium,
except that the total number of independent elastic waves is
cut off at 3N, to agree with the number of degrees of freedom
of N atoms. In this respect, Debye stated that one longitudinal
and two transverse waves are excited in solid. These veloc-
ities of sound cannot be observed in a solid at frequencies
above the cut-off frequency. Also, he suggested that phonon
is a spinless. Thus, the Debye model correctly showed that
the heat capacity is proportional to the T 3 law at low temper-
atures. At high temperatures, he obtained the Dulong-Petit
prediction compatible to experimental results.

In this letter, we propose a new model for solids which
consists of neutral Fermi-atoms, fixed in the knots of lattice.
In turn, within the formalism of Debye, we may predict that
lattice represents as the Bose-gas of Sound-Particles with fi-
nite masses ml and mt, corresponding to a longitudinal and a
transverse elastic field. In this sense, the lattice is considered
as a new substance of matter consisting of Sound-Particles,
which excite the one longitudinal and one transverse elastic
waves (this approach is differ from Debye one). These waves
act on the Fermi-atoms which are vibrating with the natural

frequencies Ωl and Ωt. Thus, there are stimulated vibrations
of the Fermi-atoms by under action of longitudinal and trans-
verse phonons with spin 1. In this context, we introduce a
new principle of elastic wave-particle duality, which allows
us to build the lattice model. The given model leads to the
same results as presented by Debye’s theory.

2 Analysis

As we suggest, the transfer of heat from one part of the body
to another occurs through the lattice. This process is very
slow. Therefore, we can regard any part of the body as ther-
mally insulated, and there occur adiabatic deformations. In
this respect, the equation of motion for an elastic continuum
medium [3] represents as

%~̈u(~r, t) = c2
t ∇2~u(~r, t) + (c2

l − c2
t ) grad · div ~u(~r, t) (1)

where ~u = ~u(~r, t) is the vector displacement of any particle
in solid; cl and ct are the velocities of a longitudinal and a
transverse ultrasonic wave, respectively.

We shall begin by discussing a plane longitudinal elas-
tic wave with condition curl~u(~r, t) = 0 and a plane trans-
verse elastic wave with condition div~u(~r, t) = 0 in an infinite
isotropic medium. In this respect, in direction of vector ~r
can be propagated two transverse and one longitudinal elastic
waves. The vector displacement ~u(~r, t) is the sum of the vec-
tor displacements of a longitudinal ul(~r, t) and of a transverse
ultrasonic wave ut(~r, t):

~u(~r, t) = ~ul(~r, t) + ~ut(~r, t) (2)

where ~ul(~r, t) and ~ut(~r, t) are perpendicular with each other or
~ul(~r, t) · ~ut(~r, t) = 0.

In turn, the equations of motion for a longitudinal and a
transverse elastic wave take the form of the wave-equations:

∇2~ul(~r, t) −
1
c2

l

∂2~ul(~r, t)
∂t2 = 0 (3)

∇2~ut(~r, t) −
1
c2

t

∂2~ul(~r, t)
∂t2 = 0. (4)
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It is well known, in quantum mechanics, a matter wave is
determined by electromagnetic wave-particle duality or de
Broglie wave of matter [4]. We argue that in an analogous
manner, we may apply the elastic wave-particle duality. This
reasoning allows us to present a model of elastic field as the
Bose-gas consisting of the Sound Bose-particles with spin 1
and non-zero rest masses, which are interacting with each
other. In this respect, we may express the vector displace-
ment of a longitudinal ultrasonic wave ul(~r, t) via the second
quantization vector wave functions of one Sound Boson of
the longitudinal wave. In analogy manner, vector displace-
ment of a transverse ultrasonic waves ut(~r, t) is expressed via
the second quantization vector wave functions of one Sound
Boson of the transverse wave:

~ul(~r, t) = ul

(
φ(~r, t) + φ+(~r, t)

)
(5)

and

~ut(~r, t) = ut

(
ψ(~r, t) + ψ+(~r, t)

)
(6)

where ul and ut are, respectively, the norm coefficients for
longitudinal and transverse waves; ~φ(~r, t) and ~φ+(~r, t) are, re-
spectively, the second quantization wave vector functions for
“creation” and “annihilation” of one Sound-Particle of the
longitudinal wave, in point of coordinate ~r and time t whose
direction ~l is directed toward to wave vector ~k; ~ψ(~r, t) and
~ψ+(~r, t) are, respectively, the second quantization wave vec-
tor functions for “creation” and “annihilation” of one Sound-
Particle of the transverse wave, in point of coordinate ~r and
time t, whose direction ~t is perpendicular to the wave vector
~k:

~φ(~r, t) =
1
√

V

∑
~k,σ

~a~k,σei(~k~r−kclt) (7)

~φ+(~r, t) =
1
√

V

∑
~k,σ

~a+~k,σe−i(~k~r−kclt) (8)

and
~ψ(~r, t) =

1
√

V

∑
~k,σ

~b~k,σei(~k~r+−kct t) (9)

~ψ+(~r, t) =
1
√

V

∑
~k,σ

~b+~k,σe−i(~k~r−kct t) (10)

with condition∫
φ+(~r, σ)φ(~r, σ)dV +

∫
ψ+(~r, σ)ψ(~r, σ)dV =

= no +
∑
~k,0,σ

â+~k,σâ~k,σ +
∑
~k,0,σ

b̂+~k,σb̂~k,σ = n̂
(11)

where ~a+
~k,σ

and ~a~k,σ are, respectively, the Bose vector-oper-
ators of creation and annihilation for one free longitudinal

Sound Particle with spin 1, described by a vector ~k whose di-
rection coincides with the direction~l of the longitudinal wave;
~b+
~k,σ

and ~b~k,σ are, respectively, the Bose vector-operators of
creation and annihilation for one free transverse Sound Parti-
cles with spin 1, described by a vector ~k which is perpendic-
ular to the direction ~t of the transverse wave; n̂ is the operator
of total number of the Sound Particles; n̂0 = n0,l + n0,t is the
total number of Sound Particles in the condensate level with
wave vector ~k = 0 which consists of a number of Sound Par-
ticles n0,l of the longitudinal wave and a number of Sound
Particles n0,t of the transverse wave.

The energies of longitudinal ~
2k2

2ml
and transverse ~

2k2

2mt
free

Sound Particles have the masses of Sound Particles ml and
mt and the value of its spin z-component σ = 0;±1. In this
respect, the vector-operators ~a+

~k,σ
, ~a~k,σ and ~b+

~k,σ
, ~b~k,σ satisfy

the Bose commutation relations as:[
â~k,σ, â

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[â~k,σ, â~k′ ,σ′ ] = 0

[â+~k,σ, â
+
~k′ ,σ′

] = 0

and [
b̂~k,σ, b̂

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[b̂~k,σ, b̂~k′ ,σ′ ] = 0

[b̂+~k,σ, b̂
+
~k′ ,σ′

] = 0

Thus, as we see, the vector displacements of a longitudi-
nal ~ul and of a transverse ~ut ultrasonic wave satisfy the wave-
equations of (3) and (4) and have the forms:

~ul(~r, t) = ~u0,l +
ul√
V

∑
~k,0,σ

(
~a~k,σei(~k~r−kclt) + ~a+~k,σe−i(~k~r−kclt)

)
(12)

and

~ut(~r, t) = ~u0,t +
ut√
V

∑
~k,0,σ

(
~b~k,σei(~k~r−kct t) +~b+~k,σe−i(~k~r−kct t)

)
. (13)

While investigating superfluid liquid, Bogoliubov [5] sepa-
rated the atoms of helium in the condensate from those atoms,
filling states above the condensate. In an analogous manner,
we may consider the vector operators â0 = ~l

√
n0,l, b̂0 = ~t

√
n0,t

and â+0 = ~l
√

n0,l, b̂+0 = ~t
√

n0,t as c-numbers (where ~l and ~t are
the unit vectors in the direction of the longitudinal and trans-
verse elastic fields, respectively, and also ~l · ~t = 0) within the
approximation of a macroscopic number of Sound Particles in
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the condensate n0,l � 1 and n0,t � 1. This assumptions lead
to a broken Bose-symmetry law for Sound Particles of longi-
tudinal and transverse waves in the condensate. In fact, we
may state that if a number of Sound Particles of longitudinal
and transverse waves fills a condensate level with the wave
vector ~k = 0, then they reproduce the constant displacements
~u0,l =

2ul~e
√

n0,l√
V

and ~u0,t =
2ut~e
√

n0,t√
V

.
In this context, we may emphasize that the Bose vec-

tor operators ~a+
~k,σ

, ~a~k,σ and ~b+
~k,σ

and ~b~k,σ communicate with
each other because the vector displacements of a longitudinal
~ul(~r, t) and a transverse ultrasonic wave ~ut(~r, t) are indepen-
dent, and in turn, satisfy to the Bose commutation relation
[~ul(~r, t), ~ut(~r, t)] = 0.

Now, we note that quantization of elastic field means that
this field operator does not commute with its momentum den-
sity. Taking the commutators gives[

~ul(~r, t), ~pl(~r
′
, t)

]
= i~δ3

~r−~r′ (14)

and [
~ut(~r, t), ~pt(~r

′
, t)

]
= i~δ3

~r−~r′ (15)

where the momentums of the longitudinal and transverse
waves are defined as

~pl(~r, t) = ρl(~r)
∂~ul(~r, t)
∂t

(16)

and

~pt(~r, t) = ρt(~r)
∂~ut(~r, t)
∂t

(17)

where ρl(~r) and ρt(~r) are, respectively, the mass densities of
longitudinal and transverse Sound Particles in the coordinate
space, which are presented by the equations

ρl(~r) = ρ0,l +
∑
~k,0

ρl(~k)ei~k~r (18)

and
ρt(~r) = ρ0,t +

∑
~k,0

ρt(~k)ei~k~r. (19)

The total mass density ρ(~r) is

ρ(~r) = ρ0 +
∑
~k,0

ρl(~k)ei~k~r +
∑
~k,0

ρt(~k)ei~k~r (20)

where ρl(~k) and ρt(~k) are, respectively, the fluctuations of the
mass densities of the longitudinal and transverse Sound Par-
ticles which represent as the symmetrical function from wave
vector ~k or ρl(~k) = ρl(−~k); ρt(~k) = ρt(−~k); ρ0 = ρ0,l + ρ0,t is
the equilibrium density of Sound Particles.

Applying (12) and (13) to (16) and (17), and taking (18)
and (19), we get

~pl(~r, t) = − iclul√
V

∑
~k′

∑
~k,σ kρl(~k

′
)
(
~a~k,σe−ikclt−

− ~a+−~k,σeikclt
)
ei(~k+~k

′
)~r

(21)

~pt(~r, t) = − iclut√
V

∑
~k′

∑
~k,σ ρt(~k

′
)k

(
~b~k,σe−ikclt−

− ~b+−~k,σeikclt
)
ei(~k+~k

′
)~r

(22)

Application of (12), (21) and (13), (22) to (14) and (15), and
taking the Bose commutation relations presented above, we
obtain [

~ul(~r, t), ~pl(~r
′
, t)

]
=

2iu2
l cl

V

∑
~k

kρl(~k)ei~k(~r−~r′ ) (23)

and [
~ut(~r, t), ~pt(~r

′
, t)

]
=

2iu2
t ct

V

∑
~k

kρt(~k)ei~k(~r−~r′ ) (24)

The right sides of Eqs. (14) and (23) as well as Eqs. (15) and
(24) coincide when

ρl(~k) =
~

2ku2
l cl

(25)

and
ρt(~k) =

~

2ku2
t ct

(26)

by using
1
V

∑
~k

ei~k(~r−~r′ ) = δ3
~r−~r′

3 Sound-Particles and Phonons

The Hamiltonian operator Ĥ of the system, consisting of the
vibrated Fermi-atoms with mass M, is represented by the fol-
lowing form

Ĥ = Ĥl + Ĥt (27)

where

Ĥl =
MN
2V

∫ (
∂~ul

∂t

)2

dV +
NMΩ2

l

2V

∫
(~ul)2dV (28)

and

Ĥt =
MN
2V

∫ (
∂~ut

∂t

)2

dV +
NMΩ2

t

2V

∫
(~ut)2dV (29)

with Ωl and Ωt which are, respectively, the natural frequen-
cies of the atom by action of longitudinal and transverse elas-
tic waves.
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To find the Hamiltonian operator Ĥ of the system, we use
the framework of Dirac [6] for the quantization of electro-
magnetic field:

∂~ul(~r, t)
∂t

= − iclul√
V

∑
~k,σ

k
(
~a~k,σe−ikclt − ~a+−~k,σeikclt

)
ei~k~r (30)

and

∂~ut(~r, t)
∂t

= − ictut√
V

∑
~k,σ

k
(
~b~k,σe−ikct t − ~b+−~k,σeikct t

)
ei~k~r (31)

which by substituting into (28) and (29) using (12) and (13),
we obtain the reduced form for the Hamiltonian operators Ĥl

and Ĥt:

Ĥl =
∑
~k,σ

[(
MNu2

l c2
l k2

V +
MNu2

l Ω
2
l

V

)
~a+
~k,σ

a~k,σ−(
MNu2

l c2
l k2

V
−

MNu2
lΩ

2
l

V

)(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (32)

and

Ĥt =
∑
~k,σ

[(
MNu2

t c2
t k2

V +
MNu2

t Ω
2
t

V

)
~a+
~k,σ

a~k,σ−(
MNu2

t c2
t k2

V
−

MNu2
lΩ

2
t

V

)(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (33)

where ul and ut are defined by the first term in right side of
(32) and (33) which represent as the kinetic energies of lon-
gitudinal Sound Particle ~

2k2

2ml
and transverse Sound Particles

~2k2

2mt
. Therefore, ul and ul are found, if we suggest:

MNu2
l c2

l k2

V
=
~2k2

2ml
(34)

and
MNu2

t c2
t k2

V
=
~2k2

2mt
(35)

which in turn determine

ul =
~

cl
√

2mlρ

and
ut =

~

ct
√

2mtρ

where ρ = MN
V is the density of solid.

Ĥl =
∑
~k,σ

[(
~2k2

2ml
+
~2Ω2

l

2mlc2
l

)
~a+
~k,σ

a~k,σ+

U~k,l

2

(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (36)

and

Ĥt =
∑
~k

[(
~2k2

2m +
~2Ω2

t

2mtc2
t

)
~b+
~k,σ

b~k,σ+

U~k,t

2

(
~b−~k,σ~b~k,σ + ~b

+
~k,σ
~b+−~k,σ

)] (37)

U~k,l and U~k,t are the interaction potentials between identical
Sound Particles.

In analogous manner, as it was done in letter [7] regarding
the quantization of the electromagnetic field, the boundary
wave numbers kl =

Ωl
cl

for the longitudinal elastic field and
kt =

Ωt
ct

for the transverse one are determined by suggestion
that identical Sound Particles interact with each other by the
repulsive potentials U~k,l and U~k,t in wave vector space

U~k,l = −
~2k2

2ml
+
~2Ω2

l

2mlc2
l

> 0

and

U~k,t = −
~2k2

2mt
+
~2Ω2

t

2mtc2
t
> 0

As results, there are two conditions for wave numbers of lon-
gitudinal k < kl and transverse k < kt Sound Particles which
are provided by property of the model of hard spheres [8].
Indeed, there is a request of presence of repulsive potential
interaction between identical kind of particles (recall S-wave
repulsive pseudopotential interaction between atoms in the
superfluid liquid 4He in the model of hard spheres [8]).

On the other hand, it is well known that at absolute zero
T = 0, the Fermi atoms fill the Fermi sphere in momentum
space. As it is known, the total numbers of the Fermi atoms
with opposite spins are the same, therefore, the Fermi wave
number k f is determined by a condition:

V
2π2

∫ k f

0
k2dk =

N
2

(38)

where N is the total number of Fermi-atoms in the solid. This
reasoning together with the model of hard spheres claims the
important condition as introduction the boundary wave num-

ber k f =

(
3π2N

V

) 1
3

coinciding with kl and kt. Thus we claim

that all Fermi atoms had one natural wavelength

λ0 =
2π
k f
=

2π
kl
=

2π
kt

(39)

This approach is a similar to the Einstein model of solid
where he suggested that all atoms have the same natural fre-
quencies.

Now, to evaluate of the energy levels of the operator Ĥl

(36) and Ĥt (37) in diagonal form, we use a new transforma-
tion of the vector-Bose-operators presented in [6]:

~a~k,σ =
~c~k,σ + L~k~c

+

−~k,σ√
1 − L2

~k

(40)
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and

~b~k,σ =
~d~k,σ + M~k

~d+
−~k,σ√

1 − M2
~k

(41)

where L~k and M~k are, respectively, the real symmetrical func-
tions of a wave vector ~k. Consequently:

Ĥl =
∑

k<k f ,σ

ε~k,l~c
+
~k,σ
~c~k,σ (42)

and
Ĥt =

∑
k<k f ,σ

ε~k,t
~d+~k,σ

~d~k,σ. (43)

Hence, we infer that the Bose-operators ~c+
~k,σ

, ~c~k,σ and ~d+
~k,σ

,
~d~k,σ are, respectively, the vector of ”creation” and the vec-
tor of ”annihilation” operators of longitudinal and transverse
phonons with spin 1 and having the energies:

ε~k,l =

√(
~2k2

2ml
+
~2Ω2

l

2mlc2
l

)2

−
(
~2k2

2ml
−
~2Ω2

l

2mlc2
l

)2

= ~kcl (44)

and

ε~k,t =

√(
~2k2

2mt
+
~2Ω2

t

2mtc2
t

)2

−
(
~2k2

2mt
−
~2Ω2

l

2mtc2
t

)2

= ~kct (45)

where the mass of longitudinal Sound Particle equals to

ml =
~Ωl

c2
l

(46)

but the mass of transverse Sound Particle is

mt =
~Ωt

c2
t
. (47)

Thus, we may state that there are two different Sound Parti-
cles with masses ml and mt which correspond to the longitu-
dinal and transverse waves.

4 Thermodynamic property of solid

Now, we demonstrate that the herein presented theory leads
to same results which were obtained by Debye in his the-
ory investigating the thermodynamic properties of solids. So
that, at the statistical equilibrium, the average energy of solid
equals to

H =
∑

k<k f ,σ

ε~k,l~c
+
~k,σ
~c~k,σ +

∑
k<k f ,σ

ε~k,t
~d+
~k,σ
~d~k,σ (48)

where ĉ+
~k,σ

ĉ~k,σ and d̂+
~k,σ

d̂~k,σ are, respectively, the average num-

ber of phonons with the wave vector ~k corresponding to the
longitudinal and transverse fields at temperature T :

ĉ+
~k,σ

ĉ~k,σ =
1

e
ε~k,l
kT − 1

and
d̂+
~k,σ

d̂~k,σ =
1

e
ε~k,t
kT − 1

.

Thus, at thermodynamic limit, the average energy of solid
may rewritten down as

H =
3Vk4T 4

2π2~3c3
l

∫ Θl
T

0

x3dx
ex − 1

+
3Vk4T 4

2π2~3c3
t

∫ Θt
T

0

x3dx
ex − 1

(49)

where Θl =
~k f cl

k and Θt =
~k f ct

k are, respectively, the charac-
teristic temperatures for solid corresponding to longitudinal
and transverse waves; k is the Boltzmann constant. In our
theory we denote

1
c3

l

+
1
c3

t
=

2
c3

where c is the average velocity of phonons with spin 1 in the
given theory; ΘB =

~k f c
k is the new characteristic temperature.

Hence, we may note that the coefficient with number 3
must be appear before both integrals on the right side of equa-
tion (49) because it reflects that phonons of longitudinal and
transverse waves have number 3 quantities of the value of
spin z-component σ = 0;±1. At T � Θl and T � Θt, the
equation (49) takes the form:

H =
3π4

5
NkT 4

2

(
1
Θ3

l

+
1
Θ3

t

)
(50)

where
∫ ∞

0
x3dk
ex−1 =

π4

15 .

Thus, Eq.(50) may be rewritten as

H ≈ 3π4

5
RT 4

Θ3
B

(51)

where R = Nk is the gas constant. Hence, we may note that
at T � Θl and T � Θt, the equation (49) takes the form:

H = 3RT. (52)

In this context, the heat capacity is determined as

CV =

(
dH
dT

)
V

(53)

which obviously, at T � Θl and T � Θt, the equation (53)
with (51) reflects the Debye law T 3 at low temperatures:

CV ≈
12π4

5
RT 3

Θ3
B

. (54)

But at high temperatures T � Θl and T � Θt, the equation
(53) with (52) recovers the Dulong-Petit law:

CV ≈ 3R. (55)
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Obviously, the average velocity of phonon c and new
characteristic temperature ΘB are differ from their definition
in Debye theory because the average energy of solid in Debye
theory is presented as

HD =
3Vk4T 4

2π2~3c3
l

∫ Θl
T

0

x3dx
ex − 1

+
3Vk4T 4

π2~3c3
t

∫ Θt
T

0

x3dx
ex − 1

(56)

where Θl =
~kDcl

k and Θt =
~kDct

k are, respectively, the
characteristic temperatures for solid corresponding to one
longitudinal and two transverse waves:

1
c3

l

+
2
c3

t
=

3
v3

0

(57)

where v0 is the average velocity of spinless phonons in

Debye theory; kD =

(
6π2N

V

) 1
3

is the Debye wave number;

ΘD =
~kDv0

k is the Debye characteristic temperature which is

1
Θ3

l

+
2
Θ3

t
=

3
Θ3

D

(58)

As we see the average energy of solid HD in (56) is differ
from one in (49) by coefficient 2 in ahead of second term
in right side of Eq.(56) (which is connected with assumption
of presence two transverse waves), as well as introduction
of Debye wave number kD. So that due to definition of the
average velocity v0 of spinless phonons by (57), Debye may
accept a phonon as spinless quasiiparticle.

5 Concussion

Thus, in this letter, we propose new model for solids which is
different from the well-known models of Einstein and Debye
because: 1), we suggest that the atoms are the Fermi parti-
cles which are absent in the Einstein and Debye models; 2),
we consider the stimulated oscillation of atoms by action of
longitudinal and transverse waves in the solid. The elastic
waves stimulate the vibration of the fermion-atoms with one
natural wavelength, we suggested that atoms have two inde-
pendent natural frequencies corresponding to a longitudinal
and a transverse wave, due to application of the principle of
the elastic wave-particle duality, the model of hard spheres
and considering the atoms as the Fermi particles. In accor-
dance to this reasoning, there is an appearance of a cut off in
the energy spectrum of phonons; 3), In our model, we argue
that the photons have spin 1 which is different from models
presented by Einstein and Debye. On the other hand, we sug-
gest that only one longitudinal and one transverse wave may
be excited in the lattice of the solid which is different from
Debye who suggested a presence of two sorts of transverse
waves.

The quantization of the elastic wave by our theory leads
to a view of the lattice as the diffraction picture. Within our

theory, the mass density ρ(~r) in coordinate space, due to sub-
stituting ρl(~r, t) and ρl(~r, t) from (25) and (26) into (20), rep-
resents as

ρ(~r) = ρ0 +
8π~k2

f

u2
l cl

(
sin k f r

k f r

)2

+
8π~k2

f

u2
t ct

(
sin k f r

k f r

)2

(59)

which implies that the lattice has the diffraction picture.
Now, we try to estimate the masses of the Sound Parti-

cles in substance as Aluminium Al. In this respect, we use
of (46) and (47) with introducing of the Fermi momentum
p f = ~k f =

~Ωl
cl
= ~Ωt

ct
, for instance, for such material as

Al with cl = 6.26 · 103 m
sec and ct = 3.08 · 103 m

sec at room
temperature [9], and p f = 1.27 · 10−24 kg·m

sec we may estimate
ml =

p f

cl
= 2 · 10−28kg and mt =

p f

ct
= 4 · 10−28kg.

It is well known that the mass of atom Al is M = 10−25kg
which is around 500 time more in regard to the masses of
Sound Particles.

In this context, we remark that the new characteristic tem-
perature ΘB almost coincide with the Debye temperature ΘD.
Indeed, by our theory for Al:

ΘB =
2

1
3 p f cl

k
(
1 + c3

l

c3
t

) 1
3

≈ 400K

but Debye temperature equals to ΘD = 418K.
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Applying Adjacent Hyperbolas to Calculation of the Upper Limit of the Periodic
Table of Elements, with Use of Rhodium
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In the earlier study (Khazan A. Upper Limit in Mendeleev’s Periodic Table — Ele-
ment No. 155. 2nd ed., Svenska fysikarkivet, Stockholm, 2010) the author showed how
Rhodium can be applied to the hyperbolic law of the Periodic Table of Elements in or-
der to calculate, with high precision, all other elements conceivable in the Table. Here
we obtain the same result, with use of fraction linear functions (adjacent hyperbolas).

1 Introduction

In the theoretical deduction of the hyperbolic law of the Pe-
riodic Table of Elements [1], the main attention was focused
onto the following subjects: the equilateral hyperbola with
the central point at the coordinates (0; 0), its top, the real
axis, and the line tangential to the normal of the hyperbola.
All these were created for each element having the known or
arbitrary characteristics. We chose the top of the hyperbolas,
in order to describe a chemical process with use of Lagrange’s
theorem; reducing them to the equation Y = K/X was made
through the scaling coefficient 20.2895, as we have deduced.

The upper limit of the Table of Elements, which is the
heaviest (last) element of the Table, is determined within the
precision we determine the top of its hyperbola [1]. Therefore
hyperbolas which are related to fraction linear functions were
deduced. These hyperbolas are equilateral as well, but differ
in the coordinates of their centre: x = 0, y = 1. To avoid
possible mistakes in the future, the following terminology has
been assumed: hyperbolas of the kind y = k/x are referred
to as straight; equilateral hyperbolas of the kind y = (ax +

b)/(cx + d) are referred to as adjacent. The latter ones bear
the following properties: such a hyperbola intersects with the
respective straight hyperbola at the ordinate y = 0.5 and the
abscissa equal to the double mass of the element; the line y =

0.5 is the axis of symmetry for the arcs; the real and tangential
lines of such hyperbolas meet each other; the normal of such
a hyperbola is the real axis and the tangential line of another
hyperbola of this kind.

The found common properties of the hyperbolas provided
a possibility to use them for determination of the heaviest
(last) element in another way than earlier.

2 Method of calculation

Once drawing straight hyperbolas for a wide range of the el-
ements, according to their number from 1 to 99 in the Table
of Elements, where the atomic masses occupy the scale from
Hydrogen (1.00794) to Einsteinium (252), one can see that
the real axis of each straight hyperbola is orthogonal to the
real axis of the respective adjacent hyperbola, and they cross
each other at the point y = 0.5.

Then we draw the intersecting lines from the origin of the
adjacent hyperbolas (0; 1). The lines intersect the straight
hyperbolas at two points, and also intersect the real axis and
the abscissa axis where they intercept different lengths.

Connection to molecular mass of an element (expressed
in the Atomic Units of Mass) differs between the abscissas of
the lengths selected by the intersecting lines and the abscissas
of transection of the straight and adjacent hyperbolas. There-
fore, the line which is tangent to the straight in the sole point
(102.9055; 205.811) is quite complicated. These coordinates
mean the atomic mass of Rhodium and the half of the atomic
mass of the heaviest (last) element of the Periodic Table.

The right side of the line can easily be described by the
4th grade polynomial equation. However the left side has a
complicate form, where the maximum is observed at the light
elements (Nitrogen, Oxygen) when lowered to (102.9055; 0)
with the increase in atomic mass.

According to our calculation, the straight and adjacent hy-
perbolas were determined for Rhodium. The real axes go
through the transecting points of the hyperbolas to the axis
X and the line Y = 1, where they intercept the same lengths
411.622. This number differs for 0.009% from 411.66.

Thus, this calculation verified the atomic mass 411.66 of
the heaviest element (upper limit) of the Periodic Table of El-
ements, which was determined in another way in our previous
study [1].

3 Algorithm of calculation

The algorithm and results of the calculation without use of
Rhodium were given in detail in Table 3.1 of the book [1].
The calculation is produced in six steps.

Step 1. The data, according to the Table of Elements, are
written in columns 1, 2, 3.

Step 2. Square root is taken from the atomic mass of each
element. Then the result transforms, through the scaling co-
efficient 20.2895, into the coordinates of the tops of straight
hyperbolas along the real axis. To do it, the square root of the
data of column 3 is multiplied by 20.2895 (column 4), then is
divided by it (column 3).

Step 3. We draw transecting lines from the centre (0; 1) to
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Fig. 1: Calculation with the centre at the point (0;0).

the transections with the line y = 0.5, with the real axis at the
point (X0; Y0), and so forth up to the axis X. To determine the
abscissa of the intersection points, we calculate the equation
of a straight line of each element. This line goes through
two points: the centre (0; 1) and a point located in the line
y = 0.5 or in the axis X: (X − 0)/(X0 − 0) = (Y − 1)/(Y0 − 1).
For instance, consider Magnesium. After its characteristics
substituted, we obtain the equation (X − 0)/(100.0274 − 0) =

(Y − 1)/(0.242983 − 1), wherefrom the straight line equation
is obtained: Y = 1 − 0.007568 X. Thus, the abscissa of the
transecting line, in the line y = 0.5, is 66.0669 (column 6).

Step 4. We write, in column 7, the abscissas of the points
of transection of the straight and adjacent hyperbolas. The
abscissas are equal to the double atomic mass of the element
under study.

Step 5. We look for the region, where the segment created
by a hyperbola and its transecting line is as small as a point
(of the hyperbola and its transecting line). To find the coor-
dinates, we subtract the data of column 7 from the respective
data of column 6. Then we watch where the transecting line
meets the real axis. The result is given by column 8. Here
we see that the numerical value of the segments increases,
then falls down to zero, then increases again but according to
another law.

Step 6. Column 9 gives tangent of the inclination angle
of the straights determined by the equations, constructed for
two coordinate points of each element: Y = −KX + 1, where
K is the tangent of the inclination angle.

4 Using adjanced hyperbolas in the calculation

Because straight and adjacent hyperbolas are equilateral, we
use this fact for analogous calculations with another centre,
located in the point (0; 0). The result has been shown in
Fig. 1. In this case X0 remains the same, while the ordi-
nate is obtained as difference between 1 and Y0. The straight
line equation is obtained between two points with use of the
data of column 9, where tangent should be taken with the
opposite sign. As a result, we obtain an adjacent hyperbola
of Rhodium. For example, consider Calcium. We obtain
X0 = 128.4471, Y0 = 0.31202 (the ordinate for the straight
hyperbola of Calcium), and Y0 = 1 − 0.31202 = 0.68798
(for the adjacent hyperbola). The straight line equation be-
tween these two points is Y = 0.005356 X. Thus, we obtain
x = 186.7065 under y = 1, and x = 93.3508 under y = 0.5.

The new calculations presented here manifest that deter-
mining the heaviest (last) element of the Periodic Table of El-
ements is correct for both ways of calculation: the way with
use of Lagrange’s theorem and the scaling coefficient [1], and
also the current method of the hyperbolas adjacent to that of
Rhodium (method of adjacent hyperbolas). As one can see,
the calculation results obtained via these two methods differ
only in thousand doles of percent.
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How Black Holes Violate the Conservation of Energy

Douglas L. Weller
Email: physics@dougweller.com

Black holes produce more energy than they consume thereby violating the conservation
of energy and acting as perpetual motion machines.

1 Introduction

According to Stephen Hawking and Leonard Mlodinow [1]:
“Because there is a law such as gravity, the Universe can
and will create itself from nothing.” Such views of gravity
are usually attributed as being rooted in Einstein’s general-
relativistic space-time.

However, the field equations Einstein [2] used to describe
the general-relativistic space-time are founded on the con-
servation of momentum and energy. How can a space-time
derived based on the conservation of momentum and energy
provide an ex nihilo source of energy sufficient to create a
universe?

The answer is found in Karl Schwarzschild’s solution [3]
to the field equations, usually called the Schwarzschild met-
ric. The Schwarzschild metric describes a gravitational field
outside a spherical non-rotating mass. When the mass is com-
pacted within its Schwarzschild radius it is commonly re-
ferred to as a black hole.

Herein the terms of the Schwarzschild metric are rear-
ranged to display limits in the Schwarzschild metric that nec-
essarily result from the conservation of momentum and en-
ergy. Then is shown how black holes violate the limits, acting
as perpetual motion machines that produce more energy than
they consume.

2 Expressing the Schwarzschild metric using velocities

In this section, the Schwarzschild metric is rearranged so as
to be expressed using velocities measured with reference co-
ordinates. This rearrangement, which appears as equation (8)
at the end of this section, will make very clear the limits im-
posed within the Schwarzschild metric by the conservation of
momentum and energy.

Einstein [4] originally expressed the principles of special
relativity using velocities measured with reference coordi-
nates. However, Einstein [2, Equations 47] expressed the field
equations in more abstract terms, using tensors. Einstein was
careful to show that the field equations, nevertheless, corre-
spond to the conservation of momentum and energy [2, Equa-
tions 47a] and thus have a nexus to physical reality.

The Schwarzschild metric, as a solution to the field equa-
tions, also corresponds to the conservation of momentum and
energy. Arrangement of the Schwarzschild metric as in (8) al-
lows for an intuitive comprehension of exactly how momen-
tum and energy is conserved.

For a compact mass M with a Schwarzschild radius R,

the Schwarzschild metric is often expressed using reference
space coordinates (r, θ, φ), coordinate time t and local time τ
(often referred to as proper time τ), as

c2dτ2 = c2
(
1 − R

r

)
dt2− dr2

(1 − R/r)
−r2dθ2−(rsinθ)2dφ2. (1)

The Schwarzschild metric as shown in (1) can be rearranged
to form (8), as shown below. To obtain (8) from (1), begin by

multiplying both sides of (1) by
(

1
dt

)2

yielding

c2
(

dτ
dt

)2

= c2
(
1 − R

r

) (dt
dt

)2

− 1
1 − R/r

(
dr
dt

)2

− r2
(

dθ
dt

)2

− (rsinθ)2
(

dφ
dt

)2

,

(2)

which allows motion in all dimensions to be measured with
respect to the reference coordinates (r, θ, φ, t). The terms of
(2) can be rearranged as

c2 = c2
(

dτ
dt

)2

+ c2 R
r

+
1

1 − R/r

(
dr
dt

)2

+ r2
(

dθ
dt

)2

+ (rsinθ)2
(

dφ
dt

)2

.

(3)

The terms in (3) can be grouped by defining three different
velocities. A velocity through the three dimensions of curved
space can be defined as

vS =

√
1

1 − R/r

(
dr
dt

)2

+ r2

(
dθ
dt

)2

+ (rsinθ)2

(
dφ
dt

)2

. (4)

A velocity of local time through a time dimension can be de-
fined as

vτ = c
dτ
dt
. (5)

A gravitational velocity can be defined as

vG = c

√
R
r
. (6)

Using the definitions in (4), (5) and (6), (3) reduces to

c2 = v2
τ + v2

G + v2
S . (7)

Equation (7) can be expressed using orthogonal vectors~vτ,~vG

and ~vS where vτ = |~vτ|, vG = |~vG | and vS = |~vS |, and where

c =
∣∣∣~vτ +~vG +~vS

∣∣∣ . (8)
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Equation (8) is mathematically equivalent to (1) and expres-
ses the Schwarzschild metric as a relationship of vector ve-
locities. The conservation of momentum and energy, as ex-
pressed in the Schwarzschild metric, requires that the magni-
tude of the sum of the velocities is always equal to the con-
stant c. Before exploring the full implication of this relation-
ship, the next section confirms that (8) conforms with what is
predicted by special relativity.

3 Equation (8) and special relativity

In the previous section, the Schwarzschild metric in (1) has
been rearranged as (8) to provide a more concrete picture
of the relationships necessary for conservation of momentum
and energy.

Here is confirmed (8) is in accord with the case of special
relativity for unaccelerated motion.

When there is no acceleration and therefore no gravity
field, R = 0 and thus according to (6), vG = 0 so that (8)
reduces to

c =
∣∣∣~vτ +~vS

∣∣∣ . (9)

When R = 0,

vS ,R=0 =

√(
dr
dt

)2

+ r2

(
dθ
dt

)2

+ (rsinθ)2

(
dφ
dt

)2

, (10)

which expressed in Cartesian coordinates is the familiar form
of velocity used in special relativity,

vS ,R=0 =

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

. (11)

Equation (9) accurately reproduces the relationship of veloc-
ity and time known from special relativity. As velocity vS

in the space dimensions increases, there is a corresponding
decline in the velocity vτ in the orthogonal time dimension.
When velocity in the time dimension reaches its minimum
value (i.e., vτ = 0) this indicates a maximum value (i.e.,
vS = c) in the space dimensions has been reached.

Equation (9) can be rearranged to confirm it portrays ex-
actly the relationship between coordinate time and local time
that is known to occur in the case of special relativity. Specif-
ically, from the relationship of the orthogonal vectors ~vτ, and
~vS in (9), it must be true that

c2 = v2
τ + v2

S . (12)

and thus from (5)

c2 = c2
(

dτ
dt

)2

+ v2
S , (13)

and therefore

dτ
dt

=

√
1 − v

2
S

c2 , (14)

which is a form of the well known Laplace factor indicating
the relationship between local time and coordinate time for
special relativity.

4 Equation (8) and limits imposed by the conservation
of momentum and energy

The arrangement of the Schwarzschild metric in (8) allows
for a more concrete explanation of the limitations inherent
in the Schwarzschild metric that necessarily result from the
conservation of momentum and energy.

The vector sum of ~vτ, ~vG and ~vS establishes a maximum
value of c for each individual vector velocity.

When ~vτ = 0 and ~vS = 0, ~vG reaches its maximum value
of c. Gravitational velocity ~vG cannot exceed its maximum
value of c without violating (8).

According to the definition of vG in (6), when vG = c, then
r = R. When r < R, then vG > c; therefore, according to (8),
r < R never occurs. As shown by Weller [5], matter from
space can never actually reach r = R, but if it could, it would
go no farther. At r = R and vG = c, all motion through space
stops (~vS = 0) and local time stops (~vτ = 0, so dτ/dt = 0).
Without motion in time or space, matter cannot pass through
radial location r = R.

This section has shown that because of the conservation of
momentum and energy — as expressed by the Schwarzschild
metric arranged as in (8) — matter from space cannot cross
the Schwarzschild radius R to get to a location where r < R.

The following sections consider conservation of energy
equivalence in the Schwarzschild metric and the result when
energy conservation is not followed.

5 Apportionment of energy equivalence

Einstein [6] pioneered apportioning energy differently based
on reference frames, using such an apportionment in his ini-
tial calculations deriving the value for the energy equivalence
of a mass (i.e., E = mc2).

This notion of apportionment of energy equivalence is a
helpful tool in understanding the implications of violating the
conservation of energy and momentum in the Schwarzschild
metric. When considering apportionment of energy equiv-
alence in the Schwarzschild metric, it is helpful to keep in
mind how Einstein makes a distinction between “matter” and
a “matterless” gravitational field defined by the field equa-
tions or by the Schwarzschild metric. According to the Ein-
stein [2, p. 143], everything but the gravitation field is de-
noted as “matter”. Therefore, matter when added to the mat-
terless field includes not only matter in the ordinary sense, but
the electromagnetic field as well.

How the Schwarzschild metric apportions energy equiva-
lence can be understood from

c2 = v2
τ + c2 R

r
+ v2

S . (15)
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which is (7) modified so as to replace vG with its equivalent
given in (6). Equation (15) is mathematically equivalent to
(1), just rearranged to aid in the explanation of the apportion-
ment of energy equivalence.

Equation (15) can be put into perhaps more familiar terms
by introducing a particle of mass m into the gravitation field.
The energy equivalence mc2 of the mass m is apportioned ac-
cording to (15) as

mc2 = mv2
τ + mc2 R

r
+ mv2

S . (16)

In order to provide insight into the nature of the gravitational
energy component c2R/r in (15) —which appears as mc2R/r
in (16) — the next section discusses briefly how this term
came to reside in the Schwarzschild metric.

6 Schwarzschild’s description of gravity

One of the issues Schwarzschild [3, see §4] faced when deriv-
ing the Schwarzschild metric was how to describe the effects
of gravity. He chose to do so using a positive integration con-
stant that depends on the value of the mass at the origin. As a
result the Newtonian gravitational constant G appears in the
Schwarzschild metric. In (1) the gravitational constant G ap-
pears as part of the definition of the Schwarzschild radius R.
In both Newtonian physics and the Schwarzschild metric, the
Schwarzschild radius (R) — the location where Newtonian
escape velocity (i.e., vG) is equal to c — is defined as

R =
2GM

c2 . (17)

When the Schwarzschild metric is arranged as in (15), grav-
itational energy component c2R/r increases toward infinity
as radial location r decreases toward zero. This suggests the
location of an unlimited energy source within the Schwarz-
schild metric; however, total gravitational energy is limited
by the requirement that energy be conserved, as illustrated by
the hypothetical described in the next section.

7 A hypothetical illustrating the conservation of energy
equivalence in the Schwarzschild metric

The total energy-equivalence of a system comprised of a mass
M can be defined as

EM = Mc2, (18)

where the energy of magnetic fields is included in M, or ne-
glected. If a mass m is added to the system, the additional
energy E added to the system as a result of the presence of
mass m is also well known to be

E = mc2. (19)

Thus if the system consisting of mass M and mass m were
dissolved into radiation, the total resulting energy would be
equal to

EM + E = Mc2 + mc2. (20)

In order for the conservation of energy to be maintained in the
system as a whole, any gravitational energy EG or any energy
from motion EK that is added to the system as a result of the
presence of mass m must be included as part of the additional
energy E described in (19). Therefore, the additional energy
E present in the system as a result of adding mass m can be
expressed as

E = mc2 = EK + EG + Eτ, (21)

where Eτ is the portion of energy E that is not represented by
gravitational energy component EG or motion energy compo-
nent EK .

Equation (21) is the apportionment of energy equivalence
shown in (16). To confirm this, in (21) set EG = mc2R/r,
EK = mv2

S and Eτ = mv2
τ to obtain (16).

The apportionment of energy equivalence in (16) and (21)
indicates why crossing the Schwarzschild radius R violates
the conservation of energy. When the particle reaches the
Schwarzschild radius R — i.e., r = R — the entire energy
equivalence of mass m, is consumed by the gravitation com-
ponent, i.e., EG = mc2R/R = mc2 . There is no energy left
for mass m to travel in time (i.e., Eτ = 0) or in space (i.e.,
EK = 0). Therefore at locations r = R, all motion in time and
space must stop, preventing mass m from ever crossing the
critical radius.

If mass m were from space to cross the Schwarzschild
radius R, the gravitational energy component EG = mc2R/r
would exceed the total energy equivalence E = mc2 violating
the conservation of energy.

If the particle were allowed to reach r = 0, gravitational
energy component EG = mc2R/r would approach infinity be-
fore becoming undefined.

8 How black holes act as perpetual motion machines

A perpetual motion machine is a hypothetical machine that
violates the conservation of energy by producing more energy
than it consumes.

According to the conservation of momentum and energy
described by the Schwarzschild metric, see (8) and (15), a
particle can never from space cross the Schwarzschild radius
R of a compact mass M.

When a black hole is formed from a compacting mass
M, the last particle on the surface of the mass that reaches
and crosses the Schwarzschild radius R violates (8). Every
particle thereafter that from space crosses R violates (8).

Further, from (16), each particle of mass m that reaches
a radial location r < R, produces an amount of gravitational
energy (EG = mc2R/r) that is greater than its total energy
equivalence mc2, as can only happen in a perpetual motion
machine. When a particle is allowed to approach and reach
r = 0, the ultimate perpetual motion machine is created which
from the finite energy equivalence mc2 of the particle pro-
duces an unlimited amount of gravitational energy as the par-
ticle approaches r = 0.
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9 Concluding Remarks

Describing the effects of gravity using a gravitational constant
and violating the conservation of momentum and energy de-
scribed by the Schwarzschild metric can hypothetically result
in black holes that act as perpetual motion machines able to
produce an unlimited amount of energy. However, the exis-
tence of such perpetual motion machines is not in accordance
with the conservation of momentum and energy as expressed
in Einstein’s general-relativistic space-time.

Special mathematical calculations, including use of spe-
cially selected coordinates, have been used to explain how
a particle can cross the Schwarzschild radius allowing black
holes to form. Critiquing these mathematical calculations
is beyond the scope of this short paper. The author has di-
rectly addressed some of this subject matter in a companion
paper [5].
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Five Fallacies Used to Link Black Holes to Einstein’s Relativistic Space-Time
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For a particle falling radially toward a compact mass, the Schwarzschild metric maps
local time to coordinate time based on radial locations reached by the particle. The
mapping shows the particle will not cross a critical radius regardless of the coordinate
used to measure time. Herein are discussed five fallacies that have been used to make it
appear the particle can cross the critical radius.

1 Introduction

Einstein [1] sets out field equations that describe a matter-
free field. A German military officer, Karl Schwarzschild [2],
shortly before he died, derived a solution of the field equa-
tions for a static gravitational field of spherical symmetry.
Schwarzschild’s solution is referred to as the Schwarzschild
metric.

Einstein [3] showed that matter cannot be compacted be-
low a critical radius defined by the Schwarzschild metric.
Weller [4] shows that compacting matter below the critical
radius to form a black hole results in a violation of the con-
servation of momentum and energy.

Why, then, do many believe that black holes exist in Ein-
stein’s relativistic space time? The belief appears to have
arisen based, at least partly, on an incorrect description of the
journey of a particle falling radially towards a hypothetical
mass compacted below the critical radius. The description is
incorrect in that the particle reaches and crosses the critical
radius.

Herein are discussed five fallacies used in the description
of the particle’s journey. Preliminary to addressing the falla-
cies, it is shown why the particle will never reach the critical
radius.

2 Mapping coordinate time t to local time τ

For a particle falling radially toward a hypothetical mass com-
pacted below a critical radius, a mapping of the coordinate
time t of a distant observer to a local time τ of the particle
based on a radial distance r is shown in Fig. 1. The data

Fig. 1: For a particle falling radially, the Schwarschild Metric maps
every value of the coordinate time t of a distant observer — where
0 ≤ t ≤ ∞— into a corresponding value of the local time τ of the
particle — where 0 ≤ τ ≤ τC .

shown in Fig. 1 can be obtained using the Schwarzschild
metric.

Particularly, for a compact mass M with a Schwarzschild
radius R, the Schwarzschild metric can be expressed using
reference space coordinates (r, θ, φ), a coordinate time t and a
local time τ (often referred to as proper time τ), i.e.,

c2dτ2 =c2
(
1− R

r

)
dt2− dr2

(1−R/r)
−r2dθ2− (r2sin2θ)dφ2. (1)

Reference coordinates (r, θ, φ, t) are the space and time coor-
dinates used by the distant observer to make measurements
while the particle detects passage of time using local time co-
ordinate τ. For a particle falling radially

dθ = dφ = 0, (2)

so the Schwarzschild metric in (1) reduces to

c2dτ2 = c2
(
1 − R

r

)
dt2 − dr2

(1 − R/r)
, (3)

which expresses a relationship between radial location r, local
time τ and coordinate time t.

According to the relationship expressed by (3), for every
radial location ri reached from a starting location rS , the co-
ordinate time ti to reach radial location ri can be calculated
using an integral

ti =

ri∫

rS

dt =

ri∫

rS

f1(r)dr, (4)

where f1(r)is a function of r derived from (3) [5, p. 667].
The local time τi required to reach the radial location ri

can be calculated using an integral

τi =

ri∫

rS

dτ =

ri∫

rS

f2(r)dr, (5)

where f2(r)is a function of r derived from (3) [5, p. 663].
When the radial location ri is set equal to a critical radius

rC , the integrand f1(r) for the integral in (4) and the integrand
f2(r) for the integral in (5) are undefined; however, the inte-
gral in (5) converges while the integral in (4) does not. This
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indicates that the critical radius rC is reached in a finite local
time τC but cannot be reached in finite Schwarzschild coordi-
nate time.

The results of calculations using the integral of (4) and the
integral of (5) are summarized in Fig. 1. As shown by Fig. 1,
based on the integrals in (4) and (5), any value of coordinate
time t, 0 ≤ t ≤ ∞, can be mapped into a corresponding value
for local time τ, 0 ≤ τ ≤ τC based on radial location r.

3 A pause to check correctness of Fig. 1

At this point the reader is encouraged to stop, look at Fig. 1,
and perform an obviousness check to confirm why the data in
Fig. 1 must be correct. The salient points are as follows:

• It takes infinite coordinate time (i.e., t = ∞) to reach
the critical radius rC;

• It takes finite local time τC to reach the critical radius
rC ;

• Both local time τ and coordinate time t monotonically
progress with decreasing r;

• To reach each radial location ri will take a coordinate
time ti to complete and a local time τi to complete;

• Based on radial location ri, a value of coordinate time
ti is mapped to a local time τi.

A reader who understands why Fig. 1 must be an accurate
description of data derived from the Schwarzschild metric has
already made a paradigm shift which if held to provides an
intuitive foundation from which to understand the remainder
of the paper. There is only one slight modification to Fig. 1
that is necessary to reveal why the critical radius can never be
crossed. That is the subject of the next section.

4 Fig. 1 modified to take into account the finite duration
of the compact mass

Fig. 1 depicts data from the Schwarzschild metric for a hy-
pothetical compact mass that is presumed to exist forever in
coordinate time. But what happens when the compact mass
is replaced by an entity that more closely approximates real-
ity in that it has a finite lifetime? For example, replace the
compact mass with a theoretical black hole that has a finite
lifetime. The result is shown in Fig. 2.

Because of Hawking radiation [6], it is estimated that a
black hole will evaporate well within 10100 years. Therefore,
added to Fig. 2 is finite coordinate time tE which is the co-
ordinate time required for a hypothetical black hole to com-
pletely evaporate [7]. Using the mapping shown in Fig. 1, it
is possible to identify a radial location rE — where rE > rC

— the particle will have reached simultaneous with the black
hole evaporating at coordinate time tE .

Fig. 2 shows a local time τE that represents the local time
required for the particle to reach rE . Local time τE corre-
sponds with coordinate time tE — the coordinate time re-
quired for a black hole to completely evaporate. Local time

Fig. 2: According to the mapping of coordinate time to local time
performed using the Schwarschild metric, the local time required to
reach the critical radius of a black hole (τC) is longer than the life of
the black hole (τE).

τC , as calculated by (5), represents the local time required for
the particle to reach critical radius rC . Because τE < τC , the
particle will experience in local time τ that the black hole will
evaporate before the critical radius can be reached.

5 The significance of Fig. 2

Fig. 2, based on the data from the Schwarzschild metric,
shows a radially falling particle will never cross the critical
radius of the compact mass regardless of what coordinate is
used to measure the passage of time. For every radial location
reached by the particle (i.e., rS ≥ r ≥ rE , there is a corre-
sponding coordinate time t to reach the radial location and a
corresponding local time τ to reach the radial location. The
final destination of the particle is not dependent upon which
measure of time is used to time the journey.

Fig. 2 presents a paradigm that is in conformance with the
fundamental requirement of general relativity — and indeed a
coherent universe — that there is a single reality with a logical
sequence of events. The logical sequence of events does not
vary based upon the reference frame from which observations
are made.

Fig. 2 is meant to be an anchor from which can be shown
how each of the five fallacies discussed below entices a de-
parture from a coherent reality, where the logical sequence of
events is consistent for every reference frame, into an inco-
herent reality where physical events differ based on reference
frames from which observations are made.

In the following discussion of fallacies, evaporation of
black holes is used as a convenient way to account for the
finite lifetime of a hypothetical mass compacted below the
critical radius. However, as should be clear from Fig. 2, a par-
ticle cannot cross the critical radius and therefore, as pointed
out by [3], a mass will never compact below its critical ra-
dius. For the implication of this for collapsing stars, see the
discussion of fallacy 4 below.
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Fig. 3: Fig. 3 arranges the data shown in Fig. 2 in a different format.
The trace extending to r = 0 incorrectly suggests that it is physically
possible to cross the critical radius.

6 Fallacy 1: Showing a particle crosses the critical ra-
dius after evaporation of a black hole

For the journey of a particle to a black hole, elapsed time
calculated using (4) and (5) is typically not represented as set
out in Fig. 2, but rather as set out in Fig. 3 [5, p. 667].

Fig. 3, like Fig. 1 and Fig. 2, is a graphic representation
of data obtained from (4) and (5). However, Fig. 3 qualifies
as a fallacy because Fig. 3 includes extra data, not shown in
Fig. 1 or Fig. 2., that incorrectly portrays the journey of the
particle. Particularly, in Fig. 3, the trace representing local
time τ extends beyond τC , the local time required to reach
critical radius rC .

Ordinary rules of mathematics cannot be used to generate
the extra data for local time τ that occur after critical radius rC

is reached. This is because the integrand in (5) is undefined
at rC . Nevertheless, a novel “cycloid principle” [5, See pp.
663–664] has been used to generate this extra data.

But merely showing how the extra data can be mathemat-
ically generated does not overcome the logical sequencing
problem introduced by adding the extra data to Fig. 3. The
extra data suggests rC can be reached and crossed in local
time τC . However, this is impossible because as shown in
Fig. 2, a black hole will evaporate in local time τE , so that
critical radius rC will cease to exist before it can be reached
by the particle.

A horizontal line has been included in Fig. 3 to indicate
where in Fig. 3 the evaporation of a black hole occurs. As
shown by Fig. 3, evaporation of a black hole at radial loca-
tion rE , local time τE and coordinate time tE logically occurs
before reaching radial location rC , local time τC and coordi-
nate time t = ∞.

Fig. 3 should be corrected to show that a physical journey
of a particle towards a black hole must end at radial location
rE — short of the critical radius rC — when the black hole
evaporates at local time τE and coordinate time tE . The end
of the journey occurs at rE whether time is measured using
coordinate time t or local time τ.

7 Fallacy 2: Declaring coordinates to be “pathological”

Fig. 3 suggests an impossible picture of physical reality. The
particle cannot finally arrive at different destinations (r = 0
and r = rC) merely based on the coordinate used to measure
time.

As discussed in the last section, the logical sequence of
events that occurs in all time frames, as out in Fig. 2, makes
clear what is wrong with Fig. 3 and how it can be corrected.
However, another competing explanation has been put forth.

The infinite coordinate time t required to reach the critical
radius has been explained as the result of a “pathology” in the
coordinates used to express the Schwarzschild metric. [5, See
pp. 820-823].

Declaring coordinates to be pathological is a fallacy be-
cause it is a violation of general relativity at its most fun-
damental level. According to general relativity, all coordi-
nates (reference frames) will observe the same reality. As
Einstein [1, p. 117] made clear when setting out the basis for
the theory of general relativity: “. . . all imaginable systems
of coordinates, on principle, [are] equally suitable for the de-
scription of nature”.

If general relativity is true, the events that occur during
the journey of the particle occur in the same logical sequence
irrespective of the coordinates used to observe the journey.
Fig. 2 shows that the logical sequence of events that happens
when time is measured using coordinate time t also happens
in the same logical order when time is measured using lo-
cal time τ. The next section shows that even when making
observation from specially selected coordinates, the logical
sequence of events does not differ from that shown in Fig. 2.

8 Fallacy 3: Use of specially selected coordinates

Fallacy 3 is an attempt to find coordinates that will show the
particle can reach and cross the critical radius. The specially
selected coordinates achieve this purpose based on a logical
fallacy called begging the question in which the thing to be
proved is assumed in a premise.

The thing to be proved is that a free falling particle can
reach and cross the critical radius. The premise is that the
specially selected coordinates can reach and cross the critical
radius. When the specially selected coordinates are used as
the reference coordinates in the Schwarzschild metric, and it
is assumed the specially selected coordinates can cross the
critical radius, it is possible to “show” the particle also can
cross the critical radius.

But the premise is false. In the Schwarzschild metric, no
reference frame can cross its critical radius because to do so
would be a violation of the conservation of momentum and
energy [4]. Below are considered two classes of specially
selected coordinates:

• Coordinates that use the same reference frame as the
free falling particle (e.g., the Novikov coordinates);
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• Coordinates that use the reference frame of a radially
traveling photon, (e.g., ingoing Eddington-Finkelstein
coordinates and the Kruskal-Szekeres coordinates).

For each class of specially selected coordinates it is shown
that their reference frame cannot cross a critical radius within
the time it takes a black hole to evaporate.

Coordinates that use the reference frame of the free
falling particle: Coordinates, such as the Novikov coordi-
nates, that share a reference frame with the particle, also share
the same time coordinate. Thus the local time coordinate τ
measures the passage of time for both the local coordinates
and the reference frame of the Novikov coordinates [5, p.
826].

The time required for a black hole to evaporate as mea-
sured by the time coordinate τ— which is the time coordinate
for the reference frame shared by the Novikov coordinates
shared and the local coordinates — has already been shown
to be τE . See Fig. 2. As discussed above, τE < τC , indicating
a black hole will evaporate at local time τE before the refer-
ence frame for the Novikov coordinates and the particle will
be able to reach the critical radius at local time τC .

Coordinates that use the reference frame of a photon:
The reference frame for ingoing Eddington-Finkelstein co-
ordinates and the Kruskal-Szekeres coordinates is a radially
traveling photon. [5, See pp. 826–832].

The coordinate time t for the photon to reach its critical
radius can be very simply calculated from the Schwarzschild
metric in (1). Because the photon is traveling radially, dθ =

dφ = 0. Because local time for a photon does not progress,
dτ = 0. Therefore, the form of the Schwarzschild metric used
to calculate values for coordinate time t is obtained by setting
dθ = dφ = dτ = 0 in (1) yielding

0 = c2
(
1 − R

r

)
dt2 − dr2

(1 − R/r)
. (6)

The integral in (4) can be used to calculate elapsed coordinate
time t for the photon based on radial distance. Integrand f1(r)
is obtained by rearranging the terms in (6), i.e.,

f1(r) =
dt
dr

=
1

c(1 − R/r)
. (7)

When the photon reaches r = R, the integrand in (7) is unde-
fined and the integral in (4) does not converge. Therefore the
radially traveling photon will not reach R in finite coordinate
time.

A black hole that evaporates in finite coordinate time tE ,
will evaporate when the photon reaches a radial location rL

that is outside R. When the photon reaches radial location
rL at coordinate time tE , the ingoing particle will be at radial
location rE , outside the critical radius rC , as shown by Fig. 2.

In the reference frame of a photon, the black hole will
evaporate when the photon reaches radial location rL, before
the photon reaches its critical radius R. As in all reference

frames of the Schwarzschild metric, the reference frame of
the photon is not able to reach the critical radius before the
black hole evaporates.

9 Fallacy 4: Claiming the existence of surfaces trapped
below a surface of last influence

Misner et al. [5, pp. 873–874] makes the argument that once
the surface of a collapsing star crosses a critical radius, light
reflecting from the surface remains trapped below the criti-
cal radius. This is a fallacy because the surface of a collaps-
ing star will never cross the critical radius [3]. The very last
particle on the surface to cross the critical radius can be ap-
proximately modeled by the radially falling particle of Fig. 2.
From the perspective of the distant observer (coordinate time
in Fig. 2), the collapsing star evaporates in finite time, before
the infinite coordinate time required for the last particle on
the surface to cross the critical radius.

From the perspective of a particle on the surface (local
time in Fig. 2), the collapsing star evaporates very suddenly
as the particle nears the critical radius. It is intriguing to
imagine the experience of the particle as the surface of the
collapsing star immediately disintegrates into radiation near
the critical radius. Such an inferno of unimaginable propor-
tions would tend to be masked from a distant observer by the
extreme gravity near the critical radius. But as the surface
burns away reducing the mass of the collapsing star — caus-
ing the critical radius to retreat farther below the surface of
the collapsing star — a less time dilated view of the inferno
might be released, perhaps providing an explanation for the
sudden appearance of quasars.

Since the surface of a collapsing star cannot cross its criti-
cal radius in finite coordinate time t, Misner et al. [5, pp. 873–
874] measures time from the reference frame for the ingoing
Eddington-Finkelstein coordinates. As discussed in the prior
section, use of ingoing Eddington-Finkelstein coordinates to
prove the critical radius can be crossed just begs the ques-
tion. The ingoing Eddington-Finkelstein coordinates will not
cross the Schwarzschild metric of the collapsing star before
the collapsing star evaporates. This should be especially clear
for the example of a collapsing star since the surface, located
outside its critical radius, will be an impenetrable barrier that
will prevent any photon, serving as a reference frame for the
ingoing Eddington-Finkelstein coordinates, from reaching its
critical radius at R.

10 Fallacy 5: Claiming the infinite coordinate time to
reach the critical radius is an optical illusion

It has been asserted that as measured by proper time, a free-
falling traveler quickly reaches the critical radius. To the dis-
tant observer it appears to take an infinite amount of coordi-
nate time to reach the critical radius as a result of an optical
illusion caused by light propagation introducing a delay in
communicating that the critical radius has been reached [5,

96 Douglas L. Weller. Five Fallacies Used to Link Black Holes to Einstein’s Relativistic Space-Time



January, 2011 PROGRESS IN PHYSICS Volume 1

pp. 874–875]. Fallacy 5 is a departure from general relativity
because in general relativity the difference between local time
and coordinate time is not merely the result of delay intro-
duced by light propagation. In the theory of general relativity,
time progresses at different rates depending on the strength of
the gravity field in which measurements are made.

Einstein [8, p. 106] explains: “we must use clocks of un-
like constitution, for measuring time at places with differing
gravitational potential.” This principle of relativity is embod-
ied in the Schwarzschild metric where gravity changes the
rate at which time progresses [2]. For a precise description
of how in the Schwarzschild metric gravity affects time based
on the conservation of momentum and energy, see [4, Eq. 8].

Because fallacy 5 does not properly account for the ef-
fect gravity has on time, and is therefore not in accord with
general relativity or the Schwarzschild metric, the results pre-
dicted by fallacy 5 do not agree with results calculated using
the Schwarzschild metric. This is illustrated by a hypothetical
in the following section.

11 A hypothetical illustrating the logical contradictions
introduced by fallacy 5

According to fallacy 5, as measured by proper time, a radially
falling traveler quickly reaches and crosses the critical radius
of a black hole. The reality that the traveler quickly reaches
the critical radius appears to the distant observer to take an
infinite amount of time because of the propagation of light.

Fallacy 5’s portrayal of reality is not consistent with cal-
culations made using the Schwarzschild metric.

For example, put a reflector on the back of the traveler and
have the distant observer periodically shine a light beam at the
traveler. Use the Schwarzschild metric to calculate the radial
location at which the faster moving light beam will overtake
the slower moving traveler and reflect back to indicate the
location of the traveler to the distant observer.

No matter how much of a head start the traveler has before
the light is turned on (even trillions of years or longer, as mea-
sured using coordinate time), according to the Schwarzschild
metric the light will always overtake the traveler before the
critical radius is reached. The radial location at which the
traveler is overtaken is the same whether local time or coordi-
nate time is used to make the calculations, provided start time
and overtake time for each light beam are measured with the
same time coordinate. This result is inevitable based on the
pattern of the data obtained from the Schwarzschild metric,
as shown in Fig. 1.

As shown by Fig. 2, the distant observer can continue
to shine light beams at the traveler until the distant observer
observes the black hole evaporates. The feedback from the re-
flected light beams will tell the distant observer that the trav-
eler remains outside the black hole as the black hole evap-
orates slowly in coordinate time, and quickly in local time.
This contradicts the assertion of fallacy 5 that the traveler eas-

ily reaches and crosses the critical radius.
The distant observer does not even need to shine a light

beam for this experiment as background radiation reflecting
from the traveler provides exactly the same information.

Hawking radiation also provides the same information.
While the distant observer sees the traveler outside the critical
radius, the distant observer will also observe Hawking radia-
tion from the evaporating black hole, which will first have to
pass through the radial location of the traveler before reach-
ing the distant observer. This indicates to the distant observer
that the traveler will have experienced, before the distant ob-
server, radiation emitted during the disintegration of the black
hole. Further, the radiation passing by the traveler will con-
tinuously bring information to the distant observer about the
location of the traveler confirming the information from the
light beams. Each photon of radiation from the evaporating
black hole that passes by the traveler is a progress report on
the traveler’s location that will confirm to the distant observer
that the traveler had not yet passed through the critical ra-
dius when that photon of radiation passed the traveler. Such
progress reports will continue until the black hole completely
evaporates.

Light beams from the distant observer, background ra-
diation and Hawking radiation will all intercept the traveler
outside the critical radius — according to the Schwarzschild
metric — regardless of the coordinates used to make mea-
surements. This result contradicts the assertion of fallacy 5
that the critical radius is quickly crossed and only appears
to the distant observer to take infinite time because of light
propagation.
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Lee Smolin Five Great Problems and Their Solution
without Ontological Hypotheses

Gunn Quznetsov
Chelyabinsk State University, Chelyabinsk, Ural, Russia. E-mail: gunn@mail.ru, quznets@yahoo.com

Solutions of Lee Smolin Five Great Problems from his book The Trouble with Physics:
the Rise of String Theory, the Fall of a Science, and What Comes Next are described.
These solutions are obtained only from the properties of probability without any onto-
logical hypotheses.

Introduction

In his book [1] Lee Smolin, professor of Perimeter Institute,
Canada, has formulated the following five problems which he
named Great Problems:

Problem 1: Combine general relativity and qua-
ntum theory into a single theory that claim to be
the complete theory of nature.

Problem 2: Resolve the problems in the founda-
tions of quantum mechanics, either by making
sense of the theory as it stands or by inventing
a new theory that does make sense. . . .

Problem 3: Determine whether or not the vari-
ous particles and forces can be unified in a the-
ory that explain them all as manifestations of a
single, fundamental entity. . . .

Problem 4: Explain how the values of of the free
constants in the standard model of particle phy-
sics are chosen in nature. . . .

Problem 5: Explain dark matter and dark en-
ergy. Or if they don’t exist, determine how and
why gravity is modified on large scales. . . .

Solution

Let us consider the free Dirac Lagrangian:

L := ψ†
(
β[k]∂k + mγ[0]

)
ψ. (1)

Here∗

β[ν] :=
[
σν 02
02 −σν

]
, γ[0] :=

[
02 12
12 02

]

where σ1, σ2, σ3 are the Pauli matrices.
Such Lagrangian is not invariant [2] under the SU(2)

transformation with the parameter α:

ψ†U†(α)
(
β[k]∂k + m1γ

[0]
)

U(α)ψ

= ψ†
(
β[k]∂k + (m cosα) γ[0]

)
ψ,

∗02 :=
[

0 0
0 0

]
, 12 :=

[
1 0
0 1

]
, β[0] := −14 := −

[
12 02
02 12

]
,

k ∈ {0, 1, 2, 3} , ν ∈ {1, 2, 3}.

the mass member is changed under this transformation.
Matrices β[ν] and γ[0] are anticommutative. But it turns

out that there exists a fifth matrix β[4] anticommuting with all
these four matrices:

β[4] := i
[

02 12
−12 02

]
.

And the term with this matrix should be added to this La-
grangian mass term:

L := ψ†
(
β[k]∂k + m1γ

[0] + m2β
[4]

)
ψ

where
√

m2
1 + m2

2 = m.
Let U(α) be any SU(2)-matrix with parameter α and let U

be the space in which U(α) acts. In such case U(α) divides the
space U into two orthogonal subspaces Uo and Ux such that
for every element ψ of U there exists an element ψo of Uo and
an element ψx of Ux which fulfills the following conditions
[3, 4]:

1.
ψo + ψx = ψ,

2.

ψ†oU†(α)
(
β[k]∂k + m1γ

[0] + m2β
[4]

)
U(α)ψo =

= ψ†o(β[k]∂k + (m1 cosα − m2 sinα) γ[0] + (2)
+ (m2 cosα + m1 sinα) β[4])ψo,

3.

ψ†xU†(α)
(
β[k]∂k + m1γ

[0] + m2β
[4]

)
U(α)ψx =

= ψ†x(β[k]∂k + (m1 cosα + m2 sinα) γ[0] + (3)
+ (m2 cosα − m1 sinα) β[4])ψx.

In either case, m does not change.
I call these five (β :=

{
β[ν], β[4], γ[0]

}
) anticommuting ma-

trices Clifford pentad. Any sixth matrix does not anticom-
mute with all these five.

There exist only six Clifford pentads (for instance, [5,6]):
I call one of them (the pentad β) the light pentad, three (ζ, η,
θ) — the chromatic pentads, and two ( ∆, Γ) — the gustatory
pentads.
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The light pentad contains three diagonal matrices (β[ν])
corresponding to the coordinates of 3-dimensional space, and
two antidiagonal matrices (β[4], γ[0]) relevant to mass terms
(2,3) — one for the lepton state and the other for the neutrino
state of this lepton.

Each chromatic pentad also contains three diagonal matri-
ces corresponding to three coordinates and two antidiagonal
mass matrices - one for top quark state and the other — for
bottom quark state.

Each gustatory pentad contains a single diagonal coordi-
nate matrix and two pairs of antidiagonal mass matrices [6]
— these pentads are not needed yet.

Let∗
〈
ρAc, jA,ν

〉
be a 1+3-vector of probability density of

a pointlike event A.
For any A the set of four equations with an unknown com-

plex 4 × 1 matrix function ϕ(xk)


ρA = ϕ†ϕ,
jA,ν

c
= −ϕ†β[ν]ϕ

∣∣∣∣∣∣∣∣

has solution [3].
If† ρA (xk) = 0 for all xk such that |xk | > (πc/h) then ϕ

obeys the following equation [10]:
(
−
(
∂0+iΘ0+iΥ0γ

[5]
)
+β[ν]

(
∂ν+iΘν+iΥνγ

[5]
)

+

+2
(
iM0γ

[0]+iM4β
[4]

) )
ϕ+

+

(
−
(
∂0+iΘ0+iΥ0γ

[5]
)
−ζ[ν]

(
∂ν+iΘν+iΥνγ

[5]
)

+

+2
(
−iMζ,0γ

[0]
ζ +iMζ,4ζ

[4]
) )
ϕ+

+

((
∂0+iΘ0+iΥ0γ

[5]
)
−η[ν]

(
∂ν+iΘν+iΥνγ

[5]
)

+

+2
(
−iMη,0γ

[0]
η −iMη,4η

[4]
) )
ϕ+

+

(
−
(
∂0+iΘ0+iΥ0γ

[5]
)
−θ[ν]

(
∂ν+iΘν+iΥνγ

[5]
)

+

+2
(
iMθ,0γ

[0]
θ +iMθ,4θ

[4]
) )
ϕ =

= 0

with real
Θk (xk), Υk (xk), M0 (xk), M4 (xk), Mζ,0 (xk),
Mζ,4 (xk), Mη,0 (xk), Mη,4 (xk), Mθ,0 (xk), Mθ,4 (xk)
and with

γ[5] :=
[

12 02
02 −12

]
.

∗c = 299792458.
†h := 6.6260755 · 10−34

The first summand of this equation contains elements of
the light pentad only. And the rest summands contain ele-
ments of the chromatic pentads only.

This equation can be rewritten in the following way:

β[k]
(
−i∂k + Θk + Υkγ

[5]
)
ϕ + (4)

+(M0γ
[0] + M4β

[4] −
−Mζ,0γ

[0]
ζ + Mζ,4ζ

[4] −
−Mη,0γ

[0]
η − Mη,4η

[4] +

+Mθ,0γ
[0]
θ + Mθ,4θ

[4])ϕ =

= 0

because
ζ[ν]+η[ν]+θ[ν] = −β[ν].

This equation is a generalization of the Dirac’s equation with
gauge fields Θk (xk) and Υk (xk) and with eight mass mem-
bers. The mass members with elements of the light pentad (
M0 and M4) conform to neutrino and its lepton states. And six
mass members with elements of the chromatic pentads con-
form to three pairs (up and down) of chromatic states (red,
green, blue).

Let this equation not contains the chromatic mass nem-
bers:
(
β[k]

(
−i∂k + Θk + Υkγ

[5]
)

+ M0γ
[0] + M4β

[4]
)
ϕ = 0. (5)

If function ϕ is a solution of this equation then ϕ represents
the sum of functions ϕn,s which satisfy the following condi-
tions [3, 62–71]:

n and s are integers;
each of these functions obeys its equation of the following

form:
(
β[k]

(
i∂k − Θ0 − Υ0γ

[5]
)
− h

c

(
γ[0]n + β[4]s

))
ϕn,s = 0; (6)

for each point xk of space-time: or this point is empty (for
all n and s: ϕn,s (xk) = 0), or in this point is placed a sin-
gle function (for xk there exist integers n0 and s0 such that
ϕn0,s0 (xk) , 0 and if n , n0 and/or s , s0 then ϕn,s (xk) = 0).

In this case if m :=
√

n2 + s2 then m is a natural number.
But under the SU(2)-transformation with parameter α (2, 3):

m→
(
(n cosα − s sinα)2 + (s cosα + n sinα)2

)0.5
,

(n cosα − s sinα) and (s cosα + n sinα) must be integers
too. But it is impossible.

But for arbitrarily high accuracy in distant areas of the
natural scale there exist such numbers m that for any α some
natural numbers n′ and s′ exist which obey the following con-
ditions: n′ ≈ (n cosα − s sinα) and s′ ≈ (s cosα + n sinα).
These numbers m are separated by long intervals and deter-
mine the mass spectrum of the generations of elementary par-
ticles. Apparently, this is the way to solve Problem 4 because
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the masses are one of the most important constants of particle
physics.

The Dirac’s equation for leptons with gauge members
which are similar to electroweak fields is obtained [4, p. 333–
336] from equations (5, 6). Such equation is invariant under
electroweak transformations. And here the fields W and Z
obey the Klein-Gordon type equation with nonzero mass.

If the equation (4) does not contain lepton’s and neutrino’s
mass terms then the Dirac’s equation with gauge members
which are similar to eight gluon’s fields is obtained. And os-
cillations of the chromatic states of this equation bend space-
time. This bend gives rise to the effects of redshift, confine-
ment and asymptotic freedom, and Newtonian gravity turns
out to be a continuation of subnucleonic forces [10]. And
it turns out that these oscillations bend space-time so that at
large distances the space expands with acceleration according
to Hubble’s law [7]. And these oscillations bend space-time
so that here appears the discrepancy between the quantity of
the luminous matter in the space structures and the traditional
picture of gravitational interaction of stars in these structures.
Such curvature explains this discrepancy without the Dark
Matter hypothesis [8] (Problem 5).

Consequently, the theory of gravitation is a continuation
of quantum theory (Problem 1 and Problem 3).

Thus, concepts and statements of Quantum Theory are
concepts and statements of the probability of pointlike events
and their ensembles.

Elementary physical particle in vacuum behaves like the-
se probabilities. For example, according to doubleslit exper-
iment [9], if a partition with two slits is placed between a
source of elementary particles and a detecting screen in vac-
uum then interference occurs. But if this system will be put in
a cloud chamber, then trajectory of a particle will be clearly
marked with drops of condensate and any interference will
disappear. It seems that a physical particle exists only in the
instants of time when some events happen to it. And in the
other instants of time the particle does not exist, but the prob-
ability of some event to happen to this particle remains.

Thus, if no event occurs between an event of creation of a
particle and an event of detection of it, then the particle does
not exist in this period of time. There exists only the prob-
ability of detection of this particle at some point. But this
probability, as we have seen, obeys the equations of quantum
theory and we get the interference. But in a cloud chamber
events of condensation form a chain meaning the trajectory
of this particle. In this case the interference disappears. But
this trajectory is not continuous — each point of this line has
an adjacent point. And the effect of movement of this parti-
cle arises from the fact that a wave of probability propagates
between these points.

Consequently, the elementary physical particle represents
an ensemble of pointlike events associated with probabilities.
And charge, mass, energy, momentum, spins, etc. represent
parameters of distribution of these probabilities. It explains

all paradoxes of quantum physics. Schrödinger’s cat lives
easily without any superposition of states until the microevent
awaited by everyone occurs. And the wave function disap-
pears without any collapse in the moment when event proba-
bility disappears after the event occurs.

Hence, entanglement concerns not particles but probabil-
ities. That is when the event of the measuring of spin of
Alice’s electron occurs then probability for these entangled
electrons is changed instantly in the whole space. Therefore,
nonlocality acts for probabilities, not for particles. But prob-
abilities can not transmit any information (Problem 2).

Conclusion

Therefore, Lee Smolin’s Five Great Problems do have solu-
tion only using the properties of probabilities. These solu-
tions do not require any dubious ontological hypotheses such
as superstrings, spin networks, etc.

Submitted on December 15, 2010 / Accepted on December 16, 2010
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It is argued that the failure of particle dark matter experiments to verify its existence
may be attributable to a non-Planckian “action”, which renders dark matter’s behav-
ior contradictory to the consequences of quantum mechanics as it applies to luminous
matter. It is pointed out that such a possibility cannot be convincingly dismissed in the
absence of a physical law that prohibits an elementary “action” smaller than Planck’s.
It is further noted that no purely dark matter measurement of Planck’s constant exists.
Finally, the possibility of a non-Planckian cold dark matter particle is explored, and
found to be consistent with recent astronomical observations.

The search for dark matter (DM) remains one of the most
vexing of the unresolved problems of contemporary physics.
While the existence of DM is no longer in dispute, its com-
position is a matter of lively debate. A variety of subatomic
particles with exotic properties have been proposed as possi-
ble candidates. However, as is well known by now, after more
than three decades of experimentation, and considerable ex-
penditure, none have yet been detected. If the past is any
guide, such negative results often force us to radically reex-
amine some of the basic tenets underlying physical concepts.
It is the purpose of this paper to propose a plausible, exper-
imentally verifiable, explanation for the persistent failure of
particle DM experiments to yield positive results.

Since DM’s existence is inferred solely from its gravita-
tional effects, and its nature is otherwise unknown, one can-
not rule-out the possibility that DM’s behavior may be con-
tradictory to the consequences of quantum mechanics as it
applies to luminous matter (LM), which is particularly trou-
bling since it necessarily brings into question the applica-
bility of Planck’s constant as a viable “action” in this non-
luminous domain. It is important to point out that no purely
DM measurement of Planck’s constant exists. Indeed, all that
we know about Planck’s constant is based on electromagnetic
and strong interaction experiments, whose particles and fields
account for only 4.6% of the mass-energy density of the ob-
servable universe, which pales when compared to the 23.3%
attributable to DM.

While it is true that very little is known about DM, some
progress has been made on the astronomical front. Recent
observations have revealed important new clues regarding its
behavior. Particularly important, an analysis of cosmic mi-
crowave background observables has provided conclusive ev-
idence that DM is made up of slow-moving particles [1], a de-
velopment that has firmly established the cold DM paradigm
as the centerpiece of the standard cosmology. Equally re-
vealing, large aggregates of DM have been observed pass-
ing right through each other without colliding [2–3], which is
clearly significant since it essentially rules out the idea that
particles of DM can somehow interact and collide with each

other. Taken together these astronomical findings are sugges-
tive of a non-relativistic, non-interacting, particle whose co-
herent mode of behavior is a characteristic of classical light.
Clearly, for such a particle, the condition of quantization can
only become a physical possibility if its “action” is consider-
ably smaller than Planck’s.

Upon reflection one comes to the realization that such a
possibility can be accommodated in the context of the frame-
work of quantum mechanics, whose formalism allows for two
immutable “actions”. Namely, Planck’s familiar constant,
h, which has been shown experimentally to play a crucial
role in the microphysical realm, and the more diminutive,
less familiar “action” e2/c where e is the elementary charge,
and c is the velocity of light in a vacuum (denoted by the
symbol j for simplicity of presentation). While this non-
Planckian constant appears to have no discernible role in our
luminous world, it is, nevertheless, clearly of interest since it
may be sufficiently smaller than Planck’s constant to account
for DM’s astronomical behavior; a possibility that cannot be
convincingly dismissed in the absence of a physical law that
prohibits an elementary “action” smaller than Planck’s.

Whether or not we know DM’s nature, the undisputed fact
remains that all elementary particles exhibit wavelike proper-
ties. Hence, if DM’s behavior is orchestrated by this non-
Planckian “action” it should be possible to describe such par-
ticle waves quantum mechanically. In order to facilitate mat-
ters we shall assume that DM’s non-Planckian particle/wave
properties are consistent with both the Einstein relation for
the total energy of a particle, in the form

E = j f = mc2 =
m0c2√

1 − v2/c2
(1)

and the de Broglie relation for the momentum

p =
j
λ
= mv =

m0v√
1 − v2/c2

, (2)

where j = 7.6956 ×10−30 erg s is the conjectured DM “action”
quantum, which may be compared with the Planck constant,
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h, found in our luminous world (i.e., 6.6260 ×10−27 erg s).
Now, since the relation between energy and momentum in
classical mechanics is simply

E =
1

2m
p2 (3)

we can replace E and p with the differential operators

E = i
j

2π
∂

∂t
(4)

and
p = − i

j
2π

∂

∂x
(5)

and operate with the result on the wave function ψ(x, t) that
represents the de Broglie wave. We then obtain

i
j

2π
∂ψ

∂t
= − ( j/2π)2

2m
∂2ψ

∂x2 , (6)

which is Schrödinger’s general wave equation for a non-
relativistic free particle. Its solution describes a non-Planck-
ian particle that is the quantum mechanical analog of a non-
interacting classical particle that is moving in the x direc-
tion with constant velocity; a result that closely mirrors DM’s
elusive behavior, and can be simply explained in the context
of this generalization. That is, the classical concept of two
particles exerting a force on each other corresponds to the
quantum mechanical concept that the de Broglie wave of one
particle influences the de Broglie wave of another particle.
However, this is only possible if the de Broglie wave propa-
gates non-linearly, in sharp contrast with Schrödinger’s gen-
eral wave equation for which the propagation of waves is de-
scribed by a linear differential equation. Hence the presence
of one wave does not affect the behavior of another wave, al-
lowing them to pass right through each other without collid-
ing, which is consistent with the results of the aforementioned
astronomical observations [2–3].

If it exists, this non-Planckian particle would easily have
eluded detection because of the diminutive magnitude of the
non-Planckian “action”. Moresuccinctly, thecloseronecomes
to the classical limit the less pronounced are the quantum ef-
fects. As a result, its behavior is expected to be more wave-
like than particlelike, which is consistent with the observed
coherent mode of behavior of large aggregates of DM [2–3].
Clearly, the detection of this non-Planckian particle in a ter-
restrial laboratory setting will, almost certainly, require the
use of a wholly different set of experimental tools than those
presently employed in conventional DM experiments, which
are, after all, specifically designed to detect particle interac-
tions.

While, as has been shown, DM’s behavior in the astro-
nomical arena can be satisfactorily accounted for quantum
mechanically, in terms of this non-Planckian “action”, the de-
tailed implications remain to be worked out. Nevertheless,

the introduction of this non-Planckian cold DM particle in
the context of quantum mechanics, provides a fundamentally
plausible means of explaining the failure of conventional ex-
periments to provide conclusive evidence for the particle na-
ture of DM. After these many decades of null experimental
results, the time has come to acknowledge the possibility that
DM’s behavior may be orchestrated by a richer variety of fun-
damentally different mechanisms than previously recognized.

Appendix

I have taken note of the fact that if the reader is to grapple with
some of the concepts generated by this paper, it would be ad-
visable to ascribe an appropriate name to this non-Planckian
particle. Clearly, the basic aspect that one should be mindful
of is this particle’s indispensable role in enabling the warp-
ing of spacetime sufficiently enough to cradle whole galaxies.
Hence, I believe “warpton” would be the name of choice.

It is hoped that the experimental community can be suffi-
ciently motivated to make a determined search for this provo-
cative particle.

Submitted on December 14, 2010 / Accepted on December 15, 2010.
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A numerical analysis revealed that masses, radii, distances from the sun, orbital peri-
ods and rotation periods of celestial bodies can be expressed on the logarithmic scale
though a systematic set of numbers: 4e, 2e, e, e

2 , e
4 , e

8 and e
16 . We analyzed these data

with a fractal scaling model originally published by Müller in this journal, interpreting
physical quantities as proton resonances. The data were expressed in continued frac-
tion form, where all numerators are Euler’s number. From these continued fractions,
we explain the volcanic activity on Venus, the absence of infrared emission of Uranus
and why Jupiter and Saturn emit more infrared radiation than they receive as total ra-
diation energy from the Sun. We also claim that the Kuiper cliff was not caused by a
still unknown planet. It can be understood why some planets have an atmosphere and
others not, as well as why the ice on dwarf planet Ceres does not evaporate into space
through solar radiation. The results also suggest that Jupiter and Saturn have the princi-
pal function to capture asteroids and comets, thus protecting the Earth, a fact which is
well-reflected in the high number of their irregular satellites.

1 Introduction

Recently in three papers of this journal, Müller [1–3] sug-
gested a chain of similar harmonic oscillators as a general
model to describe physical quantities as proton resonance os-
cillation modes. In this model, the spectrum of eigenfrequen-
cies of a chain system of many proton harmonic oscillators is
given by a continuous fraction equation [2]:

f = fp exp S (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton and S the con-
tinued fraction corresponding to f . S was suggested to be in
the canonical form with all partial numerators equal 1 and the
partial denominators are positive or negative integer values.

S = n0 +
1

n1 +
1

n2 +
1

n3 + ...

(2)

Particularly interesting properties arise when the nominator
equals 2 and all denominators are divisible by 3. Such frac-
tions divide the logarithmic scale in allowed values and empty
gaps, i.e. ranges of numbers which cannot be expressed with
this type of continued fractions. He showed that these contin-
ued fractions generate a self-similar and discrete spectrum of
eigenvalues [1], that is also logarithmically invariant. Max-
imum spectral density areas arise when the free link n0 and
the partial denominators ni are divisible by 3.

In a previous article [5] we slightly modified this model,
substituting all nominators by Euler’s number. In that way
we confirmed again that elementary particles are proton res-
onance states, since most masses were found to be located
close to spectral nodes and definitively not random.

In this article we investigated various solar system data,
such as masses, sizes and distances from the Sun, rotation and
orbital periods of celestial bodies on the logarithmic scale.
We showed that continued fractions with Euler’s number as
nominator are adequate to describe the solar system. From
these continued fractions we derived claims regarding spe-
cific properties of planets. It became evident, that the solar
system possesses a hidden fractal structure.

2 Data sources and computational details

All solar system data, such as distances, masses, radii, orbital
and rotation periods of celestial bodies, were taken from the
NASA web-site. The km was converted into the astronomical
unit via 1 AU = 149, 597, 870.7 km. The mean distance of an
object from the central body is understood as 1

2 (Aphelion −
Periphelion). Numerical values of continued fractions were
always calculated using the the Lenz algorithm as indicated
in reference [4].

3 Results and discussion

3.1 Standard numerical analysis

Before doing any numerical analysis, one always has to be
aware of the fact that the numerical value of a quantity de-
pends on the physical unit. In this particular analysis we
decided to choose practical units which were made exclu-
sively by nature. Such units are the astronomical unit (AU)
for lengths, the earth mass for planetary masses, as well as
the year and the day for orbit and rotation periods. As can be
seen, this particular choice leads to quite interesting regulari-
ties.

In a previous article [5], we had already done a simi-
lar analysis of elementary particle masses on the logarithmic
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scale and detected a set of systematic mass gaps: 2e, e, e
2 , e

4 ,
e
8 and e

16 . Therefore, our numerical analysis was focused on
these numbers and in a similar way, we detected this set of
expressions again.

When looking from the Earth in direction away from the
Sun, it can be noted that there are two principal zones, where
mass accumulation into heavy planets seems to be forbidden.
The existing mass is scattered in the form of asteroids and
large bodies cannot become more than dwarf planets. The
first such zone is the so-called Asteroid belt, located between
Mars and Jupiter. Its population has already been well in-
vestigated, especially to confirm the orbital resonance effects
manifesting in the Kirkwood gaps. Most asteroids have semi-

Table 1: Mean distances of celestial bodies (d) from the Sun ex-
pressed through e on the logarithmic scale and absolute values of
corresponding numerical errors.

Object
d [AU] Expression Numerical
ln(d) error
Mercury
0.3871044 −

(
e
4 + e

8

)
0.0703

-0.9491
Venus
0.723339 − e

8 0.0159
-0.3239
Earth
0.9999808 0e 0.0000
0.0000
Mars
1.523585 e

8 0.0812
0.4211
Ceres
2.7663 e

4 + e
8 0.0019

1.0175
Jupiter
5.204419 e

2 + e
8 0.0494

1.6495
Saturn
9.582516 e

2 + e
4 + e

16 0.0513
2.2599
Uranus
19.201209 e + e

16 0.0668
2.9550
Neptune
30.04762 e + e

4 0.0049
3.4028
Pluto
39.486178 e + e

4 + e
8 0.0618

3.6758

major axes between 2.1 and 3.5 AU.
The second scattered-mass zone is the Kuiper belt, lo-

cated from the orbit of Neptune (30 AU) to 55 AU distance
from the Sun.

The Oort cloud is also such a scattered-mass zone. Due
to its giant distance from the center of the solar system, there
is no well-confirmed lower and upper limit, so we did not
include it into the numerical analysis.

Table 2: Equatorial radii (r) of celestial bodies expressed through e
on the logarithmic scale and absolute values of corresponding nu-
merical errors.

Object
r [AU] Expression Numerical
ln(r) error
Mercury
1.6308 × 10−5 −

(
4e + e

16

)
0.0192

-11.0238
Venus
4.0454 × 10−5 −

(
2e + e + e

2 + e
4

)
0.0782

-10.1154
Earth
4.2635 × 10−5 −

(
2e + e + e

2 + e
8 + e

16

)
0.0391

-10.0628
Mars
2.2708 × 10−5 −

(
2e+e+ e

2 + e
4 + e

8 + e
16

)
0.0104

-10.6928
Ceres
3.2574 × 10−6 −

(
4e + e + e

2 + e
8

)
0.0625

-12.6346
Jupiter
4.7789 × 10−4 −

(
2e + e

2 + e
4 + e

16

)
0.0010

-7.6461
Saturn
4.0287 × 10−4 −

(
2e + e

2 + e
4 + e

8

)
0.0018

-7.8169
Uranus
1.709 × 10−4 −

(
2e + e + e

8 + e
16

)
0.0102

-8.6747
Neptune
1.6554 × 10−4 −

(
2e + e + e

8 + e
16

)
0.0418

-8.7063
Pluto
7.6940 × 10−6 −

(
4e + e

4 + e
16

)
0.0525

-11.7751
Sun
4.649 × 10−3 −2e 0.0549
-5.3817
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Table 3: Sidereal orbital periods (T) of celestial bodies expressed
through e on the logarithmic scale and absolute values of corre-
sponding numerical errors.

Object
T [y] Expression Numerical
ln(T) error
Mercury
0.2408467 − e

2 0.0645
-1.4236
Venus
0.61519726 −

(
e
8 + e

16

)
0.0239

-0.4858
Earth
1.0000174 0e 0.0000
0.0000
Mars
1.8808476 e

4 0.0479
0.6317
Ceres
4.60 e

2 + e
16 0.0029

1.5261
Jupiter
11.862615 e

2 + e
4 + e

8 + e
16 0.0750

2.4734
Saturn
29.447498 e + e

4 0.0153
3.3826
Uranus
84.016846 e + e

2 + e
8 0.0138

4.4310
Neptune
164.79132 e + e

2 + e
4 + e

8 0.0079
5.1047
Pluto
247.92065 2e 0.0765
5.5131

It can be seen that the distance between Ceres (the largest
Asteroid belt object) and Pluto (the largest Kuiper belt ob-
ject) matches Euler’s number quite accurately. Table 1 sum-
marizes the mean distances of the most important celestial
bodies from the Sun together with the corresponding natural
logarithms. It was found that all logarithms can be expressed
as a sum of 2e, e, e

2 , e
4 , e

8 and e
16 . Most distances could even

expressed as multiples of e
8 since they do not contain the sum-

mand e
16 . The numerical errors on the logarithmic scale are

significantly lower than e
16 .

Analogously, we expressed the equatorial radii, sidereal
orbital periods, sidereal rotation periods and masses of celes-
tial bodies on the logarithmic number line (see Tables 2–5).

Table 4: Sidereal rotation periods (T) of celestial bodies (retrograde
rotation ignored) expressed through e on the logarithmic scale and
absolute values of corresponding numerical errors.

Object
T [d] Expression Numerical
ln(T) error
Mercury
58.6462 e + e

2 0.0059
4.0715
Venus
243.018 2e 0.0565
5.4931
Earth
0.99726968 0e 0.0027
-0.0027
Mars
1.02595676 0e 0.0256
0.0256
Ceres
0.3781 −

(
e
4 + e

8

)
0.0468

-0.9726
Jupiter
0.41354 −

(
e
4 + e

16

)
0.0335

-0.8830
Saturn
0.44401 −

(
e
4 + e

16

)
0.0376

-0.8119
Uranus
0.71833 − e

8 0.0090
-0.3308
Neptune
0.67125 − e

4 0.0588
-0.3986
Pluto
6.3872 e

2 + e
8 + e

16 0.0145
1.8543
Sun
25.05 e + e

8 + e
16 0.0071

3.2209

In very few cases it was necessary to introduce 4e into the set
of summands.

From these results we conclude that all these numerical
values of planetary data are definitively not a set of random
numbers. The repeatedly occurring summands strongly sup-
port the idea of a self-similar, fractal structure as Müller al-
ready claimed in reference [2].

In the present form, these results are obtained only when
considering nature-made units, which underlines their impor-
tance.
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Table 5: Masses (m) of celestial bodies, rescaled by earth mass and
expressed through e on the logarithmic scale and absolute values of
corresponding numerical errors.

Object
m [×1024 kg] Expression Numerical
ln( m

mEarth
) error

Mercury
0.330104 −

(
e + e

16

)
0.0068

-2.8950
Venus
4.86732 − e

16 0.0347
-0.2046
Earth
5.97219 0e 0.0000
0.0000
Mars
0.641693 −

(
e
2 + e

4 + e
16

)
0.0226

-2.2312
Ceres
0.000943 −

(
2e + e + e

8 + e
16

)
0.0758

-8.7403
Jupiter
1898.13 2e + e

8 0.0148
5.7615
Saturn
568.319 e + e

2 + e
8 + e

16 0.0315
4.5556
Uranus
86.8103 e 0.0416
2.6766
Neptune
102.410 e + e

16 0.0463
2.8419
Pluto
0.01309 −

(
2e + e

4

)
0.0032

-6.1193
Sun
1989100 4e + e

2 + e
8 + e

16 0.0258
12.7161

3.2 Continued fraction analysis

Due to the fact that all the solar system data can be expressed
by multiples of e

16 , it is consistent to set all partial numera-
tors in Müller’s continued fractions (given in equation(2)) to
Euler’s number. We further follow the formalism of previous
publications [5, 6] and introduce a phase shift p in equation
(2). According to [6] the phase shift can only have the val-
ues 0 or ±1.5. So we write for instance for the masses of the

celestial bodies:

ln
mass

proton mass
= p + S (3)

where S is the continued fraction

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (4)

We abbreviate p + S as [p; n0 | n1, n2, n3, . . .]. The free link
n0 and the partial denominators ni are integers divisible by 3.
For convergence reason, we have to include |e+1| as allowed
partial denominator. This means the free link n0 is allowed
to be 0,±3,±6,±9 . . . and all partial denominators ni can take
the values e+1,−e−1,±6,±9,±12 . . ..

Analogously we write for the planetary mean distances
from the Sun:

ln
mean distance

λC
= p + S (5)

where λC = h
2πmc is the reduced Compton wavelength of

the proton with the numerical value 2.103089086 × 10−16 m.
Since the exact diameter or radius of the proton is unknown,
some other proton related parameter is used, which can be
determined accurately. The same applies for the equatorial
radii. For orbital and rotational periods we write:

ln
time period

τ
= p + S (6)

where τ =
λC
c is the oscillation period of a hypothetical pho-

ton with the reduced Compton wavelength of the proton and
traveling with light speed (numerical value 7.015150081 ×
10−25 s).

For the calculation of the continued fractions we did not
consider any standard deviation of the published data. Prac-
tically, we developed the continued fraction and determined
only 18 partial denominators. Next we calculated repeatedly
the data value from the continued fraction, every time consid-
ering one more partial denominator. As soon as considering
further denominators did not improve the experimental data
value significantly (on the linear scale), we stopped consid-
ering further denominators and gave the resulting fraction in
Tables 6-10. This means we demonstrate how accurately the
published solar system data can be expressed through contin-
ued fractions. Additionally we gave also the numerical error,
which is defined as absolute value of the difference between
NASA’s published data value and the value calculated from
the continued fraction representation.

The continued fraction representations of the masses of
celestial bodies are given in Table 6. As can be seen, the
absolute value of the first partial denominator is frequently
high, which locates the mass very close to the principal node.
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Table 6: Continued fraction representation of masses (m) of celestial
bodies according to equation (3) and absolute values of correspond-
ing numerical errors.

Object Continued fraction representation
m [kg] Numerical error [kg]
Mercury [1.5; 114 | 9, -12, -e-1, e+1]
0.330104 × 1024 5.5e + 19
Venus [1.5; 117 | -305223]
4.86732 × 1024 1.6 × 1014

Earth [1.5; 117 | 12, e+1, -e-1, e+1]
5.97219 × 1024 3.0 × 1022

Mars [0; 117 | -6, e+1, -6, 33, -60,
0.641693 × 1024 -e-1, e+1, -e-1]

1.1 × 1015

Ceres [1.5; 108 | 6, 99, e+1, -e-1,
9.43 × 1020 e+1, -6, e+1, e-1]

3.4 × 1012

Jupiter [1.5; 123 | -81, e+1, -e-1, -e-1,
1.89813 × 1027 -e-1, e+1, -9, -e-1]

3.6 × 1018

Saturn [0; 123 | 9, e+1, -e-1]
5.68319 × 1026 8.1 × 1024

Uranus [1.5; 120 | -24, e+1, -e-1, e+1]
8.68103 × 1025 7.0 × 1022

Neptune [1.5; 120 | 60, -e-1, e+1, -e-1]
1.0241 × 1026 3.9 × 1022

Pluto [1.5; 111 | 33, 9, -e-1, e+1,
1.309 × 1022 -18, e+1, e+1, -15]

3.2 × 1012

Sun [0; 132 | -e-1, -e-1, e+1, -e-1,
1.9891 × 1030 12, -e-1]

5.0 × 1025

[1.5; 129 | e+1, -e-1, 15, e+1]
6.2 × 1026

In case of the Venus, the mass is almost exactly located in a
node. Notably two low-weight bodies, Ceres and Mars, are
most distant from the principal nodes. A preferred accumu-
lation of planetary masses in nodes in agreement with results
previously published by Müller [2]. This author published al-
ready a continued fraction analysis of planetary masses, how-
ever, the continued fractions were in the canonical form with
all nominators equal 1. Interestingly, his result is principally
not changed substituting the nominators for e. The only ex-
ception is the Sun, here even two continued fractions can be
given and the mass is located in a non-turbulent zone between
the principal nodes 129+1.5 and 132. This indicates that the
probability of mass changes of the Sun is extremely low, so
one can expect that all astrophysical parameters of the Sun
will not show any evolution for a long time. We conclude

Table 7: Continued fraction representation of mean distances of ce-
lestial bodies from the Sun according to equation (5) and absolute
values of corresponding numerical errors.

Object Continued fraction representation
mean distance [km] Numerical error
Mercury [0; 60 | e+1, -e-1, -e-1, -e-1,
57.91 × 106 6, 6, -9, -e-1]

1 km
Venus [1.5; 60 | 513, 6, -9, e+1]
108.21 × 106 260 m
Earth [1.5; 60 | 9, -e-1, 51, e+1, 6, 6]
149.595 × 106 873 m
Mars [0; 63 | -e-1, 30, -e-1, -15, 6, 9, -9]
227.925 × 106 0.4 m
Ceres [0; 63 | -18, 9, e+1, -e-1,
413.833 × 106 e+1, -e-1, e+1, -e-1]

5854 km
Jupiter [0; 63 | 6, -9, 6, -e-1, e+1,
778.57 × 106 -e-1, -6, 54]

372 m
Saturn [1.5; 63 | -6, -e-1, -e-1, -15,
1433.525 × 106 -48, e+1, -e-1]

8.7 km
Uranus no continued fraction
2872.46 × 106 found
Neptune [0; 66 | -e-1, 15, 15, 54, 9,
4495.06 × 106 -e-1, e+1, -e-1]

46 m
[1.5; 63 | e+1, -597, -9, e+1]
181 km

Pluto [0; 66 | -6, 6, -e-1, -6, -15,
5906.375 × 106 -e-1, -12, -e-1]

7.2 km

that it seems to be a general property of mass to accumulate
close to the nodes. Apparently no specific properties of the
celestial bodies can be correlated to these data.

Table 7 displays the continued fraction representations of
the mean distances from the Sun of the considered celestial
bodies. When analyzing the denominators, it is directly clear
that there is no general behavior of the planetary distances.
For instance Venus is located almost in a node (n1 very high),
while Mercury, Mars and Neptune are far away from a node
(n1 = e+1 or −e−1). Uranus is even in a gap. Earth, Jupiter,
Saturn and Pluto are moderately close to a node. This opens
a door to associate a specific property of these bodies to the
continued fraction representation. In this particular case we
relate the mean distance to seismic activity of a solid object
or heat release of a gas planet. The oscillation process inside
Venus is turbulent, and it is known that Venus has an extreme
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Table 8: Continued fraction representation of equatorial radii of ce-
lestial bodies according to equation (5) and absolute values of cor-
responding numerical errors.

Object Continued fraction representation
Equatorial Numerical error
radius [km]
Mercury [0; 51 | -15, e+1, -e-1, e+1, -e-1]
2439.7 1.6 km
Venus [0; 51 | e+1, 30, 9]
6051.8 98 m
Earth [0; 51 | e+1, -15, -e-1, e+1, e+1]
6378.14 57 m

[1.5; 51 | -e-1, 207]
58 m

Mars [0; 51 | 21, -e-1, e+1, -e-1, e+1]
3397 1.8 km
Ceres [1.5; 48 | -9, 27, 9, 18]
487.3 0.01 m
Jupiter [0; 54 | 15, -18, -24, -6]
71492 2 m
Saturn [0; 54 | 222, -6, -e-1]
60268 46 m
Uranus [0; 54 | -e-1, 6, -e-1, -e-1, 9]
25559 898 m

[1.5; 51 | e+1, 6, 12, -e-1, e+1, -6]
44 m

Neptune [0; 54 | -e-1, e+1, e+1, 9,
24764 -e-1, 9]

22 m
[1.5; 51 | e+1, e+1, 6, -6, -213]
0.05 m

Pluto [0; 51 | -e-1, e+1, -6, e+1, e+1]
1151 475 m
Sun [0; 57 | -6, e+1, -e-1, e+1,
6.955 × 105 -e-1, -e-1, 12, -6]

49 m
[1.5; 54 | e+1, -e-1, e+1, e+1, e+1
-e-1, e+1, -e-1, e+1]
21 km

volcanic activity [7,8]. Scientists also believe that the volcan-
ism on Venus has been changing over time [7], so changes in
trend may occur. The data also suggest that seismic activity
on Earth is higher than on Mars, Mercury or Pluto.

For the gas planets Jupiter, Saturn and Neptune, it has
been known that they produce more heat internally than they
receive from the Sun [9, 10]. Contrary to this, Uranus is a
relatively cold planet, radiating very little more energy than
received. The principal source of this heating is believed to
be a liberation of thermal energy from precipitation of He-
lium or other compounds in the interior of the planet while

simultaneously gravitational potential energy is released.
Physically, such processes should exist in all gas planets,

this means only the process kinetics can be associated to the
continued fraction representation. We assume that the rate of
this process is influenced by oscillations in the planet. For
Uranus, which is located in a gap, the oscillation capability is
low, which means the heat-releasing process occurred faster
and is already almost completed. Jupiter and Saturn, located
in proximity to the nodes 63 and 1.5+63, are in a fluctuation
zone. So here the heat releasing process is disturbed and they
are yet in a more early phase of process development, whereas
Neptune (away from nodes) is in an already more advanced
phase. From this we can predict that one day in future, first
Neptune stops releasing excess heat, while Jupiter and Saturn
will do this much later.

A very special situation is the continued fraction repre-
sentation of dwarf planet Ceres. As can be seen, it has an
exceptional high numerical error, actually this must be inter-
preted as “no continued fraction found”. We report the frac-
tion here only in order to demonstrate that the whole Aster-
oid belt is in a fluctuation zone around the node 63, which
translates to λCexp(63) = 3.22 AU. This value is not accept-
able as an average for the distances of the Asteroid belt ob-
jects from the Sun. Actually most Asteroids can be found
between 2.1 and 3.5 AU. From this it can be concluded that
most Asteroids accumulate in the compression zone before
the principal node 63. Similarly is the situation for the Kuiper
belt. All Kuiper belt objects are located before the node 66,
λCexp(66) = 64.77 AU. The Astrophysics textbooks always
teach the belt is located from the orbit of Neptune (30 AU)
to 50 or 55 AU distance from the Sun. So again, the celestial
bodies accumulate before a principal node.

Since Ceres is the largest Asteroid belt object, it is rea-
sonable to claim Ceres is located in a gap, even inside a fluc-
tuation zone. We interpret these fluctuations as the cause of
the observed mass scattering in the whole Asteroid belt.

More research must still be done regarding the distribu-
tion of Kuiper belt objects. Brunini and Melita [11] sug-
gested a Mars like object around 60 AU distance from the
Sun in order to explain the Kuiper cliff, a sudden drop off of
space rocks beyond 50 AU. Later, numerical simulations of
Lykawka and Mukai showed that such a body would not re-
produce the observed orbital distribution in the Kuiper belt
[12], however these authors did not completely exclude the
possibility of an unknown planet. Now, from our continued
fraction analysis we suggest that there is indeed no unknown
planet, it is just so that the compression zone before the prin-
cipal node acts as accumulation site of these relatively light
Kuiper belt objects. If there was such a solid planet in the
fluctuation zone, it should possess volcanic activity similarly
to Venus, and consequently should be very easy to detect,
because of emission of infrared radiation. So this argument
again confirms the absence of such a planet. Anyway, a de-
tailed continued fraction analysis of Trans-Neptunian objects
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combined with Kuiper belt objects would be very useful.
Table 8 displays analogously the continued fraction rep-

resentations of planetary equatorial radii. From these data,
some statements regarding the atmosphere of solid planets
can be derived. We interprete an atmosphere as an exten-
sion of a planet with the effect to increase its radius. On the
other hand, an atmosphere is also governed by the chemical
composition of a planet and its temperature and these param-
eters are more decisive. Such an analysis cannot be applied
to gaseous planets, since they always have a very dense atmo-
sphere, regardless of their radii.

The most dense atmospheres can be found on Earth and
on Venus. The first partial denominator in the continued frac-
tion representation of Venus is e+1. this means the radius of
Venus is in an expansion zone and far away from the node.
An increase in radius is favored and any probabilities of trend
changes are low. This is in agreement with the observed high
density of the atmosphere on Venus, with a pressure of 95 bar
at the surface [8]. In the case of our planet Earth, two con-
tinued fractions can be given, so the radius is influenced by
the two nodes 51 and 51+1.5. Both first partial denominators
put the radius far away from the corresponding nodes into a
non-fluctuation zone. Here does not exist any specific trend
and the formation of the atmosphere is solely governed by
chemical composition and temperature.

Pluto is with a negative first partial denominator in a com-
pression zone, so the expansion of its radius by an atmo-
sphere is not favored. Indeed Pluto has only a very thin at-
mosphere in the micro-bar range [13]. According to refer-
ence [14], Pluto’s atmosphere at perihelion extends to depths
greater than Earth’s atmosphere and may even enclose the
moon Charon. The atmosphere is thought to be actively es-
caping, so Pluto is the only planet in the solar system actively
losing its atmosphere now.

The same is true for Mercury. In agreement with the ob-
servations, Mercury does not have an atmosphere [8], which
can also be alternatively explained by its high surface temper-
ature.

Mars is with the positive number 21 of the first partial
denominator in an expansion zone, so the formation of an at-
mosphere is favored. At the same time the radius is also close
to the node 51 in a fluctuation zone. This means changes
in process trends may occur. Considering the formation of
an atmosphere as the relevant process, this process can be
interrupted or inverted over long time periods. As a conse-
quence, one would expect an atmosphere, but significantly
thinner than that on Venus. Actually the surface pressure on
Mars is close to 1% to that of the Earth and there are spec-
ulations that the atmosphere on Mars has experienced major
changes in the past [8].

Ceres is a low density object consisting of rock and ice
with mean density of only 2 g/cm3, which supports the pres-
ence of a lot of ice. The “frost line” in our solar system — the
distance where ice will not evaporate — is roughly at 5 AU

Table 9: Continued fraction representation of sidereal orbital periods
of celestial bodies according to equation (6) and absolute values of
corresponding numerical errors.

Planet Continued fraction representation
T [s] Numerical error
Mercury [0; 72 | -6, e+1, -e-1, e+1, -30, -e-1, -33,
7595370 -6]

0.002 s
[1.5; 69 | e+1, -e-1, e+1, 6, -12, 6, -e-1,
e+1, -15]
0.01 s

Venus [0; 72 | 6, e+1, -6, 6, e+1, -e-1, e+1, -e-1,
19400861 e+1]

128 s
Earth [0; 72 | e+1, -e-1, -6, e+1, -6, -6, -e-1,
31536549 9, -6]

0.1 s
[1.5; 72 | -e-1, -e-1, -12, 45, e+1, -6,
-e-1, -24]
0.0003 s

Mars [1.5; 72 | 183, -e-1, 12, -e-1, e+1,
-e-1]

59314410 13 s
Ceres [0; 75 | -e-1, -e-1, e+1, 6, -e-1, 6, -6, -18,
145065600 e+1]

0.3 s
[1.5; 72 | e+1, -e-1, -225, -e-1, e+1, -e-1,
-9, -e-1]
0.06 s

Jupiter no continued fraction found
374099427
Saturn [1.5; 75 | -12, 6, e+1, -e-1, 33, e+1, -e-1,
928656297 e+1, -e-1]

74 s
Uranus [0; 78 | -e-1, -12, e+1, -e-1, 12, -e-1,
2649555255 -69, -9]

0.9 s
Neptune [0; 78 | -225, e+1, -9, e+1, -6, e+1, 48]
5196859068 0.04 s
Pluto no continued fraction found
7818425618

from the Sun [15]. So one must ask why Ceres does not
have already lost all his ice through sublimation. From the
continued fraction representation, the radius of Ceres is in a
compression zone and the formation of an atmosphere is not
favored. Through evaporation of the ice, at least temporarily
an atmosphere will form. For this reason we believe Ceres is
able to continue for a long time as an icy dwarf planet.

When looking at the data it turns out that the gaseous
planets seem to prefer radii that can be described by two con-
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tinued fractions. For the Sun, Uranus and Neptune it can be
said that they are influenced by two neighbored nodes. This
indicates their sizes will remain constant over a longe time.
The only exceptions are Jupiter and Saturn, which are in an
expansion zone. One would expect their sizes increasing.
How could this be achieved in practice? There is only one
possibility, Jupiter and Saturn must capture some asteroids or
comets preferentially from the Kuiper belt. When looking at
the number of their moons, it can be assumed that such a pro-
cess has already been progressing for a long time. A moon
can be interpreted as an incomplete capture, this means the
object was captured without crashing into the planet and in-
creasing its size. Indeed Jupiter and Saturn have 63 and 62
confirmed moons, while Uranus has 27, and Neptune only 13
moons. Normally one would expect that Uranus and Neptune
should have the most moons, since they are much closer lo-
cated to the Kuiper belt. Notably 55 of Jupiter’s moons are
irregular satellites with high eccentricities and inclinations,
while Saturn has just 38 of such satellites. It is assumed that
these irregular satellites were captured from other orbits.

In Table 9, the continued fraction representations of the
orbital periods are given. When analyzing these fractions,
their interpretation is problematic: One has to bear in mind
that Kepler’s 3rd law relates the orbital period to the semi-
major axis (for most planets close to the mean distance), so
these parameters are not independent from each other.

Regarding oscillation properties, it is clearly visible that
the continued fraction representations of the orbital periods
do not provide a similar image of planetary features than the
representations of the corresponding mean distances. For in-
stance, the orbital periods of Mars and Neptune are located in
a highly turbulent zone. This is contrary to to the continued
fraction representation of its mean distances given in Table 7,
where both planets are far away from a node. Since for the
mean distances a meaningful continued fraction representa-
tion exists, the orbital periods do not fit anymore in this model
and their mathematical representation in continued fractions,
as presented here, is physically meaningless.

Luckily, the situation is easier for the rotation periods of
the celestial bodies (see Table 10). As can be seen, the ro-
tation periods prefer values far away from the nodes in non-
fluctuating zones. There are only three exceptions: Jupiter
Saturn and Ceres have periods located in a principal node.
This means the rotation periods are in an early stage of devel-
opment, which can be justified with a specific process inside
the celestial bodies.

For the gas planets Jupiter and Saturn it has been known
that heat is generated from precipitation of Helium or other
compounds in the interior of the planet while simultaneously
gravitational potential energy is released. Through such a
process, the moment of inertia of the planet changes gradu-
ally and the rotation period evolves. From the analysis of the
mean distances of Jupiter and Saturn, we have already stated
that their heat release processes are still in an early phase of

Table 10: Continued fraction representation of sidereal rotation pe-
riods (T) of celestial bodies according to equation (6) and absolute
values of corresponding numerical errors.

Planet Continued fraction representation
T [s] Numerical error
Mercury [0; 72 | -e-1, e+1, -6, 6, -15, -e-1,
5067032 e+1, -e-1, e+1]

3 s
Venus [0; 72 | 6, -9, -12, 18, -9, e+1]
20996755 0.1 s
Earth [0;66 | e+1, -e-1, e+1, -6, e+1, e+1,
86164 -e-1, 21]

0.02 s
[1.5; 66 | -6, e+1, -15, -e-1, -6]
0.07 s

Mars [1.5; 66 | -6, 6, -18, -12]
88643 0.04 s
Ceres [0; 66 | 255, -e-1, e+1, -e-1, e+1]
32668 0.17 s
Jupiter [0; 66 | 27, 27, -21]
35730 0.005 s
Saturn [0; 66 | 15, e+1, -e-1, -e-1, e+1, -e-1]
38362 2 s
Uranus [0; 66 | e+1, 6, 39, -12]
62064 0.02 s

[1.5; 66 | -e-1, 6, -e-1, -9, -e-1, 48]
0.001 s

Neptune [0; 66 | e+1, e+1, -e-1, 9, -9, -18]
57996 0.003 s

[1.5; 66 | -e-1, e+1, -30, -e-1, e+1, -e-1]
4 s

Pluto no continued fraction found
551854
Sun [1.5; 69 | -9, -15, e+1, e+1, -6, 9]
2164320 0.003 s

development. Exactly the same can be derived from the anal-
ysis of rotation periods. The rotation of the Sun is also not yet
completely evolved, however here this effect is minor. Any
internal structuring of plasma fluxes could be responsible for
this.

Ceres has an unusual location inside the Asteroid belt,
which is a turbulent zone as can be derived from the con-
tinued fraction analysis of its mean distance from the Sun.
Knowing this, we speculate that the evolution of its rotation
period could have been influenced by the fluctuating popu-
lation of the belt through collisions of an early Ceres with
many smaller asteroids over a long time. According to refer-
ence [15], there are possibly volatile compounds in the inte-
rior of Ceres. Ceres could have accreted from rocky and icy
planetesimals. This has taken some time, we speculate that
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possibly Ceres had less time for the evolution of its rotation
than other planets.

An other reference [16] speculates regarding a subsurface
ocean and mentions a modeling predicting that ice in the outer
10 km of Ceres would always remain frozen, although the
frozen crust would be gravitationally unstable and likely over-
turn, melt, and re-freeze. Such repeatedly occurring move-
ments of heavy masses on Ceres could have interfered with
the evolution of its rotation period.

4 Conclusions

Numerical investigation of solar system data revealed that
masses, radii, distances of celestial bodies from the Sun, or-
bital periods and rotation periods can be expressed as multi-
ples of e

16 on the logarithmic number line, which proves that
they are not a set of random numbers. Through application of
a fractal scaling model, we set these numerical values in rela-
tion to proton resonances and correlated numerous features of
celestial bodies with their oscillation properties. From this it
can be concluded that the continued fraction representations
with all nominators equal e are adequate and Müller’s fractal
model turned out to be a powerful tool to explain the fractal
nature of the solar system. If some day in future, a further
planet will be discovered in our solar system, it should be
possible to derive analogously some of its features from its
orbital parameters.
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The electronic transport property of a bilayer graphene is investigated under the effect
of an electromagnetic field. We deduce an expression for the conductance by solving
the Dirac equation. This conductance depends on the barrier height for graphene and
the energy of the induced photons. A resonance oscillatory behavior of the conductance
is observed. These oscillations are strongly depends on the barrier height for chiral
tunneling through graphene. This oscillatory behavior might be due to the interference
of different central band and sidebands of graphene states. The present investigation
is very important for the application of bilayer graphene in photodetector devices, for
example, far-infrared photodevices and ultrafast lasers.

1 Introduction

Two-dimensional graphene monolayer and bilayer exhibit
fascinating electronic [1–4] and optical properties [5, 6] due
to zero energy gap and relativistic-like nature of quasiparti-
cle dispersion close to the Fermi-level. With recent improve-
ments in nanofabrication techniques [7] the zero-energy gap
of graphene can be opened via engineering size, shape, char-
acter of the edge state and carrier density, and this in turn
offers possibilities to simultaneously control electronic [8, 9]
magnetic [10, 11] and optical [6, 12] properties of a single
material nanostructure. Recent studies have also addressed
electronic properties of confined graphene structure like dots,
rings or nanoribbons. In particular, nanoribbons have been
suggested as potential candidates for replacing electronic
components in future nanoelectronic and spintronic devices
[3, 13]. Recent research shows that graphene [14] is a suit-
able candidate to examine the photon-assisted tunneling and
quantum pumps in the Dirac system.

The purpose of the present paper is to investigate the an-
gular dependence of the chiral tunneling through double layer
graphene under the effect of the electromagnetic field of wide
range of frequencies.

2 Theoretical Formulation

In this section, we shall derive an expression for the conduc-
tance of a bilayer graphene by solving the eigenvalue problem
Dirac equation. The chiral fermion Hamiltonian operates in
space of the two-component eigenfunction, ψ, where Dirac
eigenvalue differential equation is given by [14, 15]:

− ivF ~σ · ~∇ψ(r) = Eψ(r) , (1)

where ~σ are the Pauli-matrices, VF is the Fermi-velocity, and
E is the scattered energy of electrons. It is well known that
graphene junction have finite dimensions [14, 15], the motion

of chiral fermions is quantized. This quantization imposes ad-
ditional constrains on the directional tunneling diagram. So,
accordingly, the value of the angle of incidence of electrons
on the barrier could be obtained from boundary conditions
along the y-direction as we will see below.

In order to solve Eq.(1), we propose a potential barrier of
width, L, and height, V0,. The eigenfunction, ψL(r) in the left
of the potential barrier is given by:

ψL(r) =
∞∑

n=−∞
Jn

(eVac

~ω

) {
e[i(kx x+kyy)]+

+
Rn(E)
√

2

(
1

s ei(π−φ)

)
e[i(−ikx x+kyy)]

}
, (2)

where the angle φ = tan−1 ( ky
kx

)
, in which kx = k f cos(φ) and

kv = kF sin(φ),and kF is the Fermi-wave number, and Jn is the
nth order Bessel function, Vac is the amplitude of the induced
photons of the electromagnetic field with frequency, ω, and
Rn(E) is the energy-dependent reflection coefficient.

The eigenfunction, ψb(r), inside the potential barrier is
given by:

ψb(r) =
∞∑

n=−∞
Jn

(eVac

~ω

){ a
√

2

(
1

s′ eiθ

)
e[i(qx x+kyy)]+

+
b
√

2

(
1

s′ ei(π−θ)

)
e[i(−qx x+kyy)]

}
, (3)

where the angle θ = tan−1 ( ky
qx

)
, and the wave number qx is

expressed as:

qx =

√
(V0 − ε)2

v2
F

− k2
y (4)

and ε = E− eVg−~ω, V0 is the barrier height, E is the energy
of the scattered electrons, Vg is the gate voltage and ~ω is the
photon energy.
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Fig. 1: The variation of the conductance, G, with gate voltage Vg, at
different photon energies, Eph.

Fig. 2: The variation of the conductance, G, with the photon energy,
Eph, at different values of barrier height, V0.

The eigenfunction, ψR(r), in the right region to the poten-
tial barrier which represents the transmitted electrons is given
by:

ψR(r)=
∞∑

n=−∞
Jn

(eVac

~ω

){
Γn(E)
√

2

(
1

s eiθ

)
e[i(kx x+kyy)]

}
, (5)

where Γn(E) are the transmitted electron waves through the
barrier. The parameters s and s′ are expressed as:

s = sgn (E) and s′ = sgn (E − V0) . (6)

Now, the coefficients Rn(E), a, b,Γn(E) could be deter-
mined by applying the continuity conditions of the eigen-
functions, Eqs.(2,3,5), at the boundaries as follows:

ψL (x = 0, y) = ψb (x = 0, y)

and

ψb (x = L, y) = ψR (x = L, y)

 . (7)

So, the transmission probability, |Γn(E)|2, could be deter-
mined from the boundary conditions Eq.(7) and is given by:

|Γn(E)|2 =
∞∑

n=−∞
J2

n

(eVac

~ω

)
×

×
{

cos2(θ) cos2(φ)
[[cos(Lqx) cos φ cos θ]2+ sin2(Lqx)(1−ss′ sin φ sin θ)2]

}
. (8)

The conductance, G, is given by [16, 17]:

G(E) =
4e2

h

∫
dE |Γn(E)|2

(
−∂ fFD

∂E

)
, (9)

where fFD is the Fermi-Dirac distribution function. Now, sub-
stituting Eq.(8) into Eq.(9), we get a complete expression for
conductance which depends on the angles φ, θ, and on the
barrier height, V0, and its width, the gate voltage, Vg, and the
photon energy, ~ω.

3 Results and Discussions

The conductance, G, has been computed numerically as a
function of the gate voltage, Vg, and photon energy, Eph = ~ω
of the induced electromagnetic field. For the bilayer graphe-
ne, the effective mass of the fermion quasiparticle m∗ equals
approximately 0.054 me [14, 15]. The parameter me is the
free mass of the electron. The main features of the present
results are:

(1) Fig.(1) shows the variation of the conductance, with the
gate voltage, Vg, at different values of the photon ener-
gies of the induced electromagnetic field. We notice
an oscillatory behavior of the conductance. The elec-
tromagnetic field induces resonant peaks in the photon-
assisted chiral tunneling conductance.

(2) Fig.(2) shows the dependence of the conductance on
the energy of the induced photons at different values
of the barrier height, V0. An oscillation of the conduc-
tance is observed.

The observed oscillations in conductance for Figs.(1,2)
can be explained as Follows: For grapheme under the effect of
the electromagnetic field, the chiral tunneling of electrons can
undergo transitions between the central band to several side-
bands by means of photon emission or absorption. Such pro-
cess is referred to as photo-assisted tunneling [18–20]. Also,
the phase correlations during chiral tunneling can be directly
tuned by applying of an external electromagnetic field leads
to a resonance trend in the conductance of a bilayer graphene.

The present results show a good concordant with those in
the literature [21–23].

4 Conclusion

The present investigation shows that the chiral tunneling of
Dirac electrons through graphene enables ultra-wide band
tunability. The rise of graphene in photonics and optoelectro-
nics is shown by several results ranging from photo-detectors,
light emitted devices, solar cells and ultra-fast lasers [23, 24].
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The Lorentz Transformation as a Planck Vacuum Phenomenon in a Galilean
Coordinate System

William C. Daywitt
National Institute for Standards and Technology (retired), Boulder, Colorado, USA

E-mail: wcdaywitt@earthlink.net

In a seminal Masters’ dissertation [1] Pemper derived the relativistic electric and mag-
netic fields of a uniformly moving charge from the response of some continuum to
the perturbation from the charge’s Coulomb field. The results seem to imply that the
Maxwell equations and the Lorentz transformation are associated with some type of
vacuum state. Unbeknownst at the time, Pemper had discovered the Planck vacuum
(PV) quasi-continuum [2] and its interaction with the free charge. The importance of
this derivation, its obscurity in the literature, and its connection to the PV justifies the
following rework of that derivation.

1 Pemper Derivation

When a free, massless, bare charge e∗ travels in a straight line
at a uniform velocity v its bare Coulomb field e∗/r2 perturbs
(polarizes) the PV [2]. If there were no PV, the bare field
would propagate as a frozen pattern with the same velocity
and there would be no accompanying magnetic field. The
corresponding force perturbing the PV is e2

∗/r
2, where one of

the charges e∗ in the product e2
∗ belongs to the free charge

and the other to the individual Planck particles making up the
degenerate negative-energy PV.

This charge-vacuum interaction is described by Pemper
[1] as a series (n = 1, 2, 3, . . .) of electric and magnetic fields
(generated by the vacuum)

∇ × En = −
1
c
∂Bn

∂t
(1)

and
Bn+1 = ββ × En (2)

that respond in a iterative fashion to the bare charge’s
Coulomb field, leading to the well-known relativistic elec-
tric and magnetic fields that are traditionally ascribed to the
charge as a single entity. The serial electric and magnetic
fields are En and Bn and ββ = v/c. The curl equation in (1) is
recognized as the Faraday equation and the magnetic field in
(2) is due to the free-charge field rotating the induced dipoles
within the PV. The series of partial fields is not envisioned
as a series in time — the PV response is assumed to happen
instantaneously at each field point.

The initial magnetic field in the series is B1 = ββ × E0,
where the bare charge’s laboratory-observed Coulomb field
is

E0 =
er
r3 =

e
e∗

e∗r
r3 = α

1/2 e∗r
r3 , (3)

where α is Planck’s constant. The serial electric fields are
assumed to be radial; so the final electric field is radial with a
magnitude equal to the sum

E = E0 + E1 + E2 + E3 + . . . , (4)

where the En are the magnitudes of the Ens and the final mag-
netic field is ββ × E. Assuming that the En = En(r, θ), the
charge-PV feedback equations (1) and (2) reduce to

∂En

∂θ
=

r
c
∂Bn

∂t
(5)

and
Bn+1 = βEn sin θ (6)

in the azimuthal direction about the z-axis.
Calculating the first partial field E1 in the series begins

with (6)
B1 = βE0 sin θ (7)

and leads to (Appendix A)

Ḃ1 =
3cβ2E0 sin θ cos θ

r
, (8)

where the overhead dot represents a partial differentiation
with respect to time. Then from (5)

dE1 =
rḂ1

c
dθ = 3β2E0 sin θ cos θ dθ, (9)

which integrates over the limits (0, θ) to

E1 =
3β2E0 sin2 θ

2
− λ1E0, (10)

where the reference field E1(θ = 0) = −λ1E0 with λ1 a con-
stant to be determined.

The second iteration for the electric field begins with

B2 = βE1 sin θ =
3β3E0 sin3 θ

2
− λ1B1 (11)

and yields (Appendix A)

Ḃ2 =
15cβ4E0 sin3 θ cos θ

2r
− λ1Ḃ1 . (12)
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Equation (5) then leads to

dE2 =
rḂ2

c
dθ =

(
15β4E0 sin3 θ cos θ

2
− λ1rḂ1

c

)
dθ, (13)

which integrates to

E2 =
15β4E0 sin4 θ

8
− λ1

3β2E0 sin2 θ

2
− λ2E0, (14)

where again E2(θ = 0) = −λ2E0 .
The third iteration proceeds as before and results in (Ap-

pendix A)

Ḃ3 =
3 · 5 · 7cβ6E0 sin5 θ cos θ

8r
− λ1

3 · 5cβ4E0 sin3 θ cos θ
2r

−λ2
3cβ2E0 sin θ cos θ

r
(15)

and

E3 =
3 · 5 · 7β6E0 sin6 θ

6 · 8 − λ1
3 · 5β4E0 sin4 θ

2 · 4

−λ2
3βE0 sin2 θ

2
− λ3E0 (16)

for the third partial field.
Inserting (10), (14), and (16) (plus the remaining infinity

of partial fields) into (4) gives

E = E0 +
3β2E0 sin2 θ

2
+

3 · 5β4E0 sin4 θ

8

+
3 · 5 · 7β6E0 sin6 θ

48
+ . . .

−λ1

(
E0 +

3β2E0 sin2 θ

2
+

3 · 5β4E0 sin4 θ

8
+ . . .

)

−λ2

(
E0 +

3βE0 sin2 θ

2
+ . . .

)
− λ3(E0 + . . .) + . . .

= E0

(
1 +

3β2 sin2 θ

2
+

3 · 5β4 sin4 θ

2 · 4

+
3 · 5 · 7β6 sin6 θ

2 · 4 · 6 + . . .

)
(1 − λ) , (17)

where

λ ≡
∞∑

n=1

λn (18)

is a constant. The sum after the final equal sign in (17) is
recognized as the function (1 − β2 sin2 θ)−3/2; so E can be
expressed as

E =
(1 − λ)E0

(1 − β2 sin2 θ)3/2
. (19)

Finally, the constant λ can be evaluated from Gauss’ law
and the conservation of bare charge e∗:∫

D · dS = 4πe∗ −→
∫

E · dS = 4πe, (20)

where D = (e∗/e)E is used to arrive at the second integral.
Inserting (19) into (20) and integrating yields

λ = β2, (21)

which, inserted back into (19), gives the relativistic electric
field of a uniformly moving charge. That this field is the same
as that derived from the Lorentz transformed Coulomb field
is shown in Appendix B.

2 Conclusions and Comments

The calculations of the previous section suggest that the
Lorentz transformation owes its existence to interactions be-
tween free-space particles and the negative-energy PV. Free
space is defined here as “the classical void + the zero-point
electromagnetic vacuum” [3].

The fact that the bare charge is massless makes the Pem-
per derivation significantly less involved and more straight-
forward than the related case for the massive point charge
(Dirac electron). Nevertheless, the uniform motion of the
Dirac electron too exhibits electron-PV effects. When a bare
charge is injected into free space (presumably from the PV) it
very quickly (∼ 10−30 sec) develops a mass from being driven
by the random fields of the electromagnetic vacuum. The cor-
responding electron-PV connection is easily recognized in the
Lorentz-covariant Dirac equation [4, p. 90], [5]:(

ic~γµ∂µ − mc2
)
ψ = 0 −→

(
ie2
∗γ

µ∂µ − mc2
)
ψ = 0, (22)

where the PV relation c~ = e2
∗ is used to arrive at the equa-

tion on the right. A nonrelativistic expression for the electron
mass is given by Puthoff [3, 6]

m =
2
3

〈
ṙ2

〉1/2
c

m∗, (23)

where ṙ represents the random excursions of the zero-point-
driven bare charge about its center of (random) motion at r =
0 and m∗ is the Planck mass.

The massive point charge perturbs the PV with the two-
fold force [5]

e2
∗

r2 −
mc2

r
, (24)

where the first and second terms are the polarization and cur-
vature∗ forces respectively. It is the interaction of this com-
posite force with the PV that is responsible for the Dirac equa-
tion as evidenced by the e2

∗ and mc2 in (22) and (24). Thus
∗Using the PV relations G = e2

∗/m
2
∗ and e2

∗ = r∗m∗c2 in the curvature
force leads to mc2/r = mm∗G/rr∗ and shows the direct gravitational interac-
tion between the electron mass and the Planck particle masses within the PV.
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both the Pemper derivation and the Dirac equation argue com-
pellingly for the existence of the Planck vacuum state and its
place in the physical scheme of things. It is noted in pass-
ing that the force in (24) vanishes at the electron’s Compton
radius rc = e2

∗/mc2.

Appendix A: Galilean Coordinate System

The laboratory system in which the charge propagates is con-
sidered to be a Galilean reference system. In that system
(x, y, z) represents the radius vector from the system origin
to any field point (considered in the calculations to be fixed).
The position of the charge traveling at a constant rate v along
the positive z-axis is (0, 0, vt); so at time t = 0 the charge
crosses the origin. Since the field point is fixed, the vector in
the x-y plane

b = b b̂ ≡ x + y (A1)

is constant. The radius vector from the position of the charge
to the field point is then

r = (x, y, z − vt) . (A2)

Combining (A1) and (A2) gives

r =
[
b2 + (z − vt)2

]1/2
(A3)

for the magnitude of that vector.
If θ is the angle between the radius r and the positive z-

axis, it is easy to show from (A1)—(A3) that

r sin θ = b (A4)

and
r cos θ = z − vt (A5)

and from (A3)—(A5) that

ṙ = −v cos θ (A6)

and
rθ̇ = v sin θ, (A7)

where the overhead dot represents a partial derivative with
respect to time.

From (7) the initial magnetic field in the charge-PV inter-
action is

B1 = βE0 sin θ = β · e
r2 ·

b
r
=

βeb[
b2 + (z − vt)2]3/2 (A8)

whose time differential leads to

Ḃ1 =
3cβ2E0 sin θ cos θ

r
(A9)

in a straightforward manner.
From (11) in the text

B2 = βE1 sin θ =
3β3eb3

2
[
b2 + (z − vt)2]5/2 − λ1B1, (A10)

which leads to

Ḃ2 =
15cβ4Eo sin3 θ cos θ

2r
− λ1Ḃ1 . (A11)

From B3 = βE2 sin θ,

B3 =
15β5E0 sin5 θ

8
− λ1

3β3E0 sin3 θ

2
− λ2βE0 sin θ

=
15β5eb5

8
[
b2 + (z − vt)2]7/2 − λ1

3β3eb3

2
[
b2 + (z − vt)2]5/2

−λ2
βeb[

b2 + (z − vt)2]3/2 (A12)

and

Ḃ3 =
3 · 5 · 7cβ6E0 sin5 θ cos θ

8r
− λ1

3 · 5cβ4E0 sin3 θ cos θ
2r

−λ2
3cβ2E0 sin θ cos θ

r
. (A13)

Appendix B: Lorentz Transformed Fields

The Lorentz transformation coefficients aµν in the coordinate
transformation [7, pp. 380–381]

x′µ = aµνxµ =


1 0 0 0
0 1 0 0
0 0 γ iβγ
0 0 −iβγ γ




x
y
z

ict


=


x
y

γ(z − vt)
iγ(ct − βz)

 (B1)

lead to the Lorentz transformed fields

F′µν = aµσaντFστ, (B2)

where the F′µν, etc., are the electromagnetic field tensors. The
primed and unprimed parameters refer respectively to the
charge-at-rest and laboratory systems, where the charge sys-
tem travels along the z-axis of the laboratory system with a
constant velocity v.

Using the static Coulomb field in the charge system and
transforming it to the laboratory system with the inverse of
(B2) leads to the magnitude

E =
γe

[
b2 + (z − vt)2

]1/2[
b2 + γ(z − vt)2]3/2 (B3)

for the electric field, where γ = 1/(1− β2)1/2. (B3) reduces to
(19) in the following way:

E =
γe

[
b2 + (z − vt)2

]1/2

γ3 [
b2 + (z − vt)2 − β2b2]3/2
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=
e/

[
b2 + (z − vt)2

]
γ2 [

1 − β2b2/[b2 + (z − vt)2]
]3/2

=
(1 − β2) E0(

1 − β2 sin2 θ
)3/2 . (B4)

Submitted on January 5, 2011 / Accepted on January 6, 2011

References
1. Pemper R.R. A classical foundation for electrodynamics. Master Dis-

sertation, Univ. of Texas, El Paso, 1977. Barnes T.G. Physics of the
Future – A Classical Unification of Physics, Institute for Creation Re-
search, California, 1983.

2. Daywitt W.C. The Planck vacuum. Progress in Physics, 2009, v. 1, 20–
26.

3. Daywitt W.C. The Source of the Quantum Vacuum. Progress in
Physics, 2009, v. 1, 27–32.

4. Gingrich D.M. Practical Quantum Electrodynamics, CRC – The Taylor
& Francis Group, Boca Raton, 2006.

5. Daywitt W.C. The Dirac Electron in the Planck Vacuum Theory.
Progress in Physics, 2010, v. 4, 69–71.

6. Puthoff H.E. Gravity as a zero-point-fluctuation force. Physical Review
A, 1989, v. 39, no. 5, 2333–2342.

7. Jackson J.D. Classical Electrodynamics. John Wiley & Sons, 1st ed.,
2nd printing, New York, 1962.

6 William C. Daywitt. The Lorentz Transformation as a Planck Vacuum Phenomenon in a Galilean Coordinate System



April, 2011 PROGRESS IN PHYSICS Volume 2

Charged Polaritons with Spin 1

Vahan Minasyan and Valentin Samoilov
Scientific Center of Applied Research, JINR, Joliot-Curie 6, Dubna, 141980, Russia

E-mails: mvahan@scar.jinr.ru; scar@off-serv.jinr.ru

We present a new model for metal which is based on the stimulated vibration of in-
dependent charged Fermi-ions, representing as independent harmonic oscillators with
natural frequencies, under action of longitudinal and transverse elastic waves. Due to
application of the elastic wave-particle principle and ion-wave dualities, we predict the
existence of two types of charged Polaritons with spin 1 which are induced by longitu-
dinal and transverse elastic fields. As result of presented theory, at small wavenumbers,
these charged polaritons represent charged phonons.

1 Introduction

In our recent paper [1], we proposed a new model for dielec-
tric materials consisting of neutral Fermi atoms. By the stim-
ulated vibration of independent charged Fermi-atoms, repre-
senting as independent harmonic oscillators with natural fre-
quencies by actions of the longitudinal and transverse elastic
waves, due to application of the principle of elastic wave-
particle duality, we predicted the lattice of a solid consists
of two types of Sound Boson-Particles with spin 1, with fi-
nite masses around 500 times smaller than the atom mass.
Namely, we had shown that these lattice Sound-Particles ex-
cite the longitudinal and transverse phonons with spin 1. In
this context, we proposed new model for solids representing
as dielectric substance which is different from the well-known
models of Einstein [2] and Debye [3] because: 1), we suggest
that the atoms are the Fermi particles which are absent in the
Einstein and Debye models; 2), we consider the stimulated
oscillation of atoms by action of longitudinal and transverse
lattice waves which in turn consist of the Sound Particles.

Thus, the elastic lattice waves stimulate the vibration of
the fermion-atoms with one natural wavelength, we suggested
that ions have two independent natural frequencies by under
action of a longitudinal and a transverse wave. Introduction of
the application of the principle of elastic wave-particle duality
as well as the model of hard spheres we found an appearance
of a cut off in the spectrum energy of phonons which have
spin 1 [1].

In this letter, we treat the thermodynamic property of
metal under action of the ultrasonic waves. We propose a
new model for metal where the charged Fermi-ions vibrate
with natural frequencies Ωl and Ωt, by under action of lon-
gitudinal and transverse elastic waves. Thus, we consider a
model for metal as independent charged Fermi-ions of lattice
and gas of free electrons or free Frölich-Schafroth charged
bosons (singlet electron pairs) [4]. Each charged ion is cou-
pled with a point of lattice knot by spring, creating an ion
dipole [5,6]. The lattice knots define the equilibrium posi-
tions of all ions which vibrate with natural frequencies Ωl and
Ωt, under action of longitudinal and transverse elastic fields

which in turn leads to creation of the transverse electromag-
netic fields moving with speeds cl and ct. These transverse
electromagnetic waves describe the ions by the principle of
ion-wave duality [7]. Using the representation of the elec-
tromagnetic field structure of one ion with ion-wave duality
in analogous manner, as it was presented in a homogenous
medium for an electromagnetic wave [8], we obtain that the
neutral phonons cannot be excited in such substances as met-
als, they may be induced only in dielectric material [1]. In
this respect, we find the charged polaritons with spin 1 which
are always excited in a metal, and at small wavenumbers, they
represent as charged phonons.

2 New model for metal

The Einstein model of a solid considers the solid as gas of
N atoms in a box with volume V . Each atom is coupled
with a point of the lattice knot. The lattice knots define the
dynamical equilibrium position of each atom which vibrates
with natural frequency Ω0. The vibration of atom occurs near
equilibrium position corresponding to the minimum of po-
tential energy (harmonic approximation of close neighbors).
We presented the model of ion-dipoles [5,6] which represents
ions coupled with points of lattice knots. It differs from the
Einstein model of solids where the neutral independent atoms
are considered in lattice knots, these ions are vibrating with
natural frequencies Ωl and Ωt forming ion-dipoles by under
action longitudinal and transverse ultrasonic lattice fields.

Usually, matters are simplified assuming the transfer of
heat from one part of the body to another occurs very slowly.
This is a reason to suggest that the heat exchange during times
of the order of the period of oscillatory motions in the body
is negligible, therefore, we can regard any part of the body as
thermally insulated, and there occur adiabatic deformations.
Since all deformations are supposed to be small, the motions
considered in the theory of elasticity are small elastic oscilla-
tions. In this respect, the equation of motion for elastic con-
tinuum medium [9] represents as

%~̈u = c2
t ∇2~u + (c2

l − c2
t ) grad div ~u, (1)
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where ~u = ~u(~r, t) is the vectorial displacement of any parti-
cle in the solid; cl and ct are, respectively, the velocities of a
longitudinal and a transverse ultrasonic wave.

We shall begin by discussing a plane longitudinal elastic
wave with condition curl ~u = 0 and a plane transverse elastic
wave with condition div ~u = 0 in an infinite isotropic medium.
In this respect, the vector displacement ~u is the sum of the
vector displacements of a longitudinal ul and of a transverse
ultrasonic wave ut:

~u = ~ul + ~ut. (2)

In turn, the equations of motion for a longitudinal and a trans-
verse elastic wave take the form of the wave-equations:

∇2~ul − 1
c2

l

d2~ul

dt2 = 0, (3)

∇2~ut − 1
c2

t

d2~ul

dt2 = 0. (4)

It is well known, in quantum mechanics, a matter wave
is determined by electromagnetic wave-particle duality or de
Broglie wave of matter [7]. We argue that in analogous man-
ner, we may apply the elastic wave-particle duality. This rea-
soning allows us to present a model of elastic field as the
Bose-gas consisting of the Sound Bose-particles with spin 1
having non-zero rest masses which are interacting with each
other. In this respect, we may express the vector displace-
ments of a longitudinal ul and of a transverse ultrasonic wave
ut via the second quantization vector wave functions of Sound
Bosons as

~ul = Cl

(
φ(~r, t) + φ+(~r, t)

)
(5)

and

~ut = Ct

(
ψ(~r, t) + ψ+(~r, t)

)
, (6)

where Cl and Ct are unknown constant normalization coeffi-
cients; ~φ(~r, t) and ~φ+(~r, t) are, respectively, the second quan-
tization wave vector functions for one Sound-Particle, corre-
sponding to the longitudinal elastic wave, at coordinate ~r and
time t; ~ψ(~r, t) and ~ψ+(~r, t) are, respectively, the second quan-
tization wave vector functions for one Sound-Particle, corre-
sponding to the transverse elastic wave, at coordinate ~r and
time t:

~φ(~r, t) =
1√
V

∑

~k,σ

~a~k,σei(~k~r+kclt) (7)

~φ+(~r, t) =
1√
V

∑

~k,σ

~a+
~k,σ

e−i(~k~r+kclt) (8)

and
~ψ(~r, t) =

1√
V

∑

~k,σ

~b~k,σei(~k~r+kct t) (9)

~ψ+(~r, t) =
1√
V

∑

~k,σ

~b+
~k,σ

e−i(~k~r+kct t), (10)

where ~a+
~k,σ

and ~a~k,σ are, respectively, the Bose vector-oper-
ators of creation and annihilation for one free longitudinal
Sound Particle with spin 1, described by a vector ~k whose di-
rection gives the direction of motion of the longitudinal wave;
~b+
~k,σ

and ~b~k,σ are, respectively, the Bose vector-operators of
creation and annihilation for one free transverse Sound Parti-
cle with spin 1, described by a vector ~k whose direction gives
the direction of motion of the transverse wave.

In this respect, the vector-operators~a+
~k,σ

, ~a~k,σ and~b+
~k,σ

, ~b~k,σ
satisfy the Bose commutation relations as:

[
â~k,σ, â

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[â~k,σ, â~k′ ,σ′ ] = 0

[â+
~k,σ
, â+

~k′ ,σ′
] = 0

and
[
b̂~k,σ, b̂

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[b̂~k,σ, b̂~k′ ,σ′ ] = 0

[b̂+
~k,σ
, b̂+

~k′ ,σ′
] = 0.

Thus, as we see the vector displacements of a longitu-
dinal ul and of a transverse ultrasonic wave ut satisfy the
wave-equations of (3) and (4) because they have the follow-
ing forms due to application of (5) and (6):

~ul =
Cl√

V

∑

~k,σ

(
~a~k,σei(~k~r+kclt) + ~a+

~k,σ
e−i(~k~r+kclt)

)
(11)

and

~ut =
Ct√

V

∑

~k,σ

(
~b~k,σei(~k~r+kct t) + ~b+

~k,σ
e−i(~k~r+kct t)

)
. (12)

In this context, we may emphasize that the Bose vector
operators ~a+

~k,σ
, ~a~k,σ and ~b+

~k
, σ and ~b~k, σ communicate with

each other because the vector displacements of a longitudinal
~ul and a transverse ultrasonic wave ~ut are independent, and in
turn, satisfy the condition of a scalar multiplication ~ul · ~ut = 0.

8 Vahan Minasyan and Valentin Samoilov. Charged Polaritons with Spin 1
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Consequently, the Hamiltonian operator Ĥ of the system,
consisting of the vibrating Fermi-ions with mass M, is repre-
sented in the following form:

Ĥ = Ĥl + Ĥt, (13)

where

Ĥl =
MN
V

∫ (
d~ul

dt

)2

dV +
NMΩ2

l

V

∫
(~ul)2dV (14)

and

Ĥt =
MN
V

∫ (
d~ut

dt

)2

dV +
NMΩ2

t

V

∫
(~ut)2dV, (15)

where Ωl and Ωt are, respectively, the natural frequencies of
the atom through action of the longitudinal and transverse
elastic waves.

To find the Hamiltonian operator Ĥ of the system, we use
the formalism of Dirac [10]:

d~ul

dt
=

iclCl√
V

∑

~k,σ

k
(
~a~k,σeikclt − ~a+

−~k,σe−ikclt
)
ei~k~r (16)

and

d~ut

dt
=

ictCt√
V

∑

~k,σ

k
(
~b~k,σeikct t − ~b+

−~k,σe−ikct t
)
ei~k~r, (17)

which by substituting into (14) and (15), using (11) and (12),
gives the reduced form of the Hamiltonian operators Ĥl and
Ĥt:

Ĥl =
∑

~k,σ

(
2MNC2

l c2
l k2

V
+

2MNC2
l Ω2

l

V

)
~a+
~k,σ
~a~k,σ−

−
∑

~k,σ

(
2MNC2

l c2
l k2

V
− 2MNC2

l Ω2
l

V

)(
a~k,σ~a−~k,σ+a+

−~k~a
+
~k,σ

)
(18)

and

Ĥt =
∑

~k,σ

(
2MNC2

t c2
t k2

V
+

2MNC2
t Ω2

t

V

)
~b+
~k,σ
~b~k,σ−

−
∑

~k,σ

(
2MNC2

t c2
t k2

V
−2MNC2

t Ω2
t

V

)(
b~k,σ~b−~k,σ+b+

−~k
~b+
~k,σ

)
, (19)

where the normalization coefficients Cl and Ct are defined by
the first term of right side of (18) and (19) which represent
the kinetic energies of longitudinal Sound Particles ~2k2

2ml
and

transverse Sound Particles ~2k2

2mt
with masses ml and mt, re-

spectively. Therefore we suggest to find Cl and Ct:

2MNC2
l c2

l k2

V
=
~2k2

2ml
(20)

and

2MNC2
t c2

t k2

V
=
~2k2

2mt
, (21)

which in turn determine

Cl =
~

2cl
√

mlρ
(22)

and

Ct =
~

2ct
√

mtρ
, (23)

where ρ = MN
V is the density of solid.

As we had shown in [1], at absolute zero T = 0, the Fermi
ions fill the Fermi sphere in momentum space. Thus, there are
two type Fermi atoms by the value of its spin z-component
µ = ± 1

2 with the boundary wave number k f of the Fermi,
which, in turn, is determined by a condition:

V
2π2

∫ k f

0
k2dk =

N
2
,

where N is the total number of Fermi-ions in the solid. This
reasoning together with the model of hard spheres claims the
important condition to introduce the boundary wave number

k f =

(
3π2N

V

) 1
3

coinciding with kl and kt. Then, there is an

important condition k f = kl = kt which determines a relation-
ship between natural oscillator frequencies

k f =
Ωl

cl
=

Ωt

ct
. (24)

3 Charged Polaritons

In papers [5, 6], we demostrated the so-called transformation
of longitudinal and transverse elastic waves into transverse
electromagnetic fields with vectors of the electric waves ~El

and ~Et, corresponding to the ion displacements ~ul and ~ut, re-
spectively. In turn, the equations of motion are presented in
the following forms [5, 6]:

M
d2~ul

dt2 + MΩ2
l ~ul = −e~El (25)

and

M
d2~ut

dt2 + MΩ2
t ~ut = −e~Et. (26)

The vector of the electric waves ~El and ~Et are defined by sub-
stitution of the meaning of ~ul and ~ut from (11) and (12), re-
spectively, into (25) and (26):

Vahan Minasyan and Valentin Samoilov. Charged Polaritons with Spin 1 9
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~El(~r, t) =
Cl

e
√

V

∑

~k,σ

γ~k,l

(
~a~k,σei(~k~r+kclt) + ~a+

~k,σ
e−i(~k~r+kclt)

)
(27)

and

~Et(~r, t) =
Ct

e
√

V

∑

~k,σ

γ~k,t

(
~b~k,σei(~k~r+kct t) + ~b+

~k,σ
e−i(~k~r+kct t)

)
, (28)

where

γ~k,l = M
(
k2c2

l −Ω2
l

)
(29)

and

γ~k,t = M
(
k2c2

t −Ω2
t

)
. (30)

On the other hand, by action of the longitudinal and trans-
verse ultrasonic waves on the charged ion [5, 6], these ultra-
sonic waves are transformed into transverse electromagnetic
fields with electric wave vectors ~El and ~Et which in turn de-
scribe the de Broglie wave of charged ions expressed via elec-
tric ~El(~r, t) and ~Et(~r, t) fields of one ion-wave particle in ho-
mogeneous medium. In fact, these electric ~El(~r, t) and ~Et(~r, t)
fields satisfy the Maxwell’s equations in dielectric medium:

curl ~Hl − εl

c
d ~El

dt
= 0 (31)

curl ~El +
1
c

d ~Hl

dt
= 0 (32)

div ~El = 0 (33)

div ~Hl = 0 (34)

and

curl ~Ht − εt

c
d ~Et

dt
= 0 (35)

curl ~Et +
1
c

d ~Ht

dt
= 0 (36)

div ~Et = 0 (37)

div ~Ht = 0 (38)

with √
εl =

c
cl

(39)

and

√
εl =

c
cl
, (40)

where ~Hl = ~Hl(~r, t) and ~Ht = ~Ht(~r, t) are, respectively, the lo-
cal magnetic fields, corresponding to longitudinal and trans-
verse ultrasonic waves, depending on space coordinate ~r and
time t; εl and εt are, respectively, the dielectric constants for
transverse electric fields ~El(~r, t) and ~Et(~r, t) corresponding to
longitudinal and transverse ultrasonic waves; c is the velocity
of electromagnetic wave in vacuum; µ = 1 is the magnetic
susceptibility.

When using Eqs. (31–40) and results of letter [8], we may
present the transverse electric fields ~El(~r, t) and ~Et(~r, t) by the
quantization forms:

~El(~r, t) =
Al√

V

∑

~k

(
~c~kei(~k~r+kclt) + ~c+

~k
e−i(~k~r+kclt)

)
(41)

and

~Et(~r, t) =
At√

V

∑

~k,0

(
~d~kei(~k~r+kct t) + ~d+

~k
e−i(~k~r+kct t)

)
, (42)

where Al and At are the unknown constants which are found
as below; ~c+

~k
, ~d+

~k
and ~c~k, ~d~k are, respectively, the Bose vector-

operators of creation and annihilation of electric fields of one
ion-wave particle with wave vector~k which are directed along
of the wave normal ~s or ~k = k~s. These Bose vector-operators
~El(~r, t) and ~Et(~r, t) are directed to the direction of the unit
vectors ~l and ~t which are perpendicular to the wave normal ~s;
N̂ is the operator total number of charged ions.

In this context, we indicate that the vector-operators ~c+
~k,σ

,

~c~k,σ and ~d+
~k,σ

, ~d~k,σ satisfy the Bose commutation relations as:
[
ĉ~k,σ, ĉ

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[ĉ~k,σ, ĉ~k′ ,σ′ ] = 0

[ĉ+
~k,σ
, ĉ+

~k′ ,σ′
] = 0

and
[
d̂~k,σ, d̂

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[d̂~k,σ, d̂~k′ ,σ′ ] = 0

[d̂+
~k,σ
, d̂+

~k′ ,σ′
] = 0.

Comparing (41) with (27) and (42) with (28), we get

~a~k,σ =
eAl

Clγ~k,l
~c~k,σ (43)
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and

~b~k,σ =
eAt

Ctγ~k,t

~d~k,σ. (44)

Now, substituting ~a~k,σ and ~b~k,σ into (18) and (19), we ob-
tain the reduced form of the Hamiltonian operators Ĥl and
Ĥl which are expressed via terms of the electric fields of the
ion-wave particle:

Ĥl =
∑
~k,σ

e2A2
l

γ2
~k,l

[(
2MNc2

l k2

V +
2MNΩ2

l
V

)
~c+
~k,σ

c~k,σ−

−
(

MNc2
l k2

V
− MNΩ2

l

V

)(
~c−~k,σ~c~k,σ + ~c+

~k,σ
~c+

−~k,σ

)] (45)

and

Ĥt =
∑
~k,σ

e2A2
t

γ2
~k,l

[(
2MNc2

t k2

V +
2MNΩ2

t
V

)
~d+
~k,σ

d~k,σ−

−
(

MNc2
t k2

V
− MNΩ2

t

V

)(
~d−~k,σ ~d~k,σ + ~d+

~k,σ
~d+

−~k,σ

)]
.

(46)

To evaluate the energy levels of the operators Ĥl (45) and
Ĥt (46) within the diagonal form, we use a transformation of
the vector-Bose-operators:

~c~k,σ =

~l~k,σ + L~k~l
+

−~k,σ√
1 − L2

~k

(47)

and

~d~k,σ =

~t~k,σ + M~k
~t+−~k,σ√

1 − M2
~k

, (48)

where L~k and M~k are, respectively, the real symmetrical func-
tions of a wave vector ~k.

Consequently,

Ĥl =
∑

k<k f ,σ

ε~k,l
~l+~k,σ

~l~k,σ (49)

and

Ĥt =
∑

k<k f ,σ

ε~k,t~t
+
~k,σ
~t~k,σ (50)

at

L2
~k

=

2MNc2
l k2

V +
2MNΩ2

l
V − ε~k,l

2MNc2
l k2

V +
2MNΩ2

l
V + ε~k,l

M2
~k

=

2MNc2
t k2

V +
2MNΩ2

l
V − ε~k,t

2MNc2
t k2

V +
2MNΩ2

t
V + ε~k,t

.

Hence, we infer that the Bose-operators ~l+
~k,σ

, ~l~k,σ and ~t+
~k,σ

,
~t~k,σ are, respectively, the vector of ”creation” and the vector
of ”annihilation” operators of charged polaritons with spin 1
with the energies:

ε~k,l =
4e2ρclA2

l Ωlk

γ2
~k,l

(51)

and

ε~k,t =
4e2ρctA2

t Ωtk
γ2
~k,t

. (52)

Hence, we note that these polaritons are charged because
the Hamiltonian contains the square of charge, e2. This pic-
ture is similar to the Coulomb interaction between two
charges.

Obviously, at small wave numbers k � Ωl
cl

and k � Ωt
ct

,
these charged polaritons are presented as charged phonons
with energies:

ε~k,l ≈ ~kvl (53)

and

ε~k,t ≈ ~kvt, (54)

where vl =
4ρcle2A2

l

~M2Ω3
l

and vt =
4ρcte2A2

t

~M2Ω3
t

are, respectively, the
velocities of charged phonons with spin 1 corresponding to
the longitudinal and transverse acoustic fields. To find the
unknown constants A2

l and A2
t , we suggest that vl = cl and

vt = ct as it was presented in [1]. This suggestion leads to
the results obtained in [1] and in turn presented in Debye’s
theory. Thus, when choosing A2

l =
~M2Ω3

l
4ρe2 and A2

t =
~M2Ω3

t
4ρe2 ,

the energies of charged polaritons represent as

ε~k,l =
~Ω4

l clk(
k2c2

l −Ω2
l

)2 (55)

and

ε~k,t =
~Ω4

t ctk(
k2c2

t −Ω2
t

)2 , (56)

which at large wave numbers k � Ωl
cl

and k � Ωt
ct

, and taking
into account (24), leads to the following form for the energies
of charged polaritons:

ε~k,l =
~k4

f cl

k3 . (57)

In fact, the stimulated vibration of ions by elastic waves
lead to the formation of the charged polaritons with spin 1.
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Thus, we predicted the existence of a new type of charged
quasiparticles in nature. On the other hand, we note that the
quantization of elastic fields is fulfilled for the new model of
metals. In analogous manner, as it was presented in [1], we
may show that the acoustic field operator does not commute
with its momentum density.
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Recently, we predicted the existence of fundamental particles in Nature, neutral Light
Particles with spin 1 and rest mass m = 1.8×10−4me, in addition to electrons, neutrons
and protons. We call these particles Light Bosons because they create electromagnetic
field which represents Planck’s gas of massless photons together with a gas of Light Par-
ticles in the condensate. Such reasoning leads to a breakdown of Stefan–Boltzmann’s
law at low temperature. On the other hand, the existence of new fundamental neutral
Light Particles leads to correction of such physical concepts as Bose-Einstein conden-
sation of photons, polaritons and exciton polaritons.

1 Introduction

First, the quantization scheme for the local electromagnetic
field in vacuum was presented by Planck in his black body
radiation studies [1]. In this context, the classical Maxwell
equations lead to appearance of the so-called ultraviolet catas-
trophe; to remove this problem, Planck proposed the model
of the electromagnetic field as an ideal Bose gas of massless
photons with spin one. However, Dirac [2] showed the Planck
photon-gas could be obtained through a quantization scheme
for the local electromagnetic field, presenting a theoretical
description of the quantization of the local electromagnetic
field in vacuum by use of a model Bose-gas of local plane
electromagnetic waves propagating by speed c in vacuum.

In a different way, in regard to Plank and Dirac’s mod-
els, we consider the structure of the electromagnetic field [3]
as a non-ideal gas consisting of N neutral Light Bose Par-
ticles with spin 1 and finite mass m, confined in a box of
volume V . The form of potential interaction between Light
Particles is defined by introduction of the principle of wave-
particle duality of de Broglie [4] and principle of gauge in-
variance. In this respect, a non-ideal Bose-gas consisting
of Light Particles with spin 1 and non-zero rest mass is de-
scribed by Planck’s gas of massless photons together with a
gas consisting of Light Particles in the condensate. In this
context, we defined the Light Particle by the model of hard
sphere particles [5]. Such definition of Light Particles leads
to cutting off the spectrum of the electromagnetic wave by
the boundary wave number k0 =

mc
~

or boundary frequency
ωγ = 1018 Hz of gamma radiation at the value of the rest
mass of the Light Particle m = 1.8 × 10−4me. On the other
hand, the existence of the boundary wave number k0 =

mc
~

for the electromagnetic field in vacuum is connected with the
characteristic length of the interaction between two neighbor-
ing Light Bosons in the coordinate space with the minimal
distance d = 1

k0
= ~

mc = 2×10−9m. This reasoning determines
the density of Light Bosons N

V as N
V =

3
4πd3 = 0.3×1026m−3.

It is well known that Stefan-Boltzmann’s law [6] for ther-
mal radiation, presented by Planck’s formula [1], determines

the average energy density U
V as

U
V
=

2
V

∑
0≤k<∞

~kc~i+
~k
~i~k = σT 4, (1)

where ~ is the Planck constant; σ is the Stefan-Boltzmann
constant;~i+

~k
~i~k is the average number of photons with the wave

vector ~k at the temperature T :

~i+
~k
~i~k =

1

e
~kc
kT − 1

. (2)

Obviously, at T = 0, the average energy density vanishes in
Eq.(1), i.e. U

V = 0, which follows from Stefan-Boltzmann’s
law.

However, as we show, the existence of the predicted Light
Particles breaks Stefan-Boltzmann’s law for black body radi-
ation at low temperature.

2 Breakdown of Stefan-Boltzmann’s law

Now, we consider the results of letter [3], where the average
energy density of black radiation U

V is represented as:

U
V
=

mc2N0,T

V
+

2
V

∑
0≤k<k0

~kc~i+
~k
~i~k, (3)

where mc2N0,T

V is a new term, in regard to Plank’s formula (1),
which determines the energy density of Light Particles in the
condensate; N0,T

V is the density of Light Particles in the con-
densate.

In this respect, the equation for the density of Light Parti-
cles in the condensate N0,T

V represents as

N0,T

V
=

N
V
− 1

V

∑
0<k<k0

L2
~k

1 − L2
~k

− 1
V

∑
0<k<k0

1 + L2
~k

1 − L2
~k

~i+
~k
~i~k (4)

with the real symmetrical function L~k from the wave vector ~k:
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L2
~k
=

~2k2

2m +
mc2

2 − ~kc
~2k2

2m +
mc2

2 + ~kc
. (5)

Our calculation shows that at absolute zero the value of
~i+
~k
~i~k = 0, and therefore the average energy density of black

radiation U
V reduces to

U
V
=

mc2N0,T=0

V
=

mc2N
V
− m4c5B(2, 3)

4π2~3 ≈ mc2N
V
, (6)

where B(2, 3) =
∫ 1

0 x(1 − x)2dx = 0.1 is the beta function.
Thus, the average energy density of black radiation U

V is
a constant at absolute zero. In fact, there is a breakdown of
Stefan-Boltzmann’s law for thermal radiation.

In conclusion, it should be also noted that Light Bosons
in vacuum create photons, while Light Bosons in a homoge-
neous medium generate the so-called polaritons. This fact
implies that photons and polaritons are quasiparticles, there-
fore, Bose-Einstein condensation of photons [7], polaritons
[8] and exciton polaritons [9] has no physical sense.
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A point-mass concept has been elaborated from the equations of the gravitational
field. One application of these deductions results in a black hole configuration of the
Schwarzschild type, having no electric charge and no angular momentum. The critical
mass of a gravitational collapse with respect to the nuclear binding energy is found to be
in the range of 0.4 to 90 solar masses. A second application is connected with the spec-
ulation about an extended symmetric law of gravitation, based on the options of positive
and negative mass for a particle at given positive energy. This would make masses of
equal polarity attract each other, while masses of opposite polarity repel each other.
Matter and antimatter are further proposed to be associated with the states of positive
and negative mass. Under fully symmetric conditions this could provide a mechanism
for the separation of antimatter from matter at an early stage of the universe.

1 Introduction

In connection with an earlier elaborated revised quantum-
electrodynamic theory, a revised renormalisation procedure
has been developed to solve the problem of infinite self-
energy of the point-charge-like electron [1, 2]. In the present
investigation an analogous procedure is applied to the basic
equations of gravitation, to formulate a corresponding point
mass concept. Two applications result from such a treatment.
The first concerns the special Schwarzschild case of a black
hole with its critical limit of gravitational collapse. The sec-
ond application is represented by the speculation about an ex-
tended form of the gravitation law, in which full symmetry is
obtained by including both positive and negative mass con-
cepts. This further leads to the question whether such con-
cepts could have their correspondence in matter and antimat-
ter, and in their mutual separation.

2 The conventional law of gravitation

In this investigation the analysis is limited to the steady case
of spherical symmetry, in a corresponding frame where r is
the only independent variable.

2.1 Basic equations

Following Bergmann [3], a steady gravitational field strength

g = −∇φ (1)

is considered which originates from the potential φ (r). The
source of the field strength is a mass density ρ related to g by

−div g = 4πGρ = ∇2φ =
1
r2

d
dr

(
r2 dφ

dr

)
, (2)

where G = 6.6726× 10−11 m3kg−1s−2 is the constant of gravi-
tation in SI units. The associated force density becomes

f = ρ g . (3)

In the conventional interpretation there only exists a posi-
tive mass density ρ> 0. This makes in a way the gravitational
field asymmetric, as compared to the electrostatic field which
includes both polarities of electric charge density.

A complete form of the potential φ would consist of a se-
ries of both positive and negative powers of r, but the present
analysis will be restricted and simplified by studying each
power separately, in the form

φ (r) = φ0

(
r
r0

)α
. (4)

Here φ0 is a constant, r0 represents a characteristic dimension
and α is a positive or negative integer. Equation (2) yields

4πGρ =
φ0

rα0
α (α + 1) rα−2 > 0 . (5)

When limiting the investigations by the condition ρ> 0, the
cases α= 0 and α=−1 have to be excluded, leaving the re-
gimes of positive α= (1, 2, . . .) and negative α= (−2,−3, . . .)
to be considered for positive values of φ0.

2.2 Point mass formation

For reasons to become clear from the deductions which fol-
low, we now study a spherical configuration in which the
mass density ρ is zero within an inner hollow region 06 r6 ri,
and where ρ> 0 in the outer region r> ri. From relation (5)
the total integrated mass P (r) inside the radius r then be-
comes

P (r) =

r∫

0

ρ 4πr2dr =
1
G
φ0

rα0
α
(
rα+1− rα+1

i

)
> 0 (6)

with a resulting local field strength g = (g, 0, 0) given by

g (r) = −G
P (r)

r2 = −φ0

rα0

α

r2

(
rα+1− rα+1

i

)
< 0 (7)
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and a local force density f = ( f , 0, 0) where

f (r) = − 1
4πG

φ0

rα0

2

α2 (α + 1) rα−4
(
rα+1− rα+1

i

)
< 0 . (8)

Here all (P, g, f ) refer to the range r> ri, and φ0 > 0.
A distinction is further made between the two regimes of

positive and negative α:

• When α= (1, 2, . . .) of a convergent potential (4), this
hollow configuration has an integrated mass (6) which
increases monotonically with r, from zero at r = ri to
large values. This behaviour is the same for a vanishing
ri and does not lead to a point-like mass at small ri.

• When α= (−2,−3, . . .) of a divergent potential (4), the
hollow configuration leads to a point-mass-like geome-
try at small ri. This is similar to a point-charge-like ge-
ometry earlier treated in a model of the electron [1, 2],
and will be considered in the following analysis.

2.3 The renormalised point mass

In the range α6−2 expressions (6)–(8) are preferably cast
into a form with γ=−α> 2 where

P (r) =
1
G

(
φ0rγ0

)
γ
(
r−γ+1

i − r−γ+1
)
> 0 , (9)

g (r) = −
(
φ0rγ0

) γ
r2

(
r−γ+1

i − r−γ+1
)
< 0 , (10)

f (r) =− 1
4πG

(
φ0rγ0

)2
γ2 (γ−1) r−γ−4

(
r−γ+1

i −r−γ+1
)
< 0. (11)

Here an erroneous result would be obtained if the terms in-
cluding ri are dropped and the hollow configuration is aban-
doned. Due to eqs. (9)–(11) this would namely result in a
negative mass P, a positive field strength g, and a repulsive
local gravitational force density f .

The radius ri of the hollow inner region is now made to
approach zero. The total integrated mass of eq. (9) is then
concentrated to an infinitesimally small layer. Applying a re-
vised renormalisation procedure in analogy with an earlier
scheme [1,2], we “shrink” the combined parameters φ0rγ0 and
rγ−1

i in such a way that

φ0rγ0 = cφr · ε rγ−1
i = ci · ε 0 < ε � 1 , (12)

where ε is a smallness parameter and cφr and ci are positive
constants. A further introduction of

P0 ≡ 1
G
γ cφr

ci
(13)

results in P (r) = 0 for r6 ri and

P (r) = P0

[
1 −

( ri

r

)γ−1
]

r > ri . (14)

In the limit ε→ 0 and ri→ 0 there is then a point mass P0 at
the origin. This mass generates a field strength

g (r) = −G
P0

r2 (15)

at the distance r according to equations (10), (12) and (13).
With another point mass P1 at the distance r, there is a mutual
attraction force

F01 = P1g (r) = −G
P0P1

r2 , (16)

which is identical with the gravitation law for two point
masses.

To further elucidate the result of eqs. (12)-(16) it is first
observed that, in the conventional renormalisation procedure,
the divergent behaviour of an infinite self-energy is outbal-
anced by adding extra infinite ad-hoc counter-terms to the
Lagrangian, to obtain a finite difference between two “infini-
ties”. Even if such a procedure has been successful, however,
it does not appear to be quite acceptable from the logical and
physical points of view. The present revised procedure rep-
resented by expressions (12) implies on the other hand that
the “infinity” of the divergent potential φ0 at a shrinking ra-
dius ri is instead outbalanced by the “zeros” of the inherent
shrinking counter-factors cφr · ε and ci · ε.

3 A black hole of Schwarzschild type

A star which collapses into a black hole under the compres-
sive action of its own gravitational field is a subject of ever
increasing interest. In its most generalized form the physics
of the black hole includes both gravitational and electromag-
netic fields as well as problems of General Relativity, to ac-
count for its mass, net electric charge, and its intrinsic angular
momentum. The associated theoretical analysis and related
astronomical observations have been extensively described
in a review by Misner, Thorne and Wheeler [4] among oth-
ers. Here the analysis of the previous section will be applied
to the far more simplified special case by Schwarzschild, in
which there is no electric charge and no angular momentum.
Thereby it has also to be noticed that no black hole in the
universe has a substantial electric charge [4].

3.1 The inward directed gravitational pressure

From eq. (11) is seen that the inward directed local force den-
sity is zero for r6 ri, increases with r to a maximum within a
thin shell, and finally drops to zero at large r. The integrated
inward directed gravitational pressure on this shell thus be-
comes

p =

∞∫

0

f dr = − G
8π

(γ − 1)2

(γ + 1) (γ + 3)
P2

0

r4
i

(17)

in the limit of small ε and ri.
When this pressure becomes comparable to the relevant

energy density of the compressed matter, a corresponding
gravitational collapse is expected to occur.
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3.2 Gravitational collapse of the nuclear binding forces

Here we consider the limit at which matter is compressed into
a body of densely packed nucleons, and when the pressure of
eq. (17) tends to exceed the energy density of the nucleon
binding energy. The radius of a nucleus is [5]

rN = 1.5 × 10−15A1/2 [m], (18)

where A is the mass number. A densely packed sphere of N
nuclei has the volume

VN =
4
3
πNr3

N =
4
3
πr3

eq , (19)

where req is the equivalent radius of the sphere. The total
binding energy of a nucleus is further conceived as the work
required to completely dissociate it into its component nucle-
ons. This energy is about 8 MeV per nucleon [5, 6]. With A
nucleons per nucleus, the total binding energy of a body of N
nuclei thus becomes

WN = NAwN , (20)

where wN = 8 MeV = 1.28× 10−12 J. The equivalent binding
energy density of the body is then

pN =
WN

VN
=

3
4

AwN

π r3
N

= 0.907 × 1032A−1/2 [J ×m−3]. (21)

The shell-like region of gravitational pressure has a force
density (11) which reaches its maximum at the radius

rm = ri

(
2γ + 3
γ + 4

)1/(γ−1)

(22)

being only a little larger than ri. This implies that the radius
req of eq. (19) is roughly equal to ri and

ri � rN N1/3. (23)

With N nuclei of the mass Amp and mp as the proton mass,
the total mass becomes

P0 = NAmp , (24)

which yields

ri � rN

(
P0

Amp

)1/3

= 1.26 × 10−6A1/6P1/3
0 [m]. (25)

This result finally combines with eq. (17) to an equivalent
gravitational pressure

p = −1.1 × 1012 (γ − 1)2

(γ + 1) (γ + 3)
A−2/3P2/3

0 [J ×m−3]. (26)

For a gravitational collapse defined by −p> pN the point mass
P0 then has to exceed the critical limit

P0c � 7.5 × 1029
[
(γ + 1) (γ + 3)

(γ − 1)2

]3/2

A1/4 [kg]. (27)

For γ> 2 and 16 A6 250, the critical mass would then be
found in the range of about 0.46 P0c 6 90 solar masses of
about 1.98 × 1030 kg.

4 Speculations about a generalized law of gravitation

The Coulomb law of interaction between electrically charged
bodies is symmetric in the sense that it includes both polari-
ties of charge and attractive as well as repulsive forces. The
classical Newtonian law of gravitation includes on the other
hand only one polarity of mass and only attractive forces. In
fact, this asymmetry does not come out as a necessity from
the basic equations (1)–(3) of a curl-free gravitational field
strength. The question could therefore be raised whether a
more general and symmetric law of gravitation could be de-
duced from the same equations, and whether this could have
a relevant physical interpretation.

4.1 Mass polarity

In relativistic mechanics the momentum p of a particle with
the velocity u and rest mass m0 becomes [7]

p = m0u
[
1 −

(u
c

)2
]−1/2

. (28)

With the energy E of the particle, the Lorentz invariance fur-
ther leads to the relation

p2 − E2

c2 = −m2
0c2, (29)

where p2 = p2 and u2 = u2. Equations (28) and (29) yield

E2 = m2
0c4

[
1 −

(u
c

)2
]−1

≡ m2c4, (30)

leading in principle to two roots

E = ±mc2. (31)

In this investigation the discussion is limited to a positive en-
ergy E, resulting in positive and negative gravitational masses

m = ± E
c2 E > 0 . (32)

This interpretation differs from that of the negative energy
states of positrons proposed in the “hole” theory by Dirac [8]
corresponding to the plus sign in eq. (31) and where both E
and m are negative.

4.2 An extended law of gravitation

With the possibility of negative gravitational masses in mind,
we now return to the potential φ of equations (1) and (4)
where the amplitude factor φ0 can now adopt both positive
and negative values, as defined by the notation φ0+ > 0 and
φ0− < 0, and where corresponding subscripts are introduced
for (P, g, f , P0) of eqs. (9)–(11) and (13). Then P+ > 0, P− < 0,
P0+ > 0, P0− < 0, g+ < 0, g− > 0, but f+ < 0 and f− < 0 always
represent an attraction force due to the quadratic dependence
on φ0 in eq. (11). With P1+ or P1− as an additional point mass
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at the distance r from P0+ or P0−, there is then an extended
form of the law (16), as represented by the forces

P1+g+ = −G
P0+P1+

r2 = P1−g− = −G
P0−P1−

r2 , (33)

P1+g− = G
P0−P1+

r2 = P1−g+ = G
P0−P1+

r2 . (34)

These relations are symmetric in the gravitational force inter-
actions, where masses of equal polarity attract each other, and
masses of opposite polarity repel each other. It would imply
that the interactions in a universe consisting entirely of neg-
ative masses would become the same as those in a universe
consisting entirely of positive masses. In this way specific
mass polarity could, in fact, become a matter of definition.

4.3 A possible rôle of antimatter

At this point the further question may be raised whether the
states of positive and negative mass could be associated with
those of matter and antimatter, respectively. A number of
points become related to such a proposal.

The first point concerns an experimental test of the re-
pulsive behaviour due to eq. (34). If an electrically neutral
beam of anti-matter, such as of antihydrogen atoms, could be
formed in a horizontal direction, such a beam would be de-
flected upwards if consisting of negative mass. However, the
deflection is expected to be small and difficult to measure.

A model has earlier been elaborated for a particle with el-
ementary charge, being symmetric in its applications to the
electron and the positron [1, 2]. The model includes an elec-
tric charge q0, a rest mass m0, and an angular momentum s0
of the particle. The corresponding relations between included
parameters are easily seen to be consistent with electron-
positron pair formation in which q0 =−e, m0 = +E/c2 and
s0 = +h/4π for the electron and q0 = +e, m0 =−E/c2 and
s0 = +h/4π for the positron when the formation is due to a
photon of spin +h/2π. The energy of the photon is then at
least equal to 2E where the electron and the photon both have
positive energies E.

The energy of photons and their electromagnetic radia-
tion field also have to be regarded as an equivalent mass due
to Einstein’s mass-energy relation. This raises the additional
question whether full symmetry also requires the photon to
have a positive or negative gravitational mass, as given by

mν = ±hν
c2 . (35)

If equal proportions of matter and antimatter would have
been formed at an early stage of the universe, the repulsive
gravitational force between their positive and negative masses
could provide a mechanism which expels antimatter from
matter and vice versa, also under fully symmetric conditions.
Such a mechanism can become important even if the gravita-
tional forces are much weaker than the electrostatic ones, be-

cause matter and antimatter are expected to appear as electri-
cally quasi-neutral cosmical plasmas. The final result would
come out to be separate universes of matter and antimatter.

In a theory on the metagalaxy, Alfvén and Klein [9] have
earlier suggested that there should exist limited regions in our
universe which contain matter or antimatter, and being sepa-
rated by thin boundary layers within which annihilation reac-
tions take place. A simplified model of such layers has been
established in which the matter-antimatter “ambiplasma” is
immersed in a unidirectional magnetic field [10]. The sep-
aration of the cells of matter from those of antimatter by a
confining magnetic field geometry in three spatial directions
is, however, a problem of at least the same complication as
that of a magnetically confined fusion reactor.

5 Conclusions

From the conventional equations of the gravitational field, the
point-mass concept has in this investigation been elaborated
in terms of a revised renormalisation procedure. In a first
application a black hole configuration of the Schwarzschild
type has been studied, in which there is no electric charge and
no angular momentum. A gravitational collapse in respect to
the nuclear binding energy is then found to occur at a critical
point mass in the range of about 0.4 to 90 solar masses. This
result becomes modified if the collapse is related to other re-
strictions such as to the formation of “primordial black holes”
growing by the accretion of radiation and matter [4], or to
phenomena such as a strong centrifugal force.

A second application is represented by the speculation
about an extended law of gravitation, based on the options
of positive and negative mass of a particle at a given posi-
tive energy, and on the basic equations for a curl-free gravi-
tational fieldstrength. This would lead to a fully symmetric
law due to which masses of equal polarity attract each other,
and masses of opposite polarity repel each other. A further
proposal is made to associate matter and antimatter with the
states of positive and negative mass. Even under fully sym-
metric conditions, this provides a mechanism for separating
antimatter from matter at an early stage of development of the
universe.

After the completion of this work, the author has been
informed of a hypothesis with negative mass by Choi [11],
having some points in common with the present paper.
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The emergence or formation of leptons from particles composed of quarks is still re-
mained very poorly understood. In this paper, we propose that leptons are formed by
quark-antiquark annihilations. There are two types of quark-antiquark annihilations.
Type-I quark-antiquark annihilation annihilates only color charges, which is an incom-
plete annihilation and forms structureless and colorless but electrically charged leptons
such as electron, muon, and tau particles. Type-II quark-antiquark annihilation an-
nihilates both electric and color charges, which is a complete annihilation and forms
structureless, colorless, and electrically neutral leptons such as electron, muon, and tau
neutrinos. Analyzing these two types of annihilations between up and down quarks and
antiquarks with an excited quantum state for each of them, we predict the fourth gener-
ation of leptons named lambda particle and neutrino. On the contrary quark-antiquark
annihilation, a lepton particle or neutrino, when it collides, can be disintegrated into
a quark-antiquark pair. The disintegrated quark-antiquark pair, if it is excited and/or
changed in flavor during the collision, will annihilate into another type of lepton par-
ticle or neutrino. This quark-antiquark annihilation and pair production scenario pro-
vides unique understanding for the formation of leptons, predicts the fourth generation
of leptons, and explains the oscillation of neutrinos without hurting the standard model
of particle physics. With this scenario, we can understand the recent OPERA measure-
ment of a tau particle in a muon neutrino beam as well as the early measurements of
muon particles in electron neutrino beams.

1 Introduction

Elementary particles can be categorized into hadrons and lep-
tons in accord with whether they participate in the strong in-
teraction or not. Hadrons participate in the strong interaction,
while leptons do not. All hadrons are composites of quarks
[1-3]. There are six types of quarks denoted as six different
flavors: up, down, charm, strange, top, and bottom, which
are usually grouped into three generations: {u, d}, {c, s}, {t, b}.
Color charge is a fundamental property of quarks, which has
analogies with the notion of electric charge of particles. There
are three varieties of color charges: red, green, and blue. An
antiquark’s color is antired, antigreen, or antiblue. Quarks
and antiquarks also hold electric charges but they are frac-
tional, ±e/3 or ±2e/3, where e = 1.6 × 10−19 C is the charge
of proton.

There are also six types of leptons discovered so far,
which are electron, muon, and tau particles and their cor-
responding neutrinos. These six types of leptons are also
grouped into three generations: {e−, νe}, {µ−, νµ}, {τ−, ντ}. The
antiparticles of the charged leptons have positive charges. It
is inappropriate to correspond the three generations of lep-
tons to the three generations of quarks because all these three
generations of leptons are formed or produced directly in as-
sociation with only the first generation of quarks. We are still
unsure that how leptons form and whether the fourth genera-

tion of leptons exists or not [4-8].
In this paper, we propose that leptons, including the fourth

generation, are formed by quark-antiquark annihilations.
Electrically charged leptons are formed when the color
charges of quarks and antiquarks with different flavors are
annihilated, while neutrinos are formed when both the elec-
tric and color charges of quarks and antiquarks with the same
flavor are annihilated. We also suggest that quarks and anti-
quarks can be produced in pairs from disintegrations of lep-
tons. This quark-antiquark annihilation and pair production
model predicts the fourth generation of leptons and explains
the measurements of neutrino oscillations.

2 Quark Annihilation and Lepton Formation

Quark-antiquark annihilation is widely interested in particle
physics [9-13]. A quark and an antiquark may annihilate
to form a lepton. There are two possible types of quark-
antiquark annihilations. Type-I quark-antiquark annihilation
only annihilates their color charges. It is an incomplete anni-
hilation usually occurred between different flavor quark and
antiquark and forms structureless and colorless but electri-
cally charged leptons such as e−, e+ , µ−, µ+, τ−, and τ+.
Type-II quark-antiquark annihilation annihilates both electric
and color charges. It is a complete annihilation usually oc-
curred between same flavor quark and antiquark and forms
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Fig. 1: Formation of the four generations of leptons by annihilations
of up and down quarks and antiquarks with an excited quantum state.

structureless, colorless, and electrically neutral leptons such
as νe, ν̄e, νµ, ν̄µ, ντ, and ν̄τ.

Mesons are quark-antiquark mixtures without annihilat-
ing their charges. For instance, the meson pion π+ is a mix-
ture of one up quark and one down antiquark. Meson’s color
charges are not annihilated and thus participate in the strong
interaction. Leptons do not participate in the strong inter-
action because their color charges are annihilated. Particles
formed from annihilations do not have structure such as γ-
rays formed from particle-antiparticle annihilation. A baryon
is a mixture of three quarks such as that a proton is composed
of two up quarks and one down quark and that a neutron is
composed of one up quark and two down quarks.

Recently, Zhang [14-15] considered the electric and color
charges of quarks and antiquarks as two forms of imaginary
energy in analogy with mass as a form of real energy and de-
veloped a classical unification theory that unifies all natural
fundamental interactions with four natural fundamental ele-
ments, which are radiation, mass, electric charge, and color
charge. According to this consideration, the type-I quark-
antiquark annihilation cancels only the color imaginary en-
ergies of a quark and a different flavor antiquark, while the
type-II quark-antiquark annihilation cancels both the electric
and color imaginary energies of a quark and a same flavor
antiquark.

Figure 1 is a schematic diagram that shows formations
of four generations of leptons from annihilations of up and
down quarks and antiquarks with one excited quantum state
for each of them. The existence of quark excited states,
though not yet directly discovered, has been investigated over
three decades [16-18]. That ρ+ is also a mixture of one up

Quarks u0 d0 u1 d1

ū0 νe, ν̄e e− - τ−

d̄0 e+ νµ, ν̄µ µ+ -
ū1 - µ− ντ, ν̄τ λ−

d̄1 τ+ - λ+ νλ, ν̄λ

Table 1: The up and down quarks and antiquarks in ground and
excited quantum states and four generations of leptons

quark and one down antiquark but has more mass than π+ and
many similar examples strongly support that quarks and anti-
quarks have excited states. In Figure 1, the subscript ’0’ de-
notes the ground state and ’1’ denotes the excited state. The
higher excited states are not considered in this study. The
dashed arrow lines refer to type-I annihilations of quarks and
antiquarks that form electrically charged leptons, while the
solid arrow lines refer to type-II annihilations of quarks and
antiquarks that form colorless and electrically neutral leptons.
These annihilations of quarks and antiquarks and formations
of leptons can also be represented in Table 1.

The first generation of leptons is formed by annihilations
between the ground state up, ground state antiup, ground state
down, and ground state antidown quarks (see the red arrow
lines of Figure 1). The up quark u0 and the antiup quark ū0
completely annihilate into an electron neutrino νe or an elec-
tron antineutrino ν̄e. The antiup quark ū0 and the down quark
d0 incompletely annihilate into an electron e−. The up quark
u0 and the antidown quark d̄0 incompletely annihilate into a
positron e+.

The second generation of leptons are formed by annihila-
tions between the ground state down, ground state antidown,
excited up, and excited antiup quarks (see the blue arrow lines
of Figure 1). The down quark d0 and the antidown quark d̄0
completely annihilate into a muon neutrino νµ or an antimuon
neutrino ν̄µ. The antiup quark ū1 and the down quark d0 in-
completely annihilate into a negative muon µ−. The up quark
u1 and the antidown quark d̄0 incompletely annihilate into a
positive muon µ+.

The third generation of leptons are formed by annihila-
tions between the ground state up, excited up, ground state
antiup, excited antiup, excited down, and excited antidown
quarks (see the green lines of Figure 1). The up quark u1 and
the antiup quark ū1 completely annihilate into a tau neutrino
ντ or a tau antineutrino ν̄τ. The antiup quark ū0 and the down
quark d1 incompletely annihilate into a negative tau τ−. The
up quark u0 and the antidown quark d̄1 incompletely annihi-
late into a positive tau τ+.

The fourth generation of leptons are formed by annihila-
tions between excited up, excited antiup, excited down, and
excited antidown quarks (see the purple lines of Figure 1).
The down quark d1 and the antidown quark d̄1 completely an-
nihilate into a lambda neutrino νλ or a lambda antineutrino
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Fig. 2: Formation of the first generation of leptons: (a) e− and ν̄e

through beta decay and (b) e+ and νe through positron emission.

ν̄λ. The antiup quark ū1 and the down quark d1 incompletely
annihilate into a negative lambda λ−. The up quark u1 and
the antidown quark d̄1 incompletely annihilate into a positive
lambda λ+.

3 Quark Pair Production and Lepton Disintegration

The first generation of leptons can be produced through the
beta decay of a neutron, n −→ p + e− + ν̄e (Figure 2a), and
the positron emission of a proton, energy + p −→ n + e+ + νe

(Figure 2b).
In the beta decay, an excited down quark in the neutron

degenerates into a ground state down quark and an excited up
and antiup quark pair, d1 −→ d0 + (u1ū1). The excited antiup
quark further degenerates into a ground state up quark and a
ground state up and antiup quark pair, ū1 −→ ū0 + (u0ū0). The
ground state antiup quark incompletely annihilates with the
ground state down quark into an electron, ū0 +d0 −→ e−. The
ground state up and antiup quark pair completely annihilates
into an electron antineutrino, u0 + ū0 −→ ν̄e.

In the positron emission, an excited up quark in the posi-
tron after absorbing a certain amount of energy degenerates
into a ground state up quark and produces an excited state
down and antidown quark pair, energy + u1 −→ u0 + (d1d̄1).
The excited antidown quark further degenerates into a ground
state antidown quark and produces a ground state up and an-
tiup quark pair, d̄1 −→ d̄0 + (u0ū0). The ground state up
quark incompletely annihilates with the ground state anti-

Fig. 3: Production of other three electrically charged leptons from
an energetic electron-positron collision. In the collision, electron
and positron are first disintegrated into quark-antiquark pairs, which
are then excited and annihilated into other generations of electrically
charge leptons.

down quark to form a positron, u0 + d̄0 −→ e+. The ground
state up and antiup quark pair completely annihilates into an
electron neutrino, u0 + ū0 −→ νe.

The other three generations of electrically charged leptons
can be produced by an energetic electron-positron collision,

energy + e− + e+ −→

µ− + µ+

τ− + τ+

λ− + λ+

, (1)

as also shown in Figure 3. In the particle physics, it has been
experimentally shown that the energetic electron-positron
collision can produce (µ−, µ+) and (τ−, τ+). But how the
electron-positron collisions produce µ and τ leptons is still
remained very poorly understood.

With the quark annihilation and pair production model
proposed in this paper, we can understand why an electron-
positron can produce µ and τ particles. In addition, we predict
the existence of the fourth generation of leptons, λ particle
and neutrino. The energetic electron-positron collision disin-
tegrates the electron into a ground state antiup-down
quark pair e− −→ (ū0d0) and the positron into a ground state
up-antidown quark pair e+ −→ (u0d̄0). During the collision,
the quarks and antiquarks in the disintegrated electron and
positron quark-antiquark pairs absorb energy and become ex-
cited. The excited quark-antiquark pairs incompletely anni-
hilate into another generation of electrically charged leptons.

There are three possible excitation patterns, which lead to
three generations of leptons from the electron-positron colli-
sion. If the antiup quark in the disintegrated electron quark-
antiquark pair and the up quark in the disintegrated positron
quark-antiquark pair are excited, then the annihilations pro-
duce leptons µ− and µ+. If the down quark in the disinte-
grated electron quark-antiquark pair and the antidown quark
in the disintegrated positron quark-antiquark pair are excited,
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then the annihilations produce leptons τ− and τ+. If both the
antiup and down quarks in the disintegrated electron quark-
antiquark pair and both the up and antidown quarks in the
disintegrated positron quark-antiquark pair are excited, the
annihilations produce the leptons λ− and λ+. An electron-
positron collision in a different energy level produces a dif-
ferent generation of electrically charged leptons. To produce
the λ particles, a more energetic electron-positron collision is
required than µ and τ lepton productions. On the other hand,
the electron and positron, if they are not disintegrated into
quark-antiquark pairs during the collision, can directly anni-
hilate into photons. The disintegrated electron and positron
quark-antiquark pairs, if they are excited but not annihilated,
can form the weak particles W− and W+.

A quark or antiquark can be excited when it absorbs en-
ergy or captures a photon. An excited quark or antiquark can
degenerate into its corresponding ground state quark or an-
tiquark after it releases a photon and/or one or more quark-
antiquark pairs. The decays of these three generations of elec-
trically charged leptons (µ, τ, and λ particles) can produce
their corresponding neutrinos through degenerations and an-
nihilations of quarks and antiquarks.

The currently discovered three generations of leptons in-
cluding the fourth generation predicted in this paper are
formed through the annihilations of the up and down quarks
and antiquarks with an excited state. All these leptons are cor-
responding to or associated with the first generation of quarks
and antiquarks. Considering the annihilations of other four
flavor quarks and antiquarks, we can have many other types of
leptons that are corresponding to the second and third genera-
tions of quarks and antiquarks. These leptons must be hardly
generated and observed because a higher energy is required
[4].

4 Quark Annihilation and Pair Production: Neutrino
Oscillation

The complete (or type-II) annihilation between a quark and
its corresponding antiquark forms a colorless and electrically
neutral neutrino. On the contrary quark-antiquark annihila-
tion, a neutrino, when it collides with a nucleon, may be
disintegrated into a quark-antiquark pair. The disintegrated
quark-antiquark pairs can be excited if it absorbs energy (e.g.,
γ + u0 −→ u1) and changed in flavor if it exchanges a weak
particle (e.g., u0 + W− −→ d0) during the disintegration. The
excited and/or flavor changed quark-antiquark pair then ei-
ther annihilates into another type of neutrino or interacts with
the nucleon to form hadrons and electrically charged leptons.
This provides a possible explanation for neutrino oscillations
[19-20]. This scenario of neutrino oscillations does not need
neutrinos to have mass and thus does not conflict with the
standard model of particle physics.

Figure 4 and 5 show all possible oscillations among the
four types of neutrinos. An electron neutrino can oscillate

Fig. 4: Neutrino oscillations. (a) Oscillation between electron and
tau neutrinos. (b) Oscillation between electron and muon neutrinos.
(c) Oscillation between electron and lambda neutrinos.

into a tau neutrino if the disintegrated quark-antiquark pair
(u0ū0) is excited into (u1ū1) (Figure 4a), a muon neutrino
if the disintegrated quark-antiquark pair (u0ū0) is changed
in flavor into (d0d̄0) (Figure 4b), and a lambda neutrino if
the disintegrated quark-antiquark pair (u0ū0) is excited into
(u1ū1) and then changed in flavor into (d1d̄1) (Figure 4c).
Similarly, A muon neutrino can oscillate into a tau neutrino
if the disintegrated quark-antiquark pair (d0d̄0) is excited and
changed in flavor into (u1ū1) (Figure 5a) and a lambda neu-
trino if the disintegrated quark-antiquark pair (d0d̄0) is ex-
cited and changed into (d1d̄1) (Figure 5b). A tau neutrino can
oscillate into a lambda neutrino if the disintegrated quark-
antiquark pair (u1ū1) is changed in flavor into (d1d̄1) (Figure
5c). All these oscillations described above are reversible pro-
cesses. The right arrows in Figures 4 and 5 denote the neu-
trino oscillations when the disintegrated quark-antiquark pair
absorbs energy to be excited or capture weak particles to be
changed in flavor. Neutrinos can also oscillate when the dis-
integrated quark-antiquark pair emits energy and/or releases
weak particles. In this cases, the right arrows in Figure 4
and 5 are replaced by left arrows and neutrinos oscillate from
heavier ones to lighter ones.

The recent OPERA experiment at the INFN’s Gran Sasso
laboratory in Italy first observed directly a tau particle in a
muon neutrino beam generated by pion and kaon decays and
sent through the Earth from CERN that is 732 km away [21-
23]. This significant result can be explained with a muon
neutrino disintegration, excitation, and interaction with a nu-
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Fig. 5: Neutrino oscillations. (a) Oscillation between muon and
lambda neutrinos. (b) Oscillation between muon and tau neutrinos.
(c) Oscillation between tau and lambda neutrinos.

cleon. Colliding with a neutron, a muon neutrino νµ is disin-
tegrated into a ground state down-antidown quark pair (d0d̄0),
which can be excited into (d1d̄1) and (u1ū1) when the flavor is
also changed. The excited down-antidown quark pair (d1d̄1)
can either completely annihilate into a lambda neutrino νλ
(Figure 5a) or interact with the neutron to generate a nega-
tive tau particle τ− when the excited antidown quark degen-
erates into a ground state antidown and a ground state up-
antiup quark pair, d̄1 −→ d̄0 + (u0ū0) (Figure 6a). As shown
in Figure 6a, the excited down quark in the neutron can in-
completely annihilate with the ground state antiup quark into
a negative tau particle τ− and the ground state antidown quark
can incompletely annihilate the ground state up quark into a
positron e+. Interacting with a proton (Figure 6b), the ex-
cited down-antidown quark pair (d1d̄1) can generate a posi-
tive tau particle τ+ when the excited up quark in the proton
degenerates into a ground state up quark and a ground state
up-antiup quark pair, u1 −→ u0 + (u0ū0). The excited antid-
own quark can incompletely annihilate with the ground state
up quark into a positive tau particle τ+ and the ground state
antiup quark can completely annihilate with the ground state
up quark into an electron neutrino νe. If the excited up quark
is not degenerated but directly annihilate with the excited an-
tidown quark, a lambda particle λ+ is produced (as shown in
Figure 3).

On the other hand, for an electron neutrino beam, collid-
ing with a nucleon, an electron neutrino νe is disintegrated
into a ground state up-antiup quark pair (u0ū0) and excited

Fig. 6: Production of tau particles by a muon neutrino beam. (a) A
negative tau particle is produced when an excited quark-antiquark
pair, which is disintegrated from a muon neutrino and excited, in-
teracts with a neutron. (b) A positive tau particle is produced when
an excited quark-antiquark pair, which is disintegrated from a muon
neutrino and excited, interacts with a proton.

into (u1ū1), which may be also from the disintegration of a
muon neutrino with the favor change. This excited up-antiup
quark-antiquark pair can either completely annihilate into a
tau neutrino as shown in Figure 1 or interact with the nucleon
to generate a muon particle (Figure 7). If the flavor is also
changed, the annihilation and interaction with nucleons will
produce the tau particles and neutrinos as shown in Figure 6
or lambda particles and neutrinos as shown in Figure 3.

Therefore, with the lepton formation and quark-antiquark
pair production model developed in this paper, we can under-
stand the recent measurement of a tau particle in a muon neu-
trino beam as well as the early measurements of muon parti-
cles in electron neutrino beams. More future experiments of
the Large Electron-Positron Collider at CERN and measure-
ments of neutrino oscillations are expected to validate this
lepton formation and quark-antiquark pair production model
and detect the fourth generation of leptons.

5 Conclusions

This paper develops a quark-antiquark annihilation and pair
production model to explain the formation of leptons and the
oscillation of neutrinos and further predict the fourth gener-
ation of leptons named as lambda particle and neutrino. It
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Fig. 7: Production of muon particles by an electron neutrino beam.
(a) A negative muon particle is produced when an excited up-antiup
quark pair, which is disintegrated from an electron neutrino and ex-
cited, interacts with a neutron. (b) A positive tau particle is produced
when an excited quark-antiquark pair, which is disintegrated from a
muon neutrino and excited, interacts with a proton.

is well known that all known or discovered leptons can be
formed or emerged from particles or hadrons that are com-
posed of only up and down quarks. This fact indicates that
leptons must be consequences of activities of the up and down
quarks and antiquarks. As quarks contain color charges, they
participate in the strong interaction. Leptons do not contain
color charges so that they do not participate in the strong in-
teraction. In this paper, we suggested that all leptons are
formed from quark-antiquark annihilations. There are two
types of quark-antiquark annihilations. Type-I quark-anti-
quark annihilation annihilates only color charges, which
forms structueless and colorless but electrically charged
leptons such as electron, muon, tau, and lambda particles.
Type-II quark-antiquark annihilation annihilates both electric
and color charges, which forms structureless, colorless, and
electrically neutral leptons such as electron, muon, tau, and
lambda neutrinos. For the two types (up and down) of quarks
and antiquarks to generate all four generation leptons from
annihilations, they must have at least one excited state. An-
alyzing these two types of annihilations between up and down
quarks and antiquarks with one excited quantum state for
each of them, we predict the formation of the fourth gener-
ation of leptons named lambda particle and lambda neutrino.
On the other hand, a lepton, when it collides with a nucleon,

can be disintegrated into a quark-antiquark pair, which can
be exited and/or changed in flavor. The quark-antiquark pair
disintegrated from a neutrino can be excited and/or changed
in flavor during the collision and then annihilate into another
type of neutrino or interact with a nucleon to form electrically
charged leptons. This quark-antiquark annihilation and pair
production model provides a possible explanation for neu-
trino oscillations without hurting the standard model of par-
ticle physics. With it, we can understand the recent OPERA
measurement of a tau particle in a muon neutrino beam as
well as the early measurements of muon particles in electron
neutrino beams.
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On the Independent Determination of the Ultimate Density of Physical Vacuum
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In this paper, we attempt to present physical vacuum as a topologically non-unitary
coherent surface. This representation follows with J. A. Wheeler’s idea about fluctuat-
ing topology, and provides a possibility to express some parameters of the unit space
element through the fundamental constants. As a result, we determined the ultimate
density of physical vacuum without use of Hubble’s constant.

The ultimate density of physical vacuum is regularly calcu-
lated through the experimentally obtained quantity — Hub-
ble’s constant. This constant follows from astronomical ob-
servations, and therefore its numerical value is under perma-
nent update. On the other hand, the ultimate density of phys-
ical vacuum can also be determined in an independent way,
through only the fundamental constants. Moreover, in the
framework of this mechanistic model, it does not matter what
we mean saying “physical vacuum”: a material substance, or
space itself.

As an initial model of the space micro-element of mat-
ter, it is reasonable to use J. A. Wheeler’s idea about fluctu-
ating topology. In particular, electric charges are considered
therein as singular points located in a three-dimensional sur-
face, and connected to each other through “wormholes” or
current tubes of the input-output (source-drain) kind in an
additional dimension, thus forming a closed contour. Is this
additional dimension really required? It is probably that the
three-dimensional space, if considered at a microscopic scale,
has really lesser number of dimensions, but is topologically
non-unitary coherent and consists of linkages [1].

The most close analogy to this model, in the scale of our
world, could be the surface of an ideal liquid, vortical struc-
tures in it and their interactions which form both relief of the
surface and sub-surface structures (vortical grids, etc.).

From the purely mechanistic point of view, this model
should not contain the electric charge as a special kind of
matter: the electric charge only manifests the degree of the
non-equilibrium state of physical vacuum; it is proportional
to the momentum of physical vacuum in its motion along the
contour of the vortical current tube. Respectively, the spin
is proportional to the angular momentum of the physical vac-
uum with respect to the longitudinal axis of the contour, while
the magnetic interaction of the conductors is analogous to the
forces acting among the current tubes.

Of course, in the framework of this model, both point and
line are means physical objects, which have specific sizes. We
assume the classical radius of the electron re as the minimal
size. This approach was already justified in determination of
the numerical value of the electron’s charge, and the constants
of radiation [2].

Thus matter itself can finally be organized with step-by-

step complication of the initial contours, and be a “woven
cloth”, which, in its turn, is deformed into the objects we ob-
serve. The objects therefore are very fractalized (upto the
micro-world scales) surfaces, which have a fractional dimen-
sion of the number almost approaching three and presuppos-
ingly equal to the number e.

The latter conclusion verifies that fact that the function
n1/n, which can be interpreted as the length of a ridge of the
unit cube (its volume is equivalent to the summary volume of
n cubes of the nth dimension), reach its maximum at exact
n = e. We can understand this result so that the world of this
dimension n = e is most convex to the other worlds.

As a result, the surface being non-deformed can logically
be interpreted as empty space, while the deformed and frac-
talized surface, i.e. the surface bearing an information about
local deformations — as substance, masses. What is about an
absolutely continuous three-dimensional body, it has not any
internal structure thus does not bear any information about its
interior (except, as probably, its own mass): such bodies do
not really exist, even in the real micro world. In other words,
the surface is material. However, being non-deformed, it does
not manifest its material properties.

It should be noted that it is impossible to discuss the real
geometry of topology of the world in the framework of this
concept. Moreover, it is quite complicate to differ the surface
from space, and space from matter, because such a step means
at least a conceivable leaving our surface, which consists our-
selves and the Universe itself. On the other hand, our model
does not require such a step.

To calculate the density of physical vacuum in the frame-
work of our suggested model, it is sufficient to determine the
square, thickness, and mass of the “smoothed” surface (non-
perturbed physical vacuum), then reduce the mass to the ul-
timate volume. To do it, we need to determine parameters of
the initial micro-element and elementary contour.

According to the assumed model, we write down the elec-
tric forces Fe and the magnetic forces Fm in the “coulomb-
less” form, where we replace the electric charge with the ul-
timate momentum of the electron mec. We obtain, for the
electric forces,

Fe =
z1 z2 (mec)2

ε0 r2 , (1)
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where z1 and z2 are the numbers of the electric charges, c is
the velocity of light, me is the electron’s mass, while ε= me

re

is a new electric constant, which is 3.23 × 10−16 kg/m and is
the linear density of the vortical tube. Respectively, for the
magnetic forces, we obtain

Fm =
z1 z2 µ0 (mec)2 L

2πr × [sec2]
, (2)

where µ0 = 1
ε0c2 is a new magnetic constant, whose numerical

value is 0.034 H−1, L is the length of the conductors of the
current (vortical tubes), while r is the distance between them.
Numerically, the electric forces (1) and the magnetic forces
(2) coincide with those calculated according to the standard
equations of electrodynamics.

Thus, the quantity inverse to the magnetic constant, is the
centrifugal force which appears due to the rotation of the vor-
tical tube’s element whose mass is me, with the velocity of
light c around the radius re. The centrifugal force is also
equivalent to the force acting among two elementary electric
charges at this radius. We note, that the latter conclusion is
the same as that W. C. Daywitt arrived at in the paper [3].

In the non-perturbed physical vacuum the electric, mag-
netic, and other forces should be compensated. In particu-
lar, proceeding from the equality of the electric and magnetic
forces, one can deduce the geometric mean value, which is a
linear parameter independent from the direction of the vorti-
cal tubes and the number of the electric charges

Rc =
√

Lr =
√

2π c × [sec] = 7.51 × 108 [m]. (3)

This fundamental length is close to the radius of the Sun
and also the sizes of many typical stars.

Thus equation (3) represents the ratio between the con-
tour’s length and the distance between the vortical tubes.
Now, assuming that the figures of the contours satisfy the for-
mula (3), we are going to calculate the total mass of physical
vacuum, which fills the Universe, and also its density.

Let the “smoothed” surface of physical vacuum has a size
of L× L, and is densely woven on the basis of parallel vortical
tubes (they have parameters L and r) which, in their turn, are
filled with the unit threads (each of the threads has a radius
equal to the radius of the electron re). Also, assume that, even
if there exist structures whose size is lesser than re, they do
not change the longitudinal density ε0. Thus, the total mass
of the surface of the thickness r, which is the mass of phys-
ical vacuum Mv (including all hidden masses), is obviously
determined by the formula

Mv =
π

4
ε0 L

L
r

(
r
re

)2

. (4)

The average density of the substance of physical vacuum
ρv is expressed through the ratio of the mass Mv to the spher-
ical volume 4

3 πL3. As a result, extending the formula of ε0

then expressing L from (3), we obtain

Mv =
π

4
ρe R4

c

r
, (5)

ρv =
3
16

ρe

(
r

Rc

)2

, (6)

where ρe is the density of the electron derived from its classi-
cal parameters, and is ρe = me

r3
e

= 4.07×1013 kg/m3.
The main substance of the Universe is hydrogen. There-

fore, it is naturally to assume r equal to the size of the stan-
dard proton-electron contour, which is the Bohr 1st radius
0.53×10−10 m.

Thus we obtain: the ultimate large length of the contour
L = 1.06×1028 m, the total mass of substance in the Universe
Mv = 1.92×1059 kg, and the ultimate density of physical vac-
uum ρv = 3.77×10−26 kg/m3 (or ρv = 3.77×10−29 g/cm3 in the
CGS units).

The calculated numerical value of the average density of
matter (physical vacuum) in the Universe is close to the mod-
ern esteems of the crucial density (the density of the Einstein-
ian vacuum).

With breaking the homogeneity of physical vacuum the
anisotropy appears in the Universe. This is subjectively per-
ceived in our world as manifestations of the pace of time, and
the preferred directions in space. It is possible to suppose
that the Universe as a whole evolutionary oscillates near its
state of equilibrium, thus deforming the vacuum medium and
creating the known forms of matter as a result. The stronger
deformation, the larger contours (the heavier elements of sub-
stance) appear. Proceeding from the fact that elements with
more than seven electron shells are unknown, we can con-
clude that the scale of the evolutionary oscillations of the Uni-
verse in the part of deformations of its own “tissue” is very
limited. This is despite, as is probably, the Universe goes
through the zero-state of equilibrium of physical vacuum dur-
ing its evolution, where all real masses approach to zero, and
the forces of gravitation — to their minimum. Here we see a
relative connexion to Mach’s principle, i.e. a dependency of
the masses of objects on the mass of the entire Universe (of
course, if meaning the mass of the entire Universe as the mass
of physical vacuum, which is much greater than the summary
mass of regular substance).

In conclusion, we suggest a supposition. Because masses
or physical objects are merely forms of the relief of the sur-
face of the vacuum medium, which can only exist if the form-
ing medium moves permanently along ordered trajectories,
in the framework of this interpretation time manifests evolu-
tion, change of objects and structures along the direction of
motion of matter they consist of. Therefore, all paradoxes
of time vanish here: the hypothetical displacement of an ob-
server toward or backward with the current of matter leads
only to his arrival at his alternative past or future; his actions
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therein cannot change his own present — his own evolving
section of the Universe.
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In this note, we present an elegant argument that P , NP by demonstrating that the
Meet-in-the-Middle algorithm must have the fastest running-time of all deterministic
and exact algorithms which solve the SUBSET-SUM problem on a classical computer.

Consider the following problem: Let A = {a1, . . . , an} be
a set of n integers and b be another integer. We want to find
a subset of A for which the sum of its elements (we shall call
this quantity a subset-sum) is equal to b (we shall call this
quantity the target integer). We shall consider the sum of the
elements of the empty set to be zero. This problem is called
the SUBSET-SUM problem [1,2]. Now consider the following
algorithm for solving the SUBSET-SUM problem:

Meet-in-the-Middle Algorithm - First, partition the set A
into two subsets, A+={a1, . . . , ad n

2 e} and A−={ad n
2 e+1, . . . , an}.

Let us define S + and S − as the sets of subset-sums of A+

and A−, respectively. Sort sets S + and b − S − in ascending
order. Compare the first elements in both of the lists. If they
match, then output the corresponding solution and stop. If
not, then compare the greater element with the next element
in the other list. Continue this process until there is a match,
in which case there is a solution, or until one of the lists runs
out of elements, in which case there is no solution.

This algorithm takes Θ(
√

2n) time, since it takes Θ(
√

2n)
steps to sort sets S + and b− S − and O(

√
2n) steps to compare

elements from the sorted lists S + and b− S −. It turns out that
no deterministic and exact algorithm with a better worst-case
running-time has ever been found since Horowitz and Sahni
discovered this algorithm in 1974 [3, 4]. In this paper, we
shall prove that it is impossible for such an algorithm to exist.

First of all, we shall assume, without loss of general-
ity, that the code of any algorithm considered in our proof
does not contain full or partial solutions to any instances of
SUBSET-SUM. This is because only finitely many such so-
lutions could be written in the code, so such a strategy would
not be helpful in speeding up the running-time of an algo-
rithm solving SUBSET-SUM when n is large. We now give a
definition:

Definition 1: We define a γ-comparison (a generalized com-
parison) between two integers, x and y, as any finite pro-
cedure that directly or indirectly determines whether or not
x = y.

For example, a finite procedure that directly compares
f (x) and f (y), where x and y are integers and f is a one-to-one
function, γ-compares the two integers x and y, since x = y if
and only if f (x) = f (y). Using this expanded definition of

compare, it is not difficult to see that the Meet-in-the-Middle
algorithm γ-compares subset-sums with the target integer un-
til it finds a subset-sum that matches the target integer. We
shall now prove two lemmas:

Lemma 2: Let x and y be integers. If x = y, then the only type
of finite procedure that is guaranteed to determine that x = y
is a γ-comparison between x and y. And if x , y, then the
only type of finite procedure that is guaranteed to determine
that x , y is a γ-comparison between x and y.

Proof: Suppose there is a finite procedure that is guaranteed
to determine that x = y, if x = y. Then if the procedure does
not determine that x = y, this implies that x , y. Hence, the
procedure always directly or indirectly determines whether
or not x = y, so the procedure is a γ-comparison between x
and y.

And suppose there is a finite procedure that is guaranteed
to determine that x , y, if x , y. Then if the procedure does
not determine that x , y, this implies that x = y. Hence, the
procedure always directly or indirectly determines whether
or not x = y, so the procedure is a γ-comparison between x
and y. �

Lemma 3: Any deterministic and exact algorithm that finds
a solution to SUBSET-SUM whenever a solution exists must
(whenever a solution exists) γ-compare the subset-sum of the
solution that it outputs with the target integer.

Proof: Let Q be a deterministic and exact algorithm that finds
a solution, {ak1 , . . . , akm }, to SUBSET-SUM whenever a solu-
tion exists. Before Q outputs this solution, it must verify that
ak1 + . . . + akm = b, since we are assuming that the code of Q
does not contain full or partial solutions to any instances of
SUBSET-SUM. (See above for an explanation.) In order for
Q to verify that ak1 + . . . + akm = b, Q must γ-compare the
subset-sum, ak1 + . . . + akm , with the target integer, b, since
a γ-comparison between ak1 + . . . + akm and b is the only
type of finite procedure that is guaranteed to determine that
ak1 + . . . + akm = b, by Lemma 2. �

As we see above, the Meet-in-the-Middle algorithm makes
use of sorted lists of subset-sums in order to obtain a faster
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worst-case running-time, Θ(
√

2n), than that of a naı̈ve brute-
force search of the set of all subset-sums, Θ(2n). The follow-
ing lemma shows that sorted lists of subset-sums are neces-
sary to achieve such an improved worst-case running-time.

Lemma 4: If a deterministic and exact algorithm that finds a
solution to SUBSET-SUM whenever a solution exists does not
make use of sorted lists of subset-sums, it must run in Ω(2n)
time in the worst-case scenario.

Proof: Let Q be a deterministic and exact algorithm that finds
a solution to SUBSET-SUM whenever a solution exists with-
out making use of sorted lists of subset-sums. By Lemma 3,
Q must (whenever a solution exists) γ-compare the subset-
sum of the solution that it outputs with the target integer. In
order for Q to avoid wasting time γ-comparing the target in-
teger with subset-sums that do not match the target integer,
Q must be able to rule out possible matches between subset-
sums and the target integer without γ-comparing these subset-
sums with the target integer.

But by Lemma 2, the only type of finite procedure that is
guaranteed to rule out a possible match between a subset-sum
and the target integer, if they do not match, is a γ-comparison.
So in the worst-case scenario, there is no way for Q to avoid
wasting time γ-comparing the target integer with subset-sums
that do not match the target integer. And since Q does not
make use of sorted lists of subset-sums like the Meet-in-the-
Middle algorithm does, its γ-comparisons between these sub-
set-sums and the target integer will not rule out possible
matches between any other subset-sums and the target integer.
Hence, in the worst-case scenario Q must γ-compare each of
the 2n subset-sums with the target integer, which takes Ω(2n)
time. �

It is now possible, using Lemma 4, to solve the problem of
finding a nontrivial lower-bound for the worst-case running-
time of a deterministic and exact algorithm that solves the
SUBSET-SUM problem:

Theorem 5: It is impossible for a deterministic and exact
algorithm that solves the SUBSET-SUM problem to have a
worst-case running-time of o(

√
2n).

Proof: Let T be the worst-case running-time of an algorithm
Q that solves SUBSET-SUM, and let M be the size of the
largest list of subset-sums that Q sorts. Since it is necessary
for Q to make use of sorted lists of subset-sums in order to
have a faster worst-case running-time than Θ(2n) by Lemma
4 and since it is possible for Q to make use of sorted lists of
size M of subset-sums to rule out at most M possible matches
of subset-sums with the target integer at a time (just as the
Meet-in-the-Middle algorithm does, with M = Θ(

√
2n)), we

have MT ≥ Θ(2n). And since creating a sorted list of size M
must take at least M units of time, we have T ≥ M ≥ 1.

Then in order to find a nontrivial lower-bound for the
worst-case running-time of an algorithm solving SUBSET-
SUM, let us minimize T subject to MT ≥ Θ(2n) and T ≥
M ≥ 1. Because the running-time of T = Θ(

√
2n) is the so-

lution to this optimization problem and because the Meet-in-
the-Middle algorithm achieves this running-time, we can con-
clude that Θ(

√
2n) is a tight lower-bound for the worst-case

running-time of any deterministic and exact algorithm which
solves SUBSET-SUM. And this conclusion implies that P ,
NP [1, 5]. �
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The Bohr orbits of the hydrogen atom and the Planck constant can be derived classically
from the Maxwell equations and the assumption that there is a variation in the electron’s
velocity about its average value [1]. The resonant nature of the circulating electron and
its induced magnetic and Faraday fields prevents a radiative collapse of the electron into
the nuclear proton. The derived Planck constant is h = 2πe2/αc, where e, α, and c are
the electronic charge, the fine structure constant, and the speed of light. The fact that
the Planck vacuum (PV) theory [2] derives the same Planck constant independently of
the above implies that the two derivations are related. The following highlights that
connection.

In the Beckmann derivation [1], the electromagnetic-field
mass and the Newtonian mass are assumed to have the same
magnitude in which case the electron’s average kinetic energy
can be expressed as(

mv2

2

)
em
+

(
mv2

2

)
n
= mv2 = mv·v = mv·λν = mvλ·ν = hν (1)

where v is the average electron velocity and v = λν is a sim-
ple kinematic relation expressing the fact that the electron’s
instantaneous velocity varies periodically at a frequency ν
over a path length equal to the wavelength λ. The constant
h (= mvλ) turns out to be the Planck constant.

The Beckmann derivation assumes with Maxwell and
those following thereafter that the magnetic and Faraday
fields are part of the electron makeup. On the other hand
the PV theory assumes that these fields constitute a reaction
of the negative-energy PV quasi-continuum to the movement
of the massive point charge (the Dirac electron). In its rest
frame the electron exerts the two-fold force [3]

e2
∗

r2 −
mc2

r
(2)

on each point r of the PV, where e∗ (= e/
√
α) is the electron’s

bare charge, e is the laboratory-observed charge, and m is the
electron mass. The vanishing of this composite force at the
radius r = rc leads to

rcmc2 = e2
∗ = c~ = e2/α, (3)

where rc is the electron’s Compton radius and ~ is the (re-
duced) Planck constant. From the introductory paragraph and
(3), the Beckmann and PV results clearly lead to the same
Planck constant ~ = e2/αc = e2

∗/c .
The Planck constant then is associated only with the bare

charge |e∗| and not the electron mass—thus the quantum the-
ory reflects the fact that, although the various elementary par-
ticles have different masses, they are associated with only one
electric charge.

The expression mvλ = h used in (1) to arrive at the total
electron kinetic energy is the de Broglie relation expressed
in simple, physically intuitive terms: the de Broglie relation
yields the product of the electron mass m, its average velocity
v, and the path length λ over which its instantaneous velocity
varies. The relativistic version of the relationship (which is
arrived at in the Appendix by assuming the vanishing of (2)
at r = rc to be a Lorentz invariant constant) is

mγv =
~

rd
=
γ~

rc/β
=
γh
λc/β

=
γh
λ

(4)

where mγv is the relativistic momentum; and λ = λc/β, where
λc is the Compton wavelength 2πrc . Thus Beckmann’s de
Broglie relation is in relativistic agreement with the PV result.

The preceding demonstrates that Bohr’s introduction of
the quantum concept in terms of an ad-hoc Planck constant
[4] can be derived from classical electromagnetism and the
assumption that the electron interacts with some type of
negative-energy vacuum state (the PV in the present case).
That the Lorentz transformation can also be derived from the
same assumptions is shown in a previous paper [5].
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Appendix: de Broglie Radius

The Dirac electron exerts two distortion forces on the collec-
tion of Planck particles constituting the degenerate PV, the
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polarization force e2
∗/r

2 and the curvature force mc2/r. The
equality of the two forces at the electron Compton radius rc

is assumed to be a fundamental property of the electron-PV
interaction. The vanishing of the force difference e2

∗/r
2
c −

mc2/rc = 0 (a Lorentz invariant constant) at the Compton
radius can be expressed as a vanishing 4-force difference ten-
sor [6]. In the primed rest frame of the electron, where these
static forces apply, this force difference ∆F′µ is

∆F′µ =
[
0, i

(
e2
∗

r2
c
− mc2

rc

)]
= [0, 0, 0, i 0] (A1)

where i =
√
−1 . Thus the vanishing of the 4-force compo-

nent ∆F′4 = 0 in (A1) is the Compton-radius result from (2)
and can be expressed in the form mc2 = e2

∗/rc = (e2
∗/c)(c/rc)

= ~ωc , where ωc ≡ c/rc = mc2/~ is the corresponding
Compton frequency.

The 4-force difference in the laboratory frame, ∆Fµ =
aµν∆F′ν = 0µ, follows from its tensor nature and the Lorentz
transformation xµ = aµν x′ν [6], where xµ = (x, y, z, ict) ,

aµν =


1 0 0 0
0 1 0 0
0 0 γ −iβγ
0 0 iβγ γ

 (A2)

γ = 1/
√

1 − β2, and µ, ν = 1, 2, 3, 4 . Thus (A1) becomes

∆Fµ =
[
0, 0, βγ

(
e2
∗

r2
c
− mc2

rc

)
, i γ

(
e2
∗

r2
c
− mc2

rc

)]

=

0, 0,  e2
∗
βγr2

d

− mc2

rd

 , i  e2
∗
γr2

L

− mc2

rL

 = [0, 0, 0, i 0] (A3)

in the laboratory frame. The equation ∆F3 = 0 from the final
two brackets yields the de Broglie relation

p =
e2
∗/c
rd
=
~

rd
(A4)

where p = mγv is the relativistic electron momentum and
rd ≡ rc/βγ is the de Broglie radius.

The equation ∆F4 = 0 from (A3) leads to the relation
p = ~/rL, where rL ≡ rc/γ is the length-contracted rc in the
ict direction. The Synge primitive quantization of flat space-
time [7] is equivalent to the force-difference transformation
in (A3): the ray trajectory of the particle in spacetime is di-
vided (quantized) into equal lengths of magnitude λc = 2πrc

(this projects back on the ‘ict’ axis as λL = 2πrL); and the de
Broglie wavelength calculated from the corresponding space-
time geometry. Thus the development in the previous para-
graphs provides a physical explanation for Synge’s space-
time quantization in terms of the two perturbations e2

∗/r
2 and

mc2/r the Dirac electron exerts on the PV.
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Earlier, the shape of histograms of the results of measurements obtained in processes of
different physical nature had been shown to be determined by cosmophysical factors [1].
Appearance of histograms of a similar shape is repeated periodically: these are the near-
a-day, near-27-days and annual periods of increased probability of the similar shapes.
There are two distinctly distinguished near-a-day periods: the sidereal-day (1,436 min-
utes) and solar-day (1,440 minutes) ones. The annual periods are represented by three
sub-periods: the “calendar” (365 average solar days), “tropical” (365 days 5 hours and
48 minutes) and “sidereal” (365 days 6 hours and 9 minutes) ones. The tropical year
period indicates that fact that histogram shape depends on the time elapsed since the
spring equinox [2]. The latter dependence is studied in more details in this work. We
demonstrate that the appearance of similar histograms is highly probable at the same
time count off from the moments of equinoxes, independent from the geographic lo-
cation where the measurements had been performed: in Pushchino, Moscow Region
(54◦ NL, 37◦ EL), and in Novolazarevskaya, Antarctic (70◦ SL, 11◦ EL). The sequence
of the changed histogram shapes observed at the spring equinoxes was found to be op-
posite to that observed at the autumnal equinoxes. As the moments of equinoxes are
defined by the cross of the celestial equator by Sun, we also studied that weather is not
the same as observed at the moments when the celestial equator was crossed by other
celestial bodies — the Moon, Venus, Mars and Mercury. Let us, for simplicity, refer
to these moments as a similar term “planetary equinoxes”. The regularities observed at
these “planetary equinoxes” had been found to be the same as in the case of true solar
equinoxes. In this article, we confine ourselves to considering the phenomenological
observations only; their theoretical interpretation is supposed to be subject of further
studies.

1 Materials and methods
A many-year monitoring of the alpha-activity of 239Pu sam-
ples (performed with devices constructed by one of the au-
thors, I. A. Rubinstein [3]) was used as a basis for this study.
Round-the-clock once-a-second measurements were made in
Pushchino, at the Institute of Theoretical and Experimental
Biophysics, Russian Academy of Sciences, and at Novolaza-
revskaya Antarctic Polar Station of the Arctic and Antarctic
Institute.

Semi-conductor detectors used were either collimator-
free or equipped with collimators limiting the beam of reg-
istered alpha-particles by a spatial angle (about 0.1 radian)
within which the particles travelled along a certain direction:
towards the Sun, Polar Star, West or East. The number of
registered alpha-particles during one-second interval was the
measured parameter. Results of the continuous once-a-
second measurements of the decay activity were stored in a
computer databank.

One-minute histograms constructed from 60 results of the
once-a-second measurements of activity were the main ob-
jects of analysis in our study. The histograms were visu-
ally compared with each other in order to estimate the re-
semblance of their shape. The estimation was made by the
method of expert judgment. This analysis was performed
with the assistance of Edwin Pozharsky’s computer program
(described in [1]) which allowed to construct histograms for
each one-minute interval in a series of measurements and, fur-
ther, to smooth and scale them, and to mirror (if needed) in
order to superimpose the histograms and visually compare
their shape. At the final step of analysis, we constructed the
distribution of the number of pairs of similar histograms ver-
sus the interval separating the histograms in each pair. Fig. 1
presents a diagram explaining three kinds of comparison of
the series of histograms.

Method A; direct alignment (parallel). These two com-
pared histogram series are aligned with each other as parallel
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Fig. 1: Boxes indicate histograms constructed for the measured ra-
dioactivity within each minute of time. Arrows connecting the boxes
indicate the direction of time separating the one-minute histograms.
The interval between the histograms, ∆, is measured in minutes or
in position numbers in the aligned series.

sequences in which the equinox moments occur at the same
place. Then each i-th histogram of one series is compared
with the number of neighboring histograms of the other se-
ries, as shown in Fig. 1, case A.

Method B; inverse alignment (anti-parallel). These two
series are aligned in the same way but the second one is re-
versed at the point of equinox. This is illustrated in Fig. 1B.

Method C; “palindrome” alignment. Two parts of the
same sequence are compared with each other. To do that, we
assume the equinox moment to be the inversion center of a
palindrome. Therefore, the second half of the sequence (fol-
lowing the center) is reversed and aligned with the first half
as shown in Fig. 1C. Then the two halves of the sequence are
compared with each other.

Fig. 2 presents an extract from the laboratory log-file to il-
lustrate what shapes are considered similar from the expert’s
viewpoint. Final results are presented as the plots of the fre-
quency of similar pairs of histograms versus the interval
(measured in minutes) separating the position of items in the
pairs (Fig. 3, e.g.).

The true equinox moments and the equivalent moments
when the Moon, Mars, Venus or Mercury intersect the celes-
tial equator (called here, by analogy, “planetary equinoxes”)
were determined by nonlinear interpolation of the data tabu-

Fig. 2: Extract from a laboratory log: pairs of similar histograms
of 239Pu alpha-activity taken at the same time count off from
the moments of Moon-2005-March-11 and Venus-2001-October-18
equinoxes. Each histogram is constructed by 60 one-second mea-
surements (total time being equal to 1 minute). The doubled figures
in upper corners of each picture specify the series number (No.1 or
No.5) and the position number of a histogram in the series. His-
tograms of Moon-2005-March-11 equinox are drawn in red and
those of Venus-2001-October-18 in blue. The data presented here
correspond to the extreme in the blue curve in Fig. 4.

lated in the annual astronomy tables [4]; the residual error of
this interpolation was much within the time resolution of our
observations.

2 Results
2.1 Comparison of the histogram series obtained at the

successive (in turn) “equinoxes”

It had been found earlier [2, 5, 6], in studying the variation
of shape of the successive sequences of histograms obtained
at vernal and autumnal equinoxes, the sequences related to
“homonymous” equinoxes (vernal-and-vernal or autumnal-
and-autumnal ones) display the similarity higher than that of
“heteronymous” equinoxes. This fact gave a hint for a hy-
pothesis that the histogram shape may depend not only on the
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Fig. 3: Total number of similar pairs of histogram as function of
time interval separating the histograms in the pair. The compared
histogram sequences were related to the successive (neighboring)
equinoxes. The sequences compared were aligned parallel or anti-
parallel around the very “equinox” moment. First what is seen in
the figure is that the probability to find a similar pair of histograms
sharply decreases with the distance between the items in the pair.
Second important moment is that the maximum probability (which is
a measure of similarity of the sequences) is three times higher in the
case the sequences compared are oriented anti-parallel. That means
the histogram shape depends not only on the proximity of a planet
or Sun to the celestial equator but also on the direction a celestial
body moves to it. The diagram represents a summary of data for 24
pairs of compared series of alpha-activity aligned around the Sun,
the Moon, Mars, Venus and Mercury “equinoxes”. The series were
720 minutes long each. The data used have been obtained either in
Pushchino and Novolazarevskaya.

proximity to the equinox moment, but also on the direction
the Sun is moving to the celestial equator: from the northern
or from the southern hemisphere. The hypothesis has been
confirmed by comparison of the direct series of the autumn
histograms with the inverse series of the spring histograms
[2, 5, 6] (cf. in Fig. 1, method B).

In this work, the same analysis is applied to the data in-
cluding “planetary equinoxes”. Namely, not only solar but
also lunar, venusian, martian and mercurian “equinoxes” have
been considered. Fig. 3 summarizes the results of 24 pairs of
such “equinox” events. Only the pairs of successive “equi-
noxes” were here compared; i.e., a series of histograms ob-
tained at one “equinox” was compared with that of just next
“equinox” for the same celestial body. The series were com-
pared with use of either procedure A (parallel) and B (anti-
parallel) (cf. in Fig. 1).

Fig. 3 shows that:

1. The phenomenon of similarity of the temporal change
of the histogram shape near the moments of intersec-
tion of the celestial equator by a celestial body appears
to be independent of the nature of the body (whatever
the Sun, the Moon, Venus, Mars or Mercury). Hence,

Fig. 4: Histogram series at the Venus setting “equinox” 2001-
October-18(↓) is highly similar to those at the Moon rising
“equinoxes” 2005-March-11(↑), 2005-April-7(↑) and considerably
less similar to the series at the Moon setting “equinox” 2005-March-
25(↓). (The extreme of this distribution is formed with the pairs of
histograms presented in Fig. 2, to illustrate the extent of their simi-
larity.)

the sequential changes of histograms do not show any
gravitational influence of the bodies;

2. Neither does it depend on the geographic point where
the measurements have been performed: the data ob-
tained in Pushchino and Novolazarevskaya (Antarctic)
display similarity of histograms at the same absolute
time, to within one-minute accuracy;

3. Neither does it depend on the velocity a celestial body
moves across the equator. Despite a great difference
in both angular and linear velocities of the bodies, the
changes of histogram shape are correlated in the se-
quences aligned along the same time scale. This is a
surprising result that has not a simple kinematic expla-
nation. This fact, again, is an indication of that the phe-
nomenon observed is not a matter of any “influence”
exerted by a celestial bodies on the observable value;

4. What we can learn from the fact that the similarity of
histogram sequences is higher in the case of anti-
parallel orientation of compared sequences is as fol-
lows. The variation of histogram shape shows not only
the extent of proximity of the Sun or a planet to the ce-
lestial equator but also their location in one or another
celestial hemisphere. In other words, the “northern”
histograms of a vernal equinox display higher similar-
ity to the “southern” histograms of the next autumnal
equinox despite the movement of the body on the sky
sphere are reciprocal at these two cases.

The fact that the histogram shape variations do not de-
pend on the nature of celestial body is confirmed also by pair-
wise comparison of the “equinoxes” of different planets. For
example, Fig. 4 presents the results of comparison of a Venus
“equinox” (2001-October-18 (↓)) with three Moon “equi-
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Fig. 5: The palindrome effect. The number of similar pairs of his-
tograms in two compared halves of a sequence separated by the
equinox moment as function of time shift between the halves. To-
tal numbers obtained in the analysis of 17 equinox and “planetary
equinox” events are presented here. Comparison of half-sequences
was performed with the procedure C in Fig. 1. Palindrome ef-
fect is indicated by the fact that the similarity of anti-parallel half-
sequences is 3-fold higher then that of parallel half-sequences.

noxes” (2005-March-11(↑); 2005-March-25(↓), and 2005-
April-7(↑)). The figure shows that:

1. The histogram series adjusted to “equinox” moments
are similar even if the events considered are separated
by years (four years in this particular case);

2. The similarity of histograms depends on the direction
of movement towards the celestial equator. However,
in this particular case, symbate “equinoxes” (Venus-
2001-October-18(↓) and Moon-2005-March-25(↓))
happened to be less similar then the counter-directed
ones (Venus-2001-October-18(↓) and the other two
Moon “equinoxes”, both rising).

2.2 Comparison of direct and inverse halves of the same
series of histograms (the “palindrome” effect)

The “palindrome effect” has been described in a number of
earlier works; this is the presence of specific inversion points
in the time series of histograms after which the same his-
tograms occur in the reverse order [2, 5, 6]. Over a daily
period, 6 am and 6 pm of local time have been found to be
such inversion points. Any point on the Earth’s surface par-
ticipates in two movements, one due to the rotation of the
Earth about its axis and another due to the movement of the
center of the Earth along its circumsolar orbit. One finds that,
the projections of the two movements onto the circumsolar or-
bit are counter-directional during the daytime (6 am to 6 pm)
and co-directional during the nighttime (6 pm to 6 am). This
is a probable “kinematic” reason for these two time moments
are featured.

A question arose if there are a number of such “palin-

Fig. 6: Summarized data on 8 different Moon, Sun and Mars
“equinoxes” when the 239Pu alpha-activity was measured with the
collimators directed towards Polar Star. Parallel oriented sequences
of histograms display 3-fold higher similarity than those oriented
anti-parallel.

drome” centers existing at the equinoxes and “planetary equi-
noxes”, separating the celestial body movement towards and
away from the celestial equator. This supposition has proved
to be true. Indeed, the histogram sequences preceding the
equinox moments were similar to the inverse sequences fol-
lowing this moments. The palindrome effect (detected with
the procedure C; cf. Fig. 1), is illustrated in Fig. 5. As re-
vealed from the picture, the probability to find similar histo-
grams is 3-fold higher if one of the compared half-sequences
is inverted — this is exact the essence of the palindrome ef-
fect.

Phenomenological meaning of this observation is that the
“equinox” moments are just the points at which the order of
changing the histogram shapes is reverted. Sharpness of the
peak is an indication of a high accuracy (one minute) of detec-
tion of the “equinox” moment. Mirror symmetry of the his-
togram sequences around an equinox means that histogram
shape depends on how far distant is the celestial body from
the equator plane, whatever on the northern or southern side
of the celestial sphere. This result might seem to conflict with
the data presented in Fig. 3 indicating that the direction of the
movement also does matter. However, the seeming conflict
is resolved by the fact (revealed from our special investiga-
tion) that these two phenomena are determined by different,
not overlapping sets of similar histograms.

2.3 Equinox effects in the data obtained with collimators

The phenomena presented in Figs. 3-5 have been observed in
the data on the alpha-activity measured with either collima-
tor-free detectors and those supplied with the collimator per-
manently directed towards West or East or towards the Sun.
No dependence of the observed phenomenology on the ori-
entation of the collimator was found in these cases. The only
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dramatic difference has been found for the case where the col-
limator was directed towards the Polar Star.

In this series of data, the sequences of histograms ob-
tained at the sequential (neighboring) “equinoxes” displayed
higher similarity when they were compared as parallel se-
quences (procedure A in Fig. 1) and lesser similarity when
they were anti-parallel. This observation is illustrated in
Fig. 6, summarizing the results of eight equinox events with
the Moon, the Sun and Mars. Therefore, the difference be-
tween the northern and southern hemispheres is not reflected
in the measurements with the collimator directed to Northern
Pole.

3 Discussion

A number of phenomenological conclusions follow from the
results presented herein:

1. The shape of histograms obtained from the measure-
ments performed in different geographic locations near
the time of “equinoxes” is changing synchronously,
within one minute accuracy. For instance, they occur
simultaneously in Pushchino and Novolazarevskaya
despite 104 minutes of local time difference between
these two places. This means this is a global phenom-
enon independent of the Earth axial rotation;

2. The changes of histograms obtained near the solar or
planetary “equinoxes” do not depend on the nature of
the “acting” celestial body, whatever the Sun, Mercury,
Mars, Venus or Mercury. Individual features of the
bodies — different masses and different rates of their
orbital movement — are not essential;

3. At very equinox moments, the inversion of the sequen-
ce of the histogram shapes occurs: the sequence pre-
ceding this moment is reciprocal to that observed after
it. A moment when the celestial equator is intersected
by a celestial body is a particular point in the histogram
series. Its position on the time scale can be determined,
with a high accuracy, from the palindrome effect;

4. Changes of histograms near the “equinoxes” depend
on the direction in which the celestial body intersects
the equator plane (from the northern or from southern
hemisphere);

5. Seeming contradiction between these two phenomena
— the similarity of the anti-parallel sequences obtained
at successive equinoxes, and the mirror similarity of
two halves of each histogram sequence (the “palind-
rome effect”) — is, probably, resolved by the fact that
these two kinds of symmetry are determined by differ-
ent, not overlapping sets of similar histograms;

6. Phenomena observed with collimators can be consid-
ered as an indication of the anisotropy of space. Van-
ishing of the “palindrome” phenomena when the col-
limator is oriented towards the Polar Star is, perhaps,

the most indicative fact favoring the conclusion on the
anisotropy. Analysis of this phenomenon should be
subjected to further studies.

B. V. Komberg attracted our attention to the fact that the direc-
tion of the equinox line (the line of intersection of the equa-
torial and ecliptic planes) may coincide with direction of the
line of the minimum temperature of the Cosmic Microwave
Backgroud (relict) Radiation, called the “axis of evil” in the
scientific literature [7].
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Blocks of the Electron Configuration in the atom are considered with taking into ac-
count that the electron configuration should cover also element No.155. It is shown that
the electron configuration formula of element No.155, in its graphical representation,
completely satisfies Gaussian curve.

1 Introduction

As is known, even the simpliests atoms are very complicate
systems. In the centre of such a system, a massive nucleus
is located. It consists of protons, the positively charged par-
ticles, and neutrons, which are charge-free. Masses of pro-
tons and neutrons are almost the same. Such a particle is
almost two thousand times heavier than the electron. Charges
of the proton and the electron are opposite, but the same in
the absolute value. The proton and the neutron differ from
the viewpoint on electromagnetic interactions. However in
the scale of atomic nuclei they does not differ. The electron,
the proton, and the neutron are subatomic articles. The theo-
retical physicists still cannot solve Schrödinger’s equation for
the atoms containing two and more electrons. Therefore, they
process the calculations for only the single-electron atom of
hydrogen, with use of the dualistic property of the electron,
according to which it can be respresented, equally, as a parti-
cle and a wave. At the same time, the conclusions provided
after the quantum theory cannot be considered as the finally
true result.

To make the further text simpler, we assume the follow-
ing brief notations: the Periodic Table of Elements contain-
ing 118, 168, and 218 elements will be referred to as T.118,
T.168, and T.218 respectively.

2 Calculation of the electron shell for element No.155

Electron shells of the atoms (known also as the levels) are reg-
ularly denoted as K, L, M, N, O, or as plain numbers from 1 to
5. Each level consists of numerous sub-levels, which are split
into atomic orbitales. For instance, the 1st level K consists
of a single sub-level 1s. The second level L consists of two
sub-levels 2s and 2p. The third level M consists of the 3s, 3p,
and 3d sub-levels. The fourth level N consists of the 4s, 4p,
4d, and 4f sub-levels. At the same distance from the atomic
nucleus, only the following orbitales can exist: one -s-, three
-p-, five -d-, seven -f-, while no more than two electrons can
be located in each single orbital (according to Pauli’s prin-
ciple). Hence, the number of electrons in each level can be
calculated according to the formula 2N2. Results of the cal-
culation are given in Table 1.

As is seen from this Table, the complete external electron
level is the configuration s2+p6, known as octet.

K L M N O Sum Content in the shells

s 2 2 in each shell

p 2 6 8 in each, commencing
in the 2nd shell

d 2 6 10 18 in each, commencing
in the 3rd shell

f 2 6 10 14 32 in each, commencing
in the 4th shell

g 2 6 10 14 18 50 in each, commencing
in the 5th shell

Table 1: Number of electrons in each level.

The elements, whose electrons occupy the respective sub-
levels, have one of the denotations: s-, p-, d-, f-, or g-elements
(in analogy to electrons).

2.1 Electron Configuration in the other elements

In the regular form of the Periodic Table of Elements, each
cell of the Table bears a large information about the element,
including the electron constitution of the atom. The cells con-
taining the same sub-levels are often the same-coloured in the
Table, and are joined into the following blocks (T.118):

s-elements, the 1st and the 2nd groups, 7 periods;
p-elements, 6 groups × 6 periods (periods 5–10, 13–18,
31–36, 49–54, 81–86, 113–118);
d-elements, 10 groups × 4 periods, between s- and p-
elements;
f-elements, 2 lines of 14 elements each (lantanides and
actinides).

Fig. 1 shows distribution of the blocks of T.118, with the
assumption of that all last elements are known (the lower arc)
[1]. The tabular data of the blocks are easy-to-convert into a
graph, if using the known number of the elements. It should
be noted that the abscissa axis means number of the blocks
(not number of the periods). The form of this arc is close to
parabola, and is easy-to-describe by the cubic equation with
the value of true approximation R2 = 1.

One can find, in the scientific press, suggestions about the
possibility of introducing, into the version T.118 of the Peri-
odic Table, two additional periods of 50 elements in each thus
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making it T.218. Therefore, we checked this variant as well
(the upper arc), for clarity of the experiments [2, 3]. Accord-
ing to the reference data [4], we assumed five blocks which
join all elements of the Periodic Table as follows:

s-elements = 18,

p-elements = 48,

d-elements = 60,

f-elements = 56,

g-elements = 36.

As is seen, the upper arc in Fig. 1 is absolutely similar to
that of T.118 (the lower arc). The larger size of the upper arc
(T.218) are due to the larger number of elements.

Having these two examples considered, we clearly under-
stand that the aforeapplied method we suggested can as well
be applied to the version of the Periodic Table which ends at
element No.155.

In order to check this supposition, we created Table 2
wherein we present the respective data for Fig. 1 and Fig. 2.

The upper arc of Fig. 2 shows distribution of the blocks
of the electron configuration, calculated according to the ref-
erence data of T.168. Lower, another arc is presented. It is
created according to our calculation for T.155 (i.e. for the Ta-
ble of Elements, whose upper limit if element No.155). As
is seen, the left branches of the arcs differ from each other
for a little, while the right branches actually met each other.
The absence of any bends or breaks, and also smooth form
of both arcs, and their complete satisfying the approximation
equation R2 =∼ 1, manifests the presence of the same law in
the basis of these data.

Therefore, we now can claim that element No.155 is in-
cluded into the blocks of the electron configuration as the last
element of the Periodic Table of Elements.

2.2 Electron shells of the atoms

Because our method of comparing the electron configura-
tion of the elements was successful for element No.155, we
are going to apply it to theoretical constructing the electron
shells. Here we should take into account that: the electrons of
the external shells bear more powerful energy, they are more
distantly located from the nucleus, and determine the chemi-
cal properties of reactions due to the fact that their connexion
with the nucleus is weaker thus easier to break. All data, we
collected in order to check the aforementioned suggestion, are
presented in Table 3. Line 4 of the Table contains the data for
the version of element No.155 as that continuing the Table of
Elements, while Line 5 contains the respective data suggested
by me according to [5].

As is seen, from Fig. 3, all the arcs have the form which
is very close to parabola, with a clearly observed maximum
and the joined left branches. The difference in their ordinates
is due to the difference in the number of the electrons (col-
umn 5 of Table 3). The right branches are parallel to each

other, and are shifted with respect to each other for the shell
number. The main result means here the presence of a qualita-
tive connexion between the electron shells and their graphical
representation. For only this reason, we had the possibility to
compare the data of the last lines of Table 3.

Fig. 4 manifests that the upper arc is similar to the pre-
vious of Fig. 3, while the lower arc (T.155 Author) very dif-
fers from all them. According to its form, this is a differ-
ential function of normal distribution (the Gauss arc). The
difference between the ends of the left and right branches is
0.645%. The branches are very symmetric to each other with
respect to the vertical axis coming through the top with coor-
dinates (5, 36). Hence, here is also a strong dependency be-
tween the regular method of description of the electron shells
and its graphical representation.

This fact is most illustrative manifested in Fig. 5. The
left straight covers four electron shells (2, 8, 18, 32), which
are the same for all versions of Table 3 (as follows from the
equation of the straight line Y = 2 X+ 0.6931. As is seen, once
the arcs reach their maximum, they come down very fast (this
is because the number of electrons decreases very fast in the
shells).

3 Conclusion

Thus, element No.155 has really lawful to be positioned in the
Periodic Table of Elements. This element points out not only
the upper limit of the Table, found in my earlier study on the
basis of the hyperbolic law [6, 7], but also can be presented
as a graphical sequel of the calculations produced according
to Quantum Mechanics (they have a high precision).
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Number of the elements Number of the blocks

s p d f g

T.218 18 48 60 56 36

T.168 16 42 50 42 18

T.118 14 36 40 28 —

T.155 16 36 46 42 15

Table 2: Blocks of the electron configuration.

Number of the elements Number of the electrons in the shells

T.218 2 8 18 32 50 50 32 18 8

T.168 2 8 18 32 50 32 18 8 —

T.118 2 8 18 32 32 18 8 — —

T.155 Table 2 8 18 32 50 32 11 2 —

T.155 Author 2 8 18 32 36 32 18 8 1

Table 3: Electron shells of the atoms.

Fig. 1: Location of the blocks of the electron configuration in the Periodic Table of Elements, containing different number of the elements.
The upper arc — the Table of 218 elements. The lower arc — the Table of 118 elements.
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Fig. 2: Dependency, in the blocks, between the number of the elements and the electron configuration. The upper arc — the Table of 168
elements. The lower arc — the Table of 155 elements.

Fig. 3: Dependency of the number of electrons in the electron shells from the shell number, for three versions of the Periodic Table of
Elements — T.118, T.168, T.218 (from up to down).
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Fig. 4: Dependency of the number of electrons in the electron shells from the shell number, for element No.155 according to the tabular
data (the upper arc) and the author’s calculation (the lower arc).

Fig. 5: Dependency of the number of electrons in the electron shells from the shell number (presented in the logarithm coordinates), for
T.218 (the upper arc) and for T.155 according to the author’s calculation (the lower arc).
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Observations of weak gravitational lensing combined with statistical tomographic
techniques have revealed that galaxies have formed along filaments, essentially one-
dimensional lines or strings, which form sheets and voids. These have, in the main,
been interpreted as “dark matter” effects. To the contrary here we report the discovery
that the dynamical 3-space theory possesses such filamentary solutions. These solutions
are purely space self-interaction effects, and are attractive to matter, and as well gener-
ate electromagnetic lensing. This theory of space has explained bore hole anomalies,
supermassive black hole masses in spherical galaxies and globular clusters, flat rota-
tion curves of spiral galaxies, and other gravitational anomalies. The theory has two
constants, G and α, where the bore hole experiments show that α ≈ 1/137 is the fine
structure constant.

1 Introduction

Observations of weak gravitational lensing and statistical to-
mographic techniques have revealed that galaxies have
formed along filaments, essentially one-dimensional lines or
strings [1], see Fig.1. These have, in the main, been inter-
preted as “dark matter” effects. Here we report the discovery
that the dynamical 3-space theory possesses such filamentary
solutions, and so does away with the “dark matter” interpreta-
tion. The dynamical 3-space theory is a uniquely determined
generalisation of Newtonian gravity, when that is expressed
in terms of a velocity field, instead of the original gravita-
tional acceleration field [2, 3]. This velocity field has been
repeatedly detected via numerous light speed anisotropy ex-
periments, beginning with the 1887 Michelson-Morley gas-
mode interferometer experiment [4, 5]. This is a theory of
space, and has explained bore hole anomalies, supermassive
black hole masses in spherical galaxies and globular clusters,
flat rotation curves of spiral galaxies, and other gravitational
anomalies. The theory has two constants, G and α, where the
bore hole experiments show that α ≈ 1/137 is the fine struc-
ture constant. The filamentary solutions are purely a conse-
quence of the space self-interaction dynamics, and are attrac-
tive to matter, and as well generate electromagnetic lensing.
The same self-interaction dynamics has been shown to gener-
ate inflow singularities, viz black holes [6], with both the fila-
ments and black holes generating long-range non-Newtonian
gravitational forces. The dynamical 3-space also has Hub-
ble expanding universe solutions that give a parameter-free
account of the supernova redshift-magnitude data, without
the need for “dark matter” or “dark energy” [7]. The black
hole and filament solutions are primordial remnants of the big
bang in the epoch when space was self-organising, and then
provided a framework for the precocious clumping of mat-
ter, as these inflow singularities are long-range gravitational
attractors. That α determines the strength of these phenom-
ena implies that we are seeing evidence of a unification of

space, gravity and quantum theory, as conjectured in Process
Physics [2].

2 Dynamical 3-Space

The dynamics of space is easily determined by returning to
Galileo’s discoveries of the free-fall acceleration of test
masses, and using a velocity field to construct a minimal and
unique formulation that determines the acceleration of space
itself [2, 8]. In the case of zero vorticity we find

∇·
(
∂v
∂t

+ (v·∇)v
)

+
α

8

(
(trD)2 − tr(D2)

)
+ ... = −4πGρ (1)

∇ × v = 0, Di j =
1
2

(
∂vi

∂x j
+
∂v j

∂xi

)
, (2)

G is Newton’s constant, which has been revealed as deter-
mining the dissipative flow of space into matter, and α is a
dimensionless constant, that experiment reveals to be the fine
structure constant. The space acceleration is determined by
the Euler constituent acceleration

a =
∂v
∂t

+ (v · ∇)v (3)

The matter acceleration is found by determining the trajectory
of a quantum matter wavepacket to be [9]

g =
∂v
∂t

+ (v · ∇)v + (∇ × v) × vR (4)

− vR

1 − v2
R

c2

1
2

d
dt


v2

R

c2

 + ... (5)

where v(r, t) is the velocity of a structured element of space
wrt to an observer’s arbitrary Euclidean coordinate system,
but which has no ontological meaning. The relativistic term
in (5) follows from extremising the elapsed proper time wrt
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a quantum matter wave-packet trajectory ro(t), see [2]. This
ensures that quantum waves propagating along neighbouring
paths are in phase.

τ =

∫
dt

√
1 − v2

R(r0(t), t)
c2 (6)

where vR(ro(t), t) = vo(t) − v(ro(t), t), is the velocity of the
wave packet, at position r0(t), wrt the local 3-space, and g =

drO/dt. This shows that (i) the matter “gravitational” geo-
desic is a quantum wave refraction effect, with the trajectory
determined by a Fermat maximum proper-time principle, and
(ii) that quantum systems undergo a local time dilation effect
caused by their absolute motion wrt space. The last term in
(5) causes the precession of planetary orbits.

It is essential that we briefly review some of the many
tests that have been applied to this dynamical 3-space.

2.1 Direct Observation of 3-Space

Numerous direct observations of 3-space involve the detec-
tion of light speed anisotropy. These began with the 1887
Michelson-Morley gas-mode interferometer experiment, that
gives a solar system galactic speed in excess of 300 km/s,
[4, 5]∗. These experiments have revealed components of the
flow, a dissipative inflow, caused by the sun and the earth, as
well as the orbital motion of the earth. The largest effect is
the galactic velocity of the solar system of 486 km/s in the di-
rection RA = 4.3◦, Dec = −75◦, determined from spacecraft
earth-flyby Doppler shift data [10], a direction first detected
by Miller in his 1925/26 gas-mode Michelson interferometer
experiment [11].

2.2 Newtonian Gravity Limit

In the limit of zero vorticity and neglecting relativistic effects
(2) and (5) give

∇ · g = −4πGρ − 4πGρDM , ∇ × g = 0 (7)

where
ρDM =

α

32πG

(
(trD)2 − tr(D2)

)
. (8)

This is Newtonian gravity, but with the extra dynamical term
which has been used to define an effective “dark matter” den-
sity. This is not necessarily non-negative, so in some circum-
stances ant-gravity effects are possible, though not discussed
herein.This ρDM is not a real matter density, of any form, but
is the matter density needed within Newtonian gravity to ex-
plain dynamical effects caused by the α-term in (2). This term
explains the flat rotation curves of spiral galaxies, large light
bending and lensing effects from galaxies, and other effects.
However, it is purely a space self-interaction effect.

∗Amazingly it continues to be claimed that this experiment was null.

Fig. 1: Top: Cosmic filaments as revealed by gravitational lens-
ing statistical tomography. From J.A. Tyson and G. Bernstein,
Bell Laboratories, Physical Sciences Research, http://www.bell-
labs.com/org/physicalsciences/projects/darkmatter/darkmatter.html.
Bottom: Cosmic network of primordial filaments and primordial
black holes, as solution from (2).

2.3 Curved Spacetime Formalism

Eqn.(6) for the elapsed proper time may be written

dτ2 = dt2− 1
c2 (dr(t) − v(r(t), t)dt)2 = gµν(x)dxµdxν, (9)

which introduces a curved spacetime metric gµν. However
this spacetime has no ontological significance — it is merely
a mathematical artifact, and as such hides the underlying dy-
namical 3-space. Its only role is to describe the geodesic of
the matter quantum wave-packet in gerneral coordinates. The
metric is determined by solutions of (2). This induced met-
ric is not determined by the Einstein-Hilbert equations, which
originated as a generalisation of Newtonian gravity, but with-
out the knowledge that a dynamical 3-space had indeed been
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Fig. 2: (a) A typical Miller averaged-data from September 16, 1925,
4h40′ Local Sidereal Time (LST) — an average of data from 20
turns of the gas-mode Michelson interferometer. Plot and data af-
ter fitting and then subtracting both the temperature drift and Hicks
effects from both, leaving the expected sinusoidal form. The error
bars are determined as the rms error in this fitting procedure, and
show how exceptionally small were the errors, and which agree with
Miller’s claim for the errors. (b) Best result from the Michelson-
Morley 1887 data — an average of 6 turns, at 7h LST on July 11,
1887. Again the rms error is remarkably small. In both cases the
indicated speed is vP — the 3-space speed projected onto the plane
of the interferometer. The angle is the azimuth of the 3-space speed
projection at the particular LST. The speed fluctuations from day
to day significantly exceed these errors, and reveal the existence of
3-space flow turbulence — i.e. gravitational waves.

detected by Michelson and Morley in 1887 by detecting light
speed anisotropy.

2.4 Gravitational Waves

Eqn.(2) predicts time dependent flows, and these have been
repeatedly detected, beginning with the Michelson and Mor-
ley experiment in 1887. Apart from the sidereal earth-rotation
induced time-dependence, the light-speed anisotropy data has
always shown time-dependent fluctuations/turbulence, and at
a scale of some 10% of the background galactic flow speed.
This time dependent velocity field induces “ripples” in the
spacetime metric in (9), which are known as “gravitational
waves”. They cannot be detected by a vacuum-mode Michel-
son interferometer.

2.5 Matter Induced Minimal Black Holes

For the special case of a spherically symmetric flow we set
v(r, t) = −r̂v(r, t). Then (2) becomes, with v′ = ∂v/∂r,

∂v′

∂t
+ vv′′ +

2
r
vv′ + (v′)2 +

α

2r

(
v2

2r
+ vv′

)
= −4πGρ (10)

For a matter density ρ(r), with maximum radius R, (10) has
an exact inhomogeneous static solution [12]

v(r)2=



2G
(1 − α

2 )r

∫ r

0
4πs2ρ(s)ds

+
2G

(1 − α
2 )r

α
2

∫ R

r
4πs1+ α

2 ρ(s)ds, 0<r≤R

2γ
r
, r>R

(11)

where

γ =
G

(1 − α
2 )

∫ R

0
4πs2ρ(s)ds =

GM
(1 − α

2 )
(12)

Here M is the total matter mass. As well the middle term in
(11) also has a 1/rα/2 inflow-singularity, but whose strength is
mandated by the matter density, and is absent when ρ(r) = 0
everywhere. This is a minimal attractor or “black hole”∗, and
is present in all matter systems. For the region outside the sun,
r > R, Keplerian orbits are known to well describe the mo-
tion of the planets within the solar system, apart from some
small corrections, such as the Precession of the Perihelion of
Mercury, which follow from relativistic term in (2). The sun,
as well as the earth, has only an induced “minimal attractor”,
which affects the interior density, temperature and pressure
profiles [12]. These minimal black holes contribute to the
external g = GM?/r2 gravitational acceleration, through an
effective mass M? = M/(1 − α/2). The 3-space dynamics
contributes an effective mass [2]

MBH =
M

1 − α
2
− M =

α

2
M

1 − α
2
≈ α

2
M. (13)

These induced black hole “effective” masses have been de-
tected in numerous globular clusters and spherical galaxies
and their predicted effective masses have been confirmed in
some 19 such cases, as shown in Fig. 3, [6]. The non-
Newtonian effects in (11) are also detectable in bore hole ex-
periments.

2.6 Earth Bore Holes Determine α

The value of the parameter α in (2) was first determined from
earth bore hole g-anomaly data, which shows that gravity de-
creases more slowly down a bore hole than predicted by New-
tonian gravity, see Figs.4 and 5. From (5) and (11) we find

∗The term “black hole” refers to the existence of an event horizon, where
the in-flow speed reaches c, but otherwise has no connection to the putative
“black holes” of GR.
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Fig. 3: The data shows Log10[MBH] for the minimal induced black
hole masses MBH for a variety of spherical matter systems, from
Milky Way globular clusters to spherical galaxies, with masses M,
plotted against Log10[M], in solar masses M0. The straight line is
the prediction from (13) with α = 1/137. See [6] for references to
the data.

the gravitational acceleration at radius r = R + d to be

g(d)=



− GM
(1 − α/2)(R + d)2 +

2πGρ(R)d
(1 − α/2)

+ ...

− 4πR2Gρ(R)G
(1 − α/2)(R + d)2 , d < 0

− GM
(1 − α/2)(R + d)2 , d > 0

(14)

In practice the acceleration above the earth’s surface must be
measured in order to calibrate the anomaly, which defines the
coefficient GM = GM/(1−α/2) in (14). Then the anomaly is

∆g = gNG(d)−g(d) = 2παGρ(R)d + O(α2), d < 0 (15)

to leading order in α, and where gNG(d) is the Newtonian
gravity acceleration, given the value of GM from the above-
surface calibration, for a near-surface density ρ(R). The ex-
perimental data then reveals α to be the fine structure con-
stant, to within experimental errors [6]. The experiments have
densities that differ by more than a factor of 2, so the result is
robust.

2.7 G Measurement Anomalies

There has been a long history of anomalies in the measure-
ment of Newton’s gravitational constant G, see Fig. 7. The
explanation is that the gravitational acceleration external to
a piece of matter is only given by application of Newton’s
inverse square law for the case of a spherically symmetric
mass. For other shapes the α-dependent interaction in (2)
results in forces that differ from Newtonian gravity at O(α).
The anomalies shown in Fig. 7 result from analysing the one-
parameter, G, Newtonian theory, when gravity requires a two
parameter, G and α, analysis of the data. The scatter in the

Fig. 4: The data shows the gravity residuals for the Greenland
Ice Shelf [13] Airy measurements of the g(r) profile, defined as
∆g(r) = gNewton − gobserved, and measured in mGal (1mGal = 10−3

cm/s2) and plotted against depth in km. The borehole effect is that
Newtonian gravity and the new theory differ only beneath the sur-
face, provided that the measured above-surface gravity gradient is
used in both theories. This then gives the horizontal line above the
surface. Using (15) we obtain α−1 = 137.9± 5 from fitting the slope
of the data, as shown. The non-linearity in the data arises from mod-
elling corrections for the gravity effects of the irregular sub ice-shelf
rock topography. The ice density is 920 kg/m3. The near surface
data shows that the density of the Greenland ice, compressed snow,
does not reach its full density until some 250m beneath the surface
— a known effect.

measured G values appear to be of O(α/4). This implies that
laboratory measurements to determine G will also measure
α [2].

2.8 Expanding Universe

The dynamical 3-space theory (2) has a time dependent ex-
panding universe solution, in the absence of matter, of the
Hubble form v(r, t) = H(t)r with H(t) = 1/(1 + α/2)t, giv-
ing a scale factor a(t) = (t/t0)4/(4+α), predicting essentially a
uniform expansion rate. This results in a parameter-free fit
to the supernova redshift-magnitude data, as shown in fig.8,
once the age t0 = 1/H0 of the universe at the time of observa-
tion is determined from nearby supernova. In sharp contrast
the Friedmann model for the universe has a static solution —
no expansion, unless there is matter/energy present. How-
ever to best fit the supernova data fictitious “dark matter” and
“dark energy” must be introduced, resulting in the ΛCDM
model. The amounts ΩΛ = 0.73 and ΩDM = 0.23 are eas-
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Fig. 5: Gravity residuals ∆g(r) from two of the Nevada bore hole
experiments [14] that give a best fit of α−1 = 136.8 ± 3 on using
(15). Some layering of the rock is evident. The rock density is 2000
kg/m3 in the linear regions.

ily determined by best fitting the ΛCDM model to the above
uniformly expanding result, without reference to the obser-
vational supernova data. But then the ΛCDM has a spurious
exponential expansion which becomes more pronounced in
the future. This is merely a consequence of extending a poor
curve fitting procedure beyond the data. The 3-space dynam-
ics (2) results in a hotter universe in the radiation dominated
epoch, with effects on Big Bang Nucleosynthesis [15], and
also a later decoupling time of some 1.4 × 106 years.

Fig. 6: Plots of the rotation speed data for the spiral galaxy
NGC3198. Lower curve shows Newtonian gravity prediction, while
upper curve shows asymptotic flat rotation speeds from (19).

3 Primordial Black Holes

In the absence of matter the dynamical 3-space equation (2)
has black hole solutions of the form

v(r) = − β

rα/4
(16)

for arbitrary β, but only when α , 0. This will produce a
long range gravitational acceleration, essentially decreasing
like 1/r,

g(r) = − αβ2

4r1+α/2 (17)

as observed in spiral galaxies. The inflow in (16) describes
an inflow singularity or “black hole” with arbitrary strength.
This is unrelated to the putative black holes of General Rela-
tivity. This corresponds to a primordial black hole. The dark
matter density for these black holes is

ρDM(r) =
αβ2(2 − α)

256πGr2+α/2 (18)

This decreases like 1/r2 as indeed determined by the “dark
matter” interpretation of the flat rotation curves of spiral
galaxies. Here, however, it is a purely 3-space self-interaction
effect.

In general a spherically symmetric matter distribution
may have a static solution which is a linear combination of
the inhomogeneous matter induced solution in (11) and the
square of the homogeneous primordial black hole solution
in (16), as (10) is linear in v(r)2 and its spatial derivatives.
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Fig. 7: Results of precision measurements of G published in the last
sixty years in which the Newtonian theory was used to analyse the
data. These results show the presence of a systematic effect, not in
the Newtonian theory, of fractional size ∆G/G ≈ α/4. The upper
horizontal dashed line shows the value of G from ocean Airy mea-
surements [17], while the solid line shows the current CODATA G
value of 6.67428(±0.00067) × 10−11m3/kgs2, with much lager ex-
perimental data range, exceeding ±αG/8, shown by dashed lines as
a guide. The lower horizontal line shows the actual value of G af-
ter removing the space self-interaction effects via G → (1 − α/2)G
from the ocean value of G. The CODATA G value, and its claimed
uncertainty, is seen to be spurious.

However this is unlikely to be realised, as a primordial black
hole would cause a precocious in-fall of matter, which is un-
likely to remain spherically symmetric, forming instead spiral
galaxies.

3.1 Spiral Galaxy Rotation Curves

Spiral galaxies are formed by matter in-falling on primordial
black hole, leading to rotation of that matter, as the in-fall will
never be perfectly symmetric. The black hole acceleration in
(17) would support a circular matter orbit with orbital speed

vo(r) =
(αβ2)1/2

2rα/4
(19)

which is the observed asymptotic “flat” orbital speed in spi-
ral galaxies, as illustrated in Fig. 6 for the spiral galaxy
NGC3198. So the flat rotation curves are simply explained
by (2).

4 Primordial Filaments

Eqn.(2) also has cosmic filament solutions. Writing (2) in
cylindrical coordinates (r, z, φ), and assuming cylindrical

Fig. 8: Hubble diagram showing the supernovae data using sev-
eral data sets, and the Gamma-Ray-Bursts data (with error bars).
Upper curve (green) is ΛCDM “dark energy” only ΩΛ = 1, lower
curve (black) is ΛCDM matter only ΩM = 1. Two middle curves
show best-fit of ΛCDM “dark energy”-“dark-matter” (blue) and dy-
namical 3-space prediction (red), and are essentially indistinguish-
able. We see that the best-fit ΛCDM “dark energy”-“dark-matter”
curve essentially converges on the uniformly-expanding parameter-
free dynamical 3-space prediction. The supernova data shows that
the universe is undergoing a uniform expansion, wherein a fit to the
FRW-GR expansion was forced, requiring “dark energy”, “dark mat-
ter” and a future “exponentially accelerating expansion”.

symmetry with translation invariance along the z axis, we
have for a radial flow v(r, t)

1
r
∂v

∂t
+
∂v′

∂t
+
vv′

r
+ v′2 + vv′′ + α

vv′

4r
= 0 (20)

where here the radial distance r is the distance perpendicular
to the z axis. This has static solutions with the form

v(r) = − µ

rα/8
(21)

for arbitrary µ. The gravitational acceleration is long-range
and attractive to matter, i.e. g is directed inwards towards the
filament,

g(r) = − αµ2

8r1+α/4 (22)

This is for a single infinite-length filament. The dark matter
density (8) is

ρDM(r) = − αµ2

1024πGr2+α/4 (23)
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Fig. 9: Sector integration volume, with radii R1 and R2, about a
filament. For the filament to exist the quantum foam substructure to
3-space must be invoked at short distances.

and negative. But then (7), with ρ = 0, would imply a re-
pulsive matter acceleration by the filament, and not attractive
as in (22). To resolve this we consider the sector integration
volume in Fig.9. We obtain from (22) and using the diver-
gence theorem (in which dA is directed outwards from the
integration volume)

∫

V
∇·gdv=

∫

A
g·dA =

αµ2θd
8


1

Rα/4
1

− 1

Rα/4
2

 (24)

which is positive because R1 < R2. This is consistent with
(7) for the negative ρDM , but only if R1 is finite. However if
R1 = 0, as for the case of the integration sector including the
filament axis, there is no R1 term in (24), and the integral is
now negative. This implies that (21) cannot be the solution
for some small r. The filament solution is then only possi-
ble if the dynamical 3-space equation (1) is applicable only
to macroscopic distances, and at short distances higher order
derivative terms become relevant, such as ∇2(∇ · v). Such
terms indicate the dynamics of the underlying quantum foam,
with (1) being a derivative expansion, with higher order der-
vatives becoming more significant at shorter distances.

5 Filament Gravitational Lensing

We must generalise the Maxwell equations so that the electric
and magnetic fields are excitations within the dynamical 3-
space, and not of the embedding space. The minimal form in
the absence of charges and currents is

∇ × E = −µ0

(
∂H
∂t

+ v.∇H
)
, ∇.E = 0,

∇ ×H = ε0

(
∂E
∂t

+ v.∇E
)
, ∇.H = 0 (25)

which was first suggested by Hertz in 1890 [16], but with v
then being only a constant vector field. As easily determined
the speed of EM radiation is now c = 1/

√
µ0ε0 with respect

to the 3-space. The time-dependent and inhomogeneous ve-
locity field causes the refraction of EM radiation. This can

be computed by using the Fermat least-time approximation.
This ensures that EM waves along neighbouring paths are in
phase. Then the EM ray paths r(t) are determined by min-
imising the elapsed travel time:

T =

∫ s f

si

ds|dr
ds
|

|cv̂R(s) + v(r(s), t(s)| , (26)

vR =
dr
dt
− v(r(t), t) (27)

by varying both r(s) and t(s), finally giving r(t). Here s is a
path parameter, and cv̂R is the velocity of the EM radiation
wrt the local 3-space, namely c. The denominator in (26) is
the speed of the EM radiation wrt the observer’s Euclidean
spatial coordinates. Eqn.(26) may be used to calculate the
gravitational lensing by black holes, filaments and by ordi-
nary matter, using the appropriate 3-space velocity field. Be-
cause of the long-range nature of the inflow for black holes
and filaments, as in (16) and (21), they produce strong lens-
ing, compared to that for ordinary matter∗, and also compared
with the putative black holes of GR, for which the in-flow
speed decreases like 1/

√
r, corresponding to the accelera-

tion field decreasing like 1/r2. The EM lensing caused by
filaments and black holes is the basis of the stochastic to-
mographic technique for detecting these primordial 3-space
structures.

6 Filament and Black Hole Networks

The dynamical 3-space equation produces analytic solutions
for the cases of a single primordial black hole, and a single,
infinite length, primordial filament. This is because of the
high symmetry of theses cases. However analytic solutions
corresponding to a network of finite length filaments joining
at black holes, as shown in Fig.1, are not known. For this case
numerical solutions will be needed. It is conjectured that the
network is a signature of primordial imperfections or defects
from the epoch when the 3-space was forming, in the earliest
moments of the big bang. It is conjectured that the network
of filaments and black holes form a cosmic network of sheets
and voids. This would amount to a dynamical breakdown of
the translation invariance of space. Other topological defects
are what we know as quantum matter [2].

7 Conclusions

The recent discovery that a dynamical 3-space exists has re-
sulted in a comprehensive investigation of the new physics,
and which has been checked against numerous experimen-
tal and observational data. This data ranges from laboratory
Cavendish-type G experiments to the expansion of the uni-
verse which, the data clearly shows, is occurring at a uni-
form rate, except for the earliest epochs. Most significantly

∗Eqn:(26) produces the known sun light bending [3].
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the dynamics of space involves two parameters: G, Newton’s
gravitational constant, which determines the rate of dissipa-
tive flow of space into matter, and α, which determines the
space self-interaction dynamics. That this is the same con-
stant that determines the strength of electromagnetic interac-
tions shows that a deep unification of physics is emerging. It
is the α term in the space dynamics that determines almost
all of the new phenomena. Most importantly the epicycles of
spacetime physics, viz dark matter and dark energy, are dis-
pensed with.
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Black Holes in the Framework of the Metric Tensor Exterior
to the Sun and Planets
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The conditions for the Sun and oblate spheroidal planets in the solar system to reduce
to black holes is investigated. The metric tensor exterior to oblate spheroidal masses
indicates that for the Sun to reduce to a black hole, its mass must condense by a factor
of 2.32250× 105. Using Schwarzschild’s metric, this factor is obtained as 2.3649× 105.
Similar results are obtained for oblate spheroidal planets in the solar system.

1 Introduction

It is well known that whenever an object becomes sufficiently
compact, general relativity predicts the formation of a black
hole: a region of space from which nothing, not even light can
escape. The collapse of any mass to the Schwarzschild radius
appears to an outside observer to take an infinite time and
the events at distances beyond this radius are unobservable
from outside, thus the name black hole. From an astronomical
point of view, the most important property of compact objects
such as black holes is that they provide a superbly efficient
mechanism for converting gravitational energy into radiation
[1].

The world line element in Schwarzschild’s field is well
known to be given by [1]

c2dτ2 = c2
[
1 − 2GM

c2r

]
dt2 −

[
1 − 2GM

c2r

]−1

dr2

−r2dθ2 − r2 sin2 θdφ2.

(1)

This metric has a singularity, (denoted by rs) called the
Schwarzschild singularity (or radius) at

rs =
2GM

c2 . (2)

For most physical bodies in the universe, the Schwarzschild
radius is much smaller than the radius of their surfaces. Hence
for most bodies, there does not exist a Schwarzschild singu-
larity. It is however, speculated that there exist some bodies
in the universe with the Schwarzschild radius in the exterior
region. Such bodies are called black holes [1].

In this article, the factor by which the radius of the Sun
and oblate spheroidal planets is reduced to form a black hole
is computed using the oblate spheroidal space-time metric.
The results are compared to those obtained using Schwarz-
schild’s metric.

2 Oblate Spheroidal Space-Time Metric

It has been established [2] that the covariant metric tensor in
the region exterior to a static homogeneous oblate spheroid in
oblate spheroidal coordinates is given as

g00 =

(
1 +

2
c2 f (η, ξ)

)
(3)

g11 = −
a2

1 + ξ2 − η2

η2
(
1 +

2
c2 f (η, ξ)

)−1

+
ξ2(1 + ξ2)
(1 − η2)

 (4)

g12 ≡ g21 = −
a2ηξ

1 + ξ2 − η2

1 − (
1 +

2
c2 f (η, ξ)

)−1 (5)

g22 = −
a2

1 + ξ2 − η2

ξ2
(
1 +

2
c2 f (η, ξ)

)−1

+
η2(1 − η2)
(1 + ξ2)

 (6)

g33 = −a2(1 + ξ2)(1 − η2) (7)

gµν = 0; otherwise. (8)

Thus, the world line element in this field can be written as

c2dτ2 = c2g00dt2−g11dη2−2g12dηdξ−g22dξ2−g33dφ2. (9)

Multiplying equation (9) all through by
(

1
dt

)2
yields

c2
(

dτ
dt

)2

= c2g00 − g11

(
dη
dt

)2

− 2g12
dη
dt

dξ
dt

−g22

(
dξ
dt

)2

− g33

(
dφ
dt

)2

.

(10)

It can be concluded that the space velocity(vs) is given as

vs = g11

(
dη
dt

)2

+ 2g12
dη
dt

dξ
dt
+ g22

(
dξ
dt

)2

+ g33

(
dφ
dt

)2

, (11)

and the velocity of local time

vτ = c
dτ
dt
. (12)
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The gravitational velocity can equally be defined with the aid
of equation (3) as

vG =
√
−2 f (η, ξ). (13)

This implies that
c2 = v2τ + v

2
G + v

2
s (14)

or
c =

∣∣∣~v2τ +~v2G +~v2s ∣∣∣ . (15)

3 Black holes in oblate spheroidal space time of Sun and
planets

In the absence of gravity and acceleration, f (η, ξ) = 0 and
thus vG = 0. Hence, vs can be written explicitly as

v2s =

 a2η2

1 + ξ2 − η2 +
ξ2

(
1 + ξ2

)
1 − η2

 (dη
dt

)2

+
a2

1 + ξ2 − η2

[
ξ2 +

η2(1 − η2)
1 + ξ2

] (
dξ
dt

)2

+a2
(
1 + ξ2

) (
1 − η2

) (dφ
dt

)2

.

(16)

Thus in the absence of gravity, equation(14) reduces to

dτ
dt
=

√
1 − v

2
s

c2 . (17)

It can basically be seen that equation(15) establishes a max-
imum value of c and hence the gravitational velocity vG can
never exceed c. An approximate expression for f (η, ξ) along
the equator of an oblate spheroid [3] is

f (η, ξ) ≈ B0

3ξ2
(
1 + 3ξ2

)
i +

B2

30ξ3
(
7 + 15ξ2

)
i (18)

where B0 and B2 are constants. Equation(18) can be written
equally as

f (η, ξ) ≈ −
(
C
ξ
+

D
ξ3

)
(19)

where C and D are equally constants. These constants can
easily be computed for the oblate spheroidal astrophysical
bodies in the solar system and results are presented in
Table 1.

Setting the gravitational velocity vG to be equal to the
maximum value c, in equation (13), an approximate expres-
sion for the parameter ξ for a black hole in oblate spheroidal
space time can be obtained as

ξblackhole ≈
2C
c2 . (20)

Table 1: Basic constants for oblate spheroidal bodies in the solar
system

Body C [×10−9 Nmkg−1] D [×10−9 Nmkg−1]

Sun −46796.04 −15598.70
Earth −0.743851 −0.247962
Mars −0.1132 −0.03780
Jupiter −3.77107 −1.25803
Saturn −0.879543 −0.29356
Uranus −0.842748 −0.28102
Neptune −1.065429 −0.35516

Table 2: Reduction ratio for oblate spheroidal masses in the solar
system to reduce to black holes

Body ξsur f ace ξblackhole reduction ratio: ξsur f ace

ξblackhole

Sun 241.52 1.1 × 10−3 2.32250 × 105

Earth 12.01 1.6 × 10−8 7.50625 × 108

Mars 09.17 2.0 × 10−9 4.58500 × 109

Jupiter 02.64 8.3 × 10−8 3.18070 × 107

Saturn 01.97 1.9 × 10−8 1.03684 × 108

Uranus 03.99 1.8 × 10−8 2.21667 × 108

Neptune 04.30 2.3 × 10−8 1.86950 × 108

Hence the parameter ξblackhole for various bodies in the solar
system is computed using equation (20) and the reduction ra-
tio for oblate spheroidal masses in the solar system to reduce
to black holes is obtained (Table 2).

The reduction ratio can equally be calculated using
Schwarzschild’s expression. The equatorial radius (r) for the
bodies is divided by the Schwarzschild’s radius (rschw) to ob-
tain the reduction ratio. The results are shown in Table 3.

4 Conclusion

This short article presents the notion of black holes in the met-
ric tensor exterior to oblate spheroidal masses. Equation (20)
is an approximate expression for the parameter ξ of an oblate
spheroid to collapse to a black hole.Reductions ratios com-
puted using the oblate spheroidal metric for Sun and plan-
ets in the Solar system authenticates the soundness of met-
ric. The closeness of the reduction ratio for oblate spheroidal
masses in the solar system computed using the metric ten-
sor in oblate spheroidal space time to that in Schwarzschild’s
metric is remarkable.Basically, since the Sun and planets un-
der consideration are oblate spheroidal in nature, the values
obtained using the metric tensor contain slight corrections to
values obtained using Schwarzschild’s metric.
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Table 3: Schwarzschild’s reduction ratio

Body r [×103 m] rschw [m] reduction ratio:
r

rschw

Sun 700, 000 2.96 × 103 2.36490 × 105

Earth 6378 8.80 × 10−3 7.24773 × 108

Mars 3396 9.9 × 10−4 3.43030 × 109

Jupiter 71, 490 2.8 2.55320 × 107

Saturn 60, 270 8.5 × 10−1 7.09059 × 107

Uranus 25, 560 1.3 × 10−1 1.96615 × 108

Neptune 24, 760 1.5 × 10−1 1.65067 × 108
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Isotopes and the Electron Configuration of the Blocks in the Periodic Table of
Elements, upto the Last Element No.155

Albert Khazan
E-mail: albkhazan@gmail.com

This is a theoretical study, which first manifests which connexion exists between iso-
topes and the electron blocks, and how the electron blocks are located in the version of
the Periodic Table of Elements which ends with element No.155.

1 Introduction

It is known that elements of the Periodic Table of Elements
have fractional numerical values of atomic masses. This is
because the elements consists of, as regularly, a mix of in-
born (native) isotopes. For this reason we conclude that the
average weighted atomic mass of all stable isotopes of any
element (taking their distribution in the Earth crust) is that
atomic mass which is used in all calculations. Because it is
equal to the sum of the electric charge of an atomic nucleus
and the number of neutrons in it, the isotopes are determined
by the condition A = Z + N, where A is the atomic mass, Z is
the charge, N is the number of neutrons of the nucleus. With
all these, it is necessary to keep in mind that, having the same
number of protons in a nucleus, the nucleus may contain dif-
ferent number of neutrons which do not change the chemical
properties of the atoms: all isotopes of the same element bear
the same electric charge of its nucleus, but change only with
the number of neutrons in it.

2 Calculation according to the table of isotopes

According to the data provided by Nuclear Periodic Table [1],
all spectacularity of the data was split into blocks, wherein
the number of isotopes was determined, namely: 431 (s),
1277 (p), 1612 (d), 1147 (f). As is seen in Fig. 1, the ob-
tained results form a smooth arc with R2 = 1. Because all the
isotopes are grouped into clocks of the electron configuration
alike elements of the Periodic Table, we are lawful to con-
clude that the same law lies in the ground of the geometric
configurations. It is necessary to note that, with reaching the
top of the arc, the number of the isotopes very lowers, that
was as well observed in the case of elements of the Periodic
Table [2].

3 Version of the Periodic Table of Elements, which limits
by element No.155

It is known that the “blocks” of the Periodic Table of Ele-
ments are sets of adjacent groups [3, 4]. The names of the
blocks originate in the number of the spectroscopic lines of
the atomic orbitales in each of them: sharp, principal, diffuse,
fundamental. During the last decades, one suggested to ex-
tend the Periodic Table upto 218 elements, with appearance
a g-block in it [5]. If, in the version of the Periodic Table
consisting of only 118 elements, the blocks draw a smooth

arc with R2= 1 (see Fig. 2), the appearance of additional el-
ements in the Table requires new construction of the blocks,
which should be set up in another configuration.

Earleir [5], we suggested a version of the Periodic Table
which contained Period 8 with 37 elements (two lines with 18
and 1 elements in Group 1). In this form, the Periodic Table
satisfies the common structure of the location of the elements.
However, once lanthanides and actinides have been extended
into a common scheme, the heaviest element No.155 (which
ends the Table in this its version) became shifted for 4 posi-
tions to right. Therefore, a question rose: how to locate these
37 elements in the new version of the Table so that they would
completely satisfy all the rules of the electron configuration
of the blocks?

First, we added 2 elements to block s upto the begining
of Period 8. Then we added 6, 10, and 14 elements (respec-
tively) to blocks p, d, f. Concerning the rest 4 elements, we
created a new block g. All these changes are shown in Fig. 2
(the upper arc). As is seen, the arc has the same form as the
lower arc, and shows that fact that the number of elements of
the last block reaches the actual limit.

On the basis of that has been said above, a long-period
form of the Periodic Table of Elements was constructed by
the Author (see Fig. 3). It differs from the hypothetical forms
of the Periodic Table by the real data consisting our Table.
Element No.155 is the last (heaviest) in our version of the
Table, thus this element “closes” the Table. Element No.155
also opens and closes Period 9, being located in Group 1 of
this Period.

This scheme of calculation is applicable to all Tables of
Elements containing more than 118 elements. The necessity
of our study, presented herein, and the suggested version of
the Table which limits by element No.155, is due to that fact
the law of hyperbolas we used previously in the Periodic Ta-
ble [5] provided not only the possibility to calculate the upper
limit of the Table (element No.155 and its parameters such as
atomic mass 411.66), but also allowed to determine its loca-
tion in the extended version of the Table of Elements.

If earlier the theoretical physical chemists discussed the
possibility to add a number of elements over 118 to the Ta-
ble of Elements (they suggested to do it as new blocks they
referred to as superactinide series, eka-superactinide, Ubb-
series, Usb-series), we now obviously see that this step is non-
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Fig. 1: Dependency of the number of the isotopes in the blocks from their names according to the elements of the electron configuration.

Fig. 2: Results of calculation of the electron configuration of the elements. The lower arc has been calculated for the version of the Periodic
Table containing 118 elements. The upper arc has been calculated for the version of the Periodic Table containing 155 elements (suggested
by the Author [5]).
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Fig. 3: Periodic Table of Elements, which is limited by element No.155 (suggested by the Author).

sense. Despite the bulky mathematical apparatus of Quantum
Mechanics was applied to calculation of stability of the el-
ements, it never led to a result about a limit of the Periodic
Table of Elements. This was never claimed in the basis of
the quantum mechanical calculations. This is because that
the conditions of micro-scales, where the laws of Quantum
Mechanics work, do not provide the necessary data for the
calculation. Only common consideration of the conditions of
micro-world and macro-world, as the author did in the recent
study [5], allowed to develop the fundamental law of hyper-
bolas in the Periodic Table of Elements, which starts from
the positions of macro-scale then continues upto the electron
configuration of the elements (wherein it works properly as
well, as we seen in this paper) that led to that final version of
the Periodic Table of Elements, which has been presented in
this paper.
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We solve the general relativity (GR) field equations under the cosmological scope via
one extra postulate. The plausibility of the postulate resides within the Heisenberg in-
determinacy principle, being heuristically analysed throughout the appendix. Under
this approach, a negative energy density may provide the positive energy content of
the universe via fluctuation, since the question of conservation of energy in cosmol-
ogy is weakened, supported by the known lack of scope of the Noether’s theorem in
cosmology. The initial condition of the primordial universe turns out to have a natural
cutoff such that the temperature of the cosmological substratum converges to the ab-
solute zero, instead of the established divergence at the very beginning. The adopted
postulate provides an explanation for the cosmological dark energy open question. The
solution agrees with cosmological observations, including a 2.7K CMBT prediction.

1 Revisiting the Theoretical Assumptions

The study of the dynamics of the entire universe is known as
Cosmology [1–3]. The inherent simplicity in the mathemati-
cal treatment of the Cosmology, although the entire universe
must be under analysis, should be recognized as being due
to Copernicus. Indeed, since the primordial idea permeating
the principle upon which the simplicity arises is just an exten-
sion of the copernican revolution∗: the cosmological princi-
ple. This extension, the cosmological principle, just assever-
ates we are not in any sense at a privileged position in our uni-
verse, implying that the average large enough scale† spatial
properties of the physical universe are the same from point
to point at a given cosmological instant. Putting these in a
mathematical jargon, one says that the large enough scale spa-
tial geometry at a given cosmological instant t is exactly the
same in spite of the position of the observer at some point be-
longing to this t-sliced three-dimensional universe or, equiv-
alently, that the spatial part of the line element of the entire
universe is the same for all observers. Hence, the simplic-
ity referred above arises from the very two principal aspects
logically encrusted in the manner one states the cosmological
principle:

• The lack of a privileged physical description of the uni-
verse at a t-sliced large enough scale ⇒ large enough
scale⇒ one neglects all kind of known physical inter-
actions that are unimportant on the large enough scales
⇒ remains gravity;

• The lack of a privileged physical description of the uni-
verse at a t-sliced large enough scale ⇒ large enough
scale ⇒ one neglects local irregularities of a global t-
sliced substratum representing the t-sliced universe ∀

∗Copernicus told us that the Earth is not the center of our planetary sys-
tem, namely the solar system, pushing down the historical button leading to
the collapse of the established anthropocentric status quo.

†One must understand large enough scale as being that of cluster of
galaxies.

cosmological instants t ⇒ substratum modelled as a
fluid without t-sliced spatially localized irregularities
⇒ homogeneous and isotropic t-sliced‡ fluid.

One shall verify the t-local characteristic of the the cos-
mological principle, i.e., that non-privileged description does
not necessarily hold on the global time evolution of that t-
sliced spacelike hypersurfaces. In other words, two of such
t-sliced hypersurfaces at different instants would not preserve
the same aspect, as experimentally asseverated by the expan-
sion of the universe. Hence, some further assumption must
be made regarding the time evolution of the points belonging
to the t-sliced spacelike hypersurfaces:

• The particles of the cosmological fluid are encrusted in
spacetime on a congruence of timelike geodesics from
a point in the past, i.e., the substratum is modelled as a
perfect fluid.

Hence, the following theoretical ingredients are available
regarding the above way in which one mathematically con-
struct a cosmological model:

Gravity modeled by Einstein’s General Relativity field
equations (in natural units):

Gµν − Λgµν = 8πTµν. (1)

Homogeneity is mathematically translated
by means of a geometry (metric) that is the same from point
to point, spatially speaking. Isotropy is mathematically trans-
lated by means of a lack of privileged directions, also spatially
speaking. These two characteristics easily allow one to con-
sider spaces equipped with constant curvature K. From a dif-
ferential geometry theorem, Schur’s, a n-dimensional space
Rn, n ≥ 3, in which a η-neighbourhood has isotropy ∀ points

‡One shall rigorously attempt to the fact: the isotropy and homogeneity
are t-sliced referred, i.e., these two properties logically emerging from the
cosmological principle hold upon the entire fluid at t, holding spatially at t,
i.e., homogeneity and isotropy are spatial properties of the fluid. Regarding
the time, one observer can be at an own proper τ-geodesic. . .
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belonging to it, has constant curvature K throughout η. Since
we are considering, spatially, global isotropy, then K is con-
stant everywhere. Hence, one defines the Riemann tensor:

Rabcd = K (gacgbd − gadgbc) , (2)

spatially speaking.
As indicated before, homogeneity and isotropy are spatial

properties of the geometry. Time evolution, e.g.: expansion,
can be conformally agreed with these two spatial properties
logically emerging from the cosmological principle in terms
of Gaussian normal coordinates. Mathematically, the space-
time cosmological metric has the form:

ds2 = dt2 − [a(t)]2 dσ2. (3)

Since spatial coordinates for a spatially fixed observer do not
change, ds2 = dt2 ⇒ gtt = 1.

Regarding the spatial part of the line element, the
Schwarzschild metric is spherically symmetric, a guide to our
purposes. From the Scharzschild metric (signature + − − −):

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dθ2 − r2 sin2 θ dφ2, (4)

one easily writes down the spatial part of the spacetime cos-
mological metric:

dσ2 = e2 f (r)dr2 + r2dθ2 + r2 sin2 θ dφ2. (5)

One straightforwardly goes through the tedious calculation
of the Christoffel symbols and the components of the Ricci
tensor, finding:

e2 f (r) =
1

1 − Kr2 . (6)

Absorbing constants∗ by the scale factor in eqn. (3), one nor-
malizes the curvature constant K, namely k ∈ {−1; 0; +1}.
Hence, the cosmological spacetime metric turns out to be in
the canonical form:

ds2 = dt2 − [a(t)]2
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θ dφ2
)
. (7)

Now, regarding the fluid substratum, one sets in co-moving
coordinates (dt/dτ = 1, uµ = (1; 0; 0; 0)):

T µ ν= 0, µ, ν; T 0
0= ρ; T µ µ =− p , for µ ∈ {1; 2; 3} (8)

since the particles in the fluid are clusters of galaxies falling
together with small averaged relative velocities compared
with the cosmological dynamics, where the substratum turns
out to be averaged described by an average substratum den-
sity ρ and by an average substratum pressure p.

The Einstein tensor in eqn. (1), Gµν, is related to the Ricci
tensor Rµν = Rγµγν (the metric contraction of the curvature
tensor (Riemann tensor)), to the Ricci scalar R = Rµµ (the

∗Defining r′ =
√
|K| r, one straightforwardly goes through. . .

metric contraction of the Ricci tensor) and to the metric gµν
itself:

Gµν = Rµν −
1
2

Rgµν . (9)

The curvature tensor Rαβγδ is obtained via a metric connec-
tion, the Christoffel Γαβδ symbols in our case of non-torsional
manifold:

Rαβγδ = ∂γΓ
α
βδ − ∂δΓαβγ + ΓεβδΓαεγ − ΓεβγΓαεδ , (10)

where the metric connection is obtained, in the present case,
from the Robertson-Walker cosmological spacetime geome-
try given by eqn. (7) (from which one straightforwardly ob-
tains the metric coefficients of the diagonal metric tensor in
the desired covariant or contravariant representations) via:

Γαβγ = g
αδΓδβγ , (11)

being the metric connection (Christoffel symbols) of the first
kind Γδβγ given by:

Γδβγ =
1
2

(
∂gβγ

∂xδ
+
∂gγδ

∂xβ
−
∂gδβ

∂xγ

)
. (12)

These set of assumptions under such mathematical apparatus
lead one to the tedious, but straightforward, derivation, via
eqn. (1), of the ordinary differential cosmological equations
emerging from the relation between the Einstein’s tensor, Gµν,
the Robertson-Walker spacetime cosmological metric of the
present case, gµν via eqn. (7), and the stress-energy tensor, Tµν
via metric contraction of the eqn. (8) (signature + − − −):

Ṙ2 + kc2

R2 =
8πG
3c2 (ρ + ρ̃) ; (13)

2RR̈ + Ṙ2 + kc2

R2 = −8πG
c2 (p + p̃) , (14)

where we are incorporating the cosmological constant Λ
through the energy density and the pressure of the vacuum:
ρ̃ and p̃, respectively. One also must infer we are no more
working with natural units. The scale factor becomes R(t),
and one must interpret it as the magnification length scale of
the cosmological dynamics, since R(t) turns out to be length.
This measures how an unitary length of the pervading cos-
mological substratum at t0 becomes stretched as the universe
goes through a time evolution from t0 to t. One should not
literally interpret it as an increase of the distance between
two points, e.g., in a case of expansion, a stretched station-
ary wavelength connecting two cosmological points at a t0-
sliced spacelike substratum would remain stationarily con-
necting the very same two points after the stretched evolu-
tion to the respective t-sliced spacelike substratum, but less
energetically.
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2 A Cold Beginning?

Applying the following conservation criteria:

∇µT µt = ∂µT
µ
t + Γ

µ
µνT νt − ΓνµtT

µ
ν = 0, (15)

one finds via the diagonal stress-energy tensor (see eqn. (8)),
the metric connection (see eqs. (11) and (12)) and the space-
time cosmological geometry of the present case (eqn. (7)):

∂

∂t
(ρ + ρ̃) + 3

Ṙ
R

(ρ + ρ̃ + p + p̃) = 0. (16)

eqn. (16) is the first law of thermodynamics applied to
our substratum (including vacuum), since, despite of geome-
try, a spatial slice of the substratum has volume α(k) [R(t)]3,
density (ρ(t) + ρ̃)∗ and energy (ρ(t) + ρ̃)α(k) [R(t)]3, imply-
ing that dE + pdV = 0 turns out to be eqn. (16). α(k) is the
constant that depends on geometry (open, k = −1; flat, k = 0;
closed, k = 1) to give the correct volume expression of the
mentioned spatial slice of the t-sliced cosmological substra-
tum.

Now, we go further, considering the early universe as be-
ing dominated by radiation. In the ultrarelativistic limit, the
equation of state is given by:

ρ − 3p = 0. (17)

Putting this equation of state in eqn. (16) and integrating, one
obtains the substratum pressure as a function of the magnifi-
cation scale R:

4 ln ‖R‖ + ln ‖p‖ = C′ ⇒ ‖p‖ = eC′

R4 ⇒ p = ±C+

R4 , (18)

where C+ ≥ 0 is a constant of integration. In virtue of eqn.
(18), eqn. (14) is rewritten in a total differential form:

2RṘdṘ +
(
Ṙ2 + kc2 ± 8πG

c2

C+

R2 +
8πG
c2 p̃R2

)
dR = 0. (19)

Indeed, eqn. (19) is a total differential of a constant λ(R, Ṙ) =
constant:

dλ(R, Ṙ) =
∂λ(R, Ṙ)
∂Ṙ

dṘ +
∂λ(R, Ṙ)
∂R

dR = 0, (20)

since:

∂λ(R, Ṙ)
∂Ṙ

= 2RṘ ⇒ ∂2λ(R, Ṙ)
∂R ∂Ṙ

= 2Ṙ; (21)

∂λ(R, Ṙ)
∂R

= Ṙ2 + kc2 ± 8πG
c2

C+

R2 +
8πG
c2 p̃R2 ⇒ (22)

∗One shall remember the cosmological principle: on average, for large
enough scales, at t-sliced substratum, the universe has the same aspect in
spite of the spatial localization of the observer in the t-slice ⇒ ρ = ρ(t).
Also, since Λ is constant, ρ̃ and p̃ are constants such that ρ̃ + p̃ = 0.

∂2λ(R, Ṙ)
∂Ṙ ∂R

= 2Ṙ ∴
∂2λ(R, Ṙ)
∂R ∂Ṙ

=
∂2λ(R, Ṙ)
∂Ṙ ∂R

= 2Ṙ. (23)

Integrating, one has:∫
∂λ(R, Ṙ) =

∫
2RṘ ∂Ṙ = 2R

∫
Ṙ dṘ + h(R) ∴ (24)

λ(R, Ṙ) = RṘ2 + h(R), (25)

where h(R) is a function of R. From eqs. (22) and (25):

∂

∂R
λ(R, Ṙ) = Ṙ2 + kc2 ± 8πG

c2

C+

R2 +
8πG
c2 p̃R2 ⇒

h(R) =
∫ (

kc2 ± 8πG
c2

C+

R2 +
8πG
c2 p̃R2

)
dR ∴ (26)

h(R) = kc2R ∓ 8πG
c2

C+

R
+

8πG
3c2 p̃R3. (27)

Putting this result from eqn. (27) in eqn. (25):

λ(R, Ṙ) = RṘ2+kc2R∓ 8πG
c2

C+

R
+

8πG
3c2 p̃R3 = constant (28)

is the general solution of the total differential equation eqn.
(19). Dividing both sides of eqn. (28) by R3 , 0:

λ(R, Ṙ)
R3 =

Ṙ2 + kc2

R2 ∓ 8πG
c2

C+

R4 +
8πG
3c2 p̃, (29)

using the eqn. (13), one obtains:

λ(R, Ṙ)
R3 =

8πG
c2

(
ρ

3
∓ C+

R4

)
+

8πG
3c2 (ρ̃ + p̃) ∴ (30)

λ(R, Ṙ) = constant = 0, (31)

in virtue of eqns. (17), (18) and ρ̃ + p̃ = 0 for the back-
ground vacuum. Of course, the same result is obtained from
eqn. (13), since this equation is a constant of movement of
eqn. (14), being eqn. (16) the connection between the two.
Neglecting the vacuum contribution in relation to the ultrarel-
ativistic substratum, one turns back to the eqn. (28), set the
initial condition R = R0, Ṙ = 0, at t = 0, obtaining for the
substratum pressure:

p(R) = k
c4R2

0

8πGR4 , (32)

and for the magnification scale velocity:

Ṙ2 = −kc2
1 − R2

0

R2

 . (33)

Now, robustness† requires an open universe with k = −1.
Hence, the locally flat substratum energy is given by‡:

E+ = −4πR3 p(R)⇒ R0 = −
2GE+0

kc4 , (34)

†For, Ṙ2 ∈ R in eqn. (33) with R ≥ R0.
‡The Hawking-Ellis dominant energy condition giving the positive en-

ergy, albeit the expansion dynamics obtained via eqn. (32).
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in virtue of eqn. (32) and the initial condition E+ = E+0 ,
R = R0 at t = 0. Returning to eqn. (33), one obtains the
magnification scale velocity:

Ṙ = c

√√
1 −

4G2
(
E+0

)2

c8R2 , (35)

giving Ṙ → c as R → ∞. Rewriting eqn. (35), one obtains
the dynamical Schwarzchild horizon:

R =
2G
c4

E+0√
1 − Ṙ2/c2

. (36)

We will not use the eqn. (34) (now you should read the ap-
pendix to follow the following argument) to obtain the en-
ergy from the energy density and volume for t , 0, since we
do not handle very well the question of the conservation of
energy in cosmology caused by an inherent lack of applica-
tion of the Noether’s theorem. In virtue of the adopted initial
conditions, an initial uncertainty R0 related to the initial spa-
tial position of an arbitrary origin will be translated to a huge
uncertainty R at the actual epoch. Indeed, one never knows
the truth about the original position of the origin, hence the
uncertainty grows as the universe enlarge. The primordial
energy from which the actual energy of the universe came
from was taken as E+0 at the beginning. This amount of en-
ergy is to be transformed over the universe evolution, giv-
ing the present amount of the universe, i.e., the energy of an
actual epoch t-sliced hypersurface of simultaneity. But this
energy at each instant t of the cosmological evolution turns
out to be the transformed primordial indeterminacy E+0 , since
E+0 is to be obtained via the Heisenberg indeterminacy prin-
ciple. In other words, we argue that the energetic content
of the universe at any epoch is given by the inherent inde-
terminacy caused by the primordial indeterminacy. At any
epoch, one may consider a copy of all points pertaining to the
same hypersurface of simultaneity but at rest, i.e., an instan-
taneous non-expanding copy of the expanding instantaneous
hypersurface of simultaneity. Related to an actual R indeter-
minacy of an origin in virtue of its primordial R0 indetermi-
nacy, one has the possibility of an alternative shifted origin
at R. This shifted origin expands with Ṙ in relation to that
non-expanding instantaneous copy of the universe at t. Since
the primordial origin was considered to encapsulate the pri-
mordial energy E+0 , this energy at the shifted likely alternative
origin should be E+0 /

√
1 − Ṙ2/c2, since, at R, a point expands

with Ṙ in relation to its non-expanding copy. We postulate:

• The actual energy content of the universe is a conse-
quence of the increasing indeterminacy of the primor-
dial era. Any origin of a co-moving reference frame
within the cosmological substratum has an inherent in-
determinacy. Hence, the indeterminacy of the energy
content of the universe may create the impression that

the universe has not enough energy, raising illusions
as dark energy and dark matter speculations. In other
words, since the original source of energy emerges as
an indeterminacy, we postulate this indeterminacy con-
tinues being the energy content of the observational
universe: δE(t) = E+(t) = E+0 /

√
1 − Ṙ2/c2.

This result is compatible with the Einstein field equations.
The compatibility is discussed within the appendix. In virtue
of this interpretation, eqn. (36) has the aspect of the Schwarz-
child radius, hence the above designation. The t-instantan-
eous locally flat spreading out rate of dynamical energy at
t-sliced substratum is given by the summation over the ν-
photonic frequencies:

Ṙ
d

dR

 E+0√
1 − Ṙ2/c2

 =

=
8π2R2h

c2

∫ ∞

0

ν3

exp (hν/kBT ) − 1
dν =

8π6k4
BR2

15c2h3 T 4, (37)

where kB is the Boltzmann constant, h the Planck constant and
T the supposed rapid thermodynamically equilibrated t-sliced
locally flat instantaneous cosmological substratum tempera-
ture. Now, setting, in virtue of the Heisenberg principle:

E+0 R0

c
≈ h

(34)
⇒

(
E+0

)2
=

hc5

2G
, (38)

one obtains, in virtue of eqn. (37):

T 4 =
15c7h3

16π6Gk4
B

1
R2

√
1 − 2Gh

c3R2 . (39)

Hence, the temperature of the cosmological substratum van-
ishes∗ at t = 0, rapidly reaching the maximum ≈ 1032K, and
assintotically decreasing to zero again as t → ∞.

Indeed. R0 = R(t = 0) =
√

2Gh/c3, in virtue of eqs. (34)
and (38), giving T 4(R0) = T 4(t = 0) = 0. Also, the max-
imum temperature is T ≈ 1032K, from eqn. (39), occuring
when R = Rmax =

√
3/2R0 =

√
3Gh/c3, as one obtains by

dT 4/dR = 0 with d2T 4/dR2 < 0. Below†, one infers these
properties of eqn. (39).

∗We argue there is no violation of the third law of thermodynamics, since
one must go from the future to the past when trying to reach the absolute zero,
violating the second law of thermodynamics. At t = 0, one is not reaching
the absolute zero since there is no past before the beginning of the time. To
reach the absolute zero, in an attempt to violate the Nernst principle, one
must go from the past to the future.

†The eqn. (39) is simply rewritten to plot the graph, i.e.: T 4
max =(

5
√

3 c10h2
)
/
(
48π6G2k4

B

)
and, as obtained before, R0 =

√
2Gh/c3.
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0

1

1 2 3

T 4

T 4
max

x ≡ R/R0

(T/Tmax)4 =
(
3
√

3/2
) √

1 − 1/x2/x2

Now, one puts the result of eqn. (38) in eqn. (35) and inte-
grates: ∫ R

(2Gh/c3)1/2

R√
R2 − 2Gh/c3

dR = c
∫ t

0
dτ, (40)

obtaining:

t =
1
c

√
R2 − 2Gh/c3 ⇒ t(Rmax) =

√
Gh
c5 ≈ 10−43 s, (41)

for the elapsed time from t = 0 to the instant in which the sub-
stratum temperature reaches the maximum value T ≈ 1032 K.
The initial acceleration, namely the explosion/ignition accel-
eration at t = 0 of the substratum is obtained from eqn. (35):

R̈ = Ṙ
dṘ
dR
=

4G2
(
E+0

)2

c6R3
(38)
=

2Gh
cR3 ∴ (42)

R̈
(
R = R0 =

√
2Gh/c3

)
=

√
c7

2Gh
≈ 1051 m/s2. (43)

An interesting calculation is the extension of the eqn. (39)
formula to predict the actual temperature of the universe.
Since 2Ghc−3R−2 � 1 for actual stage of the universe, eqn.
(39) is approximately given by:

T 4 ≈ 15c7h3

16π6Gk4
B

1
R2 ⇒ R2 ≈ 15c7h3

16π6Gk4
B

1
T 4 . (44)

Also, for actual age of the universe, eqn. (41) is approxi-
mately given by:

t ≈ R
c

(44)
=

√
15c5h3

16π6Gk4
B

1
T 2 ∴ (45)

T 2
Now =

√
15c5h3

16π6Gk4
B

t−1
Now = 5.32 × 1020t−1

Now

(
K2s

)
. (46)

Before going further on, one must remember we are not in
a radiation dominated era. Hence, the left-hand side and the
right-hand side of eqn. (37) must be adapted for this situation.

The left-hand accomplishes the totality of spreading out en-
ergy in virtue of cosmological dynamics. It equals the right-
hand side in an ultrarelativistic scenario. But, as the universe
evolves, the right-hand side becomes a fraction of the totality
of spreading out energy. Rigorously, as the locally flatness
of the t-sliced substratum increases, one multiplies both sides
of eqn. (37) by (4/c) ×

(
1/4πR2

)
and obtains the t-sliced in-

stantaneously spreading out enclosed energy density. Hence
the right-hand side of eqn. (37) turns out to be multiplied by
the ratio between the total cosmological density∗ ρc and the
radiation density ρr. Hence, eqn. (46) is rewritten:√

ρc

ρr
T 2

Now = 5.32 × 1020t−1
Now

(
K2s

)
. (47)

The actual photonic density is ρr = 4.7× 10−31 kg/m3 and the
actual total cosmological density is ρc = 1.3 × 10−26 kg/m3.
For the reciprocal age of universe, t−1

Now in eqn. (47), one
adopts the Hubble’s constant, for open universe, H = t−1

Now =

2.3 × 10−18 s−1. Hence, by eqn. (47), one estimates the actual
temperature of the universe:

T 2
Now =

√
4.7 × 10−31

1.3 × 10−26 ×5.32×1020×2.3×10−18 K2 ∴ (48)

TNow = 2.7 K, (49)

very close to the CMB temperature.

3 Appendix

From eqns. (17) and (32):

ρ = 3p = −
3c4R2

0

8πG
1

R4 ⇒ Eρ = −
c4R2

0

2G
1
R
, (50)

since k = −1; Eρ is the energy (negative) obtained from vol-
ume and ρ. From eqn. (34), R2

0 = 4G2(E+0 )2/c8. Hence, eqn.
(50) is rewritten:

Eρ = −
2G
c4

(
E+0

)2 1
R
. (51)

With the eqn. (36), we reach:

Eρ = −E+0

√
1 − Ṙ2/c2. (52)

This negative energy arises from the adopted negative pres-
sure solution. But, its fluctuation is positive:

δEρ =
E+0√

1 − Ṙ2/c2

Ṙ δṘ
c2 , (53)

since both, Ṙ and δṘ, are positive within our model (see eqn.
(40)). Let δt be the time interval within this fluctuation pro-
cess. Multiplying both sides of the eqn. (53) by δt, we obtain:

δEρ δt =
E+0√

1 − Ṙ2/c2

(
ṘδṘ/c2

)
δt. (54)

∗Actually, the critical one, since observations asseverate it.
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The above relation must obey the Heisenberg indeterminacy
principle, and one may equivalently interpret it under the fol-
lowing format:

δEρ δt =
E+0√

1 − Ṙ2/c2
(δt)∗ ≈ h, (55)

An energy indeterminacy having the magnitude of the actual
cosmological energy content carries an indeterminacy δṘ ≈ c
about the magnification scale velocity Ṙ with Ṙ ≈ c. For
such an actual scenario in which Ṙ ≈ c (see eqn. (35) with
R→ ∞), we have:

δt ≈ (δt)∗ ⇒ δEρ
∣∣∣∞
R0
= E+ =

E+0√
1 − Ṙ2/c2

, (56)

if∗ Ṙ → c. Now, let’s investigate the primordial time domain
t ≈ 0. To see this, we rewrite ṘδṘ within the eqn. (54).
Firstly, from eqn. (35):

Ṙ = c
√

1 − R2
0/R

2 ⇒ Ṙ δṘ =
c2R2

0

R3 δR, (57)

where R0 =
√

2Gh/c3 as obtained before. Within the primor-
dial time domain t ≈ 0, we have R ≈ R0 and δR ≈ R0, as
discussed before. Hence, the eqn. (57) reads:

Ṙ δṘ ≈ c2. (58)

if t ≈ 0. Back to the eqn. (54) we obtain again:

δt ≈ (δt)∗ ⇒ δEρ
∣∣∣≈R0
= E+ =

E+0√
1 − Ṙ2/c2

, (59)

if t ≈ 0. This justify the use of E+ = E+0 /
√

1 − Ṙ2/c2 within
our postulate, emerging from the positive fluctuation of the
negative energy Eρ obtained from volume and the negative
energy density ρ stated via the fluid state equation, eqn. (17),
and entering within the field equations.

Acknowledgements

A.V.D.B.A is grateful to Y.H.V.H and CNPq for financial sup-
port.

Submitted on April 10, 2011 / Accepted on April 13, 2011

References
1. Bondi H. Cosmology. Dover Publications, Inc., New York, 2010.

2. Bondi H. Negative mass in General Relativity. Review of Modern
Physics, 1957, v. 29 (3), 423–428.

3. Carrol S. Spacetime and Geometry. An Introduction to General Rela-
tivity. Addison Wesley, San Francisco, 2004.

∗Eqn. (56) holds from t > 10−43 seconds, as one easily verify from
eqn. (35).

Armando V.D.B. Assis. On the Cold Big Bang Cosmology 63



Volume 2 PROGRESS IN PHYSICS April, 2011

LETTERS TO
PROGRESS IN PHYSICS

64 Letters to Progress in Physics



April, 2011 PROGRESS IN PHYSICS Volume 2

LETTERS TO PROGRESS IN PHYSICS

Arthur Marshall Stoneham
(1940–2011)

Vahan Minasyan and Valentin Samoilov
Scientific Center of Applied Research, JINR, Joliot-Curie 6, Dubna, 141980, Russia

E-mails: mvahan@scar.jinr.ru; scar@off-serv.jinr.ru

The memory of the prominent British physicist, Prof. Arthur Marshall Stoneham
(1940–2011), will live in our hearts and souls.

Arthur Marshall Stoneham (1940–2011)

Marshall Stoneham was born in 1940 in Barrow-in-Furness,
Cumbria. He was educated at Barrow Grammar School for
Boys before reading physics at Bristol University. In 1964
he completed his doctorate at Bristol under Prof. Maurice
Pryce. After completing his thesis, Marshall started working
for the Atomic Energy Authority in the Theoretical Physics
Division at Harwell. At that time, Harwell faced challenges
posed by the nuclear programme, involving the construction
of reactors and the safe disposal of radioactive waste. Mar-
shall’s main work was the Theory of Defects in Solids. His
book on the subject left its mark on a generation, aided by
Marshall’s habit of referring people to the precise place in
the book where their answer was. It has never been out of
print since it was first published. Marshall’s group at Har-
well became a leading light for both the nuclear industry and
beyond. He became a division head, AEA chief scientist and
retained his interest in nuclear power (both fission and fusion)
to the end.

At University College London (where he moved in 1995
as Massey Professor of Physics) he and his colleague John

Finney built up the London Centre of Nanotechnology. He
was an Honorary Fellow of Wolfson College, Oxford Univer-
sity, from 1985, was elected a Fellow of the Royal Society
in 1989 and in 2010 had started his term as President of the
Institute of Physics. His colleagues will remember him for
his support (even when that support took the form of asking a
killer question at the end of your presentation after apparently
having slept through it), for the way he promoted their work
— even if it was by remarking, “Oh they could sort that out
in a few days”. It never took less than three months. Above
all, in a life that was filled to overflowing he found time for
people; to listen, to encourage, to advise. Marshall was a pro-
lific writer. In addition to several books, he was author or
co-author of over 500 publications.

Marshall had a great love of music and played the French
horn, inspired by a recording of Dennis Brain playing the
Mozart horn concertos which his father bought for him (and
regretted!) at the age of 18. His love of wind music led him
to form his own music group in 1971, the Dorchester Wind
Players. Throughout the ’80s and ’90s he dedicated himself
to the massive task of compiling a directory of every piece of
wind music in the world ever written for two or more instru-
ments, into a Wind Ensemble Sourcebook. Marshall’s pro-
fessional life took him all over the world and he used these
travel opportunities to rummage in obscure music libraries
and even monasteries in his quest. The project took years, but
eventually he and his co-authors published Wind Ensemble
Sourcebook in 1997. It runs to 450 pages, containing records
of 12,000 works by 2,200 composers, and it has two compan-
ion volumes. The whole enterprise was truly a world first and
will probably never be equalled.

In 1962 Marshall married Doreen, another physicist, and
also from Barrow-in-Furness. They have two physicist
daughters and he would often joke that he had “done his bit”
for women in science. Marshall was a director in his and
his wife’s specialist laboratory, Oxford Authentication, which
authenticates pottery and porcelain antiquities using thermo-
luminescence dating.

Marshall died on 18 February from complications arising
from pancreatic cancer.

Commencing in 2002 Prof. Stoneham helped us by sci-
entific way. He had given scientific directions which then
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became the basis of our research studies. Due to his scientific
support, we published many important papers in the science
connected with understanding structures of light and solid.
We never forget Arthur Marshall Stoneham who was a very
noble man. His memory will live always in our souls.

We are very grateful to Doreen Stoneham who helped us
by information connected with the early private life of Prof.
Stoneham.

We also thank the Editor of Chief of Progress in Physics,
Dr. Dmitri Rabounski, who assisted us with this letter, and
always helped us by scientific way.
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A Thermodynamic History of the Solar Constitution — I:
The Journey to a Gaseous Sun

Pierre-Marie Robitaille
Department of Radiology, The Ohio State University, 395 W. 12th Ave, Suite 302, Columbus, Ohio 43210, USA

E-mail: robitaille.1@osu.edu

History has the power to expose the origin and evolution of scientific ideas. How did
humanity come to visualize the Sun as a gaseous plasma? Why is its interior thought to
contain blackbody radiation? Who were the first people to postulate that the density of
the solar body varied greatly with depth? When did mankind first conceive that the solar
surface was merely an illusion? What were the foundations of such thoughts? In this
regard, a detailed review of the Sun’s thermodynamic history provides both a necessary
exposition of the circumstance which accompanied the acceptance of the gaseous mod-
els and a sound basis for discussing modern solar theories. It also becomes an invitation
to reconsider the phase of the photosphere. As such, in this work, the contributions of
Pierre Simon Laplace, Alexander Wilson, William Herschel, Hermann von Helmholtz,
Herbert Spencer, Richard Christopher Carrington, John Frederick William Herschel,
Father Pietro Angelo Secchi, Hervé August Etienne Albans Faye, Edward Frankland,
Joseph Norman Lockyer, Warren de la Rue, Balfour Stewart, Benjamin Loewy, and
Gustav Robert Kirchhoff, relative to the evolution of modern stellar models, will be
discussed. Six great pillars created a gaseous Sun: 1) Laplace’s Nebular Hypothesis,
2) Helmholtz’ contraction theory of energy production, 3) Andrew’s elucidation of crit-
ical temperatures, 4) Kirchhoff’s formulation of his law of thermal emission, 5) Plücker
and Hittorf’s discovery of pressure broadening in gases, and 6) the evolution of the stel-
lar equations of state. As these are reviewed, this work will venture to highlight not
only the genesis of these revolutionary ideas, but also the forces which drove great men
to advance a gaseous Sun.

1 On the history of solar science

Pondering upon the history of solar science [1–14], it be-
comes apparent that, in every age, the dominant theory of the
internal constitution of the Sun reflected the state of human
knowledge. As understanding of the physical world grew, the
theories of old were slowly transformed. Eventually, under
the burden of evidence, ancient ideas were destined to disap-
pear completely from the realm of science, relinquished to the
sphere of historical curiosity [2]. What was once considered
high thought, became discarded.

If science is to advance, historical analysis must not solely
reiterate the progress of civilization. Its true merit lies not in
the reminiscence of facts, the restatement of ancient ideas,
and the reliving of time. Rather, scientific history’s virtue
stems from the guidance it can impart to the evolution of mod-
ern research.

Historical compilations, dissected with contemporary sci-
entific reasoning, have the power to expose both the truths
and the errors which swayed our formation of a gaseous Sun
[15–21]. These models have evolved as a direct manifesta-
tion of mankind’s physical knowledge in the 19th and 20th
centuries. Through historical review, it can be demonstrated
that virtually every salient fact which endowed the Sun with
a gaseous interior has actually been refuted or supplanted by
modern science. Astrophysics, perhaps unaware of the histor-

ical paths followed by its founders [1–14], has at times over-
looked the contributions and criticisms of “non-astronomers”.
Perhaps unable to accept the consequences stemming from
the discoveries of the present age, it has continued to perpet-
uate ideas which can no longer hold any basis in the physical
world.

2 Pillars of a gaseous Sun

Five great pillars gave birth to the gaseous Sun in the middle
and late 19th century. They were as follows: 1) Laplace’s
nebular hypothesis [22, 23], 2) Helmholtz’ contraction the-
ory [24, 25], 3) Cagniard de la Tour’s discovery of critical
phenomena [26,27] and Andrew’s elucidation of critical tem-
peratures [28, 29], 4) Kirchhoff’s formulation of his law of
thermal emission [30–32], and 5) the discovery of pressure
broadening in gases by Plücker, Hittorf, Wüllner, Frankland,
and Lockyer [33–37]. Today, the last four of these pillars
have collapsed, either as scientifically unsound (pillar 4), or
as irrelevant with respect to discussions of the internal con-
stitution of the Sun and the nature of the photosphere (pillars
2, 3, and 5). Only the first argument currently survives as rel-
evant to solar theory, albeit in modified form. Nevertheless,
each of these doctrines had acted as a driving force in creating
a gaseous Sun. This was especially true with regards to the
ideas advanced by Helmholtz, Andrews, Kirchhoff, and those
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who discovered pressure broadening.
A careful scrutiny of history reveals that, beyond these

factors, the greatest impulse driving mankind to a gaseous
Sun was the power of theoretical models. In fact, given that
all the great experimental forces have evaporated, astrophys-
ics is left with the wonder of its theoretical formulations.
Hence, a 6th pillar is introduced: the stellar equations of
state [15–17]. It is an important foundation, one which re-
mains intact and whose influence continues to dominate vir-
tually every aspect of theoretical astrophysics.

2.1 Laplace’s nebular hypothesis
Laplace’s nebular hypothesis [22,23] was often proposed as a
starting point for stellar formation in the 19th century. It be-
came the seed for Helmholtz’ contraction theory [24, 25], as
will be seen in Section 2.2. Laplace’s hypothesis was based
on the idea that the Sun and the solar system were created by
the slow contraction of a nebulous mass. It was initially out-
lined in very general terms [38] by Emanuel Swedenborg [39,
p. 240–272]. Swedenborg, a Swedish philosopher and theolo-
gian, believed himself capable of supernatural communica-
tion [40, p. 429]. He made numerous contributions to the nat-
ural sciences, but in astronomy, the ideas which brought forth
the nebular hypothesis may not be solely his own. Rather,
Swedenborg might have simply restated the thoughts of the
ancient philosophers [2, 38–40]. Still, for the astronomers of
the 19th century, Laplace’s name stands largely alone, as the
father of the nebular hypothesis.

At present, the Solar Nebular Disk Model (SNDM) [41]
has largely replaced the nebular hypothesis, although it main-
tains, in part, its relationship with the original ideas of La-
place. Space limitation prevents our discussion of these con-
cepts. The point is simply made that, despite the passage
of more than two centuries, there remains difficulties with
our understanding of the formation of the solar system, as
Woolfson recalls: “In judging cosmogonic theories one must
have some guiding principle and that oft-quoted adage of the
fourteenth-century English monk, William of Occam, known
as Occam’s razor, has much to commend it. It states ‘Essentia
non sunt multiplicanda praeter necessitatem’ which loosely
translates as ‘the simplest available theory to fit the facts is
to be preferred’. The characteristics of the SNDM is that it
neither fits the facts nor is it simple” [42].

As for Laplace’s nebular hypothesis, it was never spe-
cific to a particular solar phase (gas, liquid, or solid). Thus,
even Kirchhoff had recourse to the ideas of Laplace in argu-
ing for a solid or liquid photosphere [43, p. 23]. The theory
could be applied to all solar models and finds prominence
in many discussions of solar formation throughout the 19th
century. Logically, however, the concept of a slowly contract-
ing gaseous nebular mass enabled a continuous transition into
Helmholtz’s theory and the stellar equations of state. This
was an aspect not shared by the liquid or solid models of the
Sun. Hence, Laplace’s ideas, though not counter to the liquid

or solid Sun, were more adapted to a gaseous solar mass.

2.2 Helmholtz’ contraction theory
Helmholtz’ great contraction theory dominated solar science
almost since the time it was elucidated at a Königsberg lecture
on February 7th, 1858 [24, 25]. The mathematical essence of
this lecture was rapidly reprinted in its entirety [24]. Prior
to the birth of this theory, solar energy production was based
on the meteoric hypothesis as introduced by J.R. Mayer [44],
one of the fathers of the 1st law of thermodynamics [45]. The
meteoric hypothesis was then championed by Lord Kelvin
[46, 47]. Hufbauer provided an excellent description of the
evolution of these ideas [14, p. 55–57]. Despite the statures
of Mayer [44,45] and Thomson [46,47], the meteoric hypoth-
esis quickly collapsed with the dissemination of Helmholtz’
work [24, 25]. The contraction theory became a dominant
force in guiding all solar models from the middle of the 19th
century through the beginning of the 20th. Given the relative
incompressibility of liquids and solids, Helmholtz’ concepts
were more compatible with the gaseous models. The 1660
law of Boyle [48] and the law of Charles [49], published in
1802 by Gay-Lussac, had just been combined into ideal gas
law by Claperon in 1832 [50]. Consequently, it was more
logical to assume a gaseous interior. Helmholtz’ theory was
consequently destined to prominence.

When formulating his contraction hypothesis, Helmholtz
emphasized the contraction of nebular material, as advanced
by Laplace [24, p. 504]. He stated: “The general attractive
force of all matter must, however, impel these masses to ap-
proach each other, and to condense, so that the nebulous
sphere became incessantly smaller, by which, according to
mechanical laws, a motion of rotation originally slow, and
the existence of which must be assumed, would gradually be-
come quicker and quicker. By the centrifugal force, which
must act most energetically in the neighborhood of the equa-
tor of the nebulous sphere, masses could from time to time
be torn away, which afterwards would continue their courses
separate from the main mass, forming themselves into single
planets, or, similar to the great original sphere, into planets
with satellites and rings, until finally the principle mass con-
densed itself into the Sun” [24, p. 504–505].

The contraction theory of energy production would not
easily yield its pre-eminent position in solar science, surviv-
ing well into the 20th century. Still, practical difficulties arose
with Helmholz’ ideas, particularly with respect to the age of
the Earth. Eventually, the concept became outdated. Nuclear
processes were hypothesized to fuel the Sun by Arthur Ed-
dington in his famous lecture of August 24th, 1920 [51]. This
dramatic change in the explanation of solar energy produc-
tion [52] would produce no obstacle to maintaining a gaseous
Sun. This was true even though Helmholtz’ theory had been
so vital to the concept of a gaseous interior, both in its incep-
tion and continued acceptance. Astrophysics quickly aban-
doned Helmholtz’ contraction hypothesis and adopted an al-
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ternative energy source, without any consequence for the in-
ternal constitution of the Sun. Ultimately, the advantages of
condensed matter in solar fusion were never considered. This
remained the case, even though the internuclear proximity
within the solid or liquid might have held significant theoreti-
cal advantages for fusion when combined with the enormous
pressures inside the Sun.

2.3 Andrews and critical temperatures
Addressing the role of Andrews and critical temperatures [28,
29] for solar theory, Agnes Clerke stated: “A physical ba-
sis was afforded for the view that the Sun was fully gaseous
by Cagniard de la Tour’s experiments of 1822, proving that,
under conditions of great heat and pressure, the vaporous
state was compatible with considerable density. The posi-
tion was strengthened when Andrews showed, in 1869, that
above a fixed limit of temperature, varying for different bod-
ies, true liquefaction is impossible, even though the pressure
be so tremendous as to retain the gas within the same space
that enclosed the liquid” [11, p. 188]. A. J. Meadows echoed
these ideas when he later added: “Andrews showed that there
existed a critical temperature for any vapour above which it
could not be liquefied by pressure alone. This was accepted
as confirming the idea, evolved in the 1860’s, of a mainly
gaseous Sun whose gas content nevertheless sometimes at-
tained the density and consistency of a liquid” [13, p. 30].

In the second half of the 19th century, the interior of the
Sun was already hypothesized to be at temperatures well ex-
ceeding those achievable on Earth in ordinary furnaces. It be-
came inconceivable to think of the solar interior as anything
but gaseous. Hence, the gaseous models easily gained accep-
tance. Even today, it is difficult for some scientists to consider
a liquid sun, when confronted with a critical temperature for
ordinary hydrogen of −240.18 C, or ∼33 K [53, p. 4–121]. In
view of this fact, the existence of a liquid photosphere seems
to defy logic.

However, modern science is beginning to demonstrate
that hydrogen can become pressure ionized such that its elec-
trons enter metallic conductions bands, given sufficiently ele-
vated pressures. Liquid metallic hydrogen will possess a new
critical temperature well above that of ordinary hydrogen. Al-
ready, liquid metallic hydrogen is known to exist in the mod-
ern laboratory at temperatures of thousands of Kelvin and
pressures of millions of atmospheres [54–56]. The formation
of liquid metallic hydrogen brings with it a new candidate
for the constitution of the Sun and the stars [57–60]. Its exis-
tence shatters the great pillar of the gaseous models of the Sun
which the Andrew’s critical point for ordinary gases [28, 29]
had erected. It seems that the phase diagram for hydrogen
is much more complex than mankind could have imagined
in the 19th century. The complete story, relative to hydro-
gen at high temperatures and pressures, may never be known.
Nevertheless, it is now certain: the foundation built by An-
drews [28] has given way.

2.4 Kirchhoff’s law of thermal emission

Gustav Kirchhoff thought that the solar photosphere was ei-
ther liquid or solid [43]. He based his belief on the continu-
ous nature of the solar spectrum, adding that its generation by
condensed matter was “the most probable proposition” [43].
In hindsight, Kirchhoff should have been even more forceful,
as the existence of a continuous solar spectrum produced by
condensed matter was indeed the only possible proposition.
Kirchhoff held the answer in his hands nearly 150 years ago,
but through the erroneous formulation [61–66] of his law of
thermal emission [30–32] he allowed his insight on the state
of the photosphere to be usurped by scientific error.

In speaking on the physical constitution of the Sun, Kirch-
hoff referred to his law of thermal emission in stating: “for all
bodies begin to glow at the same temperature. Draper has as-
certained experimentally the truth of this law for solid bodies,
and I have given a theoretical proof for all bodies which are
not perfectly transparent; this, indeed, follows immediately
from the theorem, concerning the relation between the power
of absorption and the power of emission of all bodies” [43,
p. 26]. Of course, Kirchhoff’s extension of Draper’s findings
from solid bodies to liquids and gases enabled the creation of
a fully gaseous Sun in the 20th century. Kirchhoff’s law stated
that, within an adiabatic or isothermal opaque cavity at ther-
mal equilibrium, the radiation would always be represented
by a universal blackbody spectrum whose appearance was
solely dependent on temperature and frequency of observa-
tion, irrespective of the nature of the walls (provided that they
were not transparent) or the objects they contained [30–32].
Kirchhoff’s law argued, by extension, that a gas could pro-
duce a continuous blackbody spectrum. Provided that the Sun
could be conceived as following the restrictions for enclosure
as required by Kirchhoff’s law, there could be no problems
with a gaseous structure for the production of the continuous
solar spectrum. As such, Kirchhoff had already condemned
his liquid photosphere [43] three years earlier, when he for-
mulated his “law of thermal emission” [30–32]. According to
Kirchhoff’s law, liquids and solids were not required to obtain
a blackbody spectrum. This unintended error would permeate
physics throughout the next 150 years.

The problems with Kirchhoff’s law were not simple to
identify [61–66] and Planck himself [67, 68] echoed Kirch-
hoff’s belief in the universal nature of radiation under condi-
tions of thermal equilibrium [69, p. 1–25]. Planck did not dis-
cover Kirchhoff’s critical error. Furthermore, his own deriva-
tion of Kirchhoff’s law introduced arguments which were,
unfortunately, unsound (see [61, 64, 65] for a complete treat-
ment of these issues). In reality, the universality promoted by
Kirchhoff’s law involved a violation of the first law of ther-
modynmaics, as the author has highlighted [65, p. 6].

The acceptance of Kirchhoff’s law, at the expense of
Stewart’s correct formulation [70], enabled the existence of a
gaseous Sun. Its correction [61–66] immediately invalidates
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the existence of a gaseous photosphere. Condensed matter
is required to produce a continuous thermal spectrum, such
as that emitted by the solar photosphere. Blackbody radia-
tion was never universal, as Kirchhoff advocated [30–32] and
much of astrophysics currently believes. If Kirchhoff’s law
had been valid, scientists would not still be seeking to under-
stand the nature of the solar spectrum [71–73] after more than
150 years [74–76]. In reality, the most important pillar in the
erection of a gaseous Sun was defective.

2.5 Pressure broadening
Despite the existence of Kirchhoff’s law, physicists in the
early 1860’s understood that gases did not produce contin-
uous spectra. Gases were known to emit in lines or bands. As
a result, though Kirchhoff’s law opened the door to a gaseous
Sun, it was not supported by sound experimental evidence. It
was under these circumstances, that the concept of pressure
broadening in gases entered astrophysics.

In 1865, Plücker and Hittorf published their classic paper
on the appearance of gaseous spectra [33]. They reported that
the spectrum of hydrogen could assume a continuous emis-
sion as pressures increased: “Hydrogen shows in the most
striking way the expansion of its spectral lines, and their
gradual transformation into a continuous spectrum. . . On
employing the Leyden jar, and giving to the gas in our new
tubes a tension of about 60 millims, the spectrum is already
transformed to a continuous one, with a red line at one of
its extremities. At a tension of 360 millims. the continuous
spectrum is high increased in intensity, while the red line Hα,
expanded into a band, scarcely rises from it” [33, p. 21–22].
Wüllner quickly confirmed pressure broadening in gaseous
spectra [34,35]. Relative to hydrogen, he wrote: “As the pres-
sure increases, the spectrum of hydrogen appears more and
more like the absolutely continuous one of an incandescent
solid body” [35].

During this same period, Frankland [36] and Lockyer
made the critical transition of applying line broadening ex-
plicitly to the Sun [37]. Much of this discussion was re-
produced in Lockyer’s text [5, p. 525–560]. They proposed
that pressure alone resulted in spectral broadening, excluding
any appreciable effects of temperature. This was something
which, according to them, had escaped Plücker and Hittorf
[33]. They refuted Kirchhoff’s solid or liquid photosphere:
“We believe that the determination of the above-mentioned
facts leads us necessarily to several important modifications
of the received history of the physical constitution of our cen-
tral luminary — the theory we owe to Kirchhoff, who based
it upon his examination of the solar spectrum. According to
this hypothesis, the photosphere itself is either solid or liquid,
and it is surrounded by an atmosphere composed of gases
and the vapours of the substances incandescent in the pho-
tosphere. . . With regard to the photosphere itself, so far from
being either a solid surface or a liquid ocean, that it is cloudy
and gaseous or both follows both from our observations and

experiments” [37].
Unfortunately, the concept that the spectrum of a gas can

be pressure broadened had little relevance to the problem at
hand. The line shape was not correct, though this difficulty
escaped scientists of this period. The full solar spectrum
was not available, until provided by Langley in early 1880’s
[71–73]. The spectrum of the Sun was not simply broadened,
but had the characteristic blackbody appearance, a lineshape
that gases failed to reproduce, despite the insistence of Kirch-
hoff’s law to the contrary. In 1897, W. J. Humphreys pub-
lished his extensive analysis of the emission spectra of the
elements [77]. The work only served to re-emphasize that
not a single gas ever produced a blackbody spectrum [67–69]
through pressure broadening. As a result, the fifth pillar had
never carried any real relevance to solar problems.

Hence, astrophysics has had to contend with the inability
to generate a Planckian spectrum [67–69] from gases. The
spectrum so easily obtained with graphite or soot [61, 65]
remained elusive to gaseous solar models, unless recourse
was made to a nearly infinite mixture of elemental species
and electronic processes [74–76]. As a mechanism, pressure
broadening would fall far short of what was required. A pri-
ori, it shared nothing with the fundamental mechanism exist-
ing in graphite and soot, the two best examples of true black-
bodies in nature. Consequently, the intriguing discovery of
pressure broadening in the 1860’s has failed solar science. In
reality, the search for the origin of the solar spectrum using
gaseous emission spectra has continued to evade astrophysics
until the present day, as evidenced by the very existence of
The Opacity Project [74, 75].

2.6 The stellar equations of state

Many scientists have not recognized that a slow transforma-
tion is taking place in the physical sciences. In large part, this
is due to the elegance of the stellar equations of state [15–21]
as they continued to evolve from the seminal thoughts of Lane
[78], Schuster [79, 80], Very [81], and Schwarzchild [82].
As such, astronomy continues to advocate a gaseous Sun.
In doing so, it sidesteps the consequences of solar phenom-
ena and attempts to endow its gaseous models with quali-
ties known only to condensed matter. Simplicity beckons the
liquid photosphere through every physical manifestation of
its state [57–60]. But, solar physics remains bound by the
gaseous plasma.

3 Historical account of the constitution of the Sun

3.1 William Herschel, speculation, and the nature of
scientific advancements

Throughout scientific history, the nature of the Sun has been
open to changing thought (see Table 1) and, in hindsight, of-
ten wild speculation. Even the strangest ideas of our fore-
fathers possess redeeming qualities. It is almost impossi-
ble, for instance, to escape the intellectual delight which day-
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author year sunspots photosphere solar body

Thales [5, p. 2] 600 B.C. ? ? solid

Galileo [101, p. 124] 1612 clouds fluid ?

Descarte [100, p. 147] 1644 opaque solid mass fluid fluid

de la Hire [98, p. 391] 1700 opaque solid mass fluid fluid

J. Lalande [98] 1774 opaque solid mass fluid fluid

A. Wilson [84] 1774 cavities in photosphere fluid dark and solid

W. Herschel [83] 1795 cavities in photosphere luminous cloud layer inhabited solid

W. Herschel [88] 1801 cavities in photosphere luminous cloud/reflective cloud inhabited solid

F. Arago [89, p. 29] 1848 openings in photosphere gaseous solid

J. Herschel [93, p. 229] 1849 cavities in photosphere luminous cloud/reflective cloud dark solid

H. Spencer [104, 105] 1858 cyclones incandescent liquid gaseous

G. Kirchhoff [43] 1862 clouds incandescent liquid solid or liquid

W. Thomson [47] 1862 ? incandescent liquid incandescent liquid

A. Secchi [95, 96] 1864 openings in photosphere gaseous with condensed matter gaseous

J. Herschel [97] 1864 cavities in photosphere gas?/vapour?/liquid? dark solid

H. Faye [111, 112, 120] 1865 openings in photosphere gaseous with condensed matter gaseous

de la Rue, Stewart, Loewy [133] 1865 openings in photosphere gaseous with condensed matter gaseous

Frankland and Lockyer [37] 1865 openings in photosphere gaseous with condensed matter gaseous

H. Faye [119] 1872 cyclones gaseous with condensed matter gaseous

Modern theory present gaseous (magnetic fields) gaseous gaseous

Table 1: A partial summary of humanity’s concept of the Sun.

dreams of William Herschel’s ’solarians’ invoke [83]. An in-
habited solid solar surface might seem absurd by our stan-
dards, but such beliefs dominated a good portion of 19th cen-
tury thought, at least until the days of Kirchhoff and the birth
of solar spectral analysis [30–32, 43]. If Herschel’s solarians
are important, it is not so much because their existence holds
any scientific merit. The solarians simply constitute a mani-
festation of how the minds of men deal with new information.

As for the concept that the Sun was a solid, the idea had
been linked to Thales [5, p. 2], the Greek philosopher, who
is said to have pondered upon the nature of the Sun in the
6th century B.C., although no historical evidence of this fact
remains [2, p. 81–84]. Lockyer provided a brief discussion
of ancient thought on the Sun [5, p. 1–12], in which we were
reminded of the words of Socrates that “speculators on the
universe and on the laws of the heavenly bodies were no bet-
ter than madmen” [5, p. 5]. Relative to a solid Sun, Herschel
did not deviate much from the thoughts of the ancient philoso-
phers whose conjectures were, at times, fanciful [2].

With regard to the photosphere and the “outer layers of
the Sun”, Herschel placed his distinct mark on solar science.
In doing so, he built on the foundation advanced by his pre-
decessor, Alexander Wilson, in 1774 [84]. Herschel wrote:

“It has been supposed that a fiery liquid surrounded the sun,
and that, by its ebbing and flowing, the highest parts of it
were occasionally uncovered, and appeared under the shape
of dark spots; and in that manner successively assumed dif-
ferent phases” [83, p. 48] . . . “In the instance of our large spot
on the sun, I concluded from the appearances that I viewed
the real solid body of the Sun itself, of which we rarely see
more than its shining atmosphere. . . The luminous shelving
sides of a spot may be explained by a gentle and gradual re-
moval of the shining fluid, which permits us to see the globe
of the Sun” [83, p. 51] . . . “The Sun, viewed in this light, ap-
pears to be nothing else than a very eminent, large, and lucid
planet, evidently the first, or in strictness of speaking, the only
primary one of our system; others being truly secondary to it.
Its similarity to the other globes of the solar system with re-
gard to its solidity, its atmosphere, and its diversified surface;
the rotation upon its axis, and the fall of heavy bodies, lead
us to suppose that it is most probably also inhabited, like the
rest of the planets, by being whose organs are adapted to the
peculiar circumstances of that vast globe” [83, p. 63].

Herschel believed that the Sun was a solid globe sur-
rounded by a photosphere made from an elastic fluid which
was responsible for light production: “An analogy that may

Robitaille P.-M. A Thermodynamic History of the Solar Constitution — I: The Journey to a Gaseous Sun 7



Volume 3 PROGRESS IN PHYSICS July, 2011

be drawn from the generation of clouds in our own atmo-
sphere, seems to be a proper one, and full of instruction. Our
clouds are probably decompositions of some of the elastic
fluids of the atmosphere itself, when such natural causes, as
in this grand chemical laboratory are generally at work, act
upon them; we may therefore admit that in the very extensive
atmosphere of the sun, from causes of the same nature, simi-
lar phaenomena will take place; but with this difference, that
the continual and very extensive decomposition of the elastic
fluids of the sun, are of a phosphoric nature, and attended
with lucid appearances, by giving out light” [83, p. 59].

Though Herschel first described an inhabited star in 1795,
he soon discovered infrared radiation [85–87] and realized
that the Sun would provide an uncomfortable setting for its
population. In a valiant attempt to save his solarians in 1801,
Herschel advanced that the luminous layer of the photo-
sphere, floating like a cloud above the solid solar surface, was
positioned beyond an inferior reflective cloud which could
channel the heat of the photosphere away from the inhabi-
tants of the Sun [88]. Herschel incorporated a new fact, the
discovery of infrared radiation [85–87], with a new concept,
the reflective layer [88], in order to salvage an existing theory,
the inhabited solid Sun [83]. A study of Herschel reminds us
that theories are able to undergo many alterations in order to
preserve a central idea, even if the sum of new facts has, long
ago, shattered its foundation.

3.2 Alexander Wilson’s queries and conjectures
It is noteworthy that, unlike William Herschel, Alexander
Wilson, in 1774 (see Table I), displayed uncharacteristic cau-
tion for speculation. In elucidating his ideas about the consti-
tution of the Sun, the great astronomer placed the entire text
in a section devoted to “Queries and Conjectures” [84, p. 20–
30]. In fact, he dismissed much of the work of his prede-
cessors as hypotheses without sound scientific basis. He was
cautious to highlight the speculative nature of his theory on
the constitution of the Sun when he wrote: “When we con-
sider, that the solar spots, some of whose properties have just
now be enumerated, are so many vast excavations in the lu-
minous substance of the Sun, and that, wherever such exca-
vations are found, we always discern dark and obscure parts
situated below; is it not reasonable to think, that the great
and stupendous body of the Sun is made up of two kinds of
matter, very different in their qualities; that by far the greater
part is solid and dark; and that this immense and dark globe
is encompassed with a thin covering of that resplendent sub-
stance, from which the Sun would seem to derive the whole
of its vivifying heat and energy? And will not this hypothe-
sis help to account for many phaenomena of the spots in a
satisfactory manner? For if a portion of this luminous cov-
ering were by means displaced, so as to expose to our view
a part of the internal dark globe, would not this give the ap-
pearance of a spot?” [84, p. 20]. He continues: “And from
this may we not infer, that the luminous matter gravitates,

and is in some degree fluid. . . ” [84, p. 22]. Wilson brought
forth a solid solar body surrounded by a gaseous or liquid
photosphere. He was well aware of the limitations of his own
knowledge relative to the photosphere, stating that: “we may
never have a competent notion of the nature and qualities of
this shining and resplendent substance. . . ” [84, p. 21]. Wil-
son was prudent in the manner by which he proposed new
ideas. He closed his address by stating with respect to “many
such other questions, I freely confess, that they far surpass my
knowledge” [84, p. 30]. At the same time, Wilson wrote his
“Queries and Conjectures” precisely because he realized that
they formed a basis for further discovery and questioning. In
a field as complex as astronomy, devoid of direct contact with
the subject of its attention, mankind could adopt no other log-
ical course of action.

3.3 François Arago, John Herschel, and the constitution
of the Sun in the mid-1800’s

By the middle of the 19th century, there seemed to have
evolved both a popular conception of the Sun and a more
“scientific” outlook. François Arago [89, 90], the premier
astronomer in France during this period, shed light on the
growing divide between popular thought and professional as-
tronomy. He discussed the constitution of the Sun in these
terms: “Many conjectures have been offered in explanation
of these spots. Some have supposed that the Sun, from which
so vast a quantity of light and heat is incessantly emanating,
is a body in a state of combustion, and that the dark spots are
nothing else than scoriae floating on its surface. The faculae,
on the contrary, they suppose due to volcanic eruptions from
the liquified mass. The grand objection to this hypothesis is,
that it does not suffice to explain the phenomenoa: it has not
obtained admission among astronomers. The opinion most
in favor in the present day, regards the Sun consisting of an
obscure and solid nucleus, enveloped by two atmospheres —
the one obscure, the other luminous. In this case, the ap-
pearance of the spot is explained by ruptures occurring in the
atmosphere, and exposing the globe of the Sun to view. . . ”
[89, p. 29].

Arago’s position constituted essentially a restatement of
William Herschel [88]. Only the solarians seemed to have
disappeared and the inner atmosphere became obscure, rather
than reflective. In order to strengthen his position, Arago then
added: “This opinion, however strange it may appear, has the
advantage of perfectly explaining all the phenomena, and it
acquires a high degree of probability from the consideration,
that the incandescent substance of the Sun cannot be either a
solid or a liquid, but necessarily a gas” [89, p. 29]. Arago jus-
tified his position for a gaseous photosphere, well ignorant of
the discoveries to come, both of his own time and in the years
to follow. He stated: “It is an established fact that rays of
light, issuing from a solid or liquid sphere in a state of incan-
descence, possess the properties of polarization, while those
emanating from incandescent gases are devoid of them” [89,
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p. 29]. He immediately emphasized that polarization experi-
ments support this position affording “proof that the light of
the Sun’s edges is as intense as that at its center” [89, p. 29].
Further, “But from the fact that the light from the edges of the
Sun’s disk is as intense as that from the center, there follows
another consequence; namely, that the Sun has no other at-
mosphere outside the luminous one; for otherwise the light of
the edges, having a deeper layer to penetrate, would be found
more weakened” [89, p. 29].

Of course, François Arago was incorrect in stating that
“light of the Sun’s edges is as intense as that at its center” [85,
p. 29]. In fact, the converse was first observed in the days of
Galileo [7, p. 274]. Arago’s contemporary, Sir John Herschel,
wrote: “The deficiency of light at the borders of the visible
disc is in fact so striking, whether viewed through coloured
glasses or without their intervention, by projecting its image
through a good achromatic telescope on white paper, that it
seems surprising it should ever have been controverted” [91,
p. 434]. Yet, Arago had the notion that a difference in path
length through gas would account for differences in observed
solar brightness. This was not far removed from the mod-
ern concept of optical depth which explained the same phe-
nomenon [79–82,92]. However, in this instance, it is the light
visualized from the center of the Sun which is from deeper,
and therefore warmer, regions. For modern solar astronomy,
differing path lengths into the Sun permit the sampling of
warmer areas. In any case, Arago’s arguments, relative to po-
larization as restated in his Popular Astronomy [90, p. 457],
would be eventually refuted (see below).

As for John Herschel [91,93,94], over most of the course
of his life, he viewed the constitution of the Sun through the
eyes of his father, William: “But what are the spots? Many
fanciful notions have been broached on this subject, but only
one seems to have any degree of physical probability, viz. that
they are the dark, or at least comparatively dark, solid body
of the Sun itself, laid bare to our view by those immense fluc-
tuations in the luminous regions of its atmosphere, to which it
appears to be subject” [93, p. 229]. He stated that the “more
probable view has been taken by Sir William Herschel, who
considers the luminous strata of the atmosphere to be sus-
tained far above the level of the solid body by a transpar-
ent elastic medium, carrying on its upper surface. . . a cloudy
stratum which, being strongly illuminated from above, reflects
a considerable portion of the light to our eyes, and forms a
penumbra, while the solid body shaded by the clouds, reflects
none” [93, p. 229]. The same citation can be found in the 10th
edition of his work, published in 1869 [94, p. 314–315]. How-
ever, in 1864, along with Father Angelo Secchi [95,96], John
Herschel became one of the first professional astronomers
to advance the concept that the Sun was gaseous when dis-
cussing sunspots in April of that year: “while it agrees with
that of an aggregation of the luminous matter in masses of
some considerable size, and some degree of consistency, sus-
pended or floating at a level determined by their . . . gravity

in a non-luminous fluid; be it gas, vapour, liquid, or that in-
termediate state of gradual transition from liquid to vapour
which the experiments of Gagniard de la Tour have placed
visibly before us” [97]. In so doing, John Herschel was the
first to propose that critical phenomena [26–29] may be im-
portant in understanding the structure of the Sun [57]. Oddly,
he did not deem these ideas of sufficient merit to modify his
popular text. In a public sense, John Herschel remained faith-
ful to his father, even though nearly seventy years had elapsed
in the “progress” of science.

3.4 Early thoughts of a fluid Sun
Unlike Alexander Wilson [84] and William Herschel [83,88],
who both advocated a solid solar body, the French astronomer
Joseph Jérôme Le Français de Lalande thought that the Sun
was a fluid. In his Abrégé d’astronomie of 1774 [98], Lalande
reiterated the sentiment of his French predecessor, M. de la
Hire. In 1700 and 1702, de la Hire stated that a sunspot was
most likely the result of “protrusion of a solid mass, opaque,
irregular, swimming in the fluid material of the Sun, in which
it sometimes dove entirely” [98, p. 391]. René Descartes [99,
100] expressed essentially the same ideas in his Principia
Philosophiae, published in 1644 [100, p. 147–152]. Des-
cartes’ contributions were outlined in Karl Hufbauer’s clas-
sic text [14, p. 21].

Lalande also described how Galileo and Johannes Heve-
lius viewed the Sun as a fluid: “Galileo, who was in no man-
ner attached to the system of incorruptibility of the heavens,
thought that Sun spots were a type of smoke, clouds, or sea
foam that forms on the surface of the Sun, and which swim
on an ocean of subtle and fluid material” [98, p. 390–391].
In 1612, Galileo wrote: “. . . I am led to this belief primar-
ily by the certainty I have that that ambient is a very ten-
uous, fluid, and yielding substance from seeing how easily
the spots contained in it change shape and come together
and divide, which would not happen in a solid or firm ma-
terial” [101, p. 124]. Galileo differed from Lalande in ad-
vancing that sunspots were gaseous or cloudy versus solid
[101, p. 98–101]. But, Galileo was not attached to this as-
pect of his work: “for I am very sure that the substance of
the spots could be a thousand things unknown and unimag-
inable to us, and that the accidents that we observed in them
-their shape, opacity, and motion- being very common, can
provide us with either no knowledge at all, or little but of
the most general sort. Therefore, I do not believe that the
philosopher who was to acknowledge that he does not and
cannot know the composition of sunspots would deserved any
blame whatsoever” [101, p. 98]. It was the act of locating
the spots on, or very close to, the surface of the Sun, that
Galileo held as paramount [101, p. 108–124]. Thus, Galileo
refuted Scheiner: “I say that for the present it is enough for
me to have demonstrated that the spots are neither stars, nor
solid matters, nor located far from the Sun, but that they ap-
pear and disappear around it in a manner not dissimilar to
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that of clouds” [101, p. 294–295]. Scheiner, Galileo’s con-
stant detractor, believed that special stars strangely coalesced
to create sunspots [101, p. 98].

3.5 Kirchhoff, Magnus, Kelvin, and the liquid photo-
sphere

In 1862, Gustav Kirchhoff elucidated the idea of a solid or
liquid photosphere: “In order to explain the occurrence of
the dark lines in the solar spectrum, we must assume that
the solar atmosphere incloses a luminous nucleus, produc-
ing a continuous spectrum, the brightness of which exceeds
a certain limit. The most probable supposition which can
be made respecting the Sun’s constitution is, that it consists
of a solid or liquid nucleus, heated to a temperature of the
brightest whiteness, surrounded by an atmosphere of some-
what lower temperature. This supposition is in accordance
with Laplace’s celebrated nebular-theory respecting the for-
mation of our planetary system” [43, p. 23]. Kirchhoff ex-
plained how the Sun, like the planets, was formed through
contraction. The Sun remained at the temperature of “white
heat” as a result of its greater mass. Kirchhoff cited Arago
extensively and was well aware of the work on sunspots by
Alexander Wilson. Since the photosphere acted on the body
of the Sun, Kirchhoff argued that it must also be heated to
the point of incandescence. Relative to the constitution of the
Sun, Kirchhoff’s entire driving force was the solar spectrum
itself. The argument must be echoed, even in the present day.

Unfortunately, it was in speaking of sunspots that Kirch-
hoff confused the issue: “But the phenomena exhibited by the
solar spots, for whose benefit the hypothesis of a dark solar
nucleus was started, may, I believe, be explained more com-
pletely and more naturally by help of the supposition con-
cerning the constitution of the sun, which the consideration
of the solar spectrum has led me to adopt” [43, p. 26]. Kirch-
hoff then advanced that sunspots were the results of layers
of clouds which cut off the heat emitted by the incandescent
surface of the Sun. Kirchhoff’s thoughts were reminiscent of
Galileo’s [101, p. 98–101], a point not missed by Secchi [3,
p. 16], and Faye [5, p. 51–61]. Therefore, Alexander Wilson’s
cavities were replaced by clouds. Kirchhoff invoked Secchi’s
work and convection currents to explain why sunspots appear
only at certain latitudes and tried to bring understanding to
the origin of faculae. This entire portion of the text was some-
what nebulous in logic for a man like Kirchhoff. It would un-
dermine his idea that the photosphere must be solid or liquid
based on its continuous spectrum [43].

As an expert in thermal emission, Kirchhoff rapidly ob-
jected to Arago’s polarization arguments against the liquid.
Emphatically, he maintained that Arago’s “statement that in-
candescent gas is the only source of non-polarized light, is,
however, incorrect, for Arago himself mentions that the com-
mon luminous gas-flame emits perfectly unpolarized light;
and the light in this case is almost entirely caused not by
glowing gas, but by incandescent particles of solid carbon

which are liberated in the flame. An incandescent haze con-
sisting of solid or liquid particles must act in a manner pre-
cisely similar to such a flame” [43, p. 30]. Kirchhoff further
explained that a liquid Sun, whose seas are in continuous mo-
tions, would emit light from its surfaces in different directions
with respect to our eyes. This destroyed any polarization. The
argument was a powerful one, but as will be seen below, it
was Kirchhoff’s explanation of sunspots which his contem-
poraries, Secchi and Faye, would reject. In so doing, they
would dismiss Kirchhoff’s entire vision for the constitution
of the Sun. This move on their part reflected, perhaps, their
all too hasty conclusions with regards to thermal emission.
The error continued to this day.

Heinrich Gustav Magnus [102] also believed that the Sun
was a liquid. He was a great supporter of Kirchhoff [43].
On July 11th, 1861, he delivered Kirchhoff’s memoire on
the chemical constitution of the Sun’s atmosphere before the
Berlin Academy [103, p. 208]. Magnus demonstrated that
the addition of caustic soda (sodium hydroxide) to a non-
illuminating gaseous flame generated a tremendous increase
in its luminosity [102]. He noted the same effect for the
salts of lithium and strontium. In 1864, according to Mag-
nus: “These studies demonstrate that gaseous bodies emit
much less heat radiation than solid or liquid bodies; and
that, by consequence, one cannot suppose that the source
of solar heat resides in a photosphere composed of gas or
vapours” [102, p. 174]. Magnus’ argument was powerful and,
for the next 50 years, it continued to impact the constitution of
the Sun. It was because of Magnus that photospheric theory
would preserve some aspects of condensed matter well into
the beginning of the 20th century. It would eventually take the
theoretical arguments of men like Schuster [79,80], Very [81],
Schwarzschild [82], Eddington [51], and Milne [92] to finally
set aside Magnus’ contributions [102] and cast the concept of
condensed matter out of the photosphere [43].

Kirchhoff liquid Sun was also echoed by William Thom-
son himself. Lord Kelvin states: “It is, however, also pos-
sible that the Sun is now an incandescent liquid mass, radi-
ating away heat, either primitively created in his substance,
or, what seems far more probable, generated by the falling in
of meteors in past times, with no sensible compensation by
a continuance of meteoric action” [47]. By the time these
words were written, Thomson no longer believed that the
Sun could replenish its energy with meteors and wrote: “All
things considered, there seems little probability in the hypoth-
esis that solar radiation is at present compensated, to any
appreciable degree, by heat generated by meteors fallings
in; and, as it can be shown that no chemical theory is ten-
able, it must be concluded as most probable that the Sun is at
present merely an incandescent liquid mass cooling” [47]. In
the same paper, Thomson discussed Helmholtz’ contraction
theory, as an extension, it seemed, of the meteoric hypothe-
sis [47]. The contraction and meteoric models of energy gen-
eration would eventually prove to be unsound. But, for the
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time being, Thomson continued to view the Sun as liquid in
nature, as did Kirchhoff and Magnus.

At the same time, it is ironic how Kirchhoff, through his
law of thermal emission, unknowingly provided for astro-
physics the very basis for the downfall of his liquid model.
Currently, the entire concept of a gaseous Sun rests on the
presumed validity of Kirchhoff’s formulation. Nonetheless,
early gaseous models of the Sun always placed either solid or
liquid constituents in the region of the photosphere, as shall
soon be outlined. Not until the early 20th century would the
Sun become fully divested of condensed matter. In so doing,
astrophysics would endow the gaseous plasma with emission
properties it failed to possess on Earth. Regrettably, few of
Kirchhoff’s contemporaries supported his idea that the Sun
was a liquid. Visual observations, and the view that Kirch-
hoff was an outsider to astronomy, would become ruinous to
his model. Critical temperatures [28] also dictated that the
Sun was simply too hot to allow this phase. Spectroscopic
evidence became of secondary importance and the journey to
a gaseous Sun formally began.

4 On to a gaseous Sun

4.1 Men, ideas, and priority

Throughout the history of astronomy, there is perhaps no
more controversial figure than Herbert Spencer. As an inde-
pendent philosopher, not formally trained in science, he be-
came the first to advance that the interior of the Sun was com-
pletely gaseous [104–106]. He was also a staunch supporter
of evolution and elucidated the concept of “survival of the
fittest” [107]. In academic circles, Spencer was widely crit-
icized for the views he held, both in ethics and in sociology
[108]. By his supporters, he seemed highly admired [108] and
compared to other polymaths including the likes of Goeth,
Humbolt, and Whewell [103, p. 198]. Unfortunately, many
of Spencer’s social thoughts were unfounded and promoted
concepts of imperialistic superiority and outright discrimina-
tion [107, p. 481–483]. His contributions on the constitution
of the Sun [104,105] were essentially ignored by professional
astronomy, even though he corresponded with Sir John Her-
schel and Sir George Airy, the Astronomer Royal [106]. In
addition, Spencer was a close friend of the great physicist
John Tyndall who became, in like manner, a prominent evo-
lutionist [106]. Spencer’s political and social views were so
counter to those espoused by men of the period that he re-
mained ever outside the mainstream of astronomy.

Spencer eventually argued for priority over Hervé Faye
with respect to his ideas of a gaseous Sun [105]. His de-
fense was in response to review articles by Norman Lockyer
published in the magazine The Reader [109, 110], about the
Frenchman’s Comptes Rendus papers [111, 112]. Nine years
later, Lockyer reprinted these articles in his classic text [5,
p. 44–62], without reference to Spencer’s letter [105]. In do-
ing so, Lockyer approached misconduct. He added a footnote

crediting Balfour Stewart and Gustav Kirchhoff for a ther-
modynamic argument which the record well demonstrated
was first expounded in Spencer’s letter, as will be discussed
in Section 4.6 [105]. But since Lockyer was the cause of
Spencer’s 1865 letter [105], he could not have been unaware
of its contents.

Bartholomew advanced a somewhat disparaging analy-
sis of Spencer’s contributions to solar physics [106]. He at-
tempted to justify Spencer’s rejection by professional astron-
omy. Though he gave Spencer qualities, he charged him with
being simply an amateur, a surprisingly desultory reader, and
of incorporating in his own writings facts and ideas acquired
in other ways [106]. He even accused Spencer with making
the Nebular hypothesis the starting point of his discussion,
justifying the same behavior by men like Kirchhoff and Faye
as merely supportive and confirmatory [106, p. 22]. Though
Bartholomew brought forth several other reasons why Spen-
cer was ignored, many of which were perhaps valid, his cen-
tral argument was summarized as follows: “Rather, at the
mid-nineteenth century a criterion of acceptability for scien-
tific pronouncements was beginning to emerge that was linked
to the notion of professionalism; only those who had creden-
tials in their subject through training and research could ex-
pect to have their speculative theories taken seriously. As
this standard gradually asserted itself, Spencer’s work in as-
tronomy lost much of its claim for attention” [106, p. 21].
This aspect of 19th century thought, beginning to permeate
science in Spencer’s day, had also been proposed while dis-
cussing Robert Chambers’ Vestiges on the Natural History of
Creation which was one of the first works on evolutionary
reasoning: “the reaction to Vestiges was not simply a profes-
sion of empiricism: it was an attempt to restrict the privilege
of theoretical speculation to a small circle of recognized re-
searchers” [113, p. 22].

Relative to the Sun, a review of the documents of the pe-
riod showed no more theoretical brilliance in the works of
Secchi [95, 96, 114–118] and Faye [109–112, 119, 120] than
in those of Spencer [104, 105]. This was reality, despite the
fact that Spencer was charged with being ill-trained in ther-
modynamics, astronomy, and mathematics [106]. While Sec-
chi was a magnificent observational astronomer [3], all three
men were profoundly mistaken in many of their ideas regard-
ing the Sun and sunspots. Furthermore, in light of modern
analysis, their differences hinged on the trivial. Few of the
early works of either Secchi or Faye were mathematical in
nature [95, 96, 109–112, 114–120].

The nature of sunspots had immediately become a focus
of contention between Spencer [105] and Faye [120]. In fact,
Secchi and Faye would criticize Kirchhoff on the same sub-
ject, although they were far from being his equal in theoretical
prowess. In Comptes Rendus, the battle between Faye and
Kirchhoff on sunspots was protracted, extensive [121–126],
and would yield many of the modern ideas for a gaseous
Sun. Faye and Secchi’s defense against Kirchhoff was some-
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what justified, relative to sunspots not resting as clouds above
the photosphere. But they did not sufficiently appreciate the
importance of the German’s arguments for condensed mat-
ter [43]. For many decades, the contributions of these two
men, on the constitution of the Sun, were highly cited and
praised. Spencer, their British colleague, continued to be es-
sentially ignored [106].

Consequently, had the scientific community merely erect-
ed a means of self-promotion and preservation, with respect
to theoretical speculation, by rejecting Spencer’s work? This
is unlikely to be the only explanation. It was obvious that
many despised Spencer’s social, ethical, and evolutionary
thoughts. Competitive pressures must also have been involv-
ed. Hervé Faye clearly became acquainted with Spencer’s
work, given the three articles presented in The Reader. Still,
the Frenchman long delayed to cite Spencer. Yet, it was un-
likely that mere “scientific exclusivity” could account for
Faye’s and Lockyer’s treatment of Spencer, as Bartholomew
proposed. Hervé Faye defended religion and argued on moral
grounds against the merits of evolution in addressing both sci-
ence and God in his classic text which emphasized: “Coeli
enarrant gloriam Dei” [127, p. 1–4]. As such, it appears that
Faye consciously refused to confer upon Spencer the credit
he deserved. This was especially true given the struggle for
priority and Faye’s time in history [127, p. 1–4]. The situa-
tion was perhaps clearer for Father Secchi. Secchi likewise
echoed “Coeli enarrant gloriam Dei” [128, p. 1] and, on his
deathbed, paraphrased Saint Paul (2 Timothy 4:7–8): “I have
finished my course, I have fought the good fight. Through-
out my entire life and in my scientific career, I have had no
other goal but the exultation of the Holy Catholic Church,
demonstrating with evidence how one can reconcile the re-
sults of science with Christian piety” [128, p. vii]. It must be
remembered that, when the Jesuits would be expelled from
Rome, Secchi was defended by the world scientific commu-
nity. Only Secchi, with his assistants, was allowed to re-
main in the city and continued to work at the Observatory
of the Roman College [128, p. xxii-xxiii]. Did Secchi know
in advance of Spencer’s Westminster Review article [104]? In
1869, Secchi had mentioned, with respect to Lockyer, that
“As to what regards his work, I admit that I have knowledge
of only those which were published in Comptes Rendus, or
in Les Mondes” [5, p. 500]. The situation is not definitive
however, as Secchi does mention his knowledge of the recent
work by William R. Dawes in Monthly Notices in his first let-
ter [95]. Nonetheless, it was doubtful that the Director of the
Observatory of the Roman College knew of Spencer’s works
when he wrote his key papers of 1864 [95, 96]. The surest
evidence was the lack of similarity between the ideas of Sec-
chi [95, 96] and Spencer [104]. Conversely, this was not the
case for Faye’s classic papers [111,112], including those deal-
ing with the defense of his sunspot theory [119–126]. The
problem for Faye would be three fold: 1) extensive scientific
similarity, 2) eventual and certain knowledge of Spencer’s

rebutal letter in The Reader [105] and 3) his claim of simul-
taneous discovery with respect to Secchi, as will be soon dis-
covered. For Faye at least, it is difficult to argue against de-
liberate scientific disregard relative to Spencer and his ideas.

Relative to issues of faith, it is also notable that many
learned men of the period shared Faye’s and Secchi’s dual
affection for religion and science. In fact, even Max Planck
would be counted in their company [129]. Bartholomew
failed to address any of these points. It is unlikely that the
dismissal of Spencer can be solely attributed to his lack of
training, amateur status, and “an attempt to restrict the privi-
lege of theoretical speculation to a small circle of recognized
researchers” [113, p. 22]. The reality remained that some
of Spencer’s ideas continued to be objectionable (e.g. [107,
p. 481–483]) and that the quest for priority was powerful.

Nonetheless, one must question the persistent failure [7,
13,14] to give Spencer credit for advancing the earliest model
of the gaseous Sun. Bartholomew’s discussion [106], in try-
ing to justify the past with the privilege of scientific posi-
tion and “right to speak”, did nothing to advance truth. This
was especially highlighted, when contrasted with Galileo’s
free acknowledgement of Benedetto dei Castelli’s contribu-
tions to the projection of sunspots [101, p. 126]. It was fur-
ther expounded by the remembrance of Charles’ law by Gay-
Lussac [49], even though the former had not written a sin-
gle word and the experiments were done fifteen years ear-
lier. If the name of Charles’ law exists, it is only because
of Gay-Lussac’s profound honesty. As such, the refusal to
credit Spencer for his contributions should not be justified
by modern writers [106], but rather, must be condemned as
an unfortunate injustice relative to acknowledging the gene-
sis of scientific ideas [130]. The reality remains that the birth
of a gaseous Sun was accompanied by bitter rivalry through-
out professional astronomy, much of which was veiled with
struggles for priority. In this expanded context, and given his
social views, Spencer’s isolation was not surprising.

4.2 Herbert Spencer and the nebular hypothesis
In reality, Spencer’s contributions were noteworthy for their
dramatic departure from the ideas of Herschel and Arago (see
Table 1). Much like other works of the period, Spencer’s
thesis contained significant scientific shortcomings. Still, his
writings were on par with those of his contemporaries and
were, it appears without question, the first to outline both a
gaseous solar body and a liquid photosphere. Spencer ad-
vanced this model in an unsigned popular work entitled Re-
cent Astronomy and the Nebular Hypothesis published in the
Westminster Review in 1858 [104]. He began his thesis by
imagining a “rare widely-diffused mass of nebulous matter,
having a diameter, say as great as the distance from the Sun
to Sirius” [104, p. 191] and considered that mutual gravitation
would eventually result in the “slow movement of the atoms
towards their common center of gravity” [104, p. 191]. He
argued that, as the nebular mass continued to contract, some
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Fig. 1: Herbert Spencer (April 27th, 1820 — December 8th, 1903),
was a polymath who advanced the first gaseous model of the Sun, in
1858 [104]. He conceived of a “Bubble Sun”, a gaseous interior of
variable density surrounded by a fully liquid photosphere. (Drawing
by Bernadette Carstensen — used with permission.)

of the internally situated atoms entered into chemical union.
With time, as the heat of chemical reaction escaped the neb-
ular mass, the latter began to cool. The binary atoms would
then precipitate and aggregate into “flocculi” [104, p. 192].
Spencer described how flocculi formation resulted in centri-
petal motion of the nebula and eventually condensed into a
larger internal and external aggregate masses. The latter de-
veloped into planets and comets. Spencer summarized La-
place’s nebular hypothesis as follows: “Books of popular as-
tronomy have familiarized even unscientific readers with his
[Laplace’s] conceptions; namely, that the matter now con-
densed into the solar system once formed a vast rotating
spheroid of extreme rarity extending beyond the orbit of Nep-
tune; that as it contracted its rate of rotation necessarily in-
creased; that by augmenting centrifugal force its equatorial
zone was from time to time prevented from following any fur-
ther the concentrating mass, and so remained behind as a
revolving ring; that each of the revolving rings thus peri-
odically detached eventually became ruptured at its weakest
point, and contracting upon itself, gradually aggregated into
a rotating mass; that this like the parent mass, increased in
rapidity of rotation as it decreased in size, and where the cen-
trifugal force was sufficient, similarly through off rings, which
finally collapsed into rotating spheroids; and that thus out

of these primary and secondary rings arose the planets and
their satellites, while from the central mass there resulted the
Sun” [104, p. 201].

Spencer succinctly outlined his thoughts on the Sun when
he defended himself in The Reader. He opened as follows:
“The hypothesis of M. Faye, which you have described in your
numbers for January 28 and February 4, is to a consider-
able extent coincident with one which I ventured to suggest
in an article on ’Recent Astronomy and the Nebular Hypoth-
esis,’ published in the Westminster Review for July, 1858. In
considering the possible causes of the immense differences
of specific gravity among the planets, I was led to question
the validity of the tacit assumption that each planet consists
of solid or liquid matter from centre to surface. It seemed
to me that any other internal structure, which was mechani-
cally stable, might be assumed with equal legitimacy. And the
hypothesis of a solid or liquid shell, having its cavity filled
with gaseous matter at high pressure and temperature, was
one which seemed worth considering, since it promised an
explanation of the anomalies named, as well as sundry oth-
ers” [105]. He continued: “The most legitimate conclusion
is that the Sun is not made up of molten matter all through;
but that it must consist of a molten shell with a gaseous nu-
cleus. And this we have seen to be a corollary of the Nebular
Hypothesis” [105].

Throughout the article in The Reader, Spencer cited ex-
tensively from his prior work [104]. The resemblance to
Faye’s 1865 papers [111, 112] was difficult to justify as co-
incidental. Spencer argued strongly for the existence of con-
vection currents within the Sun: “. . . hence an establishment
of constant currents from the center along the axis of rotation
towards each pole, followed by a flowing over of accumula-
tion at each pole in currents along the surface to the equator;
such currents being balanced by the continual collapse, to-
wards the center, of gaseous matter lying in the equatorial
plane” [105]. The presence of convection currents was to be-
come a central aspect of Faye’s model. Nonetheless, Spencer
was arguably one of the first to invoke true convection cur-
rents within the Sun.

There were several elegant strokes in Spencer’s original
paper in the Westminster Review [104], including his antici-
pation of the contraction hypothesis which he re-emphasized
in The Reader: “Supposing the Sun to have reached the state
of a molten shell, enclosing a gaseous nucleus, it was con-
cluded that this molten shell, ever radiating its heat, but ever
acquiring fresh heat by further integration of the sun’s mass,
will be constantly kept up to that temperature at which its
substance evaporates” [105]. He advanced two strata of at-
mosphere above the molten solar surface, the first “made up
of sublimed metals and metallic compounds” and the second
of “comparatively rare medium analogous to air” [105].

Spencer was concerned with the specific gravity of the
sun, insisting “but the average specific gravity of the Sun is
about one” [105]. He ventured: “The more legitimate conclu-
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sion is that the sun’s body is not made up of molten matter all
through, but that it consists of a molten shell with a gaseous
nucleus. . . the specific gravity of the Sun is so low as almost
to negative the supposition that its body consists of solid or
liquid matter from the center to surface, yet it seems higher
than is probable for a gaseous spheroid with a cloudy enve-
lope” [105]. Spencer reached this conclusion because he con-
sidered only the specific gravity of the metals and materials
on Earth. He never realized that the Sun was mostly made of
hydrogen. As such, given his building blocks, Spencer was
left with a gaseous interior. The insight was profound. In
fact, the objection which Spencer made, with respect to the
improbability of a gaseous spheroid, would be repeated by
the author, before he became acquainted with Spencer’s writ-
ings [57].

Specific gravity has become a cornerstone of the mod-
ern liquid metallic hydrogen model of the Sun [57–60]. At
the same time, science must marvel at the anticipation which
Spencer gave of the current gaseous models of the Sun when
he wrote: “. . . but that the interior density of a gaseous
medium might be made great enough to give the entire mass a
specific gravity equal to that of water is a strong assumption.
Near its surface, the heated gases can scarcely be supposed to
have so high a specific gravity, and if not, the interior must be
supposed to have a much higher specific gravity” [105]. This
is precisely what is assumed by astronomy today, as it sets
the photospheric density to ∼10−7 g/cm3 and that of the solar
core to ∼150 g/cm3 [57]. With respect to convection currents
and intrasolar density, it could be argued that Spencer led as-
trophysical thought.

Spencer closed his defense by restating his theory of sun-
spots. He initially advanced that the spots were essentially
cyclones and credited John Herschel with the idea [105]. He
then stated that cyclones contained gases and that the effects
of refraction could account for their dark appearance. Spen-
cer would modify his idea over time, but he continued to fo-
cus on cyclones. His conjectures regarding sunspots would
have no redeeming features for the current understanding of
these phenomena. As such, suffice it to re-emphasize the nov-
elty of Spencer’s Bubble Sun as a significant departure from
the solid model of the period, with the introduction of convec-
tion currents and arguments regarding internal solar density.

4.3 Angelo Secchi and the partially condensed photo-
sphere

Angelo Secchi [3] first outlined his ideas regarding the phys-
ical constitution of the Sun in the Bullettino Meteorologico
dell’ Osservatorio del Collegio Romano in two 1864 manu-
scripts [95, 96]. John Herschel followed suit in April of the
same year [97]. Secchi’s January work, represented a gen-
tle rebuttal of Gustav Kirchhoff, initially relative to sunspots:
“Signor Kirchoff rejects both the theory of Herschel and that
of Wilson. We will first permit ourselves the observation that
it is one thing to refute Herschel’s theory, and quite another to

Fig. 2: Father Angelo Secchi, S.J. (June 29th, 1818 — February
26th, 1878), was one of the foremost solar astronomers of his day
and the Director of the Observatory of the Roman College. In 1864,
Secchi advanced a solar model wherein the photosphere was formed
of solid or liquid particulate matter floating on the gaseous body of
the Sun [95, 96]. (Drawing by Bernadette Carstensen — used with
permission.)

refute Wilson’s, and that when the first is laid to rest, the sec-
ond one hardly collapses” [95]. Secchi also disagreed with
Kirchhoff relative to thermal emission, disputing that all ob-
jects at the same temperature produce the same light: “Kir-
choff relies greatly on the principle that all substances be-
come luminous at the same temperature in order to prove that
the core of the sun must be as bright as the photosphere. Here
it seems to us that two quite different matters have been con-
flated: that is, the point at which bodies begin to excite lu-
minous waves capable of being perceptible to the eye, and
the fact that all [substances] at the same temperature should
be equally luminous. We can accept the first of these propo-
sitions, and wholly reject the second. In furnaces we see
gases of entirely different luminosity from that of solids, and
the strongest [hottest] flame that is known — that is, that of
the oxyhydrogen blowpipe — is it not one of the least lu-
minous?” [95]. In this respect, Secchi was actually correct,
as Kirchhoff had inappropriately extended his law to liquids
and gases. Secchi realized that gases could not follow Kirch-
hoff’s supposition. This was a rare instance in the scientific
literature where the conclusions of Kirchhoff were brought
into question. Secchi also expounded on his theory of the
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Sun in his classic text [95, p. 37]. Nonetheless, considering
Secchi’s position, his first article displayed a certain stern-
ness with respect to Kirchhoff, closing with the words: “We
wanted, therefore, to say these things less to object to such
a distinguished physicist, than to prevent science from tak-
ing a retrograde course, especially since history shows that
persons of great authority in one branch of knowledge of-
ten drag along, under the weight of their opinion, those who
are less experienced, even in matters where their studies are
not sufficiently deep and where they should not have such
influence” [95]. Secchi appeared to be arguing, much like
Bartholomew [106], that astronomy had become too special-
ized for the non-professional, even if represented by Kirch-
hoff himself.

The heart of Secchi’s conception of the Sun was outlined
in his November 1864 paper [96]. Secchi was concerned with
the physical appearance of the solar surface: “The grid-like
solar structure seemed to us to offer nothing regular in those
parts of the disc that are continuous, and thus the term gran-
ular appears very appropriate. Nevertheless, in the vicinity
of the sunspots, that of willow leaf remains justified, because
we actually see a multitude of small strips which terminate
in rounded tips, and which encircles the edge of the penum-
bra and of the nucleus, resembling so many elongated leaves
arranged all around. The granular structure is more visible
near the spots, but it is not recognizable in the faculae; these
present themselves like luminous clusters without distinguish-
able separation, emitting continual light without the interrup-
tion of dots or of that black mesh” [96]. He then clarified his
model of the solar photosphere: “Indeed this appearance sug-
gests to us what is perhaps a bold hypothesis. As in our atmo-
sphere, when it is cooled to a certain point, there exists a fine
substance capable of transforming itself in fine powder and
of forming clouds in suspension, (water transforming into so-
called ‘vesicular’ vapor or into small solid icicles), so in the
enflamed solar atmosphere there might be an abundance of
matter capable of being transformed to a similar state at the
highest temperatures. These corpuscles, in immense supply,
would form an almost continuous layer of real clouds, sus-
pended in the transparent atmosphere which envelopes the
sun, and being comparable to solid bodies suspended in a
gas, they might have a greater radiant force of calorific and
luminous rays than the gas in which they are suspended. We
may thus explain why the spots (that are places where these
clouds are torn) show less light and less heat, even if the tem-
perature is the same. The excellent results obtained by Mag-
nus, who has proved that a solid immersed in an incandescent
gas becomes more radiant in heat and light than the same gas,
seem to lend support to this hypothesis, which reconciles the
rest of the known solar phenomena” [96]. Secchi’s model dif-
fered from Spencer’s [104, 105] in that his photosphere was
not a continuous layer of liquid. Rather, Sechhi’s Sun was es-
sentially gaseous throughout. In his photosphere, solid matter
was suspended within the gas. Secchi adopted this model as

a result of his visual observations and of Magnus’ work on
the thermal emission of caustic soda in the transparent gas
flame [102]. In this regard, Secchi demonstrated a relatively
good understanding of thermal emission.

Over the years, Secchi refined his model of the Sun, but
the discussions would be highly centered on the nature of Sun
spots. Secchi was a prolific author with more than 800 works
to his name [128, p. xvi]. A partial listing of these, compiled
at his death, included more than 600 publications [128, p. 95–
120]. By necessity, the focus will remain limited to only five
of his subsequent contributions on the Sun [114–118].

In the first of these publications [114], Secchi examined
sunspots and largely confirmed Wilson’s findings [84] that
sunspots represented depressions on the solar disk. For both
Secchi and Faye, this became a key objection to Kirchhoff’s
“cloud model” of sunspots [43].

In the second article, published in 1868 [115], the as-
tronomer was concerned with the observation of spectral lines
in the corona, but he concluded with a defense of the gaseous
Sun. Secchi referred to a “famous objection” against his
model, but never named the source. In actuality, for Sec-
chi, the source of the objection must have been Kirchhoff’s
Comptes Rendus article, which appeared the previous year:
“From the relation which exists between the emissive and ab-
sorptive power of bodies, it results in an absolutely certain
manner, because in reality the light emitted by the solar nu-
cleus is invisible to our eye, this nucleus, whatever its nature
may be, is perfectly transparent, in such a manner that we
would visualize, through an opening situated on the half of
the photosphere turned in our direction, through the mass of
the solar nucleus, the internal face of the other half of the
photosphere, and that we would perceive the same luminous
sensation as if there was no opening” [121, p. 400]. Kirch-
hoff’s objection was almost identical to that first leveled by
Spencer in 1865 [105, p. 228]: “But if these interior gases are
non-luminous from the absence of precipitated matter must
they not for the same reason be transparent? And if transpar-
ent, will not the light from the remote side of the photosphere,
seen through them, be nearly as bright as that from the side
next to us?” Kirchhoff had strong ties with Guthrie, Roscoe,
and the English scientific community. In addition, in light of
the previous incident between Kirchhoff and Stewart on prior-
ity in thermal emission [61, 138] it is difficult to imagine that
the German scientist was unaware of Spencer’s work. Two
years had already passed.

In response to Kirchhoff, Secchi stated: “The objection
consisted in holding that, if Sun spots were openings in the
photosphere, one should be able to see through a gaseous
solar mass the luminous photosphere on the other side: as
a result, Sun spots would be impossible, since they are not
luminous, but black” [115]. Secchi advanced two lines of
defense: “1) that sunspots, even in their nucleus, are not de-
prived of light and 2) that for the entire solar mass to be able
to produce an absorption capable of preventing the visualiza-
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tion of the other side, it suffices that the interior of the Sun
possess an absorbing power identical to its external atmo-
sphere” [115]. Here was perhaps the conclusion of one of
the first discussions concerning internal stellar opacity. It re-
flected why Spencer’s complaint was central to the history of
astronomy.

Secchi’s third work in this series [116] was surprising for
two reasons. First, Secchi described that he “even believes
he has seen traces of water vapour in the Sun, especially
near the sunspots” [116, p. 238]. Secondly, and most impor-
tantly, Secchi appealed to the French scientific community
and to Mr. Sainte-Claire Deville to work on observing the
incandescent light emitted by hydrogen under conditions of
high pressure [116]. Sainte-Claire Deville immediately fol-
lowed Secchi’s letter with an affirmative response. Secchi
thus highlighted the importance of line broadening in hydro-
gen [33–37] for astrophysical thought [116, p. 238].

In the fourth work of this series, Secchi once again argued
that “sunspots are cavities in the photosphere in whose inte-
rior the absorbing layer is thicker” and continues that “the
brilliant lines that often traverse their nucleus could well be
the direct lines of that gas which I have signaled constitutes
the gaseous mass of the interior of the Sun” [117, p. 765].
Secchi was completely mistaken, as these lines do not origi-
nate from inside the solar body. His 1869 argument [117] was
also counter to that which he already outlined when speaking
on stellar opacity a year earlier [115].

In the final work of interest, Secchi described four possi-
ble aspects of the chromosphere including: “The first aspect
is one of a layer clearly terminated, as would be the free sur-
face of a liquid. . . sometimes, especially in the region of facu-
lae, the surface is diffuse” [118, p. 827]. Secchi completed his
1872 work with a detailed visual description of prominences.

Secchi also entered into a prolonged confrontation in
Comptes Rendus, initiated by Lockyer, over the constitution
of the Sun (reprinted in [5, p. 500–515]). The arguments were
spectroscopic in nature and focused on the photosphere, the
reversing layer, and the chromosphere. The rivalry, surround-
ing the gaseous models, had become intense.

In summary, a detailed review of Secchi’s work reveals
that he was truly an “observational astronomer”. Though
his initial contributions on the Sun were devoid of mathe-
matical arguments, he displayed a keen sense of deduction,
a broad scientific knowledge, and a profound honesty. Un-
like Spencer [104, 105], Secchi did not bring to prominence
the presence of convection currents inside his gaseous Sun.
He based his solar model on the appearance of the solar sur-
face and the work of Magnus [102]. Secchi opposed Kirch-
hoff [43] on the appearance of sunspots, correctly arguing for
Wilson’s cavities [84]. Secchi also disputed Kirchhoff’s law
[30–32] as experimentally unfounded relative to gases [95].
In his book, Secchi provided a discussion of thermal radi-
ation [3, p. 311–319], reminding us of the work of Melloni
who demonstrated that: “different substances possess a par-

ticular and elective absorbing force, each of which acts on
different heat rays, absorbing some while permitting others
to pass, much like colored media acts on white light” [3,
p. 311]. Herein lays Secchi’s objection to the universality
of Kirchhoff’s formulation [30–32]. He recognized the em-
phasis of his day on line broadening [33–37] and was one of
the first to invoke significant stellar opacity [115]. Unfortu-
nately, he advanced seeing water on the solar surface [116,
p. 238]. Eventually, mankind would indeed discover water on
the Sun [131], but Secchi and his model, by then, would be
long forgotten.

4.4 de la Rue, Stewart, Loewy, Frankland, and Lockyer
Shortly after Secchi published his commentaries in Bullettino
Meteorologico and in Les Mondes [95,96], Warren de la Rue,
Balfour Steward, and Benjamin Loewy made their famous re-
port on their theory of sunspots on January 26, 1865. Armed
with the sunspot observations of Carrington [132], they ex-
panded on his discoveries [133–137]. Carrington led a tragic
life [138, p. 117–128] and was an amateur [13, p. 32]. His
observational work, unlike Spencer’s ideas, became a corner-
stone of astronomy. Presumably, this was because Carrington
established the differential rotation of the Sun [132]. He also
stayed clear of controversial philosophy and of theorizing on
the internal constitution of the Sun. As for de la Rue, Stew-
art, and Loewy, their contributions with the photoheliograph
at Kew were significant. As professional scientists, they ven-
tured into a discussion on the constitution of the photosphere.
Historically, their classic paper [133], like Faye’s [111, 112],
also appeared immediately after the Les Mondes translation
of Secchi’s seminal work [96].

Nonetheless, de la Rue, Stewart, and Loewy were the first
[133] to propose that the continuous solar spectrum was con-
sistent with a fully gaseous atmosphere. They were quickly
endorsed by Frankland and Lockyer who, after believing they
had disarmed Kirchhoff, wrote: “That the gaseous condi-
tion of the photosphere is quite consistent with its continu-
ous spectrum. The possibility of this condition has also been
suggested by Messrs. De la Rue, Stewart, and Loewy” [37].
The argument was based on the existence of pressure broad-
ening, observed with hydrogen under conditions of high pres-
sure [37]. It was here that pressure broadening became per-
manently linked to the gaseous models of the Sun. How-
ever, the idea of a fully gaseous photosphere would not truly
take hold until much later. For most scientists, the photo-
sphere continued to have at least traces of condensed mat-
ter. As for the concept that hydrogen, under pressure, could
create a Planckian blackbody spectrum, it was always erro-
neous. Gases could never produce the required emission [77].
Frankland and Lockyer could not have established this fact
with the experimental methods of 1865. They merely ob-
served that the hydrogen lines became considerably broad-
ened, completely unaware of their incorrect lineshape. Ir-
respective of this shortcoming, the paper by Frankland and

16 Robitaille P.-M. A Thermodynamic History of the Solar Constitution — I: The Journey to a Gaseous Sun



July, 2011 PROGRESS IN PHYSICS Volume 3

Loewy impacted scientific thought for the rest of the cen-
tury and became highly cited by the astronomical commu-
nity. As such, Frankland and Lockyer, along with de la Rue,
Stewart, and Loewy who had so magnificently photographed
the Sun, hold a preeminent role in the history of solar sci-
ence [37, 133–137].

Addressing faculae, de la Rue and his team reported: “It
would thus appear as if the luminous matter being thrown up
into a region of greater absolute velocity of rotation fell be-
hind to the left; and we have thus reason to suppose that the
faculous matter which accompanies a spot is abstracted from
that very portion of the sun’s surface which contains the spot,
and which has in this manner been robbed of its luminos-
ity” [134]. Based on such observations, they ventured: “From
all of this it was inferred that the luminous photosphere is
not to be viewed as composed of heavy solid, or liquid mat-
ter, but is rather of the nature either of a gas or cloud, and
also that a spot is a phenomenon existing below the level of
the sun’s photosphere” [134]. The proposal resembled Sec-
chi’s [95, 96]. With these words, Kirchhoff’s thermodynamic
reasoning, regarding the continuous solar spectrum, became
supplanted by visual observations and the Sun adopted the
gaseous state.

Given Stewart’s earlier conflict with Kirchhoff [61, 139],
it would not be unexpected if the Scottish astronomer, at the
side of de la Rue and Loewy, had agreed to dispense with
Kirchhoff’s condensed photosphere [133–135]. However,
this was not to be the case. Stewart, a man of strong moral
character [140,141], immediately abandoned de la Rue’s gas-
eous sun, as we will come to discover in Section 4.7.

Beyond Stewart, a historical review of the period reveals
that virtually every prominent astronomer voiced public dis-
approval of Kirchhoff’s liquid photosphere. In a real sense,
Kirchhoff stood essentially undefended against much of the
scientific community. Yet, were the arguments of men like
Secchi, Faye, de la Rue, and Lockyer truly sufficient to even-
tually advance a fully gaseous photosphere? Note in this
regard, the faux pas by de la Rue, Stewart, and Loewy as
to the cause of sunspots in their very next paper: “the be-
havior of spots appears to be determined by the behavior of
Venus” [134]. Though Kirchhoff might have misjudged the
nature of sunspots, the fault was minor and irrelevant today
when compared to the error of assigning an improper phase
to the entire Sun. In this respect, Galileo’s words in his first
letter to Welser come to mind: “For the enemies of novelty,
who are infinite in number, would attribute every error, even
if venial, as a capital crime to me, now that it has become
customary to prefer to err with the entire world than to be the
only one to argue correctly” [101, p. 89].

4.5 Hervé Faye and loss of the solar surface
Hervé Faye opened his classic presentation on the constitu-
tion of the Sun on January 16th, 1865, by stating that the solar
phenomena had been well popularized [103]. Therefore, he

Fig. 3: Hervé Faye (October 1st, 1814 — July 4th, 1902) was a
prominent French astronomer with a distinguished career in science
and public service as a minister of education. In early 1865, Faye
echoed Secchi’s solar model wherein the photosphere was formed of
solid or liquid particulate matter floating on the gaseous body of the
Sun [111, 112]. (Drawing by Bernadette Carstensen — used with
permission.)

reduced his historical discussions to the strict minimum and
limited himself to the simple analysis of current facts and con-
jectures [111]. He set the stage by recalling the gaseous enve-
lope and the polarization arguments of Arago [111, p. 92–93].
At the same time, he recognized the importance of Kirch-
hoff’s spectroscopic studies and wrote: “But incandescent
solids and liquids alone give a continuous spectrum, while
the gases or the vapors supply but a spectrum reduced to
only a few luminous rays” [111, p. 93]. Faye then argued
against Kirchhoff’s view of sunspots, as rejected, even by
Galileo [111, p. 94]. He proposed that sunspots were pro-
duced by clearings in the photosphere, thereby exposing the
nucleus of the Sun. Interestingly, Faye argued for the oblate-
ness of the Sun based on the fluidity of the photosphere. Un-
fortunately for him, the slight oblateness of the Sun [142]
supported a condensed photosphere, not one with a gaseous
composition [57]. In his seminal communication [111], Faye
did not actually advance a complete solution for the nature of
the photosphere. He reserved this critical step for his second
paper [112].

Throughout his first work [111], Faye cited many notable
figures, but failed to mention either Magnus or Spencer and,
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more importantly, Secchi’s model [111]. Faye studied under
the tutelage of François Arago who, as discussed in Section
3.3, visualized a divide between professional astronomy and
popular thought, even in the first half of the 19th century. As
such, Bartolomew’s arguments for the failure to cite Spencer
might be given some weight [106]. But what of Faye’s failure
to mention Secchi’s model?

Secchi was an established scientist and well recognized
throughout the western world, especially in Roman Catholic
France. Secchi’s first Italian paper in the Bullettino Meteoro-
logico had already been published for nearly one year [95] by
the time Faye gave his address [111]. Secchi’s second paper
on the constitution of the photosphere was immediately trans-
lated into Les Mondes by l’Abbé Moigno. It appeared in Paris
on December 22nd, 1864 [96]. This was nearly one month
prior to Faye’s presentation before l’Académie des Sciences
on January 16th. Faye’s first paper was silent on this point.
Nonetheless, in his second paper, presented on January 25th
of the same year, Faye reported that “I have seen, a few days
ago, a correspondence by Father Secchi, who has much too
studied the Sun to share the popular view reigning today on
the liquidity of the photosphere, that our corresponding sci-
entist has arrived from his side to an explanation of sunspots
founded on the same principle1” [112, p. 146]. The footnote
in Faye’s sentence referred to Moigno’s translation of Sec-
chi’s second paper [96].

Faye’s second paper began with a discussion of solar rota-
tion and particularly of the work of Carrington [112, p. 140–
142]. He then discussed Helmholtz’ contraction hypothe-
sis [112, p. 143] and highlighted the enormous temperatures
inside the Sun as a cause of the complete dissociation of its
constituents. These gases rose to the solar exterior where
they condensed into non-gaseous particles susceptible to in-
candescence. Faye reasoned that the formation of the photo-
sphere was simply a consequence of the cooling of internal
gases [112, p. 144]. He reconciled Arago’s argument on po-
larization with Kirchhoff’s need for a continuous spectrum
[112, p. 145]. In so doing, he advanced a photosphere based
essentially on Secchi’s model when he described: incandes-
cent particles, floating on a gaseous medium” [111, p. 145].
Faye then highlighted that sunspots were produced by the vi-
sualization of the gaseous solar interior [112, p. 146]. This
became the source of Spencer’s “famous objection” in The
Reader [105] and reflected Faye’s incomplete comprehension
of thermal emission.

Faye closed his second paper with an elaborate descrip-
tion of the vertical convection currents which he postulated
were present inside the Sun. He replayed much of Spencer’s
ideas on the Nebular hypothesis and solar cooling. The
Frenchman stated that, given sufficient time, the photosphere
would become very thick with the “consistence of a liquid
or a paste”. Herein, he directly linked his ideas to Spencer’s
liquid photosphere [104]. Hence, along with the arguments
based on convection currents, Faye introduced another source

of priority claims for the British scholar. Faye’s initial expo-
sition [111, 112] was more extensive than Secchi’s [95, 96],
but not significantly superior to Spencer’s [104, 105].

Once his papers on the Constitution of the Sun were pre-
sented to the Académie, Faye published a slightly different
work in Les Mondes [143] in which he again stated that Fa-
ther Secchi arrived at the same conclusion regarding the pho-
tosphere. The Frenchman sought Secchi’s approbation [143,
p. 298]. As for Secchi, he gallantly responded to Faye’s Les
Mondes article in a letter published in Comptes Rendus, on
March 6th, 1865 [144]. Secchi wrote in most charitable
terms, as if delighted by Faye’s claim of simultaneous dis-
covery. If anything improper had occurred, it was silently
forgiven. A few years later, in 1867, Secchi would receive
la croix d’officier de la Légion d’Honneur from the hand of
Napoleon III [128, p. iii, 208].

Faye first addressed the sunspot problem in his model
within his third paper on the constitution of the Sun, pub-
lished in 1866 [120]. He began the discourse by praising
English astronomy and citing every prominent British astron-
omer of the period, including Herschel, Carrington, Dawes,
Nasmyth, Stone, Huggins, de la Rue, Stewart, Thomson, and
Waterston. Spencer was absent from the list. Still, the fo-
cus of Faye’s work was a direct address of Spencer’s com-
plaint with respect to solar opacity: “The difficulty is relative
to the explanation of sunspots. We know that gases heated
to the point of becoming luminous never rise to the point of
incandescence; the latter being a property of solid particles,
even when they are reduced to the same tenuousness” [120].
Faye restated Secchi’s idea that the photosphere was made
of fine condensed incandescent particles floating in a gaseous
medium. If these particles were missing from a region, it
would necessarily become obscure. This was his explanation
of sunspots: regions devoid of these incandescent particles.
Faye then raised the “famous objection”, without mentioning
Spencer’s name, as if the charge had come from nowhere:
“In this we object that if gases emit but little light, by conse-
quence they are transparent. If then an opening was made in
the photosphere, one should see, across the gaseous internal
mass of the Sun, the opposite region of the same photosphere
with a brilliance barely diminished; as a result there would
no longer be any spots” [120]. It was only later, in 1867, that
Faye was finally forced to acknowledge Spencer as a source
of the complaint [122, p. 404]. He did so in a footnote, while
insisting that the reproach had first been brought to his at-
tention by the editor of Comptes Rendus. This was the most
assured means of preventing impropriety. In the same work,
Faye remained silent on Spencer’s convection currents, varia-
tions in solar density, and justified priority claim for a gaseous
solar interior.

Faye addressed the complaint by arguing that, in fact, it
was a property of gases or vapors to extinguish light as well
as an opaque body, provided that the thickness of the gas
was sufficient. Faye was essentially invoking optical thick-
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ness and, once again, foreshadowing the modern stellar opac-
ity problem. In answering Secchi [144], Faye presented his
idea that the interior of the Sun could be viewed as concentric
layers of gas [145, p. 296]. The thought was to remain associ-
ated with the treatment of the internal constitution of the Sun
and was also used by Eddington in advancing his theoretical
treatment of the problem [19].

As for Faye’s debate with Kirchhoff, it was less than cor-
dial. The battle began when Faye improperly described Kir-
chhoff’s model in the literature [120]. Kirchhoff would re-
buke Faye for maintaining that horizontal convection currents
did not occur at the level of the photosphere: “Mr. Faye then
rejects the existence in the solar atmosphere of horizontal
currents which, in my hypothesis, must explain the different
movements of sunspots” [121, p. 398]. Unlike Kirchhoff, Faye
invoked internal convection currents with a vertical displace-
ment. On the surface of the Sun, he wanted voids to obtain the
spots, not horizontal currents [122, p. 403]. Faye responded
to the father of spectral analysis in the most inappropriate
tone: “I congratulate myself in having received a personal
intervention from Mr. Kirchhoff, because his letter explains to
me something of which I have always been profoundly aston-
ished, to know the persistence with which a man of such high
merit can sustain a hypothesis so incompatible with the best
known facts” [122, p. 401]. Faye, of course, referred to Kirch-
hoff’s cloud model of sunspots. In any case, Faye’s arrogance
in the published article was met eventually by a sound defeat
at the hand of Kirchhoff [124].

Faye was so concerned by Kirchhoff’s first letter of ob-
jection that he drafted a second response, which was mathe-
matical in nature [123], even before the German had the op-
portunity of reply to his first answer [122]. In this letter, the
Frenchman invoked that the nature of sunspots was similar
to the darkened grid associated with solar granulation. He
went on to dispute, like his mentor Arago (see Section 3.3),
the existence of the corona [123]. Both statements were er-
roneous. Then, Faye opened a new line of defense for his
sunspot theory and the controversy relative to seeing through
the Sun. He believed that he could counter Kirchhoff and
Spencer by advancing that the gas density inside the Sun was
not homogeneous. He began by arguing that the interior of
the Sun was highly variable in density [123, p. 222–223]: “In
consequence this central density must be many hundreds or
even thousands of times superior to that of the superficial
layer which forms the photosphere”. Once again, he failed to
credit Spencer, this time regarding varying internal solar den-
sities [105]. Faye then proposed a gaseous internal medium
which could be viewed as spherical layers of material [123,
p. 222–223]. He advanced the same idea a year earlier dur-
ing a discussion with Father Secchi [146]. The concept has
remained in astronomy to the present.

Finally, Faye made his critical misstep. He invoked that
a ray of light which hit the higher density of the mass inside
the Sun was refracted inward and unable to escape. The as-

tronomer then audaciously charged Kirchhoff with failing to
understand the consequences of a non-homogeneous solar in-
terior.

Kirchhoff was severe in his defense. Using his law of
thermal emission, Kirchhoff disarmed Faye. He reminded the
scholar that the radiation inside an opaque enclosure must be
black [124]. As such, Kirchhoff was, ironically, the first per-
son to postulate that the radiation inside a gaseous Sun, sur-
rounded by an enclosing photosphere, must be black. In re-
ality, Kirchhoff’s conclusion was only partially correct. The
solar photosphere produced a thermal spectrum. However,
it was not truly black, since the Sun maintained convection
currents which prevented this possibility. Nonetheless, if the
photosphere was condensed and perfectly enclosed a gaseous
solar body, then that interior would have to contain the same
thermal radiation as emitted on the solar surface. Still, Kirch-
hoff was mistaken in believing that the radiation would have
to be black. It would take many years before this reality be-
came apparent [61–66]. In any case, Kirchhoff’s arguments,
though not completely sound, well surpassed Faye’s physi-
cal knowledge of the problem. With time, the modern the-
ory of the Sun eventually applied Kirchhoff’s ideas to the
problem of internal stellar opacities. In doing so, it removed
the condensed nature of the photosphere as a primary source
of photons. Therefore, there was a great difference between
the problem addressed by Faye and Kirchhoff and the cur-
rent gaseous models of the stars. Kirchhoff and Faye were
dealing with photons produced initially by condensed matter
in the photosphere. The modern theory holds that such pho-
tons could be generated in the solar core, without recourse to
condensed matter and without having the Sun enclosed by its
condensed photosphere.

The great battle between Faye and Kirchhoff over the na-
ture of sunspots and the solar constitution would end with a
whimper. Faye advanced [125] that Kirchhoff had abandoned
his model, because the German failed to defend it in his re-
buttal letter [124]. Kirchhoff retorted by emphatically arguing
that he continued to defend his solar theory [126].

As for Faye, he was completely unable to respond to Kir-
chhoff’s closing argument on the presence of blackbody radi-
ation inside a gaseous solar model. In 1872, he finally aban-
doned his first theory of sunspots, replacing it with cyclonic
formation, an idea for which he once again failed to credit
Spencer. Yet, in closing the openings he had created in the
photosphere, Faye finally referred to Spencer [119] for his
“famous objection”. By this time, the problem of internal so-
lar opacity had become irrelevant. Mankind became, at least
for the moment, theoretically unable to “see within the Sun”.
The fully gaseous models, advanced in the 20th century, rein-
troduced the concept that scientists could visualize differing
depths within the Sun. Despite the lack of the enclosure, as
required by Kirchhoff in his 1867 letter [124], the modern
solar interior has been hypothesized to contain blackbody ra-
diation [15–17].
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As a point of interest, the differences between Faye’s,
Secchi’s, and Lockyer’s concepts of sunspots have been re-
viewed in the 1896 version of Young’s classic text [8, p. 182–
190]. Today, nearly all of these ideas have been abandoned.
Much of the controversies which called for the dismissal of
Kirchhoff’s condensed photosphere have long ago evaporat-
ed. The Wilson effect alone remains [84], as a standing tribute
to that great English astronomer, who unlike Faye and many
of his contemporaries, was so careful relative to queries and
conjectures.

4.6 Discord, stellar opacity, and the birth of the gaseous
Sun

Imagine a gaseous Sun. The idea was so tantalizing for men
of the period that it became a source of instant quarrel for pri-
ority. Secchi gently rebuked Kirchhoff [95], absolved Faye
[144], and defended himself against Lockyer [5, p. 500–515].
Faye, in turn, battled with Kirchhoff [121–127] and after se-
curing the blessing of Father Secchi [144], was quick to an-
nounce his innocence before the Académie: “This letter [from
Secchi] demonstrates that we followed at the same time, Fa-
ther Secchi and I, a train of ideas which was altogether sim-
ilar. . . ” [145, p. 468]. Like his English counterparts, Faye
acted as if he was also unaware of John Herschel’s 1864 arti-
cle [97]. But what could be said of this coincidence of ideas?
Was it really possible that, in the span of a few months, Sec-
chi, Herschel, Faye, Lockyer and Frankland, and de la Rue
along with Stewart and Loewy all independently conceived
of the same idea? Faye addressed the question: “With re-
spect to the analogies that Father Secchi signals with reason
between his ideas and mine, coincidences of this type offer
nothing which can surprise, identical ones [ideas] are pro-
duced every time that a question is ripe and is ready for a
solution” [145]. But surely, the argument could not be ex-
tended to every prominent astronomer of the period. Being
first and very likely ignorant of Spencer’s English text [104],
only Secchi could claim truly independent thought.

After hearing from the Jesuit astronomer, Faye finally
cited Magnus [145, p. 471], the scientific element which was
central to his model, but which, unlike Secchi, he had so ne-
glected in his earlier works. However, if one accounted for
Spencer’s and Secchi’s ideas in Faye’s famous papers [111,
112], there was not much left as original thought. The most
significant exception was Faye’s idea that the photosphere of
the Sun was devoid of a real surface [13, p. 42], also advanced
in Les Mondes [143]. Faye believed that the “presence of the
photosphere does not interrupt the continuity of the [central]
mass” of the Sun [143, p. 301] and insisted that “This limit is
in any case only apparent, the general milieu where the pho-
tosphere is incessantly forming surpasses without doubt more
or less the highest crests or the summits of the incandescent
clouds” [143, p. 298]. Such was the first consequence of the
gaseous models: there could be no defined solar surface. The
problem continues to haunt astrophysics to this day [57,146].

With Faye, the Sun lost its distinct surface.
It is evident that Faye never properly acknowledged Spen-

cer [120, p. 235]. Nonetheless, he remained delighted that
his works had been immediately reviewed in The Reader by
Lockyer, as evidenced by his 1865 letter [145]. As such, it
is doubtful, as early as 1865, that he never knew of Spencer’s
rebuttal [105]. Faye behaved as if concerns against his “trans-
parent solar interior” originated exclusively from Kirchhoff
as late as 1866 [121]. In fact, it was clear that the criticism of
seeing through the Sun had been swiftly leveled by Spencer
[105, p. 228]. Since Kirchhoff was a friend of Roscoe [61], it
was not unlikely that he quickly became aware of The Reader
series. Once again, Spencer wrote: “But if these interior
gases are non-luminous from the absence of precipitated mat-
ter must they not for the same reason be transparent? And if
transparent, will not the light from the remote side of the pho-
tosphere, seen through them, be nearly as bright as that from
the side next to us?” [105, p. 228]. Meadows argued that this
criticism of Faye’s work originated from Balfour Stewart [13,
p. 41–42], but did so without citation. In fact, the reference
to Balfour Stewart was provided by Norman Lockyer, when
he reprinted his letters, in 1874, and added a footnote giving
credit to Balfour Stewart over Kirchhoff [5, p. 57], well after
Spencer made his case. This was how Lockyer distorted the
scientific record using a footnote: “This note was added to
the article as it originally appeared, as the result of a conver-
sation with my friend Dr. Balfour Stewart. I am more anxious
to state this, as to him belongs the credit of the objection, al-
though, as it was some time afterwards put forward by Kirch-
hoff, the latter is now credited with it, although it was noticed
by Faye, Comptes Rendus, vol. lxiii, p. 235, 1866. The idea is
this: — If the interior solar gases are feeble radiators, then,
on the theory of exchanges, they must be feeble absorbers;
hence they will be incompetent to absorb the light coming
through the hypothetically gaseous Sun from the photosphere
on the other side (1873)” [5, p. 57]. One can only wonder why
the discoverer of Helium, one of the great fathers of spectral
analysis, and the founder of the journal Nature, insisted on
altering the historical record. Apparently, Spencer was not as
weak in thermodynamics, as previously argued [106].

4.7 Stewart, Kirchhoff, and amateurs
Stewart had been an author on the initial paper with de la Rue
and Loewy [133–135]. But suddenly, he detached himself
from this position when he discussed the photosphere, with-
out invoking the presence of a gas: “Next with regard to the
photosphere or luminous envelope of the Sun, this surface,
when viewed through powerful telescopes, appears granu-
lated or mottled. . . But besides this there is reason to believe
that great defining as well as magnifying power discloses the
fact that the whole photosphere of the Sun is made up of
detached bodies, interlacing one another, and preserving a
great amount of regularity both in form and size” [147]. Thus,
when Stewart wrote independently, it was obvious that he ac-
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tually believed that the photosphere was a liquid or solid. In
this respect, he became aligned with Spencer and Kirchhoff
on the condensed nature of the photosphere.

In his Lessons in Elementary Physics, Stewart persisted in
breaking from de la Rue and Loewy [148, p. 279]. This was
the case even in the edition published closest to the end of his
life. In this classic text for its day, Stewart stated: “If we throw
upon the slit of our spectroscope an image of the Sun or of one
of the stars, with the view of obtaining its spectrum, we find a
large number of black or dark lines in a spectrum otherwise
continuous, and we argue from this that in the Sun or stars we
start with a solid or liquid substance, or at any rate with some
substance which gives us a continuous spectrum, and that be-
tween this and the eye we have, forming a solar or stellar
atmosphere, a layer of gas or vapours of a comparatively low
temperature, each of which produces its appropriate spectral
lines, only dark on account of the temperature of the vapours
being lower than that of the substance which gives the contin-
uous spectrum” [148, p. 279]. Again, there was no mention of
a gaseous photosphere supporting condensed matter precipi-
tates in this description of the problem. In fact, this passage
echoed Kirchhoff’s explanation [43], as Stewart was all too
aware of the nature of thermal emission in gases [149].

Hence, the Scottish physicist very much desired that the
photosphere be condensed, as evidenced initially in his 1864
article: On the Origin of Light in the Sun and Stars [150].
In this work, Stewart advanced that planets could alter the
brightness of stars by modifying the amount of sunspots. He
tried to answer the question “From all this it is evident that in
the case of many stars we cannot suppose the light to be due
to an incandescent solid or liquid body, otherwise how can
we account for their long continued disappearance?” [150,
p. 452]. The entire manuscript was aimed at accounting for
this disappearance, even if the photosphere was solid or liq-
uid. He stated in this regard “if it can be proved, as we
think it can, that a disc full of spots is deficient in luminos-
ity” [150, p. 452]. Stewart made this conjecture to explain the
occurrence of variables [150]. For him, the photosphere had
to be liquid or solid. But variable stars posed a tremendous
scientific difficulty. As a result, he required something like
planets to modify their emission cycles [150]. Stewart recon-
ciled his desire for a liquid or solid photosphere within these
types of stars by stating: “the approach of a planet to the
Sun is favourable to luminosity” [150, p. 454]. His desire for
condensed matter was so powerful that Stewart advocated the
scientific error that Venus itself can modify the appearance of
sunspots [150, p. 454]. Regrettably, Stewart would eventually
discover Loewy’s misconduct while producing mathematical
reductions relative to the work at Kew [151, p. 361]. This
would place a considerable tarnish on the Kew group, and
Stewart would never again speak on planetary effects relative
to sunspots.

Earlier, in Origin of Light [150, p. 450–451] Stewart had
viewed sunspots as cavities on the Sun, produced by an open-

ing in the photospheric matter revealing the dark nucleus of
the interior. In 1864, just prior to the paper with de la Rue
and Loewy, Stewart stated that the Sun possessed with a solid
body [150, p. 451]. The concept was similar to Wilson [84].

Despite Loewy’s misconduct [151], Stewart could not
long maintain a fully gaseous photosphere, given his exten-
sive knowledge of thermal emission in gases [149]. Clearly,
he had not embraced de la Rue’s model [133–135] and the
claim by Lockyer, discussed in Section 4.7, that the photo-
sphere could be completely gaseous and devoid of any con-
densed matter [37]. On the same note, Stewart’s entire discus-
sion on thermal radiation, in his classic physics text, is well
worth reading [148, p. 270–297]. It revealed his profound
knowledge of such processes and also his understanding that
gases cannot produce the continuous spectrum required.

Stewart maintained support for what is essentially Kirch-
hoff’s liquid photospheric model. He did so despite his pre-
vious adversity with the German [61, 139]. In this regard,
he was being guided by the same scientific reasoning as his
former detractor [43]. The Scottish scientist also held pro-
found values [140, 141, 150]. As such, it is comforting to
notice how, in some sense, the two men were now reconciled.
Stewart’s continued support for Kirchhoff’s condensed pho-
tosphere, was astounding as it de facto dismissed any previ-
ous arguments relative to Andrew’s critical temperature [28]
and line broadening [37]. For Stewart, the primary determi-
nant of the phase of the photosphere was its thermal emis-
sion. The same held true for Kirchhoff. Yet, Stewart’s insis-
tence was important because it continued well after critical
temperatures and line broadening had entered the halls of as-
tronomy. Those who maintained that the photosphere was
gaseous, therefore, continued alone on their journey. They
marched on without the support of the two great experts in
thermal radiation: Gustav Kirchhoff and Balfour Stewart.

As for Spencer, if there was any merit in his work, other
than his obvious and justified claim of priority, it was that he
foresaw internal convection currents, variable solar density,
and the tremendous problem of internal stellar opacity. The
last of these, contained in the “famous objection”, remains a
key problem with the idea of a gaseous Sun, despite all at-
tempts to rectify the situation [69, 70]. But what is most fas-
cinating about this philosopher, remains his amateur status in
astronomy. Karl Hufbauer has commented on the contribu-
tions of amateurs to astrophysics [152]. Bartholomew argues
as though there was little room for Spencer and his theoret-
ical ideas in solar science [106]. In this regard, he stands
in profound opposition to George Hale, one of the greatest
solar observers and the founder of the Astrophysical Jour-
nal. In 1913, Hale defended the special place of amateurs
in astronomy when he drafted the moving obituary of Sir
William Huggins: “If it be true that modern observatories,
with their expensive equipment, tend to discourage the seri-
ous amateur, then it may be doubted whether the best use is
being made of the funds they represent. For the history of sci-
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ence teaches that original ideas and new methods, as well as
great discoveries resulting from the patient accumulation of
observations, frequently come from the amateur. To hinder
his work in any serious way might conceivably do a greater
injury than a large observatory could make good. . . Every
investigator may find useful and inspiring suggestions in the
life and example of Sir William Huggins. Their surest mes-
sage and strongest appeal will be to the amateur with limited
instrumental means, and to the man, however situated, who
would break new ground” [153].
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On the Theory of Sunspots Proposed by Signor Kirchoff

A. Secchi
Observatory of the Roman College, Rome, Italy

Eileen Reeves (Department of Comparative Literature, Princeton University, Princeton,
New Jersey, 08544) and Mary Posani (Department of French and Italian, The Ohio
State University, Columbus, Ohio, 43221) provide a translation of Father Pietro Angelo
Secchi’s classic work “Secchi A. Sulla Teoria Delle Macchie Solari: Proposta dal sig.
Kirchoff ” as it appeared in Bullettino Meteorologico dell’ Osservatorio del Collegio
Romano, 31 January 1864, v.3(4), 1–4. This was the first treatise to propose a partic-
ulate photosphere floating on the gaseous body of the Sun. The idea would dominate
astrophysical thought for the next 50 years. Secchi appears to have drafted the article, as
a response to Gustav Kirchhoff’s proposal, echoing early Galilean ideas, that sunspots
represented clouds which floated above the photosphere. Other than presenting a new
solar model, noteworthy aspects of this work include Secchi’s appropriate insistence
that materials do not emit the same light at the same temperature and his gentle rebuke
of Kirchhoff relative to commenting on questions of astronomy.

We gestured in passing in the second number of volume II
[of the Bullettino Meteorologico dell’Osservatorio del Colle-
gio Romano] to the theory offered by Signor Kirchoff, as a
substitution for the current view, about sunspots. This the-
ory has been something of a sensation, since it is the view
of a scientist who has rightly gained immense popularity and
esteem for his magnificent discoveries concerning the solar
spectrum. For this reason, some consideration of his theory
is in order, and we will avail ourselves of the various studies
that have recently appeared.

Signor Kirchoff rejects both the theory of Herschel and
that of Wilson. We will first permit ourselves the observation
that it is one thing to refute Herschel’s theory, and quite an-
other to refute Wilson’s, and that when the first is laid to rest,
the second one hardly collapses. Herschel maintained that
the solar nucleus was solid, dark, and covered by two layers
of luminous clouds, one a certain distance above the other,
separated from each other by a non-luminous layer, and he
attributed the sunspots to ruptures in these layers. The nuclei
formed the body of the sun, which was relatively darker, and
visible through the openings in both of these atmospheres; the
penumbras were caused, according to Herschel, by the larger
rupture in the second luminous layer. Signor Kirchoff does
not like the idea of these two atmospheres, and in truth, we
have never accepted them either, because they were not nec-
essary, and they were always obliged to rupture together. As
a result of our numerous studies, carried out with powerful
instruments and with close attention, we concluded that the
penumbra was for the most part formed by filamentous cur-
rents of the single photosphere that enveloped the sun, or of
the same material, rendered so thin that it was transparent. We
called attention to the presence of hazes and cirri, lighter than
the nuclei, but darker than the penumbras, that were some-
times found within the sunspots; in this we confirmed the
discovery of Signor Dawes, who has justifiably complained

that until now, no one who studies this phenomena has paid
attention to this matter.

Among the issues that have most recently engaged the at-
tention of solar observers is the structure that Signor Nasmyth
has called the “willow-leaf” shape. That is, when one ob-
serves the sun using reflectors of great size and oculars with-
out darkened lenses,∗ but in which the light has been weak-
ened, in order to render it tolerable to the eye, by the reflec-
tion of a strip of glass, the structure of the sun looks as if it
is formed of many elliptical and luminous pieces, elongated
in the shape of leaves, and piled one upon the other. They
appear more isolated and detached from each other around
the penumbras, where they resemble numerous leaves cross-
ing each other, and they are extended in more isolated fashion
within the very core of the nucleus.

We have not yet had the opportunity to observe this
[willow-leaf] pattern, but we see that even Signor Dawes is
in the same circumstances: he finds that the solar structure
described by Sir John Herschel, that is, composed of a sort of
luminous flakes, is what most closely resembles the appear-
ances observed over the course of many years of research,
and in regard to the penumbras, he agrees that there are bright
parts, like currents that make their way into the nuclei cross-
ing through the penumbra and retaining all the splendor of
the photosphere, and not of the penumbra. This squares with
what we ourselves have always observed, and we likewise
have always insisted on the three types of substances that are
to be seen in each spot: the true nucleus, the penumbra, and
the semi-luminous cirri. In order to explain these phenom-
ena, there is no need to rely on two strata of luminous clouds.
What suffices, instead, is a simple incandescent photosphere,
mixed with less luminous vapors — as one sees in eclipses

∗Offuscanti refer to the dark colored lenses of the type Christoph
Scheiner and others put on telescopes if they were observing rather than pro-
jecting sunspots.
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— in which the ruptures develop, for reasons difficult to as-
certain but easy to conjecture, and through which tears one
could see the central and less bright part of the star.

But it is precisely this central and darker part that ap-
pears a great absurdity to Signor Kirchoff. He asks how it
can be maintained that upon contact with such an incandes-
cent body, and under radiation as strong as that of the photo-
sphere, the nucleus itself has not also reached incandescence
and fusion. That is [in his view] an absurdity contrary to all
the laws of physics. With all the respect that is due to such
a distinguished scientist, we believe that this is an exaggera-
tion. First of all, no one has ever said that the nucleus was
cold, and if it is dark, it is only in relative terms; Galileo him-
self said as much in his own epoch, and photography proves
the chemical intensity of the nuclei [of sunspots] is so ac-
tive that in order to obtain an image, one must act instantly,
for otherwise the nuclei also are indistinguishable from the
photosphere. The difference, therefore, has little to do with
their luminosity, and if we were to see one of these nuclei
in isolation, perhaps we would hardly be able to distinguish it
from an adjacent portion of the sun. Kirchoff relies greatly on
the principle that all substances become luminous at the same
temperature in order to prove that the core of the sun must
be as bright as the photosphere. Here it seems to us that two
quite different matters have been conflated: that is, the point
at which bodies begin to excite luminous waves capable of
being perceptible to the eye, and the fact that all [substances]
at the same temperature should be equally luminous. We can
accept the first of these propositions, and wholly reject the
second. In furnaces we see gases of entirely different lumi-
nosity from that of solids, and the strongest [hottest] flame
that is known — that is, that of the oxyhydrogen blowpipe —
is it not one of the least luminous? Thus the conclusion that
the parts that form the solar nucleus should be as luminous as
the photosphere can hardly be maintained. Nor does it follow
that what we call “nucleus” should be either solid, or notably
less elevated in temperature, but only in a less luminous state;
it could even be liquid or gaseous, and only in this state will
those lively specific actions that take place in the photosphere
fail to occur. The analogy with all planets, as Soret has rightly
observed, tells us that the heavier parts should accumulate on
the lower stratum, and the lighter ones on the surface, and
between these are the gases and the more tenuous materials
from whose modifications sunlight is produced. Thus there
no longer remains the much-sung absurdity of admitting that
beneath the extraordinarily incandescent layer of the photo-
sphere there could be another stratum, perhaps equally warm,
but less luminous than it, and that makes itself visible to us
when the more incandescent layer of the photosphere itself
ruptures.

Moreover, if we reflect carefully, it is not possible to con-
cede an absolute identity in temperature in the various parts
of the sun. Indeed, the continuous labor that takes place in
that body and the continuous emission of heat suppose that

one part must remain in an ongoing state of chemical alter-
ation, and another must be on the verge of entering it; the for-
mer might be the photospheric part, and the latter the central
and less luminous region, precisely as we observe in ordinary
fires. And we would not like to omit the fact that if we were
to concede the argument of someone in favor of a sun where
all parts are of an equal temperature, that the same could be
concluded, following the same logic, about our own furnaces.
We are not saying this as if the sun were actually a furnace in
which wood were burned; we are saying, rather, that the work
itself that takes place to conserve solar activity supposes the
existence of some parts that are more intense, and others that
are less so. Were this not the case, we would risk regard-
ing the sun as a merely incandescent body, which Thomson
has demonstrated could not remain luminous for even a few
thousand years.

Treating Wilson’s theory as absurd shows that this notion
has been confused with that of Herschel, when in fact there
is some difference between the two. Wilson said only that
the sunspots were cavities, and subsequent observations have
verified this fact. But no one ever said that these cavities had
within them a void, in the rigorous sense of that word; rather,
the cirri that can be observed across [the cavities] show that
they are full of a less incandescent gas, but that sometimes can
be very clearly seen turning in vortices and currents. Now if
this is the case, what are these cavities if not simply spaces
full of less luminous, and thus less incandescent, material?
Signor Kirchoff prefers to imagine them as clouds or rather
cooler masses. There is not, in fact, much to distinguish the
two hypotheses, finally, provided that the terms are well de-
fined. The difference is further diminished if we see the origin
of such clouds that is attributed to vortices and cataclysms,
which is the cause that we, too, have often attributed to the
origin of the sunspots.

The only point of controversy that remains is to decide if
that black [part] that is called the “nucleus” is a part of that
general ground that remains beneath the photosphere, or if
it was produced by the opacity of a cloud or a cooler mass
which prevented the rays from the more luminous part be-
neath from reaching us.

This issue can only be resolved after scrutiny of the
shapes and the phases of the sunspots themselves, and not
in a priori fashion. Now the study of their shapes does not
agree at all with that of clouds as far as we can judge from
what happens in our atmosphere and what can reasonably be
imagined to take place in an incandescent atmosphere such as
that of the sun.

In fact, sunspots present themselves to us from the outset
like black pores, in which it would not be difficult to recog-
nize the idea of clouds, but soon enough all analogy vanishes.
Because if the pore expands until it has the appearance of
a spot, it can be observed that its edges are ragged, and the
penumbra is formed entirely of very fine rays converging to-
wards the middle of the shape. The nucleus does not always
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present the outlines of the penumbra in rigorous fashion, as
has been said several times, but rather, a protruding angle
of the luminous material against the nucleus corresponds to
an angle sloping into the penumbra, just as would a cascade
of material that fell from the walls into the nucleus, which
would leave a scarp (talus) whose slope would increase as
greater amounts of material flowed. These are the phases
of all sunspots as long as they are in the first stage, which
seems to be that of formation and complete development, af-
ter which the phase of dissolution follows.

Thus it is apparent that this first phase cannot show us
anything that is similar to what should happen when a cloud
forms. The cloud should appear like a less luminous mass,
and should be either decisively separated from other warmer
ones as are our cumulus clouds, or shaded on the edges like
our stratus clouds; that radiating shape and the appearance of
currents running into a cavity and forming a distinct scarp will
not ever be observed, in any guise, at least in what we can per-
ceive and reasonably conjecture about our clouds. Whatever
the theory of sunspots might be, their appearance must first of
all be explained, and this appearance has yet to be explained
by any theory that compares them to clouds.

When the sunspot has reached its full development, it
shows vast black surfaces in which brilliant threads erupt like
radiant torrents all around the photosphere, twisting in long
contorted lines within the nuclei and breaking, as noted ear-
lier. Now if we were to judge what is happening there on
the basis of what happens in our atmosphere, these eruptions
of warm masses within cold ones, occurring in such fash-
ion that they remain distinct and constantly separated, cannot
be observed by us at all, nor does it appear that they can be
formed, because the cloudy opaque mass would either block
them from our view, or the mass itself would diminish the
light, thus cooling down the torrent that penetrates within [the
nuclei] with that linear movement. Now as we have already
observed several times, and as Signor Dawes has recently re-
peated as well (in the latest number of the Monthly Notices)
the filaments of the photosphere that penetrate into the nuclei
maintain an extremely brilliant light, as bright as the photo-
sphere itself. Such a structure for the sunspots hardly con-
firms the idea of clouds.

When the sunspot is in the last phase of dissolution, the
penumbra is less regularly radiated, and it seems formed of
the thinnest and most tenuous part of the photosphere itself.
In this phase it can be said that it has some analogy with
clouds, but a theory, of course, must give an account of all
the phases. There is, moreover, a circumstance of which the
analogy with clouds explains nothing, and that is the presence
of faculae that surround the sunspots.

These faculae are nothing other than the crests of the tem-
pestuous waves excited by the photosphere, waves whose
peaks emerge from the denser stratum of the solar atmo-
sphere, as I have shown at length in other publications. They
seem in fact formed by the photospheric matter that has been

hurled about by the internal force that creates the sunspot. If
the sunspot were nothing but a cloudy formation, there would
be no explanation for why its contours should be agitated and
violently thrown into disarray. Everything indicates that the
sunspots are centers in which the temperature is less, and I
have demonstrated as much with the thermoscope. But it is
also clear that the source of these lacunae is rather an eruption
coming from the inside of the nucleus, rather than a simple
drop in temperature produced in the photosphere by factors
analogous to those in terrestrial meteorology, which would
be difficult to imagine in the sun, whereas internal eruptions
cannot be avoided in a body placed in such conditions.

But there is something more: Herschel, in order to ex-
plain the penumbras proposed two layers to the photosphere,
just as Signor Kirchoff proposed two layers of clouds which
were always obliged to appear together, the one above the
other. These two strata are surely a pure expedient to ex-
plain the penumbras, of whose composition we have already
spoken, and which can be explained merely by proposing a
simple photosphere with those features that are inseparable
from fires of this sort. The hypothesis of the clouds has been
frequently been raised, but always by those who either have
not carried out much solar study, or who have undertaken it
with imperfect and mediocre instruments. Thus this hypothe-
sis has always been rejected by those who had at their disposal
better means of observation. There is no need of the goal of
proposing a less luminous nucleus, nor of that effort (as per-
haps has been excessively emphasized) to revive the old fan-
tasies of the habitability of the sun, because if the Creator had
wanted to make this star habitable there would have been no
need to place men of flesh and blood like us there, as they
would be incinerated within a few seconds; nor is there any
need to imagine, for that reason, that the black layer is like
a tent to shelter such inhabitants from excessive rays. These
matters might be useful to amuse the readers of a treatise of
Fontenelle or of those who follow in his tracks. We are saying
only that without contradicting the laws of physics, first, that
the photospheric layer might possess a brilliance greater than
that of the internal nucleus; second, that what we call “nu-
cleus” absolutely does not need to be imagined either solid
or liquid, but might even be gaseous alone, but more dense;
third, that in spite of the proximity of the photospheric layer,
it might have not only a different light, but also a different
temperature; and fourth, that the appearances of the different
shapes of the sunspots absolutely rule out cloud-like struc-
tures, and we see nothing in the sunspots that has sufficient
analogies with the way in which our clouds are formed, or
the changes through which they go.

We wanted, therefore, to say these things less to object to
such a distinguished physicist, than to prevent science from
taking a retrograde course, especially since history shows that
persons of great authority in one branch [of knowledge] often
drag along, under the weight of their opinion, those who are
less experienced, even in matters where their studies are not
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sufficiently deep and where they should not have such influ-
ence. We hardly pretend to have given a true theory of the
sunspots, but we believe merely, as has been demonstrated,
that the notion that they are clouds is surely one of the most
infelicitous of hypotheses that can be imagined.

Acknowledgement

Chris Corbally and Sabino Maffeo of the Society of Jesus and
the Vatican Observatory are recognized for their assistance in
providing Professor Robitaille with copies of Father Secchi’s
original papers as they appeared in the Bullettino Meteoro-
logico dell’Osservatorio del Collegio Romano.

Submitted on April 28, 2011 / Accepted on April 28, 2011
First published in online on May 07, 2011

Secchi A. On the Theory of Sunspots Proposed by Signor Kirchoff 29



Volume 3 PROGRESS IN PHYSICS July, 2011

On the Structure of the Solar Photosphere

A. Secchi
Observatory of the Roman College, Rome, Italy

Mary Posani (Department of French and Italian, The Ohio State University, Colum-
bus, Ohio, 43221) and Eileen Reeves (Department of Comparative Literature, Prince-
ton University, Princeton, New Jersey, 08544) provide a translation of Father Pietro
Angelo Secchi’s classic work “Sulla Struttura della Fotosfera Solare” as it appeared in
Bullettino Meteorologico dell’ Osservatorio del Collegio Romano, 30 November 1864,
v.3(11), 1–3. Secchi’s paper was immediately translated into French by l’Abbé François
Moigno appearing on December 22nd, 1864 (Sur la structure de la photosphère du
soleil. Les Mondes, 1864, v.6, 703–707). Moigno’s translation prompted significant
interest in the nature of the Sun throughout Europe, with rapid claims of simultaneous
discovery by Harvé Faye (Faye H. Sur la constitution physique du soleil — premiere
parti. Les Mondes, v.7, 293–306) and others. In this article, Secchi reiterated that the
photosphere was composed of solid corpuscles floating on the transparent atmosphere
of the Sun. Secchi concluded that the body of the Sun was gaseous based on his vi-
sualization of solar granules or “willow leaves” described by Nasmyth (Nasmyth J. On
the Structure of the Luminous Envelope of the Sun — In a letter to Joseph Sidebotham.
Memoirs of the Literary and Philosophical Society of Manchester, 1862, 3rd Series,
v.I, 407–411). Secchi also referred to Magnus’ work on solid particles in the gaseous
flame (Magnus G. Notiz über die Beschaffenheit der Sonne. Poggendorff’s Annalen der
Physik und Chemie, 1864, v.121, 510–512; also in French Notice sur la constitution du
soleil. Archives des science physique et naturelles (Genève), 1864, v.20, 171–175). The
works by Sechhi, Nasmyth, Magnus, and Faye would dominate astrophysical thought
for the next 50 years.

In the first number of the Bulletin of this year we mentioned
in passing the discovery by Signor Nashmyth concerning the
structure on the sun which he named willow leaves, and which
was subsequently confirmed by other astronomers, who
found it preferable to call them grains of rice, because of the
greater irregularity in the forms of the oval parts that they ob-
served.

We said then that we did not yet have the means to exam-
ine this structure, because we lacked an ocular which would
enable us to examine the solar image without a black lens,
or darkener, and with a full aperture of the objective lens, an
apparently essential condition for the accurate observation of
these details. Recently, however, having received such an oc-
ular through the kindness of Warren de la Rue, we made, as
soon as the atmospheric circumstances permitted it, a series
of observations, which we now report, reserving for another
occasion a more extensive exposition.

The eyepiece of which we speak was formed with a plate
of dark red glass inclined at 45◦ that reflects a small portion of
the luminous rays, while it transmits a large portion of the oth-
ers, and especially those of caloric value; the axis of the eye-
piece by consequence remains at a right angle with the axis of
the telescope. In the more northern climates, and especially
in England, one can with this simple means of weakening of
the rays look at the sun without danger to one’s eyesight; but
for us it is impossible, and we must add a slight darkener. The
method of observing the reflection was proposed also by Sig-

nor Porro and P. Cavalleri: they had used, instead, two glasses
under the angle of polarization, where, because the reflecting
planes, were at right angles, the light becomes tolerable to the
eye without any other adjustment, and remains white.

With one or the other method, one can visualize the sun
much better than with colored glasses; the light remains
white, and thus we can distinguish many details that were
lost in the older method. However the polarizing system, in-
troducing a double reflection, requires a great perfection in
the optical reflectors, and thus, it is difficult to apply it to
large instruments, in which the reflective surfaces should be
rather broad. Instead of the reflective colored glass, one can
substitute a prism by reflecting rays on the hypotenuse exter-
nally (and not by total reflection). However one cannot use
a simple strip with parallel faces, because the second surface
would give an image that could disturb that of the first.

Applying therefore this new eyepiece to Merz’s great re-
fractor, maintaining an aperture of its nine inches, we could
immediately recognize a structure that truly differed greatly
from what is commonly observed. The bottom of the solar
disc appeared to be formed of a fine black mesh whose links
were very thin and full of bright points. It was not so much
the shape of the grid that surprised us — for we had seen it
also at other times with older methods — as its blackness,
which was truly extraordinary. It was such that we suspected
some illusion, but in concentrating on certain darker points
and finding them of unchanging and precise forms, we no
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longer remained in doubt about the reality of the aspect. Of
this grid-like structure we can give an approximate idea in
saying that the sun looked like a ordinary piece of rough paper
seen through a strong microscope; on this paper the promi-
nences are numerous and irregular, and where the light falls
rather obliquely, the bottom of the grooves are almost black
compared to the more elevated parts, which appear extremely
white.

The grid-like solar structure seemed to us to offer nothing
regular in those parts of the disc that are continuous, and thus
the term granular appears very appropriate. Nevertheless, in
the vicinity of the sunspots, that of willow leaf remains justi-
fied, because we actually see a multitude of small strips which
terminate in rounded tips, and which encircles the edge of the
penumbra and of the nucleus, resembling so many elongated
leaves arranged all around. The granular structure is more
visible near the spots, but it is not recognizable in the faculae;
these present themselves like luminous clusters without dis-
tinguishable separation, emitting continual light without the
interruption of dots or of that black mesh.

In the end, we have found the granular structure more no-
table and easy to distinguish in the middle of the disc than
near the limb, and in the zones near the sun’s equator, more
than in the polar zones. The first [of these features] is without
doubt an effect of the sun’s refraction: in fact, the transpar-
ent atmosphere which encircles the sun must, because of its
thickness and greater agitation, produce a greater confusion
near the limb. We seemed to have recognized a trace of the
effect of the refraction of this atmosphere in some of the sys-
tematic irregularities of the place of the spots near the edges,
found by Signor Carrington in his admirable recent publica-
tion about sunspots. The polar regions, as is known, have
a lower temperature and less agitation, and the spots do not
appear there. This grid suggests that the spots are but an ex-
aggeration of the minute holes which riddle the solar surface.

These are, in summary, the observations, which certainly
raise a great number of questions. First of all, are these new
findings? We believe that, in the end, these are the same
granulations that have long since been pointed out by ob-
servers, under the name of “lucules” and “pores”, and that
with the new method they can better be distinguished. Be-
cause, since we can in this manner utilize a large aperture,
the phenomenon of dilatation of luminous points or circles
of diffraction that the objective lens forms are considerably
diminished, and, as a consequence, we can better recognize
the details, because each luminous center remains completely
separated.

In the second place the rounded tips which surround the
nuclei and the penumbrae are not new — at least not us —
but rather are those that we have always indicated as evi-
dence of the luminous currents that run to fill the emptiness
of the spots. They are those types of currents that accumu-
late around the nucleus, and render the light appearing there
greater in intensity than in the remoter regions of the penum-

brae, just as the spokes of a wheel are more crowded together
near the axle than towards the circumference. However, we
must not omit the fact that with this means of observation,
the appearance of a continuous current seems in many cases
rather interrupted, and takes on instead the aspect of a multi-
tude of torn fragments, or as Dawes says, of truncated straws
that run towards the nucleus. But in any case, the more we
study with attention these phenomena, the more it is unac-
ceptable to us the idea that the spots are clouds. We do not
hesitate to say there is still much that is mysterious in this
structure, but certainly it has nothing to do with clouds, un-
less we wanted to say that the clouds are rather what form the
luminous element, and that this incandescent material rushes
in cumulus and in cirrus in the void of the spots, as we see
sometimes in our atmosphere the cumulus and the cirrus run
and fill in voids [in the sky].

Indeed this appearance suggests to us what is perhaps a
bold hypothesis. As in our atmosphere, when it is cooled to
a certain point, there exists a fine substance capable of trans-
forming itself in fine powder and of forming clouds in sus-
pension, (water transforming into so-called “vesicular” vapor
or into small solid icicles), so in the enflamed solar atmo-
sphere there might be an abundance of matter capable of be-
ing transformed to a similar state at the highest temperatures.
These corpuscles, in immense supply, would form an almost
continuous layer of real clouds, suspended in the transparent
atmosphere which envelopes the sun, and being comparable
to solid bodies suspended in a gas, they might have a greater
radiant force of calorific and luminous rays than the gas in
which they are suspended. We may thus explain why the
spots (that are places where these clouds are torn) show less
light and less heat, even if the temperature is the same. The
excellent results obtained by Magnus, who has proved that a
solid immersed in an incandescent gas becomes more radiant
in heat and light than the same gas, seem to lend support to
this hypothesis, which reconciles the rest of the known solar
phenomena.

In the third place, one will ask oneself if such appear-
ances are constant. It seems that we should say yes, since it
has been discussed for two years, but to observe them takes
no small practice and good instruments. Ours was extremely
well made, with a red lens from England, but it showed little
resistance to our [Italian] sun, and exploded into many pieces.
Now we have substituted a prism, but it emits too much re-
flected light, and its surface is perhaps not perfectly polished.
Nonetheless, we continue to see with clarity a grid and the
other phenomena mentioned above. But the principal obsta-
cle is the agitation of the air, which by mixing all these small
shapes, makes a general confusion and flattens everything, for
which reason they are only seen intermittently on those days
that are anything short of perfectly calm. However, by mov-
ing the telescope slowly we can see the granulations much
more easily than when we hold it fixed, and once they are
recognized, it is easy to follow them and to study their forms.
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May these indications suffice for now; the numerous other
questions raised by this new method of observation and by
this structure will be resolved with time. For now it is certain
that this mode of observation can be said to have truly been a
new conquest of practical astronomy.
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A Note on the Constitution of the Sun

H. G. Magnus
University of Berlin, Germany

Patrice Robitaille (TAV College, Montreal, Canada) provides a translation of Heinrich
Gustav Magnus’ classic work Notiz über die Beschaffenheit der Sonne, as it appeared in
March 1864 within Poggendorff’s Annalen der Physik und Chemie,1864, v.131, 510–
512. The article had previously been translated into French: Notice sur la constitution
du soleil. Archives des science physique et naturelles (Genève), 1864, v.20, 171–175.
This work formed the basis of the present translation. Heinrich Gustav Magnus (May
2, 1802 – April 4, 1870) was a professor at the University of Berlin and had studied
in Paris under Joseph Louis Gay-Lussac. He would count amongst his students Wil-
helm Beetz, Hermann Helmholtz, Gustav Wiedemann, John Tyndall, Rudolph Weber,
and Adolph Wüllner (Heinrich Gustav Magnus, Platinum Metals Review, 1976, v.20(1),
21–24). In his Notiz, Magnus demonstrated that the addition of sodium hydroxide to the
gaseous flame resulted in a tremendous increase in luminosity. Magnus’ work would
inspire Father Secchi to propose that the Sun was a gaseous globe whose photosphere
contained condensed particulate matter (Secchi A. Sulla Struttura della Fotosfera So-
lare. Bulletino Meteorologico dell’ Osservatorio del Collegio Romano, 1864, v.3(11),
1–3; English translation in Progr. Phys., 2011, v.3, 30–32). Magnus’ report on the
constitution of the Sun would continue to impact solar physics for two generations.

Already in 1795, W. Herschel∗ advanced the idea that the
Sun is formed of an obscure nucleus surrounded by an at-
mosphere or photosphere from which light and heat are emit-
ted. Between this photosphere and the nucleus, he also admits
the presence of a reflective atmosphere whose reflection pre-
vents the light of the photosphere from reaching the nucleus.
Arago† in exposing this hypothesis which he gives as gener-
ally accepted‡, remarks that the photosphere determines the
outer edge of the Sun, but that the photosphere is itself sur-
rounded by a diaphanous atmosphere; he comes to this con-
clusion through the observation of the protuberances [flares
and prominences] during total eclipses of the Sun. Herschel§

says that the photosphere is neither liquid nor gaseous, but
that it is made up of luminous clouds. According to our cur-
rent knowledge of the radiation of light and heat, it is dif-
ficult to admit that the photosphere, from which solar heat
emanates, does not heat to the point of incandescence the
nucleus that it surrounds. The intermediate reflecting atmo-
sphere, whose existence was assumed, could very well stop
the passage of light but not the progressive heating of the nu-
cleus. It is therefore with reason that Mr. Kirchhoff¶ says that
this hypothesis which was devised to explain sunspots, is in
such total contradiction with our knowledge of physics, that
we should reject it even if we cannot come to make compre-
hensible, in another way, the phenomenon of sunspots.

Mr. Kirchhoff was guided by his research on the solar
spectrum to admit that the Sun consists of a solid or liquid

∗Philosophical Transactions for 1795, page 42.
†Astronomie populaire, Vol. II, page 94.
‡Ibid., page 143.
§Philosophical Transactions for 1795, page 71.
¶Denkschriften der Berliner Acad. Der Wiss., 1861, page 85.

nucleus, brought to the highest incandescence and surrounded
by a diaphanous atmosphere with a slightly inferior tempera-
ture.

I do not know that we have as yet deduced from the nature
of the heat that emanates from the Sun, a conclusion on its
constitution; we could but mention the observations of Rev-
erend Father Sechi‖ relating that the poles emit less heat then
the Sun’s equator. Some of the experiments that I have con-
ducted on calorific radiation, allow, I think, for new views on
the constitution of this celestial body.

If we observe the heat that emanates from a non-luminous
gas flame, and if we introduce a bit of sodium hydroxide
which, as we know, renders it extremely luminous, we see at
the same time, that the calorific radiation increases. The ex-
periment was carried out in such a way that we were always
comparing a predetermined place of the sodium hydroxide
flame, with the same place of the non-luminous flame, and
this in such a way that the sodium hydroxide introduced into
the flame, could not radiate over the thermo-electro battery
used for observation. Evidently, in this case, part of the heat
of the flame was used to bring to incandescence or to vaporize
the sodium hydroxide and the platinum blade on which it was
found in such a way that, in the end, the flame had a lower
temperature than before when it was not luminous, and yet it
emitted about a third more of the heat that it had previously.

It can be that the sodium hydroxide was contained within
the flame in a state of vapour or that particles removed from
that body that augmented the illuminating power. Whatever
the case may be, I choose, to shorten the discourse, the des-

‖Comptes rendus de l’Acad. Des sciences, Vol. XXXV, page 606 and
Vol. XXXVI, page 659.
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ignation of sodium hydroxide vapour.
By introducing in the place of this vapour a platinum disk

in the same area of the flame that was being studied, the heat
that the flame emitted became even more considerable than
previously recorded. The platinum blade evidently removed
from the flame even more heat than the sodium hydroxide,
but it, however, radiated even more. With the blade that I was
using and whose diameter was 55 mm, the radiation became
nearly twice as strong then when the flame did not throw off
any light. We did not observe any fundamental difference by
making the blade thicker or thinner, so long as the diameter
remained the same.

But if, instead of making the blade thicker, we covered
it with sodium carbonate, then the radiation increased again
considerably; it became fifty percent stronger than with the
platinum blade without any sodium hydroxide.

The radiation would rise even more, when, apart from the
platinum blade being covered with sodium hydroxide, there
was also sodium hydroxide vapour in the flame, this being
obtained by introducing in the lower part of the flame some
sodium hydroxide on a platinum blade, in the same way as
was done previously, that is to say without having the sodium
hydroxide radiating over the battery.

In this case, the flame being completely filled with sodium
hydroxide vapour coupled with the platinum blade covered
with sodium hydroxide, the flame emitted close to three times
more heat than the flame that was not luminous. Lithium
hydroxide and strontium hydroxide behaved like sodium hy-
droxide.

These experiments demonstrate that gaseous bodies emit
far less heat than solid or liquid bodies; and that, by con-
sequence; one cannot assume that the seat of solar heat re-
sides in a photosphere made up of gas or vapours. They also
demonstrate that, and this is especially striking, that incandes-
cent sodium hydroxide has a much greater radiative power for
heat than platinum at the same temperature.

Also, they demonstrate that sodium hydroxide vapour or
sodium hydroxide particles absorb only a small part of the
heat emitted by incandescent solid or liquid bodies. In fact,
the radiation of the solid body in the flame filled with sodium
hydroxide vapour was, it is true, always smaller than the sum
of the radiations of the solid body alone and of the vapour
introduced alone in the non luminous flame, but the difference
was small.

This manner in which incandescent liquid or vaporous
sodium hydroxide behaves confirms in a striking way the
views of Mr. Kirchhoff on the nature of the Sun.

Submitted on May 13, 2011 / Accepted on May 18, 2011
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On the Physical Constitution of the Sun — Part I

H. Faye
Académie de Nancy, France

Patrice Robitaille (TAV College, Montreal, Canada) provides a translation of Hervé
August Etienne Albans Faye’s classic report Sur la constitution physique du soleil, as
it appeared in February 1865 within Les Mondes,1865, v.7, 293–306. Hervé Faye (Oc-
tober 1, 1814 – July 4, 1902) led a distinguished life, both in science and public ser-
vice. He was widely regarded as one of the premier astronomers of his day. He had
studied under the great François Arago. In 1843, he became a Chevalier de la Legion
d’Honneur and, in 1877, served as the French Minister of Education (Catholic Ency-
clopedia, 1913). Faye’s report On the Physical Constitution of the Sun was a crucial
milestone in the history of astronomy. It was through this paper, that the Sun became
viewed as devoid of a distinct surface. The work was also interesting as it presented
Faye’s early conception of the gaseous Sun. In addition, through its submission, Faye
had sought the approbation of Father Secchi relative to claims of simultaneous discov-
ery (see P. M. Robitaille. A Thermodynamic History of the Solar Constitution — I: The
Journey to a Gaseous Sun. Progr. Phys., 2011, v.3, 3–25). Faye’s work would continue
to impact solar physics until the 1920s.

Why do astronomers have so much trouble describing the
physical constitution of the Sun? Why so many contradictory
conjectures? One tells us that the Sun is an opaque globe, ob-
scure, cold like ours, perhaps even inhabited, but surrounded
by a radiant aureole, from which is emitted the heat and the
light which, for thousands of centuries, has given life and
movement on our little world of planets. Yet another affirms
that it is a liquid globe, incandescent, surrounded by a vast at-
mosphere where float clouds of iron, sodium and magnesium
vapor, etc.

It is in such a way that the sciences make their first appear-
ance when they possess but a small number of facts and laws.
The human spirit needs conjectures in order to take interest in
the things that are beyond reach. But the question of the Sun
cannot remain where it is after two and a half centuries of dili-
gent observation. We have gathered, on this matter, the main
elements of a rational solution; it is now time to address it.

What is the difference between a conjectural solution and
a rational solution?

The first is quite simple; you have observed two or three
facts: to explain them, imagine as many particular entities
as there are facts, and try to coordinate them in a way to
avoid that they contradict each other. Before the telescope,
the only thing we knew about the Sun was its extremely pow-
erful heat and its unwavering brightness; the conjecture con-
sisted to say that this celestial body was formed of a subtle el-
ement, incorruptible, infinitely more noble than our terrestrial
flames which smoke and die out miserably. Also, the discov-
ery of sunspots would strongly appall the partisans who be-
lieved that the heavens were incorruptible; and when Father
Scheiner, to whom we owe such remarkable work on these
phenomena, went on to mention these to his superior, the lat-
ter replied to him: “I have read and reread Aristotle, but I

haven’t found anything there touching the things you tell me;
go, my son, hold your spirit to rest; there are no spots on the
Sun other than those that are created by the defects of your
eyes or of your telescopes”.

But the conjecture had to yield before the facts. These
facts, are described here in all their simplicity: black spots
are produced on that shining pool of fire; they are born, take
about two weeks to cover the distance of the solar disk, and
then pass over to the other side; we see them again at the
end of another two weeks; sometimes they persist for months;
normally, they disappear after a few weeks. These spots re-
ally look like holes; we can even distinguish, using powerful
telescopes, a less brilliant part that typically resembles the
embankments of these holes. The bottom seems completely
black. Black holes in a pool of fire! It is apparent that the
brilliant part is only a rather thin envelop of a very mobile lu-
minous fluid, covering a black core, and here lies the second
conjecture. We have lived a long time on that one and it has
its merit. The preceding one itself, I mean the incorruptibility
of celestial bodies, also had its own merit, since it represented
a great fact, still true today, as in the time of the scholastics.

Lastly, in more recent times, a capital discovery revels the
minds with much admiration: The rays of the solar spectrum
are explained; we reproduce them in the laboratory by placing
metallic vapors on the path of a beam of light that emanates
from an incandescent solid or liquid.

Let us conjecturally transport this experience to the sky:
the Sun will become an incandescent solid or liquid surround-
ed by a vast atmosphere of metallic vapors. But what about
sunspots? How can black holes form themselves in a liquid
or solid? Here, we must avoid an absurdity; the spots will
be produced by something exterior, precisely by the clouds of
that atmosphere, clouds formed of metallic vapors that begin
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to condense. Whatever can be said on the matter, this latest
idea, which seems to violate all facts, except one, nevertheless
answers to one of the most admirable discoveries of our time,
that of spectral analysis, which permits the pronouncement,
by the appearance of a light, on the chemical nature of the
environment through which it has travelled.

During this time, the facts were multiplying, I am not say-
ing at the time of Aristotle when we did not have telescopes,
but since Fabricius, Galileo, and Father Scheiner. Today, the
enumeration of observed facts offers a magnificent total. We
must ask ourselves, I repeat, whether, in the presence of these
facts, it is not time to renounce conjectures and to try a little
simple reasoning. This second method is that which defini-
tively constitutes science: it only comes after the first, but it
must also have its turn.

Here, it is no longer a question of guessing, but of link-
ing the phenomena through laws known in the physical world
to some simple and very general fact that we would not be
tempted to set aside. I do not know if I have succeeded, I am
certain, at least, that the time has come and, since it is a ques-
tion of pure logic, another, reasoning better, will succeed if I
have failed.

My starting point will naturally be solar heat. Everything
proves to us that this heat must be enormous; it must enor-
mously surpass the highest temperatures that we can produce
in our laboratories. However, the former suffices already to
break down a large number of bodies. We must therefore
consider chemical phenomena as being capable of occurring
beginning at a certain temperature scarcely remote from those
we can produce, but not above them. Above them, the el-
ements mix, but do not combine. In the same manner, the
phenomena of electricity, magnetism, life, occur at a certain
temperature, but not above it. There is reason to believe that
the Sun is at a temperature of universal chemical and phys-
ical dissociation, that its heat much surpasses all affinities,
all molecular attractions, in such a way that its entire mass
reduces itself to a gaseous mixture, to a true chaos of en-
tirely separated atoms. That is my starting point, of which
the complete justification, based on the dynamic theory of
heat would require much too lengthy developments. I then
place on one side the most characteristic known facts, on the
other the consequences of my premises; if the starting point
is accepted, if the facts can be successively identified with the
consequences, we will have drafted a theory and no longer a
conjecture.

This mass is undergoing cooling, since nothing comes
from the outside to restitute the heat that it throws off daily
into space, the stellar radiations being extremely weak; from
there the successive phases which are convenient to analyze
first.

In fact, the enormous heat that we have just mentioned is
that of the entire mass; at the surface, there where cooling op-
erates with the most energy, it can fall far below the internal
heat, and make way for the initiation of chemical activity. Is

this deduction true, can it be applied to the Sun? To find out,
let us consult the facts. The heat emitted has been measured:
it has been calculated that it does not exceed 30 or 40 times
the heat contained in the furnace of a locomotive when it ac-
tively draws energy. On the other hand, the most intense heat
furnaces produced by man do not emit a light incomparably
weaker than solar light. We can therefore admit that, on the
surface, chemical actions start to produce themselves, at least
those that give birth to the most stable components. There are
two ways, in fact, to have affinities react in a mixture of gas
and vapors; by heating, if the mixture is cold; by cooling, if
the mixture has gone beyond the temperature of dissociation.

Thus, in this environment, particulate clouds will be pro-
duced that will no longer be gaseous, but liquids or solids,
like magnesia in a mixture of vaporous oxygen and magne-
sium and, in another sense, like the carbon in our lighting
flames. Now these particles, becoming incandescent, will ra-
diate enormously more than the gaseous environment itself, at
the same temperature, because their emissive power is much
superior to that of elementary gases or vapors. As a result, by
the sole fact of superficial cooling, any gaseous mass primi-
tively brought to a temperature of dissociation will surround
itself at the surface with a continuous or discontinuous lumi-
nous cloud.

To these conclusions answers, item by item, as we shall
see, the photosphere of the Sun.

There is, however, one difficulty. In a hot gaseous mass,
isolated in space and which is cooling, there can and there
must be established after a certain time, and following inte-
rior movements, a certain equilibrium that temporarily op-
poses the transport of some portion of the mass from one
layer to another. Admitting, therefore, that chemical action
occurs at a given instant in the exterior layers, following this
cooling, how would it be maintained? How could the photo-
sphere, which is produced momentarily, renew itself contin-
uously and regularly? Here is the answer. The non gaseous
particles that form the photosphere’s luminous clouds are
much heavier than the gaseous environment from which they
are born; they will obey the attraction of the entire mass, and
will fall vertically until they reach a layer that is hot enough
to reproduce the dissociation of their elements. But then; in
that layer, the gases and vapors due to this dissociation will
break the equilibrium and will force a certain part of the mass
of this layer to elevate itself to superior layers. From this, re-
sults a double incessant current that would produce itself only
on long intervals and in a tumultuous manner, if the mass
remained gaseous everywhere, if the chemical activities did
not intervene to modify all at once the density of the superfi-
cial parts. This double current therefore incessantly brings to
the surface part of the internal heat that is dispensed rapidly,
thanks to chemical activity; while the incandescent particles,
because of their excess density, fall once again within the
deeper layers and lower, little by little, the temperature. There
lies, to my liking, the rational explanation of that marvelous
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constancy of solar radiation, first phenomenon that hit the
ancient [philosophers], whose long-lasting conjectures have
never tried to take into account. How could the Sun, con-
sidering only historical times, support its enormous radiation
with such a luminous envelop, thick of only a few leagues,
being the seat of the most curious phenomena? The combus-
tion of all the elements composing the Sun would not repre-
sent heat capable of supplying this radiation during half of
that short period. Do you adopt the second conjecture, that of
Mr. Kirchhoff? The thing would become even less possible
still, because a liquid envelope would be quickly cooled; it
would encrust itself at the surface, while the interior would
maintain a high temperature that would have no other outlet
but the weak conductibility of the outer crust. Conversely,
the rational explanation of the photosphere gives for the ener-
getic constancy of the radiation the only admissible reason, by
showing that the entire mass participates in this heat expendi-
ture and not only the superficial area. It must be remembered
that the entire mass is enormous and that the originating tem-
perature is equally enormous.

If I insist on this point, it is because here lays the heart
of the problem. Everything else will easily follow if, on this
point, one is willing to permit me to advance my cause. This
old problem that the ancient school had resolved in its own
way by proclaiming the incorruptibility of the heavens, was
simply set aside by modern thinkers, until the creators of the
dynamic theory of heat decided to revive the discussion. But
their solution, so scholarly and so ingenious, was just one
more conjecture: they believed they had to invent an artifi-
cial means to maintain this enormous caloric expenditure that
equates to the incessant production of a 75,000 horse-power
force for every square meter of solar area, while it suffices
to represent a mode of cooling such that the internal mass is
constantly called to supply to the superficial area the heat that
it emits.

So then the exterior surface of the Sun, which from far ap-
pears so perfectly spherical, is no longer a layered surface in
the mathematical sense of the word. The surfaces, rigorously
made up of layers, correspond to a state of equilibrium that
does not exist in the Sun, since the ascending and descending
currents reign there perpetually from the interior to the su-
perficial area; but since these currents only act in the vertical
direction, the equilibrium is also not troubled in that sense,
that is to say, perpendicularly to the leveled layers that would
form if the currents came to cease. If, therefore, the mass was
not animated by a movement of rotation, (for now we will
make of it an abstraction), there would not be at its heart any
lateral movement, no transfer of matter in the perpendicular
direction of the rays. The exterior surface of the photosphere
being the limit that will attain the ascending currents which
carry the phenomenon of incandescence in the superior lay-
ers, a very-admissible symmetry suffices in a globe where the
most complete homogeneity must have freely established it-
self, to give to this limit surface the shape of a sphere, but a

sphere that is incredibly uneven.
This limit is in any case only apparent: the general milieu

where the photosphere is incessantly forming surpasses with-
out doubt, more or less, the highest crests or summits of the
incandescent clouds, but we do not know the effective limit;
the only thing that one is permitted to affirm, is that these in-
visible layers, to which the name atmosphere does not seem
to me applicable, would not be able to attain a height of 3′, the
excess of the perihelion distance of the great comet of 1843
on the radius of the photosphere.

If you compare now these deductions to the best known
facts of detail, you will find a remarkable agreement. The
incessant agitation of the photosphere, the black points or
rather the little interlaced black lines that cover the surface,
the spots and the faculae are easily understood if we refer to
the action of the vertical currents that we have just described.
What shines in fact are the products of the chemical activ-
ity, that occurs in the photosphere on matter that is constantly
renewed by the currents, and not the gaseous environment
where these incandescent phenomena take place. To prop-
erly understand this difference, it would suffice to observe,
through one of those obscuring glass plates that astronomers
use to observe the Sun, the flame of pure hydrogen, or the
one produced by a Bunsen burner, next to a flame produced
by magnesium vapor. The first would be completely invisible,
that is to say black; the other would be as white as snow. If,
therefore, for one reason or another the incandescent clouds
of the photosphere come together in a given place, there the
visual ray will only meet but the general gaseous mass of the
Sun endowed with a very weak emissive power, while a little
further the photosphere will appear with its intense radiation
and dazzling brightness. Father Secchi, recently came to a
similar explanation of sunspots which makes me hope that
the ideas I have just presented on the formation of the pho-
tosphere will meet his approbation. As for the faculae, there
is nothing simpler assuredly that such level differences at the
extreme limit of our ascending currents, and nothing so diffi-
cult to understand for those who admit the liquid photosphere.
Persistent ridges of 100 or 200 leagues high on the extreme
surface level of a liquid layer are not easy to justify.

But the high point of this theory, is the reconciliation of
the two famous and contradictory experiments of Arago and
Kirchhoff. Basing himself on the polariscopic analysis of the
light of the Sun, Arago concluded that the photosphere had
to be gaseous; basing himself on spectral analysis, Mr. Kirch-
hoff concluded that the photosphere is solid or liquid. The
only way to have these opposed conclusions agree is to admit
the photosphere I have proposed. Non gaseous but incandes-
cent particles, floating like a cloud in the midst of a gaseous
environment, would in fact emit natural light under all angles
of incidence; they would also emit rays of all refrangibility
with the exception of those that the gaseous environment in-
terposed between the particles is capable of absorbing. The
second point is the only one that needs a few developments:
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the light so emitted is not purely superficial, it comes from a
great depth; by consequence the largest part of the rays incurs
on the part of the general environment, a very strong absorp-
tion. It would be different if the light was emitted only from
the superficial area, then an exterior environment would be
required, interposed between that superficial area and us, in
order to produce the required absorption; as it is seen in the
vast atmosphere that Mr. Kirchhoff places around the Sun; but
then the spectrum of the outer edges of the Sun would be con-
siderably different from the spectrum of the center, because of
the thickness of the atmosphere that would be much greater
on the edges than in the center. However, the experiment by
Mr. Forbes and the more recent and even more decisive work
of Mr. Janssen establish that there is no difference between
the two spectra; so the absorption comes mainly from the
cause that I have assigned, and far less of the layers exterior
to the photosphere, these being in reality but the far restrained
continuation, in my opinion, of the general gaseous mass. It
suffices to admit that the effective depth is the same in all di-
rections where emission operates, and that it is then the same
in the center and on the edges of the visible disk, a result to
which I concluded some years ago through many other con-
siderations.

To this gaseous mass, let us restitute now the more or less
slow rotational movement it must have acquired, at the same
time as its heat, through the gathering of the matter that con-
stitutes it; the ascending and descending currents will incur,
because of this rotation, a certain deviation. Originating from
a great depth, the ascending currents reach the surface with a
linear speed which is reduced since the rays of their primitive
parallels were smaller. The photosphere whose matter is con-
stantly renewed by these currents, must therefore be behind
on the general movement of rotation; on the other hand, the
theorem of areas requires that the sum of the projections of
the areas described at a given time by the vector rays of the
molecules remain constant, no matter the interior movements.
This means that if the exterior layer is lagging the general an-
gular movement, there will be, through compensation, an ad-
vancement of this angular movement for a few interior layers,
and this is immediately understood, because the ascending
currents cannot exist without, at the same time, the existence
of descending currents that carry back the superficial mate-
rials towards the interior with the excess linear speed due to
their greater parallels. Falling towards the center, this matter
will therefore transfer this excess of speed to the layer where
it has just incurred the dissociation of its elements. From this,
there will be two layers to distinguish: a superficial layer that
lags behind, and an internal layer that runs ahead of the an-
gular movement that the entire mass would take if vertical
equilibrium came into being. But some zone, in a rotating
fluid must tend to approach the axis if it is lagging behind,
and distance itself from it if it is running ahead on the speed
of the general movement; so that the exterior layer will have
a tendency to flow little by little toward the poles, while the

interior layer which is in advance, will express the opposite
tendency and elevate itself toward the equator. From this re-
sults a significantly complex modification of vertical currents
that we first considered in all their simplicity, and I imagine
that things will occur as if the interior layers from which they
emanate were a lot closer to the center toward the poles than
at the equator itself. If this deduction were founded, and one
cannot argue with the fact that the term layer has a variety of
meanings, it would manifestly result that the superficial rota-
tion should vary from the equator to the poles and slow down,
more and more, without, however, that the exterior feature
would substantially cease to differ from the primitive spheri-
cal form.

Thus, the photosphere would be constituted of successive
zones, parallel at the equator, animated by a decreasing an-
gular speed in a way that is more or less continuous from the
equator to the poles, while the inverse would produce itself
in a certain deeper layer. In this complex phenomenon, that
would be impossible to subject to calculation, the movements
would operate mainly in the direction of the parallels either
to the opposite, either in the direction of the general rotation,
without this bringing about strongly marked currents in the
direction from the equator to the poles or inversely. This is,
therefore, a considerable phenomenon, a very special mode
of troubled rotation that the planets could not present an ex-
act equivalent, since the conditions there are so different.

In the case of the planets, in fact, one must make a dis-
tinction that does not need to be made in the case of the Sun,
between the solid body of the planet and its atmosphere: the
solid body turns altogether; it would be the same for the atmo-
sphere, if an exterior action, the solar heat, did not intervene at
every instant. Equilibrium therefore cannot exist in that atmo-
sphere, but the phenomena that are produced there being reg-
ulated mainly by a notable difference in temperature between
the poles and the equator, the movements being hindered by
the presence of an unchanging solid or liquid surface (the sur-
face of the solid globe on which rests the atmosphere), it is
principally produced a lateral call of the atmospheric masses
in the direction of the meridians, from the poles toward the
equator. A superior counter-current is established in the same
time in the inverse direction, in the layers that are further from
the ground. Nothing like this happens on the Sun because the
presence of the photosphere does not interrupt the continu-
ity of the [central] mass, because there is no resistant ground
to deviate the currents, because there is no exterior cause to
trouble the equilibrium of the layers in the lateral direction.
In order to illustrate the difference, I would say that, in the
photosphere, the rotation only generates currents that are ap-
proximately directed along the parallels in the inverse sense
of the rotation, while that, on the planets, the currents in the
inverse sense of the rotation result as a medial or indirect ef-
fect of the superficial transfer of air masses in the direction of
the meridians.

In short, it results, because of the appearance and the up-
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holding of an atmosphere, in a gaseous mass animated by a
rotational movement, that the surface must be delayed relative
to the internal mass, in such a way that the superficial currents
act only in the direction of the parallels save a slightly marked
tendency toward the poles; and that this superficial delay must
go increasing from the equator to the poles following a cer-
tain law that would be impossible to assign ahead of time, but
of which we know this, that the direction of the rotational axis
must not be substantially altered. Let us examine if the facts
are in agreement with these consequences.

Here, it is good to restate things from a higher perspec-
tive. The astronomers naturally started by treating the Sun’s
rotation with the simplest hypothesis, that is to say, admit-
ting that the entire mass turns as a single unit altogether, as
if it consisted of the Earth or any other planet. In that case,
the accidents of the surface would be animated with the same
angular speed, no matter what was their position next to the
pole or next to the equator, above the visible surface or be-
low it. But this conjecture, the basis of all the work carried
out in that sense from 1610 to 1840, was too far away from
the truth for us to approach satisfactory results. If the as-
tronomers generally agreed on the direction of the axis of
rotation, they would reach the most discordant results con-
cerning its duration. In the end, Delambre, discouraged by
this failure, would console himself by saying that, after all,
the subject had little importance, that it was good for train-
ing beginners. That was disregarding too hastily one of the
most important phenomena of our solar world and one of the
most verified laws in the history of the sciences, that is to say
that all well-observed discordance carries with it the seed of
a discovery. Finally, an astronomer was able to rid himself of
these preconceived ideas in order to observe the phenomena
for and in themselves. Mr. Laugier observed that every spot
gave, so to speak, a specific value for the duration of the ro-
tation: for 29 spots observed by him with all the refinements
of precision, he observed that the completed rotations varied
from 24 to 26 days, a difference far superior to the little un-
certainty of the observations. This could mean two things:
either the spots were animated by strong proper movements,
or the successive zones of the photosphere did not possess
the same rotational movement. Mr. Laugier left these things
in that state, but he broke the ice, as we commonly say it,
without mentioning the definitive elements that he had given
to science for the direction of the solar axis. What needed
to be done in order to pursue the work so nicely initiated?
The spots had to be observed in a continuous manner, some-
one had to devote himself exclusively to this work for many
long years, in order to discover the law of these specific vari-
ations; above all, a less dangerous method of observation for
the eyes had to be devised by sacrificing partly the precision
of the measurements.

That is what undertook Mr. Carrington, already known
by astronomers through the great breath and extreme value
of his work. Seven years and a half of continuous observa-

tion, 5 290 solar spot positions with the enormous quantity
of drawings needed to conduct the discussion; there is the
material that he accomplished. The definitive result can be
formulated in the following manner: the determined rotation
by the movement of sunspots is the same for all of the spots
located at the same latitude, be it at the north, be it at the south
of the equator, but it varies in a continuous fashion with lat-
itude and becomes slower and slower towards the poles. Mr.
Carrington tried to represent the complex phenomenon em-
pirically with the following formulation: The duration of the
rotation, obtained by dividing 216 000 by the movement of
a spot expressed in minutes, this diurnal movement is equal
to 865′−265′ sin 7

4 l, l designating the heliocentric latitude of
the spot, and the quotient representing the average solar days.
I do not know of any modern discovery that treats a matter
more considerable than this one. We will not suppose, in fact,
that the spots, simple clearing in the photosphere, could have
such rapid proper movements (2 000 leagues per day at the
35th degree, for instance) and that they displace themselves
this way within the environment where they are formed. A
clearing, in a cloudy sky, can certainly displace itself and can
displace itself at a great speed, but with the condition of being
carried by the general movement of the ambient mass, which
does not exclude specific modifications in the form and in the
situation. We could not refuse ourselves to conclude from the
nice work of Mr. Carrington that the photosphere moves with
a varied angular movement whose slowness increases from
the equator and up to the 15th degree and beyond and that
this movement constitutes a mode of rotation quite different
from that of the planets and their satellites.

Can this movement be assimilated to the trade winds and
to the monsoons of our atmosphere? Observation answers
negatively [to this question]. Trade winds originate from the
transport of polar air masses toward the equator; the masses
animated by a speed of rotation that is linearly less than the
parallels met successively, appear to be blowing in the inverse
direction of the terrestrial rotation, but here the essence of the
phenomenon is not in the east-west sense of our trade winds,
but the north-south direction (for our hemisphere); the first is
but a consequence of the second, and the east-west movement
would not exist if the movement from the north to the south
disappeared or became too weak. However, on the Sun, we do
not find any constant trace of this general movement from the
poles to the equator, but rather an inverse tendency, starting
from the 15th degree of latitude, from the equator to the poles,
the identical tendency to the one that results from our above
reasoning. Hence, the analogy that was naturally suspected
at first does not exist, and we essentially remain before a new
perturbation in a movement of rotation. It is up to the reader
to decide if this great and beautiful phenomenon corresponds
to the consequences that we have deduced from our theory.

One will surely note that these consequences end up be-
ing a little uncertain; this occurs because the facts themselves
are not completely known. The formula provided by Mr. Car-
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rington is purely empirical; the spots are so rare in the first
degrees of the equatorial zone and from the 55th to the 50th
degree of latitude, that the relative determinations in these
zones are far from deserving the degree of confidence that
can be given to the rotations concluded for the zones found
between 5◦ and 35◦. There is therefore a new work to under-
take to complete the work of the English astronomer, but I do
not think we can fully succeed without the help of photogra-
phy whose introduction in the observatories is now a matter
of factual use with our neighbors across the English Channel.

In short, conjectures no longer serve progress; they can
only hinder it from now on. To the very simple idea asso-
ciated with the cooling of a gaseous mass brought to a tem-
perature such that its elements find themselves in a state of
complete dissociation, except at the surface, where the chem-
ical forces begin to exert themselves it is possible to logically
link:

The constancy and the long duration of solar radiation;
The production and the maintenance of the photosphere;
The apparent contradictory experiments of Arago and

Kirchhoff;
The explanation of sunspots and faculae;
And the mode of rotation particular to the Sun.

P.S. “I ask for permission to indicate here a coincidence or
rather a remarkable agreement between the diverse condi-
tions of organic life on the surface of the planets and our solar
world. These conditions are of two kinds: 1) the mechanical
stability of the system; and 2) the permanence of solar radi-
ation. Either one or the other stability, even though they are
of very different types, essentially rest on the enormity of the
mass of the central celestial body”.
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In this work, the development of solar theory is followed from the concept that the Sun
was an ethereal nuclear body with a partially condensed photosphere to the creation of
a fully gaseous object. An overview will be presented of the liquid Sun. A powerful
lineage has brought us the gaseous Sun and two of its main authors were the direct sci-
entific descendants of Gustav Robert Kirchhoff: Franz Arthur Friedrich Schuster and
Arthur Stanley Eddington. It will be discovered that the seminal ideas of Father Secchi
and Hervé Faye were not abandoned by astronomy until the beginning of 20th century.
The central role of carbon in early solar physics will also be highlighted by revisit-
ing George Johnstone Stoney. The evolution of the gaseous models will be outlined,
along with the contributions of Johann Karl Friedrich Zöllner, James Clerk Maxwell,
Jonathan Homer Lane, August Ritter, William Thomson, William Huggins, William
Edward Wilson, George Francis FitzGerald, Jacob Robert Emden, Frank Washington
Very, Karl Schwarzschild, and Edward Arthur Milne. Finally, with the aid of Edward
Arthur Milne, the work of James Hopwood Jeans, the last modern advocate of a liquid
Sun, will be rediscovered. Jeans was a staunch advocate of the condensed phase, but
deprived of a proper building block, he would eventually abandon his non-gaseous stars.
For his part, Subrahmanyan Chandrasekhar would spend nine years of his life studying
homogeneous liquid masses. These were precisely the kind of objects which Jeans had
considered for his liquid stars.

1 The search for a continuous thermal spectrum: Car-
bon particles on the Sun?

Consider particulate matter floating on a gaseous globe. Such
was the idea advanced by Father Angelo Secchi and Hervé
Faye as they described the photosphere of the Sun [1]. But
what was this particulate matter? For Faye, a subtle allusion
was made to carbon within the gaseous flame [2, p. 296]. As
a result, the marriage between Faye’s model and graphite was
almost immediate. Graphite, or at least some form of con-
densed carbon, remained on the surface of the Sun until the
1920’s. Even the pioneering treatment of a gaseous Sun, by
Jonathan Homer Lane, referred to the carbon envelope of the
photosphere, as demonstrated in Section 2.2. Thus, it was
only through Eddington and his inception of a fully gaseous
Sun [3] that particulate matter was finally removed from the
photosphere.

If carbon played a pre-eminent role in solar theory, it was
because of the need to understand the continuous spectrum
of the photosphere. On Earth, only graphite and soot were
known to produce such a spectrum. As the common form of
condensed carbon, graphite possessed outstanding refractory
properties. The material did not melt. Rather, it sublimed at
extreme temperatures [4]. It seemed to be the perfect can-
didate for introducing condensed matter on the Sun in order
to generate the solar spectrum. Moreover, from the earliest
studies on thermal radiation [5,6], graphite and soot played a

dominant role [7]. Balfour Stewart [8] who, along with Gus-
tav Kirchhoff [9], was one of the fathers of thermal emission,
emphasized the crucial role of carbon in heat radiation: “In-
deed, it is only the light from a black body that represents by
itself the brightness of the enclosure, and such a body, when
taken out and hastily examined in the dark, without allowing
it time to cool, will be found to give out rays having a bright-
ness in all respects the same as that of the enclosure in which
it was placed, because being opaque and non-reflective, all
the light which it gave out in the enclosure was proper to
itself, none having passed through its substance or been re-
flected from its surface; it therefore retains this light when
taken into the dark, provided its temperature is not in the
meantime allowed to fall” [10, p. 277–278]. Experimental
blackbodies of the 19th century were manufactured using ei-
ther graphite, or soot [7], precisely because such carbon sur-
faces were not transparent and exceeded all others in being
devoid of reflection.

In 1867, less than two years after Secchi and Faye [1] had
conceived their solar model, G.J. Stoney explicitly placed car-
bon on the Sun: “We have strong reasons for suspecting that
the luminous clouds consists, like nearly all the sources of ar-
tificial light, of minutely divided carbon; and that the clouds
themselves lie at a very short distance above the situation in
which the heat is so fierce that carbon, in spite of its want of
volatility, and of the enormous pressure to which it is there
subjected, boils. The umbra of a spot seems never to form
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unless when the region in which carbon boils is carried up-
wards, or the hot region above the clouds is carried down-
wards, so as to bring them into contact, and thus entirely
obliterate the intervening clouds. . . ” [11]. Stoney’s proposal
introduced graphite particles in the photosphere, while reaf-
firming Faye’s contention that the Sun was devoid of a distinct
surface [1]. These words were to guide solar physics for two
generations.

For instance, in 1891, during his Inaugural Address be-
fore the British Association, William Huggins stated: “The
Sun and stars are generally regarded as consisting of glow-
ing vapours surrounded by a photosphere where condensa-
tion is taking place, the temperature of the photospheric layer
from which the greater part of the radiation comes being con-
stantly renewed from the hotter matter within. . . Consequent-
ly, we should probably not go far wrong, when the photo-
sphere consists of liquid or solid particles, if we could com-
pare select parts of the continuous spectrum between the
stronger lines, or where they are fewest. . . The brightness of
a star would be affected by the nature of the substance by
which the light was chiefly emitted. In the laboratory, solid
carbon exhibits the highest emissive power. A stellar stage in
which radiation comes, to a large extent, from a photosphere
of solid particles of this substance, would be favourable for
great brilliancy. . . It may be that the substances condensed in
the photosphere of different stars may differ in their emissive
powers, but probably not to a great extent” [12, p. 375–376].

Overall, the Inaugural Address amplified the search to un-
derstand the continuous nature of the solar spectrum. Hug-
gins was a central figure in the history of solar astronomy
and lived just prior to the conceptualization of a fully gaseous
Sun. As such, it is almost as if his mind was suspended be-
tween two separate physical realities. He oscillated between a
carbon containing photosphere as a source of light and a con-
tinuous spectrum produced exclusively by gases: “We must
not forget that the light from the heavenly bodies may con-
sist of the combined radiations of different layers of gas at
different temperatures, and possibly be further complicated
to an unknown extent by the absorption of cooler portions
of gas outside” [12, p. 373]. The presentation by Huggins
demonstrates a strained application of logic. Immediately af-
ter stating that: “Experiments on the sodium spectrum were
carried up to a pressure of forty atmospheres without produc-
ing any definite effect on the width of the lines which could
be ascribed to the pressure. In a similar way the lines of the
spectrum of water showed no signs of expansion up to twelve
atmospheres; though more intense than at ordinary pressures,
they remained narrow and clearly defined” [12, p. 373], he
writes: “It follows, therefore, that a continuous spectrum can-
not be considered, when taken alone, as a sure indication of
matter in the liquid or the solid state” [12, p. 373]. The ex-
periments just described were contrary to the result sought.
Ultimately, there could be no evidence that a gas could pro-
duce a blackbody spectrum simply by being pressurized. The

spectrum may well have gained a continuous nature, but never
with the proper blackbody shape. Huggins continued: “Not
only, as in the experiments already mentioned, such a spec-
trum may be due to gas when under pressure, but, as Maxwell
pointed out, if the thickness of a medium, such as sodium va-
por, which radiates and absorbs different kinds of light, be
very great, and the temperature high, the light emitted will
be of exactly the same composition as that emitted by lamp-
black at the same temperature, for the radiations which are
feebly emitted will also be feebly absorbed, and can reach
the surface from immense depths” [12, p. 373]. In bringing
forth these ideas from Maxwell, Huggins was abandoning the
carbon containing photosphere.

James Maxwell wrote extensively about the theory of heat
radiation [13]. He was well acquainted with Stewart and
claimed: “Professor Balfour Stewart’s treatise contains all
that is necessary to be known in order to make experiments
on heat” [13, p. vi]. In this regard, Maxwell’s text contains
many of the same ideas [13, p. 210–229] found in Stewart’s
works [14]. Maxwell’s treatise also contained the classic lines
previously invoked by Huggins [12, p. 373]: “If the thickness
of a medium, such as sodium-vapour, which radiates and ab-
sorbs definite kinds of light, be very great, the whole being
at a high temperature, the light emitted will be exactly the
same composition as that emitted from lampblack at the same
temperature. For though some kinds of radiation are much
more feebly emitted by the substance than others, these are
also so feebly absorbed that they can reach the surface from
immense depths, whereas the rays which are so copiously ra-
diated are also so rapidly absorbed that it is only from places
very near the surface that they can escape out of the medium.
Hence both the depth and the density of an incandescent gas
cause its radiation to assume more and more the character
of a continuous spectrum” [13, p. 226]. This conjecture, by
Maxwell, was never validated in the laboratory. Sodium gas
could not approach the blackbody spectrum under any cir-
cumstances, especially in the absence of a perfectly absorb-
ing material. Even modern high pressure sodium lamps [15]
could not produce the required spectrum. Their real emission
was far from continuous and not at all like a blackbody [15,
p. 23]. Nonetheless, Maxwell’s theory became an anchor for
those who believed that gases, if sufficiently thick, could pro-
duce a blackbody spectrum.

Astrophysics stood at an impasse between the need for
carbon and its elimination from the solar body. Soon after
Huggins delivered his famous address, William Wilson would
approach the same subject in these words: “Solar physicists
have thought that the photosphere of the Sun consists of a
layer of clouds formed of particles of solid carbon. As the
temperature of these clouds is certainly not below 8000◦C.,
it seems very difficult to explain how carbon can be boiling
in the arc at 3500◦ and yet remain in the solid form in the
Sun at 8000◦. Pressure in the solar atmosphere seemed to be
the most likely cause of this, and yet, from other physical rea-
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sons, this seemed not probable” [16]. Wilson goes on to state:
“carbon may exist in the solid form at very high temperatures
although the pressures are comparatively low” [16]. He was
arguing in favor of solid carbon on the Sun despite the ele-
vated temperatures. In 1897, along with George FitzGerald,
Wilson would reaffirm his conviction while advancing an al-
ternative for sunspots: “Dr. Stoney called attention to an ac-
tion of this kind that might be due to clouds of transparent
material, like clouds of water on the Earth, but in view of the
high solar temperature it seems improbable that any body, ex-
cept perhaps carbon, could exist in any condition other than
the gaseous state in the solar atmosphere; so that it seems
more probable that Sun-spots are due, at least partly, to re-
flections by convection streams of gas, rather than by clouds
of transparent solid or liquid particles” [17].

Despite Huggins’ Inaugural Address, Robert Ball, the
Lowndean professor of astronomy and geometry at Cam-
bridge, also reemphasized the central role of carbon in the
structure of the Sun at the end of the 19th century: “The buoy-
ancy of carbon vapor is one of its most remarkable charac-
teristics. Accordingly immense volumes of the carbon steam
in the Sun soar at a higher level than do the vapors of the
other elements. Thus carbon becomes a very large and im-
portant constituent of the more elevated regions of the solar
atmosphere. We can understand what happens to these car-
bon vapors by the analogous case of the familiar clouds in
our own skies. . . We can now understand what happens as
the buoyant carbon vapors soar upwards through the Sun’s
atmosphere. They attain at last to an elevation where the fear-
ful intensity of the solar heat has so far abated that, though
nearly all other elements may still remain entirely gaseous,
yet the exceptionally refractory carbon begins to return to
the liquid state. At the first stage in this return, the carbon
vapor conducts itself just as does the ascending watery va-
por from the earth when about to be transformed into a vis-
ible cloud. Under the influence of a chill the carbon vapor
collects into a myriad host of little beads of liquid. Each of
these drops of liquid carbon in the glorious solar clouds has a
temperature and a corresponding radiance vastly exceeding
that with which the filament glows in the incandescent elec-
tric lamp. When we remember further that the entire surface
of our luminary is coated with these clouds, every particle of
which is thus intensely luminous, we need no longer wonder
at that dazzling brilliance which, even across the awful gulf of
ninety-three millions of miles, produces for us the indescrib-
able glory of daylight” [18].

The idea that the photosphere consisted of carbon con-
taining luminous clouds would be echoed by almost every
prominent astronomer of the 19th century, from Simon New-
comb [19, p. 269] to Charles Young [20, p. 194]. The finest
spectroscopists, including John Landauer and John Bishop
Tingle [21, p. 198–200], joined their ranks. Even in 1913, the
ideas of Johnstone Stoney [11] were mentioned throughout
much of professional astronomy, as reflected by the writings

of Edward Walter Maunder [22]. Mauder, who had discov-
ered the great minimum in the sunspot cycle, wrote about the
solar constitution in these words: “The Sun, then, is in an es-
sentially gaseous condition, enclosed by the luminous shell
which we term the photosphere. This shell Prof. C. A. Young
and the majority of astronomers regard as consisting of a rel-
atively thin layer of glowing clouds, justifying the quaint con-
ceit of R. A. Proctor, who spoke of the Sun as a “Bubble”;
that is a globe of gas surrounded by an envelope so thin in
comparison as to be mere film. There has been much differ-
ence of opinion as to the substance forming these clouds, but
the theory is still widely held which was first put forward by
Dr. Johnstone Stoney in 1867, that they are due to the conden-
sation of carbon, the most refractory of all known elements.
Prof. Abbot, however, refuses to believe in a surface of this
nature, holding that the temperature of the Sun is too high
even at the surface to permit any such condensation” [22].

Change was eminent and graphite was soon irrevocably
cast out of the photosphere. In their 1885 classic text On
Spectrum Analysis, Henry Roscoe and Arthur Schuster [23,
p. 229–264] had already chosen to neglect the prevailing ideas
relative to solar constitution. Arthur Schuster [24, 25] was
soon to prepare his report on Radiation through a Foggy At-
mosphere [26, 27]. With its publication, the decisive step to-
wards the fully gaseous Sun would be taken and graphite soon
forgotten.

2 The rise of theoretical astrophysics

Through Secchi and Faye [1], observational astronomers gaz-
ed upon a gaseous Sun. They could only dream of what they
had created, as the concept of an ethereal star had evolved
virtually in the complete absence of mathematical guidance.
At the same time, though the photosphere maintained some
semblance of condensed matter, the introduction of a tenuous
solar interior provided a compelling invitation to theoretical
study. If the Sun was truly a gas, then perhaps some under-
standing could be harnessed through the ideal gas law, which
had been discovered by Clapeyron [28]. In contrast, William
Herschel’s solid Sun was devoid of such appeal [1]. The same
was true true for Spencer’s model. Though his solar interior
was gaseous, his photosphere was liquid [1].

As for a fully gaseous Sun, the idea was full of theoretical
promise. But was the interior of the Sun truly gaseous? For
men of the late 19th and 20th century, there could be no ques-
tion of this reality, in light of Andrews’ discovery of critical
temperatures [29]. Alfred Fisen would leave no doubt as to
the importance of critical phenomena for solar models: “The
question as to the physical conditions existing in the interior
of the Sun is attended with graver difficulty. . . When the ne-
cessity for the interior heat of the Sun being at least as high
as that of its exterior became recognized, the solid globe was
generally replaced by an ocean of molten matter. It is, how-
ever, scarcely possible to regard as existing in the interior of
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the Sun, matter in either the solid or in the liquid condition. . .
It was for a time regarded as barely possible that the enor-
mous pressure that must exist at great depths in the interior
of the Sun might be effective in maintaining matter in the solid
or liquid condition in spite of the high temperature, since it is
a familiar fact in laboratory experience, that liquefaction of
a gas is in every case assisted by pressure, and may in many
instances apparently be affected by it alone. Since, however,
it became apparent from the classic research of Dr. Andrews
in 1869, that there exists for every element a critical tempera-
ture, above which it is impossible for it under any conditions
of pressure to assume the liquid state, it has generally been
regarded that the liquid interior to the Sun is next to an im-
possibility” [30, p. 36–37]. Armed with Andrews’ discovery,
the path seemed clear. Much of theoretical physics adopted a
gaseous solar interior. They would eventually move forward
to a fully gaseous structure, undaunted by the prospect that
graphite or soot remained unchallenged as unique sources of
blackbody spectra on Earth.

2.1 Friedrich Zöllner’s protuberances: The laws of
gases and the solar constitution

Zöllner was amongst the first scientists to apply the laws of
gases to the study of the solar constitution [31, 32]. He at-
tempted to understand the nature of solar protuberances, con-
sidering both eruptive flares and prominences. These works
were important for two reasons: 1) Zöllner mathematically
addressed the internal temperature for the Sun [33, 34] and
2) he highlighted that flares could not be easily explained
when the Sun was considered fully gaseous. Using an atmo-
spheric temperature of 27,700◦C, Zöllner surmised that, at a
depth lying 1/36th of the solar radius from the surface, the
solar temperature approached 68,400◦C [31].

Zöllner reasoned that eruptive protuberances, or solar
flares, must occur because “of a difference in pressure be-
tween the gases in the interior and those on the surface of
the Sun” [31]. In order to have an interior and an exterior,
a boundary was certainly needed. Zöllner envisioned: “Re-
specting the physical constitution of this layer, the further as-
sumption is necessary that it is in some other state than the
gaseous. It may be either solid or liquid. In consequence of
the high temperature the solid state is excluded; and we must
therefore conclude that the layer of division consists of an
incandescent liquid” [31]. Zöllner actually considered two
models: “Respecting the mass of hydrogen enclosed by this
liquid layer, two suppositions appear to be possible” [31].
The first was essentially a restatement of Spencer’s “Bubble
Sun” [35, 36] — a liquid photosphere with a gaseous inte-
rior [1]: “The whole interior of the Sun is filled with glowing
hydrogen, and our luminary would appear like a great bub-
ble of hydrogen surrounded by an incandescent atmosphere”
[31]. At the same time, he considered a second situation in
which the Sun was essentially liquid throughout while con-
taining pockets of gas: “The masses of hydrogen which are

thrown out in these volcanic outburts are local aggregations
contained in hollow spaces formed near the surface of an in-
candescent liquid mass, and these burst through their outer
shell when the increased pressure of the materials in the inte-
rior reaches a certain point” [31].

Zöllner would look back to Kirchhoff [37] and created a
strange mix with the ideas of Secchi [38, 39] and Faye [40].
He placed the fully liquid layer, required in the interior of the
Sun, at the level of the umbrae of sunspots [31, p. 319–320]:
“Hence it follows that the radius of the visible disk need not be
necessarily identical with that of the supposed layer of sep-
aration, but that this latter may probably be assumed to lie
below the point at which the hydrogen gas under compres-
sion evolves a continuous spectrum” [31]. In doing so, Zöll-
ner maintained the importance of the liquid layer in a manner
completely independent of the need to generate the thermal
spectrum. The enclosure provided by the liquid was required
for the generation of flares. In fact, Zöllner argued against
the need for condensed matter in producing the thermal spec-
trum: “It is thus clear that it is not necessary, in order to
explain the presence of dark lines in the solar spectrum, to
assume that the continuous spectrum is produced by the in-
candescence of a solid or liquid body; for we may with equal
right consider that the continuous spectrum is produced by
the glowing of a powerful compressed gas” [31]. By intro-
ducing this new layer, Zöllner advanced another reason why
the Sun must possess condensed matter.

In treating the second scenario, that of a fully liquid Sun
with pockets of gas, Zöllner made several arguments leading
to a liquid solar interior: “If we assume that the highest limit
of specific gravity of this layer is the mean specific gravity
of the Sun, we shall have to assume that all the deeper-lying
layers, and therefore the sill deeper-lying gaseous layer, have
the same temperature. But then the interior of the Sun would
not consist of a gas, but of an incompressible liquid. . . In
this case, however, the first supposition change into the sec-
ond, according to which the Sun consists of an incompress-
ible liquid. . . ” [31]. After completing several calculations,
he then argued that pressures were rapidly increasing towards
the solar interior. On this basis, the Leipzig professor ren-
dered plausible the concept that the interior of the Sun could
be liquid, despite high temperatures [31, p. 324].

In his second treatment on the solar constitution, Zöllner
concentrated on determining the temperature of the chromo-
sphere [32] and on refining the mathematical approach he had
previously adopted. The 1873 article emphasized that line
broadening could be affected by pressure, temperature, and
optical thickness of the sample [32]. In this regard, Zöllner
was concerned with the quantity of luminous particles in the
line of sight of the observer. As such, he elucidated the com-
plex considerations involved in obtaining temperatures and
densities from the line widths of gases near the solar surface.
Zöllner’s second treatise was devoid of the complex solar the-
ories which had characterized his first work [31].
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2.2 Jonathan Homer Lane: A gaseous Sun endowed with
condensed matter

In his Memoire, Cleveland Abbe presented a detailed picture
of J. Homer Lane [41]. Lane considered Helmholtz’s theory
and Espy’s theory of storms, while applying the ideal gas law
to the Sun [42]. In so doing, he became the first scientist to
build a truly mathematical model of a gaseous star. Like Ein-
stein, Lane had worked as a patent examiner. He was said to
have been quiet and lacking the fluency of speech [41]. Lane
was never married and he was personally known to only a
few people [41, p. 259]. He was deeply religious and he dis-
played many marks of simple nobility. Cleveland recounted
these in the words of Byron Sunderland: “Of the propriety,
integrity, and simplicity of his life, of his exceeding conscien-
tiousness and carefulness and his modest shrinking from all
self-assertion or ostentation, we all well know. He was not
what we should style a demonstrative man. He lived quietly
within himself, and his life was engrossed in scientific pur-
suits. The nature and construction of his mind was purely
mathematical. This was evident in the exactitude of his lan-
guage, even in the most casual conversations and the most
trivial subjects” [41, p. 261].

Stevenson-Powell provided a detailed and extensive re-
view of Lane’s classic work on the theoretical modeling of a
gaseous Sun [43]. In his approach to science, Lane was not
unlike Eddington [44] and chose to consider the Sun as a the-
oretical physicist. He proposed a model and then considered
the ramifications [43, p. 190], tackling a question by extrap-
olating from the known laws of physics. At the same time,
“Lane had little interest in the physical appearance of the
Sun, and none at all in the spectral discoveries that increas-
ingly influenced ideas about the Sun during the 1860s” [43,
p. 183]. The same could be said of Eddington [44].

Lane was responsible for advancing the first of the poly-
tropic gas spheres. He was followed in this endeavor primar-
ily by August Ritter [45], William Thomson (Lord Kelvin)
[46], and Robert Emden [47]. Subrahmanyan Chandrasekhar
provided a detailed treatment of polytropes in his classic text
An Introduction to the Study of Stellar Structure [48, p. 84–
182] whose bibliographical notes included excellent summa-
ries of all key contributions in this subject area. Eddington
also discussed the polytropes in The Internal Constitution of
the Stars [44, p. 79–96].

Lane based his theoretical contribution on the ideal gas
and Espy’s theory of storms, advanced more than twenty
years earlier [42]. But, the concept that the Sun was an ideal
gas created obstacles. Stevenson-Powell recounted this fact,
citing Arthur Eddington: “In Lane’s time there was no ev-
idence that any star existed for which the theory of a per-
fect gas would be applicable” [43, p. 190]. While the work
of Andrews on critical temperatures was already well recog-
nized [29], many failed to completely abandon the idea that
the Sun contained at least some condensed matter.

In spite of these difficulties, the American scientist
viewed the Sun as a gaseous sphere possessing a condensed
exterior. He opened his classic paper as follows: “Some years
ago the question occurred to me in connection with this the-
ory of Helmholtz whether the entire mass of the Sun might not
be a mixture of transparent gases, and whether Herschel’s
clouds might not arise from the precipitation of some of these
gases, say carbon, near the surface, with the revaporization
when fallen or carried into the hotter subjacent layers of at-
mosphere beneath; the circulation necessary for the play of
this Espian theory being of course maintained by the constant
disturbance of equilibrium due to the loss of heat by radiation
of the precipitated clouds” [42]. Lane was replaying the ideas
of Stoney, Secchi, and Faye [11, 38–40]. Nonetheless, the
study of Lane’s private notes revealed an unpublished paper
from 1867 The Sun viewed as a gaseous body [43, p. 186].
In these unpublished notes, Lane claimed priority of ideas
and wrote: “The within formulae were written down about
the year 1863 (perhaps earlier) considering the credibility
of the Sun being a gaseous body, sustaining its heat by the
descent of its mass in cooling, and keeping up by its circu-
lation a continual precipitation of (carbon?) vapor in the
photosphere, and the continual re-vaporization of the car-
bon? in the interior, after the philosophy of terrestrial storms
as explained by Espy. Conclusion: it seemed evident the
Sun’s gaseous constitution could not be credibly referred to
the laws of the gases, so far as they are known. J.H.L. May
1867” [43, p. 187]. It appeared that Lane might have con-
ceived of a gaseous Sun independently, in 1863. However,
it would be difficult to conceive that such similarity with the
well-known works of Secchi and Faye was purely coinciden-
tal [38–40]. Lane properly claimed that Faye’s theory was
“seriously lacking” [42]. The 1865 articles, by the French
author, were devoid of mathematical treatment [1]. Through
Lane’s work, carbon was once again mentioned. Hence, even
in the first truly theoretical work on a gaseous Sun [42], the
emissivity of graphite maintained its powerful undercurrent.

2.2.1 Lane and convective equilibrium

Interestingly, Lane used the concept of convective equilib-
rium as a footnote to his first equation [42]. William Thomson
had proposed the existence of convective equilibrium in 1862
and applied the idea to a gaseous Sun in 1887 [46]. By this
time, Lord Kelvin had abandoned his original idea that the
Sun was liquid [1]. Convective equilibrium would become
one of the great building blocks of the theory of a gaseous
Sun. Chandrashekhar would cite Kelvin’s understanding of
convective equilibrium in his classic text [48, p. 85]: “If a
gas is enclosed in a rigid shell impermeable to heat and left
to itself for a sufficiently long time, it settles into the con-
dition of gross-thermal equilibrium by ‘conduction of heat’
till the temperature becomes uniform throughout. But if it
were stirred artificially all through its volume, currents not
considerably disturbing the static distribution of pressure and
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density will bring it approximately to what I have called con-
vective equilibrium of temperature. The natural stirring pro-
duced in a great fluid mass like the Sun’s by the cooling at
the surface, must, I believe, maintain a somewhat close ap-
proximation to convective equilibrium throughout the whole
mass” [46].

Convective equilibrium was a strange allusion, given that
convection, by definition, was a non-equilibrium process.
Convection existed as a result of the second law of thermo-
dynamics, a principle first outlined by Clausius [49, 50] and
ironically, by William Thomson [51]. To call for convective
equilibrium “artificially” implied a violation of the first law
of thermodynamics. To invoke it on the Sun, was a violation
of the second law. Convective equilibrium could never exist,
either on or within the Sun precisely because, by its very na-
ture, convection was a non-equilibrium process. True system
equilibrium required that both conduction and convection be
absent. In Lane’s case, recourse to convective equilibrium
for his mathematics was particularly unusual, given that he
had opened his manuscript with the statement that: “the cir-
culation necessary for the play of this Espian theory being
of course maintained by the constant disturbance of equilib-
rium due to the loss of heat by radiation of the precipitated
clouds” [42]. How could a theory of storms ever form the
basis for invoking convective equilibrium?

2.2.2 Lane and the temperature of the solar surface

The final portion of Lane’s paper centered on elucidating the
temperature at the upper visible solar surface. He reached
the conclusion that this number must not be too far from
54,000◦F and raised an objection to Faye’s model: “It must be
here recollected that we are discussing the question of clouds
of solid or at least fluid particles floating in a non-radiant gas,
and constituting the Sun’s photosphere. If the amount of ra-
diation would lead us to limit the temperature of such clouds
of solids or fluids, so also it seems difficult to credit the exis-
tence in the solid or fluid form, at a higher temperature than
54,000◦ Fah. of any substance that we know of ” [42].

Though Lane adopted Faye’s model as a point of depar-
ture, he was open, though non-committal, to the idea that the
Sun was fully gaseous: “Dr. Craig, in an unpublished paper,
following the hint thrown out by Frankland, is disposed to fa-
vor the idea that the Sun’s radiation may be the radiation of
hot gases instead of clouds. At present, I shall offer no opin-
ion on that point one way or another, but will only state it
as my impression that if the theory of precipitated clouds, as
above presented, is the true one, something quite unlike our
present experimental knowledge, or at least much beyond it,
is needed to make it intelligible” [42]. Craig was referring
to the classic paper by Lockyer and Frankland discussed in
Part I of this work [1]. Clearly, Lane had strong reservations
relative to Faye’s model, even though it formed the basis for
much of his own presentation.

Lane advanced two ideas to uphold the precipitated cloud

theory. In the first, he invoked Clausius’ work on the spe-
cific heat of gases, using the idea that hydrogen might be able
to exist, either in atomic or molecular form [42]. This was
a novel concept at the time and Lane believed that the pre-
cipitated cloud model could be preserved through its intro-
duction. However, the most fascinating defense was found in
his second hypothesis which he believed was not very sound
and dismissable with very little reflection [42]. Interestingly,
in this hypothesis, Lane abandoned varying densities in the
solar interior and created the requirements for a liquid Sun,
apparently without realizing the obvious change in phase and
the profoundness of his own writings. Lane advanced the
possibility that “in the Sun’s body the average length of the
excursion made by each molecule between two consecutive
collisions, becomes very short compared to the radius of the
sphere of repulsion of molecule for molecule, and with the av-
erage distance of their centers at nearest approach. This way
of harmonizing the actual volume of the Sun with a tempera-
ture of 54,000◦ Fah. in the photosphere, and with the smallest
density which we can credit the photosphere, would involve
the consequence that the existing density of almost the entire
mass of the Sun is very nearly uniform and at its maximum
possible, or at all events that any further sensible amount,
comparatively, of renewed supplies of heat, for the obvious
reason that this hypothesis carries with it almost the entire
neutralization of the force of gravity by the force of molecu-
lar repulsion” [42]. Lane, without direct reference, was call-
ing for a liquid Sun. He concluded: “Another thing involved
in this second hypothesis is the fact which Prof. Peirce has
pointed out to the Academy, viz: that the existing molecular
repulsion in the Sun’s body would immensely exceed such as
would be indicated by the modulus of elasticity of any form of
matter known to us” [42]. With these words, Lane reminded
his readers that the conditions within the Sun were very differ-
ent than those predictable at the time using terrestrial physics.
Given the pressures within the Sun, the possibility of unusual
materials had to be considered. For Lane, this extended to a
material approaching a liquid in behavior, even though such
conjectures were viewed as unlikely.

2.2.3 Lane’s law: Stars which cannot cool

In his 1870 treatment of the Sun [42], Lane advanced an ele-
gant approach to the gaseous Sun. From his mathematics, he
was able to obtain a relationship between solar density and ra-
dial position using two equilibrium conditions. Today, these
are referred to as 1) mechanical or hydrostatic equilibrium
and 2) convective equilibrium. At the same time, Lane de-
duced a central solar density of 7 to 28 g/cm3 depending on
the assumptions applied [42]. Yet, the most important con-
clusion of Lane’s paper was a law, not discovered by Lane
but by Ritter [45]. In fact, Chandrashekhar would state that
“almost the entire foundation for the mathematical theory of
stellar structure was laid” by Ritter [48, p. 179].

As for Lane’s law, it proposed that the product of a gas-
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eous star’s radius and its radial temperature was a constant
[43, p. 194]. If the star contracted, its temperature increased,
provided that it remained an ideal gas. Fisen commented
as follows: “In a very remarkable paper, published in 1870,
Mr. Homer Lane has shown that if the Sun were entirely gas-
eous, and if the gases composing it were under such physical
conditions that the laws of ‘perfect gases’ should be appli-
cable to them, the heat developed by shrinkage must not be
merely equal but must so far exceed that radiated to effect it,
that the temperature of the whole must actually rise in conse-
quence, and must continue to do so for so long as a perfectly
gaseous condition is maintained” [30, p. 38]. Professor Ben-
jamin Peirce would restate the same ideas: “Gaseous bodies
in the process of radiating light and heat condense and be-
come hotter throughout their mass” [52, p. 197–198]. Today,
“Lane’s Law” is referred to as Lane-Emden equation, even
though Ritter discovered the formula and Lane never wrote
it down [43, p. 196]. As a result of the Lane-Emden rela-
tion, gaseous stars could never cool. They continued to emit
massive amounts of heat radiation. In so doing, gaseous stars
actually contracted and heated up. Eddington was astounded
at the “striking result that if a star contracts the internal tem-
perature rises so long as the material is sufficiently diffuse to
behave as a perfect gas” [44, p. 5].

2.2.4 An independent discovery of Lane’s law

Lane’s law was also independently discovered by T.F.F. See
[53, 54]. See provided a detailed description of his experi-
ences with Lane’s law. The discourse was both credible and
instructive [54]. See’s treatment of Lane’s law advanced a
straightforward derivation from Helmholtz’ ideas and placed
much of the history of Lane’s law in perspective. Ritter’s
work was not very well known by the astronomical com-
munity. After deriving Lane’s law, See recognized its pro-
found importance and wrote to many astronomers to estab-
lish if there were priority claims to the formulation. Even-
tually, an English astronomer mentioned Ritter’s 1881 com-
munication [54]. Examining the reference, See argued that
Ritter only used “language” to describe Lane’s law. In fact,
as Chandrashekhar stated [48, p. 178], Ritter first arrived at
the law in the key 1878 paper [45]. Unfortunately for See,
the Englishman was poorly aware of the German literature.
In large measure, See’s own work, would simply become an
independent confirmation of Ritter.

However, See’s papers were both elegant and well written
[53, 54]. See argued that star-like masses, formed from neb-
ular bodies, could not become infinitely compressed. Even-
tually, they must reach the liquid state: “From these consid-
erations we see that when the gaseous nebula is infinitely ex-
panded the temperature is the absolute zero of space, and that
the maximum temperature results when the mass is contracted
to the smallest radius consistent with the laws of gaseous
constitution. After the mass has condensed so far that liq-
uefaction sets in, free contraction is obstructed by molecu-

lar forces, or practically ceases; the temperature falls, and
the body eventually cools down to obscurity. Such it would
seem, must be the history of the temperature of cosmical bod-
ies formed by the gravitational condensation of nebulous mat-
ter” [54]. For theoretical astrophysics, it was difficult to ac-
count for such a phase transition.

2.3 Charles Hastings: A photosphere made of silicon?

When Charles Hastings developed his theory on the constitu-
tion of the Sun, he was surely unaware of the great impact he
would have on solar theory [55]. Though Hastings’ contribu-
tion was devoid of mathematics, it advanced many novel ideas
which became the genesis for new theoretical formulations.
Amongst his contributions was the concept that line widths
could be explained by considering various layers within the
photospheric atmosphere. For Hastings, line widths were di-
rectly related to pressure [55]. In order to arrive at increasing
values, it was simply required that the lines originated from
deeper layers within the photosphere.

Hastings opposed Faye’s model of the Sun on two
grounds: “1) To produce dark lines in a spectrum by absorp-
tion, the source of the absorbed light must be at a higher tem-
perature than that of the absorbing medium and 2) There is
an inferior limit of brightness below which the course of ab-
sorbed light cannot go without the spectral lines becoming
bright” [55]. In the second of these objections, Hastings was
referring to the reversing layer of the Sun observed during
total eclipses.

Hastings advocated that “it is not a priori improbable that
we receive light from many hundreds of miles below the outer
surface of the photosphere” [55], a concept still utilized in the
modern age to explain limb darkening. Hasting applied the
idea to explain the linewidths of dark lines in the solar spec-
trum and proposed an alternative approach to account for limb
darkening. Hastings also advocated that solid or liquid carbon
could not be present on the Sun: “Granting this, we perceive
that the photosphere contains solid or liquid particles hotter
than carbon vapor, and consequently not carbon” [55]. He
suggested that the material might be silicon. Hastings made
the bold pronouncement: “At any rate, we are sure that the
substance in question, so far as we know it, has properties
similar to those of the carbon group” [55]. But what proper-
ties? Hastings was not clear on this point. Nonetheless, the
idea was important and Hastings’ point will be addressed in
an upcoming contribution [56].

2.4 Frank Very: Frequency dependent limb darkening

In 1902, Frank Very published a detailed analysis of limb
darkening as a function of frequency [57]. The work would
be monumental in astronomy. Very was once Samuel Lang-
ley’s trusted assistant [58] and had been with Langley in the
days when the solar spectrum was first recorded in its en-
tirety [59–61]. In his classic report [57], Very documented
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that the Sun’s radiance was darkening towards the limb in a
frequency dependent manner. He studied 7 wavelengths rang-
ing from 0.416 µm to 1.5 µm, and demonstrated that shorter
wavelengths produced more dramatic limb darkening [57]. In
the violet wavelengths (0.416 µm), the edge of the solar disk
was radiating only 10% of the intensity found at the center.
As one moved towards the red (1.50 µm), the decrease was
much smaller with 75% of the radiation remaining [57].

Very attempted to explain his findings by invoking atmo-
spheric absorption of radiation, primarily by the corona [57,
p. 80]. Very advanced the scattering of radiation in the corona
and its reflection by carbon particles [57, p. 82]. Of course,
graphite makes for a very poor reflector. Very considered
diffraction: “We can subject the hypothesis of an extensive
envelope, depleting the rays by selective diffraction” [57]. Fi-
nally, Very advanced that the phenomenon was produced by
the irregularity of the Sun’s photosphere, invoking its granu-
lated structure [57, p. 86]. The idea was never pursued.

Immediately following the publication of Very’s
discovery, Arthur Schuster attempted to explain the strange
frequency/position dependent variation of solar radiation
[62]. In so doing, he began to develop the logic which led
to his famed communication on Radiation through a Foggy
Atmosphere [26, 27]. Very’s work became a source of moti-
vation for theoretical physics.

2.5 Arthur Schuster and the solar atmosphere

Sir Arthur Schuster was one of the most influential scientists
of his time [24, 25]. He attended Balfour Stewart’s classes
and, following the counsel of Henry Roscoe, completed his
dissertation with Gustav Kirchhoff [24,25]. At the Cavendish
Laboratory, Schuster worked under both James Clerk Max-
well and Lord Rayleigh [24]. He also studied with Weber
and Helmholtz [25]. In 1888, he succeeded Balfour Stew-
art as the Langworthy Professor of Physics at Owen’s Col-
lege and remained in this chair until 1907 [25]. Eventually,
Schuster was elected secretary of the Royal Society [24]. If
George Hale was regarded as the “father” of the International
Union for Solar Research, it has been argued that Schuster
was its “mother” [25]. Schuster counted amongst his students
Sir J. J. Thomson (Nobel Prize 1906), John William Strutt
(Lord Rutherford, Nobel Prize 1904), and Sir Arthur Edding-
ton, [24]. As a consequence, Eddington became a direct sci-
entific descendent of Gustav Kirchhoff.

Schuster’s seminal contributions began in 1902 with a re-
port on The Solar Atmosphere published within the Astro-
physical Journal [62]. The Solar Atmosphere was written in
response to Frank Very’s detailed examination of solar radia-
tion [57] (see Section 2.4). In turn, it was subjected to a letter
of criticism authored by Very [63] to which Schuster would
reply [64].

Schuster’s reply, The Temperature of the Solar Atmos-
phere [64], summarized his position and exposed some rather

prominent errors in logic. Schuster believed that he could
account for the law of variation of solar radiation by invok-
ing two layers within the Sun: 1) a photospheric layer radi-
ating as a blackbody at 6,700◦ and 2) an absorbing layer at
5450◦. The sum of the two layers produced the Sun’s ap-
parent temperature at 6,000◦. Schuster stated that within The
Solar Atmosphere [62], he had used a fourth power of tem-
perature relationship, when a fifth power was more appro-
priate. Additionally, and this was perhaps most troubling,
Schuster maintained that the radiative layer was emitting as
k F, where F was the blackbody function and k was a wave-
length dependent constant which could adopt any value be-
tween zero and infinity. In so doing, he removed all restric-
tions on the ability of bodies to emit radiation and operated
well outside the bounds of physics. As a student of Kirchhoff,
Schuster insisted that: “Everybody knows that the function
of temperature and wavelength which expresses the radiation
of a blackbody is a fundamental function which must enter
into every discussion of radiation and absorption” [64]. Yet,
through his mathematics, Schuster essentially disregarded the
blackbody function itself. Schuster could provide no physi-
cal justification for the behavior of k, his magical constant.
Its presence made any extended discussion of mathematics
pointless. Schuster further broadened the boundary of proper
mathematical treatment highlighting: “As misunderstandings
seem so easily to arise, it is perhaps worth pointing out that,
although for the purpose of facilitating mathematical analy-
sis it is sometimes necessary to treat the upper portion of the
same body as made up of distinct layers, having different tem-
peratures and possibly different absorbing qualities. . . ” [64].
With these words, Schuster removed even more restrictions
for the gaseous solar models relative to ability to emit radia-
tion. Given unbridled mathematics, all could be explained in
a gaseous framework.

Very seemed more mindful of physical realities: “It is a
fact that, at the photospheric level, some form of matter ex-
ists which does radiate indiscriminately through a wide range
of wavelengths, and whose particles are presumably coarse
enough to act non-selectively in other respects” [63]. He
championed an idea that was to permeate theoretical astro-
physics: “From the depths of the Sun, radiations composed
mainly of very short waves tend to proceed, and a very exten-
sive scattering atmosphere acts almost like a reflector, send
nearly all the rays back again. In this case the medium will
not be heated much in the process. Only a small fraction
of the incident rays will be absorbed by the fine particles;
the greater part is assumed diffracted. Still, as the course
of the rays through such an extensive scattering medium is
a zigzag one, the scattering being repeated over and over
again, some cumulative action and some absorption of energy
by the medium must result. Consequently, it is not possible to
separate completely the two causes — absorption and scat-
tering” [63]. Almost the exact arguments would be repeated
by Eddington in the 1920’s [44].
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2.6 Classic papers in stellar radiation transfer

Donald Menzel prepared a compilation of Selected Papers on
the Transfer of Radiation [66], wherein he reprinted the great
contributions on the subject, but regrettably, without offering
a commentary. By assembling these articles in one text, Men-
zel implicitly reminded the reader of their importance in the
history of theoretical astrophysics.

The study of radiation in stellar atmospheres was primar-
ily driven by the need to explain the continuous solar spec-
trum. While many works describe the transfer of radiation
within stars [67–69], the entire problem was introduced into
astronomy by the desire to account for thermal emission in
a gaseous framework. The understanding of internal stellar
opacity was directly associated with the act of building a star
without recourse to condensed matter. Ironically, it also be-
came essential to account for physical structure using a phase
of matter, which on Earth, was devoid of structural poten-
tial [70]. In adopting a gaseous foundation, astrophysics was
immediately confronted with two dilemmas: 1) how could a
gas provide a continuous blackbody spectrum like graphite?
and 2) how could structure and activity, like granulations,
sunspots, flares, and prominences be understood using a fully
gaseous entity? To solve these great questions, only theoreti-
cal approaches were available.

2.6.1 Schuster and the foggy atmosphere

Arthur Schuster initially presented an abridged version of his
Radiation through a Foggy Atmosphere in 1903 [27]. The
complete paper appeared in 1905 [26]. Schuster attempted
to explain the bright lines of the reversing layer above the
photosphere and the dark lines which usually typify the so-
lar spectrum. For Kirchhoff, the bright lines were being pro-
duced by species which were at a higher temperature than
the liquid photosphere, while the dark lines required lower
temperatures. Though Kirchhoff’s student, the German-born
British physicist preferred an alternative explanation.

Schuster viewed as foggy an atmosphere which sustained
a considerable amount of scattering. The basis of the presen-
tation was the emission of radiation from a surface towards
an overlaying atmospheric layer, wherein both scattering and
absorption occurred. Accordingly, Schuster required that the
Sun possess a distinct surface [26]. The point was also made
by Milne [70] in his description of Schuster’s contribution to
the understanding of solar emission. For Schuster, scattering
and absorption within the foggy atmosphere could modify the
light emitted from the lower surface, permitting only certain
frequencies to pass through which accounted for the bright or
dark lines on the solar spectrum. The derivation assumed that
the coefficient of absorption in the scattering layer was a func-
tion of wavelength dependent on the density of the absorbing
species in the medium. Likewise, the coefficient of scatter-
ing also depended on the number of scattering particles in the
medium which may or may not be the same as those used in

absorption.
Schuster considered the Sun much like Faye [2]. The pho-

tosphere was composed of particulate matter floating above a
gaseous solar body [1]. It was this particulate matter which
would allow for the treatment of the scattering process.
Schuster insisted on the validity of Kirchhoff’s law as the
proper starting point for all work in thermal emission.
Though he recognized many of the weaknesses of his ap-
proach, Schuster never questioned Kirchhoff [26, p. 5]. Con-
sequently, Schuster demonstrated that when the absorption
coefficient of the layer was large with respect to the coeffi-
cient of scattering, the radiation observed from a large cloud
of gas was the blackbody function: “The radiation in this case
becomes equal to that of a completely black surface, which
agrees with the well-known law that absorption irrespective
of scattering tends to make the radiation of all bodies equal
to that of a black body when the thickness is increased” [26,
p. 6]. The result unfortunately, while mathematically appeal-
ing, was logically flawed.

Schuster expressed that the radiation emitted by the ab-
sorbing layer was the product of the absorption coefficient,
k, multiplied by the blackbody function, E, and the thickness
of the layer, dx: k Edx [26, p. 3]. The absorption coefficient,
k, in this case, was dependent on the wavelength of observa-
tion, the nature of the gas, and the density of the medium. In
reality, Schuster needed to use an arbitrary function, like Γ,
obtaining k Γdx. In this case, Γ could be viewed as equal to
k′E. Such an approach would more appropriately reflect the
complexity involved in this problem. Schuster never estab-
lished that E equaled Γ, the step critical to maintaining his
conclusion. His a priori invocation of the blackbody function
for the gas layer, though appearing mathematically correct be-
cause of the multiplication with k, ensured the result sought.
Repeating the same derivation using Γwould completely alter
the conclusions.

Once Schuster assumed that the blackbody function could
be directly applied to represent the emission of the gas, a
great thickness guaranteed that blackbody radiation was pro-
duced, even if the coefficient of absorption was small, merely
because the coefficient of scattering was much smaller (see
Eq. 14 in [26]). The result was impossible as it violated the
first law of thermodynamics. It would have been more rea-
sonable to derive that great thickness would simply result in
obtaining the arbitrary function Γ. Schuster would have ob-
tained this tempered finding, reminiscent of the line spectrum,
such as that of the gaseous nebula in Orion [71, p. 87], if he
had not insisted upon using the blackbody function as a point
of departure.

The lineshapes of emission spectra for condensed matter
do not change simply because objects become large. Yet, this
was what Schuster was implying for the gas. This conclusion
was very far reaching and would propagate throughout the as-
trophysical literature without correction. Arbitrary radiation
never becomes black within adiabatic enclosures [72] and
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gases do not become black simply because they are expan-
sive — a lesson learned from the gaseous nebula [71, p. 81–
92]. The size of objects remains secondary to the nature of
radiation, if diffraction effects can be neglected [73].

2.6.2 Schwarzschild and radiative equilibrium

As was seen in Section 2.2, Lane’s gaseous Sun [42] achieved
stability through convective equilibrium. But for Arthur Ed-
dington, radiative equilibrium became an important means
of achieving the same result [3, 44]. The concept of radia-
tive equilibrium was initially advanced, as Eddington recalls
[44, p. 9], by R. A. Sampson in 1894 [74]. Still, it was Karl
Schwarzschild (October 9th, 1873 — May 11, 1916) [75]
who, in 1906, would give it prominence in theoretical astro-
physics [76].

Schwarzschild was a gifted theoretical physicist who died
at the age of 42 in the course of World War I: “The war exacts
its heavy roll of human life, and science is not spared. On our
side we have not forgotten the loss of the physicist Moseley,
at the threshold of a great career; now from the enemy, comes
news of the death of Schwarzschild in the prime of his pow-
ers. His end is a sad story of long suffering from a terrible ill-
ness contracted in the field, borne with great courage and pa-
tience. The world loses an astronomer of exceptional genius,
who was one of the leaders in recent advances both in ob-
servational methods and theoretical researches” [75]. Many
surely believe in the impossibility of reading Schwarzschild
without gaining some reverence for the beauty of the hu-
man mind. Schwarzschild’s treatment of radiative equilib-
rium within stars would not set a lower standard [76].

Milne reviewed Schwarzschild’s contribution to radiative
equilibrium in his Bakerian lecture [70]. This elegant treat-
ment, as mentioned in Section 2.6.1, also addressed Schus-
ter’s approach [70].

Schwarzschild began his discussion of limb darkening on
the solar surface by assuming that radiative equilibrium ex-
isted [76]. He also considered adiabatic equilibrium, referred
to by Lane as convective equilibrium [42]. According to
Schwarzschild: “radiative equilibrium in a strongly radiat-
ing and absorbing atmosphere will be established when ra-
diative heat transfer predominates over heat transfer due to
convective mixing” [76]. The theoretical formulation adopted
resembled Schuster’s [70]. Schwarzschild almost perfectly
accounted for limb darkening using radiative equilibrium, de-
monstrating accordingly, that this assumption was valid for a
gaseous Sun. The final result was independent of wavelength,
dealing only with the total heat emitted, as measured with a
bolometer [76]. Schwarzschild further proved that limb dark-
ening could not be accounted for using convective equilib-
rium (see the table in [76]). The finding was impressive.
Like Schuster before him, Schwarzschild based his conclu-
sion on the validity of Kirchhoff’s law [9]. Thus, the re-
sult was critically dependent on the soundness of Kirchhoff’s
conclusion. In addition, since it was based on an ideal gas,

Schwarzschild’s derivation implied that the Sun was devoid
of a real surface and the solutions obtained extended to in-
finity [76]. Radiative equilibrium, sustained within a gaseous
Sun, would form the basis of Eddington’s treatment of the
internal constitution of the stars [3, 44, 77].

2.6.3 Rosseland and mean opacities

Before discussing Eddington’s application of radiative equi-
librium to the stars, a sidestep should normally be made in
order to briefly cover Rosseland and the formulation of the
mean opacities [78, 79]. First proposed in 1924, Rosseland
mean opacities enabled the next great advance in theoreti-
cal astrophysics [78, 79]. However, the topic will be passed
over for the time being, reserving it instead for an upcoming
work [80].

3 Eddington and Jeans: The clash of the titans

In writing the biography of Arthur Stanley Eddington, Sub-
rahmanyan Chandrasekhar chose the following title: Edding-
ton: The Most Distinguished Astrophysicist of his Time [81].
Chandrasekhar was not far from the mark. However, another
contender for the title existed: James Hopwood Jeans. In fact,
Edward Arthur Milne [82], who along with Ralph Fowler [83]
worked with Eddington at Cambridge, would spend the last
days of his life writing the biography of Sir James Jeans [84].
The work would be published after Milne’s death. No one can
truly dissect the merits of each man. Eddington and Jeans
were giants in the world of theoretical astrophysics. Each
made brilliant strides and, like all men, each committed re-
grettable scientific errors.

Matthew Stanley provided an outstanding account of the
great battle which engulfed Eddington and Jeans [85]. Stan-
ley outlined the vivid debates over the nature of the stars
and the vastly differing philosophical approaches. He empha-
sized that much of what theoretical astrophysics would be-
come dependent on Eddington’s phenomenological outlook
[85]. Jeans, for his part, dismissed Eddington’s approach as
not even science [85]: “Eddington argued that his phenom-
enological approach opened up new avenues of investigation
in astronomy, but Jeans argued that this was a violation of
the very rigor and discipline that made astronomy so power-
ful” [85]. Albert Einstein shared in Jeans’ position stating:
“Eddington made many ingenious suggestions, but I have not
followed them all up. I find that he was as a rule curiously
uncritical towards his own ideas. He had little feeling for
the need for a theoretical construction to be logically very
simple if it is to have any prospect of being true” [86, p. 40].
Einstein wrote these words in a private letter and made no
such statements publicly. After all, it was Eddington who first
worked to confirm Einstein’s theory of relativity [87]. Jeans
was even more critical: “All Eddington’s theoretical inves-
tigations have been based on assumptions which are outside
the laws of physics” [88]. As for Eddington, he was described
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Fig. 1: Sir Arthur Stanley Eddington (December 28th, 1882 —
November 22nd, 1944) was an outstanding theoretical physicist. He
would become known for his approach to the gaseous stars. He de-
rived a mathematical formulation which could account for the mass-
luminosity relationship of the stars and was the first to propose that
stars were fueled by nuclear processes. Eddington also conducted
key experiments validating Einstein’s theory of relativity.

as a pragmatist [85]. He used “whatever knowledge and tools
were useful, instead of worrying about whether they were ‘re-
ally true’ ” [85]. In his defense against Jeans’ constant de-
tractions, Eddington claimed: “although a reasonable degree
of rigour is required, the laborious exploration and closing
of every loophole is of secondary importance [85]. But, with
regards to the Sun, who was to assess if an element of theory
was merely a question of closing a loophole or a fatal and ir-
recoverable logical flaw? Eddington and Jeans would outline
scientific and philosophical problems which remained unan-
swered to the present day.

Milne, perhaps better than anyone, was in a position to
highlight the great loss to science that the discord between
Jeans and Eddington produced: “It is much to be regretted
that these two titans, Eddington and Jeans, should not have
co-operated in their assaults on the grand subject of stellar
structure, instead of being opposed to one another, during the
most constructive periods of their careers. The blame has to
be divided between them. Jeans mistakenly attacked Edding-
ton’s mathematics instead of accepting his mathematics and
then providing the correct interpretation; Eddington resented
what he considered to be aspirations on his competency as

Fig. 2: Sir James Hopwood Jeans (September 11th, 1877 — Septem-
ber 16th, 1946) was the last modern advocate of liquid stars. He
believed that such objects were constructed from heavy elements
obtaining their energy through fission, rather than fusion. Beyond
astronomy, he was best known for his work on the partition of en-
ergy between matter and radiation — a solution leading to the Jeans-
Rayleigh ultraviolet catastrophe. Jeans served as Secretary of the
Royal Society from 1919–1929.

a mathematician, and never understood the difficulties of a
philosophical kind that surrounded his own interpretation of
his results. Astronomers on the whole have favoured Edding-
ton’s side of the controversy — mistakenly in my opinion. This
is due, in addition to the reasons mentioned above, to the fact
that Eddington had more of a feeling for the physics of a sit-
uation than Jeans had, whilst Jeans had more of a feeling
for the mathematics of a situation than Eddington had; the
result was that Eddington’s stars had a physical plausibil-
ity that Jeans’ lacked, and the astronomer who did not wish
to go into the rights and wrongs of the mathematical situ-
ation could see the physical likelihood of Eddington being
correct” [84, p. 28].

3.1 Arthur Stanley Eddington

Though Eddington was a great proponent of the gaseous Sun,
in 1910, he noted that “the stars might be solid, liquid, or
not too rare a gas” [85]. He was a Quaker by birth and had
earned a bachelor’s degree with Arthur Schuster at Owens
College [85]. As such, he was a direct scientific descendent
of Kirchhoff. Eddington maintained that the value of theory
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was in its ability to prompt further study, not in its relation to
the established facts [85].

In his classic paper Radiative Equilibrium in the Sun and
Stars, Eddington wrote about the laws of emission: “There
are some physical laws so fundamental that we need not hes-
itate to apply them to the most extreme conditions; for in-
stance, the density of radiation varies as the fourth power
of temperature, the emissive and absorbing power of a sub-
stance are equal, the pressure of a gas of given density varies
as its temperature, the radiation-pressure is determined by
the conservation of momentum — these provide a solid foun-
dation for discussion” [77]. Unfortunately, Eddington dis-
pensed with the qualifiers so critical to make such statements
hold true. In reality, only the emission of graphite or soot var-
ied as the fourth power of temperature [7, 72, 73, 89]. Even
for these cases, the relationship depended on the frequency
of interest and the specific mineralogical origin of the mate-
rial. The gas Eddington considered could never adopt such
behavior [89]. In fact, the emissivity of gases could actually
drop with increasing temperature [89], a clear violation of
Stefan’s 4th power of temperature law [90]. Unlike graphite,
gases utilize convection currents in an attempt to reach ther-
mal equilibrium. In any event, Kirchhoff’s law [9] required
two restrictions: a rigid enclosure and thermal equilibrium
[7, 72, 73]. Eddington’s gaseous Sun could provide neither.
Outside the strict confines of thermal equilibrium, even the
statement that emission equaled absorption was invalid. Jeans
also made the point: “In a gaseous star it is probable that
much more energy is transferred by radiation than by ordi-
nary gaseous conduction, so that an accurate determination
of the laws of radiative transfer is a necessary preliminary
to many problems in stellar physics” [91]. Jeans based his
thesis on theoretical grounds, while the laws of radiation for
gases must be determined experimentally. In any case, even
the slightest conduction and/or convection, both of which are
undeniably present in stars, rendered all conjectures of radia-
tive equilibrium invalid.

Despite all these considerations, Eddington was able to
make what appeared to be surprisingly powerful advances
in theoretical astrophysics. While assuming that absorption
was constant within stars, the triumph of his gaseous models
rested on the confirmation of the mass-luminosity relation-
ship [44, p. 145–179] and the explanation of Cepheid vari-
ables [44, p. 180–215]. Eddington’s paper, On the Relation
between the Masses and Luminosities of the Stars, became
an instant classic in theoretical astrophysics [92]. Edding-
ton justified his theoretical approaches by invoking the work
of Jacob Halm [93] who was the first to state that “intrinsic
brightness and mass are in direct relationship”. Halm was
soon followed in this concept by Ejnar Hertzsprung who, in
1919, also established a relationship between these two vari-
ables [94]. An excellent historical review on the subject ex-
ists [95]. For theoretical astrophysics, Eddington’s confirma-
tion of the mass-luminosity relationship was not simply an

affirmation of Halm and Hertzsprung [93, 94]. It represented
the birth of the fully gaseous Sun and of theoretical astro-
physics.

The derivation of the mass-luminosity relationship would
become a direct confirmation that Eddington’s entire ap-
proach was correct. Stars, it seemed, must be gaseous. The
argument was powerful. Still, it remained strangely dissoci-
ated from all physical observations of the Sun itself. In or-
der to reproduce the mass-luminosity relationship, Edding-
ton had only one requirement: the line he would draw would
be guided by passing through a single star — Capella [92].
Jeans was not convinced. In 1925, he argued that the mass-
luminosity relationship itself was nothing but an illusion:
“. . . there is no general relation between the masses and lu-
minosities of stars. . . ” [85, p. 67].

Despite Jeans’ objection, Eddington was quick to gain
broad acceptance of his views. He would soon write a highly
read popular work, Stars and Atoms [96]. It would provide a
powerful look at both his philosophy and his scientific posi-
tions. In Stars and Atoms, Eddington stated that “The Sun’s
material, in spite of being denser than water, really is a per-
fect gas. It sounds incredible, but it must be so” [96, p. 38].
Further, Eddington would invoke Ralph Fowler in claiming
that the gas was “superperfect” and “more easily compressed
than an ordinary gas” [96, p. 40]. He would go on to state:
“It is now well realized that the stars are a very important
adjunct to the physical laboratory — a sort of high tempera-
ture annex where the behavior of matter can be studied under
greatly extended conditions. Being an astronomer, I natu-
rally put the connexion somewhat differently and regard the
physical laboratory as a low temperature station attached to
the stars. In it the laboratory conditions which should be
counted as abnormal” [96, p. 83]. These words, of course,
echoed Jeans’ claim that Eddington had abandoned the laws
of Earthly physics. Milne was forceful regarding Edding-
ton: “No words are needed to praise Eddington’s achieve-
ment in calculating the state of equilibrium of a given mass
of gas, and in calculating the rate of radiation from its sur-
face. What was wrong was Eddington’s failure to realize
exactly his achievements: he had found a condition for a
star to be gaseous throughout; by comparison with the star,
Capella, he had evaluated the opacity in the boundary lay-
ers; and he had made it appears unlikely that the stars in na-
ture were gaseous throughout. His claims were the contrary;
he claimed to have calculated the luminosity of the existing
stars; he claimed to show that they were gaseous through-
out; and he claimed to have evaluated the internal opacity of
the stars. Jeans deserves great credit for being the first critic
to be skeptical about these claims of Eddington’s theory, in
spite of the attractive plausibility with which the theory was
expounded” [84, p. 27].

Recently, Alan Whiting presented a review of Stars and
Atoms [97, p. 215–229]. Whiting claimed that Eddington was
carefully aware of observational physics, particularly with re-
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gards to the mass-luminosity question [97]. Whiting created
an interesting contrast with Stanley [85] relative to the Jeans-
Eddington battle. Whiting was highly critical of Jeans, but
much more reverential towards Eddington [97, p. 215–229].
Perhaps this was with good reason as Eddington had cham-
pioned the gaseous stars. This was to become the prevail-
ing theory. Jeans defended the liquid alternative [97, p. 187–
214]. Eventually though, even Jeans abandoned the liquid
[97, p. 231–246] in favor of Eddington’s gaseous models.

3.2 James Hopwood Jeans

Milne said of Jeans that “he never wrote a dull page of math-
ematics in his life” [84, p. 15]. Thus, in every respect, Jeans
was a fitting adversary for Eddington. While an undergradu-
ate at Cambridge, he received outstanding scores on his en-
trance exams to Trinity College and, along with G. H. Hardy,
he would become the first student to take Part I of the Math-
ematical Tripos in only two years [84, p. 4–5]. A brilliant
mathematician, Jeans’ first great contribution to theoretical
physics would be his study of the partition of energy between
matter and radiation [98–100]. The papers demonstrated that
Planck’s quantum mechanical formulation [101], devoid of
the Jeans-Rayleigh ultra-violet catastrophe, was the proper
solution to the blackbody problem. Milne reviewed Jeans’
contribution to the energy partition problem [84, p. 89–98].
Milne also provided perhaps the best condensed review of
Jeans’ position on liquid stars [84, p. 99–124]. In doing so,
he reminded us that one of Jeans most beautiful works was
his Adams Prize Essay [102]: “Jeans Adams Prize Essay of
1919 was and remains a classic, even where subsequent dis-
coveries have proved it wrong” [84, p. 57]. The Essay was
Jeans’ first great venture into liquid stars.

Jeans was not the first to consider the problem of rotating
homogeneous masses. As shall be seen in Section 3.3, the
problem had been addressed by many of the finest minds in
science. For Jeans, this included Poincaré [103] and George
Darwin [104–108], the Cambridge physicist who had judged
the Adams Prize Essay [84, p. 11]. Schwarzschild had also
devoted time to this problem [109] and his approach remains
important [110].

For Jeans, the starting point for liquid stars appears to
have been the observation that a very large portion of these
bodies existed as binary systems. The prevalence of binary
stars would open the Adams Prize Essay [102, p. 2–4]. It
would become a central part of Astronomy and Cosmogony
[111, p. 20–23] and of his popular The Universe Around Us,
both in its First Edition of 1933 [112, p. 38–53] and in the
dramatically different Fourth Edition of 1944 [113, p. 37–51].
Relative to the formation of binaries, he wrote: “In brief ev-
ery rotating body conducts itself either as if it were purely
liquid, or as if it were purely gaseous; there are no interme-
diate alternatives. Observational astronomy leaves no room
for doubt that a great number of stars, possibly even all stars,

follow the sequence shown in fig. 11. No other mechanism, so
far as we know; is available for the formation of the numer-
ous spectroscopic binary systems, in which two constituents
describe small orbits about one another. In these stars, then,
the central condensation of mass must be below the critical
amount just mentioned; to this extent they behave like liquids
rather than gases” [112, p. 215]. Figure 11 represented the
pear-shaped Darwin sequence of stellar evolution.

Three major problems preoccupied Jeans: 1) the purely
rotational problem of a homogenous liquid, 2) tidal problem
wherein a primary mass was affected by a secondary object,
and 3) the formation of binary stars and maintenance of bi-
nary stars [84, p. 110]. For Jeans, the entire problem of the
stars was one of physical stability. His work on liquids was
surprisingly sparse of the radiative considerations which had
characterized Eddington’s entire approach to gaseous stars.

Jeans argued in Astronomy and Cosmogony that gaseous
stars were inherently unrealistic [111, p. 64–104]: “. . . we in-
vestigated the internal equilibrium of the stars on the sup-
position that they were masses of gravitating gas, in which
the gas-laws were obeyed throughout. The investigation was
abandoned when it was found to lead to impossibly high val-
ues of atomic weights of the stellar atoms. This created a
suspicion that the hypothesis on which it was based was un-
founded, and that the gas-laws are not obeyed in stellar in-
teriors” [111, p. 136]. He had previously attacked the sta-
bility of gaseous stars in the 1925 Monthly Notices [114]. He
claimed that stars which generate energy as a function of tem-
perature and density, would be violently unstable to radial os-
cillations [114]. Cowling refuted Jeans’ claims [115,116] and
Whiting recently followed suit [117]. In the end, the instabil-
ity of gaseous stars would survive scrutiny.

By the time Astronomy and Cosmogony was published,
Jeans still refused to accept that the mass luminosity relation-
ship was valid [111, p. 83]. Rather, he held that the mass-
luminosity law could not be real, but that it was “a conse-
quence merely of the special assumption that kG is constant,
and cannot have reference to actual stellar conditions” [111,
p. 83]. Jeans viewed the entire relation as a mathematical trick
[85, p. 75]. Already, Jeans believed that stars were driven by
the fission of materials such as uranium [111, p. 83]: “But if
the star has a liquid, or partially liquid, centre, this strip of
safe land is so wide that, consistently with stability, the stellar
material may have exactly the property that we should à pri-
ori expect to find, namely that its annihilation proceeds, like
radio-active disintegration, at the same rate at all tempera-
tures. If the substance of the star has this property, the star
can no longer be in danger of exploding, for a mass of ura-
nium or radium does not explode whatever we do to it” [112,
p. 287]. The amount of emitted light depended on the nature
of the stellar constituents, not on a star’s mass. Still, Jeans did
not relate the ability to emit radiation to the phases of matter.

When Jeans first wrote The Universe Around Us [112], he
postulated that, in order for a star to be stable, it must contain,
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at the minimum, a liquid central region: “And mathematical
analysis shews that if the centre of the star is either liquid, or
partially so, there is no danger of collapse; the liquid center
provides so firm a basis for the star as to render collapse im-
possible” [112, p. 287]. He advanced two postulates: “1. That
the annihilation of stellar matter proceeds spontaneously, not
being affected by the temperature of the star. 2. That the cen-
tral regions of stars are not in a purely gaseous state; their
atoms, nuclei and electrons are so closely packed that they
cannot move freely past one another, as in a gas, but rather
jostle one another about like the molecules of a liquid” [112,
p. 287]. Jeans’ concept of a liquid star was based not only on
the stability of the resulting structures, but also on its consti-
tutive materials and the need to provide the energy dissipated
in the Sun’s thermal radiation.

In his Hindsight and Popular Astronomy, Whiting [97]
addressed at length the differences between Jeans’ two Edi-
tions of his classic text The Universe Around Us [112, 113,
p. 83]. These two editions were drastically at odds with one
another. The first made the case for liquid stars, while the sec-
ond advocated gaseous entities. Jeans completely removed
any reference to liquid stars from the index of the 1944 edi-
tion [113]. The listing had many entries in the previous edi-
tions. Thus, it appears that a great transformation occurred
for Jeans between 1933 and 1944. The evolution of Jeans’
ideas were not recorded in the scientific literature. Jeans’ last
technical paper [84, p. 60] was entitled: “Liquid Stars, a Cor-
rection” [118]. It was published in 1928 at the same time as
Astronomy and Cosmogony [111], but did not address liquid
stars. Rather, it tackled Jeans’ concerns relative to the insta-
bility of gaseous stars.

Why did Jeans abandon liquid stars? The answer will pro-
bably remain elusive. It was clear that Jeans had advocated
that liquid stars were constituted of heavy elements which de-
rived their energy from fission. As a result, when evidence
gathered that hydrogen was the principle constituent of stars
like the Sun [119–121], Jeans was left without a building
block and without a means to generate energy. It was incon-
ceivable to a person in Jeans’ day that hydrogen could exist in
liquid form, provide the requisite building material for a liq-
uid star, and maintain the Sun’s energy through fusion [56].
Furthermore, Jeans had to contend with the critical tempera-
ture arguments based on Andrews [29]. Given the need for
hydrogen, it must have seemed to Jeans that liquid stars were
doomed.

3.3 Subrahmanyan Chandrashekhar and rotating fluid
masses

Subrahmanyan Chandrasekhar (October 13th, 1910 — Au-
gust 21, 1995) [122] was Ralph Fowler’s student at Cam-
bridge. He was well acquainted with Eddington, Jeans, and
Milne. Eventually, he would become the recipient of the
1983 Nobel Prize in physics. His text, Introduction to the
Study of Stellar Structure remains an authoritative treatment

of the subject matter and is widely considered a classic in
astrophysics [48]. Chandrasekhar also wrote a lesser known
volume on Ellipsoidal Figures of Equilibrium [124]. Rotat-
ing fluid masses captivated Chandrasekhar for a period of
nine years [124, p. 241]. The father of modern solar astro-
physics makes two points with regards to his time investment:
1) “the subject had attracted the attention of a long succes-
sion of distinguished mathematicians and astronomers” and
2) “the method of the virial is not restricted to homogeneous
masses” [124, 241].

Except for a single chapter, Ellipsoidal Figures of Equi-
librium was entirely devoted to homogeneous liquid masses.
His Historical Introduction [124, p. 241] provided a magnif-
icent review of the field which outlined the seminal contri-
butions of men like Newton, Maclaurin, Jacobi, Meyer, Liou-
ville, Dirichlet, Dedekind, Riemann, Poincaré, Cartan,
Roche, Darwin, and Jeans.

Chandrasekhar believed that the problem of the homoge-
neous liquid mass “had been left in an incomplete state with
many gaps and omissions and some plain errors and miscon-
ceptions” [124, p. 241]. This was the prime motivation for
his text. The most significant gap in the theory of the homo-
geneous rotating liquid was addressed with Chandrasekhar’s
discussion of the Darwin ellipsoids [124, p. 218–239]. In a
chapter devoted to the Roche ellipsoids, he demonstrated that
such structures are unstable over the entire Darwin sequence
[124, p. 218–239]. Chandrasekhar’s conclusion was a partial
setback for Jeans’ work, in that the latter had speculated, as
seen in Section 3.2, that binaries were formed through the
evolution of the Darwin sequence [112, p. 247–253]. Both
Jeans and Darwin had recognized that the pear-shaped figure
was unstable [112, p. 252], though they did not suspect that
this was the case for the entire sequence. As a result, the
extensive presence of binaries in the sky, Jeans’ primary ar-
gument for liquid stars, could not be easily explained by the
liquid models he had advocated after all. Relative to binaries,
it seems that neither liquid nor gaseous models have offered
a definitive answer. Lebovitz argued that “the viability of fis-
sion theory remains unsettled to this day” [125, p. 131].

4 Conclusions

Throughout the ages, as new physical discoveries occurred,
attempts were made to mold them into the prevailing model
of our star. Secchi’s Sun, with its particulate photospheric
matter floating on a gaseous globe, was not easily abandoned
[38, 39]. Faye’s insistence that the Sun was devoid of a true
surface has remained accepted to this day [2]. Stoney’s sprin-
kling of graphite particles on the Sun would prevail for 60
years [11]. But when Stoney was eventually abandoned,
could modern man really endow a gas with features found
only in condensed matter? Could the solar spectrum truly
be accounted for by the mathematics linked to gaseous stars?
These were the questions that begged for answers, although
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they could not be resolved solely through historical review.
They would require instead a careful analysis of the stellar
opacity problem [80].

It has always been true that current solar models far sur-
pass in validity those advanced by previous generations.
Therefore, modern science must be called to greater caution.
It is noteworthy that, while Laplace’s nebular hypothesis and
Helmholtz’ contraction theory have long ago been abandoned
[1], the influence they carried in forging a gaseous Sun did
not wane. In like manner, Kirchhoff’s law of thermal emis-
sion [9, 73], though never validated in a gas, has remained
a pillar of modern solar theory [1]. This has been the case,
even though no gas has ever emitted a continuous spectrum
which varied as the 4th power of temperature. Thermal emis-
sivities in gases tended to drop with temperature, not to dra-
matically increase [89]. Invoked as one of the early pillars of
the gaseous Sun, the broadening of hydrogen has never as-
sumed a blackbody line shape. In the gaseous state, despite
increased pressure, hydrogen cannot emit with a 4th power
relationship [89]. In 1869, Andrews [29] was unaware that
liquid metallic hydrogen existed [56]. The existence of this
material [56], has delivered a devastating defeat to the limit-
ing aspect of critical temperatures [29] measured in ordinary
gases, relative to forming a gaseous Sun [1]. Given these con-
siderations, what can be said about our solar models?

With the publication of Arthur Eddington’s Internal Con-
stitution of the Stars [3] and the subsequent work An Introduc-
tion to the Study of Stellar Structure by Subrahmanyan Chan-
drasekhar [48], astrophysics seemed to have taken unprece-
dented steps in understanding the stars. Eddington’s classic
work advanced a cohesive gaseous model. It also brought
forth the phenomenal mass-luminosity relation, so prized by
theoretical astrophysics. For his part, Chandrasekhar would
propel our knowledge of stellar evolution with his introduc-
tion of degeneracy and his tremendous treatment of the white
dwarf, leading to the limit which bears his name [48]. Given
the powerful theoretical framework which surrounded the
gaseous stars, most envision that a perfect marriage of phys-
ical observation and mathematical prowess had resulted in a
level of sophistication well beyond that reached in ages past.

In spite of all this, as a celestial body, the Sun has struc-
ture: a photosphere, a chromosphere, a corona, granulations,
sunspots, prominences, etc. However, by their very nature,
gases are unable to impart structure. Long ago, Jeans com-
plained that “All of Eddington’s theoretical investigations
have been based on assumptions which are outside the laws of
physics” [88]. The criticism may be overly harsh, but it must
be remembered that many astronomers of the period, unlike
Eddington, placed a strong emphasis on physical observation.
For his part, Eddington essentially dismissed physical find-
ings. Hence, it is not surprising that animosity arose between
these two men. As the author previously stated: “Eddington
believed that the laws of physics and thermodynamics could
be used to deduce the internal structure of the Sun without any

experimental verification. In 1926, he would speak hypotheti-
cally about being able to live on an isolated planet completely
surrounded by clouds. In such a setting, he thought he would
still be able to analyze the Sun without any further knowl-
edge than its mass, its size and the laws of physics” [126].
Eddington himself realized the risks he was taking when he
wrote that: “We should be unwise to trust scientific inferences
very far when it becomes divorced from opportunity for ob-
servational tests” [44, p. 1]. Since Eddington was trying to
understand stellar interiors, there could be no observational
confirmation of his mathematics. In addition, Eddington’s
treatment completely sidestepped the structural features on
the Sun. Moreover, Eddington assumed the same average co-
efficient of absorption throughout a star despite fluctuations
in temperatures and densities [44]. He treated all opacities,
for both dense stars and sparse ones, as corresponding to the
opacity within the Sun itself [44]. His model could not be
tested using data from the Sun.

Eddington sought to establish the mass-luminosity rela-
tionship as a manifestation that at least some merit could be
gained from his approach. This relationship was enticing, but
its acceptance would come at a great price. Theoretical as-
trophysics would be brought to the uncomfortable position of
minimizing the importance of direct physical evidence for the
state manifested by the Sun. This was the cost of embracing
stellar, rather than solar, data. Direct solar observations re-
ceived less weight than distant stellar findings. This was the
case even though stellar measurements were obtained, fol-
lowing assumptions and manipulation from stars positioned
light years, if not thousands of light years, away. Addition-
ally, by adopting Eddington’s conclusion, the chemical nature
of the star itself was quietly dismissed as immaterial [44].
Yet on Earth, the thermal emission of all materials was deter-
mined strictly by their chemical makeup and physical struc-
ture [127]. These facts should not be overlooked. It was im-
proper for Eddington to discount earthly laboratories, as seen
in Section 3.1, because mankind could trust no other venue.

If Eddington struggled in certain areas, his approach was
not without precedent. As described earlier [1], those who
studied solar physics, from Galileo to Wilson to Herschel to
Spencer to Secchi and Faye, had no alternative course of ac-
tion. Eddington was correct: given our limitations, educated
speculation was the only avenue. Furthermore, it would prove
much easier, in making progress in science, to rebuke known
ideas, rather than to speculate on the unknown. Eddington’s
attempt to forge new ground was laudable and such will re-
main the case through the ages.

Though Jeans philosophically disagreed with Eddington’s
approach [85], he was unable to truly offer an alternative.
Many of his claims were incorrect. He continued to believe in
Helmholtz’ theory of contraction for energy production, well
after many had abandoned the idea [85]. He advocated liquid
stars as a mechanism for producing binaries, when more pru-
dent mathematical treatments would cast doubt upon his argu-
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ments [124]. He advocated that gaseous stars were unstable
to oscillations [114]. He advanced that liquid stars had to be
formed from uranium and radium [112, p. 287]. In the battle
with Eddington, he showed a lack of restraint in charging that
his colleague’s approaches were not even science. Who, from
sole authority, could establish what was or was not science?
Rather, as Milne highlighted, Jeans and Eddington should
have made a concerted effort to work together [84, p. 28]. The
questions were much too complex for isolated approaches and
both men would have been well served to collaborate.

As this review of the Thermodynamic History of the So-
lar Constitution comes to a close, one can only wonder at the
beauty of solar science. Stellar astrophysics remains a rela-
tively small island in the sea of science. Nonetheless, so many
aspects of earthly physics and chemistry touch the subject. In
this regard, and given the task ahead, there is much to con-
tribute to the subject area, even for non-astronomers. Thus,
we leave the subject by pondering, once again [1], upon the
wisdom offered by the magnificent solar astronomer, George
Hale [128]. In writing the obituary for Arthur Schuster [24],
the founder of the Astrophysical Journal [128] was sickly and
approaching the end of his own life. Hale reminded us of the
need to work together in order to arrive at a deeper under-
standing of the world around us. A study of the history of
solar science echoes Hale. The contributions of many were
required to arrive at some semblance of the truth: “A Galileo
or a Newton or an Einstein cannot be produced by an Interna-
tional conference, nor can lesser men who have nevertheless
contributed enormously to original thought. How then are we
to reconcile our co-operative projects with the prime neces-
sity for personal freedom? [24, p. 101] . . . “One of the most
important needs of science is to establish closer relationships
between workers in different fields. It is comparatively easy
to bring together specialists in given subjects and to secure
their friendly co-operation. But to fill the gaps between vari-
ous branches of science is a more difficult task, in spite of the
obvious possibilities of advance. Such possibilities are shown
by the development of astrophysics, geophysics, biochemistry,
and many other subjects. However, the fact remains that
countless opportunities are lost because instruments, meth-
ods, and ideas which have originated in some particular field
are unknown or at least unused in other fields” [24, p. 102].
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32. Zöllner F. On the temperature and physical constitution of the Sun
(Second Memoire). Phil. Mag., 4th series, 1873, v.46(306), 290–304.

33. Scheiner J. The temperature of the Sun — I. Astron. Soc. Pac., 1898,
v.9(64), 167–179.

34. Scheiner J. The temperature of the Sun — II. Astron. Soc. Pac., 1898,
v.10(65), 224–234.

35. Unsigned (Spencer H.) Recent astronomy, and the nebular hypothesis.
Westminster Review, 1858, v.70, 185–225.

36. Spencer H. The constitution of the sun. The Reader: A Review of
Current Literature, 25 February 1865, v.5, 227–229 (also found in:
Spencer H. Essays: Scientific, Political, and Speculative. Vol. III.
Williams and Norgate, London, 1875, 217–229).

37. Kirchhoff G. The physical constitution of the Sun. In: Researches on
the Solar Spectrum and the Spectra of the Chemical Elements. Trans-
lated by H. E. Roscoe, Macmillan and Co., Cambridge, 1862, 23–31.

38. Secchi A. Sulla Teoria Delle Macchie Solari: Proposta dal sig. Kir-
choff. Bullettino Meteorologico dell’ Osservatorio del Collegio Ro-
mano, 31 January 1864, v.3(4), 1–4 (translated into English by Eileen
Reeves and Mary Posani: On the Theory of Sunspots Proposed by
Signor Kirchoff, Progr. Phys., 2011, v.3, 26–29 — a paper published
in this Special Issue).

39. Secchi A. Sulla Struttura della Fotosfera Solare. Bullettino Meteoro-
logico dell’ Osservatorio del Collegio Romano, 30 November 1864,
v.3(11), 1–3. (translated into French by François Moigno: Sur la struc-
ture de la photosphère du soleil. Les Mondes, 22 December 1864, v.6,
703–707; translated into English by Mary Posani and Eileen Reeves:
On the structure of the photosphere of the sun. Progr. Phys., 2011,
v.3, 30–32 — a paper published in this Special Issue).

40. Faye H. Sur la constitution physique du Soleil — Première Partie.
Les Mondes, 1865, v.7, 293–306 (translated into English by Patrice
Robitaille: On the Physical Constitution of the Sun — Part I. Progr.
Phys., 2011, v.3, 35–40 — a paper published in this Special Issue).

41. Abbe C. Memoir of Jonathan Homer Lane — Read before the
Academy in April 1892. Biographical Memoirs, National Academy
of Sciences, 1895, v.iii, 253–264.

42. Lane J.H. On the theoretical temperature of the Sun; under the hypoth-
esis of a gaseous mass maintaining its volume by its internal heat, and
depending on the laws of gases as known to terrestrial experiments.
Am. J. Science, 2nd Ser. 1 (1870), v.50, 57–74 (Also found in Mead-
ows A.J. Early solar physics, New York, 1970, 254–276).

43. Stevenson-Powell C. J. Homer Lane and the Internal Structure of the
Sun. J. Hist. Astron., 1988, v.19, 183–199.

44. Eddington A.S. The Internal Constitution of the Stars. Dover Publ.
Inc., New York, 1959.

45. Ritter A. Untersuchungen über die Höhe der Atmosphäre und
die Constitution gasförmiger Weltkörper. Wiedemann’s Annalen der
Physik und Chimie, 1878, v.6, 135 (Most cited of a series of papers
in the same journal — citations for the others, taken from [48], are
as follows: 1878, v.5, 405; 1878, v.5, 543; 1879, v.7, 304; 1880, v.8,
157; 1880, v.10, 130; 1880, v.11, 332; 1880, v.11, 978; 1881, v.12,
445; 1881, v.13, 360; 1881, v.14, 610; 1882, v.16, 166; 1882, v.17,
332; 1883, v.18, 488; 1883, v.20, 137; 1883, v.20, 897; 1883, v.20,
910).

46. Thomson W. On the equilibrium of a gas under its own gravitation
only. Phil. Mag., 1887, v.23, 287–292

47. Emden R. Gaskugeln: Andwendungen der Mechanischen Wärmethe-
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Liquid metallic hydrogen provides a compelling material for constructing a condensed
matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might
have the potential to be a metastable substance requiring high pressures for forma-
tion. Once created, it would remain stable even at lower pressures. The metallic
form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B.
Huntington who indirectly anticipated its elevated critical temperature for liquefaction
(Wigner E. and Huntington H. B. On the possibility of a metallic modification of hydro-
gen. J. Chem. Phys., 1935, v.3, 764–770). At that time, solid metallic hydrogen was
hypothesized to exist as a body centered cubic, although a more energetically accessible
layered graphite-like lattice was also envisioned. Relative to solar emission, this struc-
tural resemblance between graphite and layered metallic hydrogen should not be easily
dismissed. In the laboratory, metallic hydrogen remains an elusive material. However,
given the extensive observational evidence for a condensed Sun composed primarily of
hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It
is anticipated that solar liquid metallic hydrogen should possess at least some layered
order. Since layered liquid metallic hydrogen would be essentially incompressible, its
invocation as a solar constituent brings into question much of current stellar physics.
The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its
proper understanding brings together all the great forces which shaped modern physics.
Although other proofs exist for a liquid photosphere, our focus remains solidly on the
generation of this light.

1 Introduction

Decidedly, the greatest single impetus for a fully gaseous Sun
[1, 2] was the elucidation of critical temperatures by Thomas
Andrews in 1869 [3, 4]. Since ordinary gases could not be
liquefied at the temperatures associated with the Sun, it was
inconceivable that the photosphere was made from condensed
matter: “It is, however, scarcely possible to regard as existing
in the interior of the Sun, matter in either the solid or in the
liquid condition. . . Since, however, it became apparent from
the classic research of Dr. Andrews in 1869, that there exists
for every element a critical temperature, above which it is
impossible for it under any conditions of pressure to assume
the liquid state, it has generally been regarded that a liquid
interior to the Sun is next to an impossibility” [5, p. 36-37].
As a result of such logic, the idea that the Sun was gaseous
flourished. Though Father Angello Secchi and Hervé Faye
had already proposed a gaseous solar model [1], Andrews’
discovery served to significantly validate their conjectures.
Given the logic of the period, the body and photosphere of
the Sun could not be liquid [1].

At the same time, scientists of the late 19th and early 20th
century remained puzzled with respect to the solar spectrum
[1, 2]. Because graphite was the prime source of blackbody
radiation on Earth [6], G. Johnstone Stoney placed liquid or
solid carbon on the surface of the Sun in 1867 [7]. It would
remain there for the next 50 years [2]. Armed with graphite, it

became simple to explain why the solar photosphere emitted
a thermal spectrum resembling a blackbody. Over time, the
enthusiasm for carbon began to wane. Charles Hastings ar-
gued that condensed carbon could not be present on the Sun.
The temperatures involved did not permit such a hypothesis.
Hastings required an alternative: “At any rate, we are sure
that the substance in question, so far as we know it, has prop-
erties similar to those of the carbon group” [8]. Hastings did
not elaborate on these properties, but it was clear that he was
searching for a substance with unbelievable refractory charac-
teristics, something with the structure of graphite. A material
capable of producing the thermal spectrum of the Sun had to
exist in the condensed state at tremendous temperatures.

Eventually, theoretical astrophysics dispensed of the need
for condensed matter. In so doing, the stellar opacity problem
was created [9]. It was Schuster’s Radiation through a Foggy
Atmosphere [10] which began to cast condensed matter out
of the photosphere [2]. Schuster postulated that all gases, if
sufficiently thick, emitted as blackbodies: “The radiation in
this case becomes equal to that of a completely black sur-
face, which agrees with the well-known law that absorption
irrespective of scattering tends to make the radiation of all
bodies equal to that of a black body when the thickness is in-
creased” [10, p. 6]. Schuster’s conclusion was not supported
by the gaseous nebula. These celestial objects had long been
known to emit line spectra [11, p. 87] and, though they were
assuredly thick, blackbody lineshapes were not produced. As
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previously outlined by the author [2], Schuster’s error con-
sisted in resting his derivation upon the premise that Kirch-
hoff’s law of thermal emission was valid [12].

Gustav Kirchhoff insisted that, given thermal equilibrium
with an enclosure, a blackbody spectrum could be produced
by any object [12]. Yet, if Kirchhoff’s law was correct, his
contemporaries should not have refused to adopt a fully gas-
eous Sun throughout the 19th century [1, 2]. They would
not have insisted on the need for graphite. If graphite was
viewed as less than optimal, they would not have invoked
pressure broadening as a means to produce the solar spec-
trum [1]. Kirchhoff’s formulation, after all, was independent
of pressure. It would become evident that something was
not quite right with Kirchhoff’s deductions. The author has
outline why Kirchhoff’s law of thermal emission was erro-
neous [13, 14]. On the simplest level, it constituted a viola-
tion of the first law of thermodynamics. In addition, as was
outlined relative to the stellar opacity problem, gases remain
unable to emit a blackbody spectrum [9]. This was the surest
evidence that Kirchhoff’s law was invalid.

As a result, if gases could not produce the solar spectrum,
astrophysics should have returned to the condensed state. At
the beginning of the 20th century, Jeans promoted liquid stars
[15] based on stability arguments, only to discard them at the
end of his life [2]. If Jeans abandoned liquids, it was likely
due to his lack of a proper building block [2]. He conceived of
stars as composed of heavy elements such as uranium and ra-
dium [2]. When the Sun was shown to contain large amounts
of hydrogen [16–18], Jeans was left without a proper struc-
tural material. He did not anticipate that metallic hydrogen
could exist [19] and that the substance provided the perfect
candidate for a fully condensed Sun. In proposing the exis-
tence of metallic hydrogen [19], condensed matter physics
would unknowingly provide Jeans with a suitable material
for liquid stars [2]. Andrews’ critical temperature in ordinary
gases became inconsequential [20]. More intriguing was the
observation that the layered lattice of condensed metallic hy-
drogen possessed tremendous similarity with graphite [19].
Could the layered form of metallic hydrogen finally replace
Stoney’s solid carbon on the Sun [2, 7]? Was this the strange
material sought by Hastings for generating the solar spec-
trum [2, 8]?

2 Metallic hydrogen
Eugene Wigner (1963 Nobel Prize in Physics [21]) and Hill-
ard B. Huntington [22] were the first to advance the exis-
tence of metallic hydrogen in 1935 [19]. They opened their
classic paper by stating that “Any lattice in which the hydro-
gen atoms would be translationally identical (Bravais lattice)
would have metallic properties” [19]. Their work focused
on the body centered lattice. Recognizing the difficulties in
obtaining the pressures required to form this lattice, they pro-
posed that the layered form of metallic hydrogen would be
more accessible. According to Wigner and Huntington “it

Fig. 1: Schematic representation of the layered lattice of graphite.
Wigner and Huntington [19] would propose that most energetically
favorable form of metallic hydrogen would assume this crystal struc-
ture.

was J. D. Bernal who first put forward the view that all sub-
stances go over under very high pressure into metallic or
valence lattices” [19]. For the body centered cubic form of
metallic hydrogen, they predicted a density of 0.8 g/cm3 ver-
sus 0.087 g/cm3 for molecular hydrogen in solid form [19].
This was nearly a tenfold increase in density. Wigner and
Huntington concluded their paper as follows: “The objection
comes up naturally that we have calculated the energy of a
body-centered metallic lattice only, and that another metallic
lattice may be much more stable. We feel that the objection is
justified. Of course it is not to be expected that another sim-
ple lattice, like the face-centered one, have a much lower en-
ergy, — the energy differences between forms are always very
small. It is possible, however, that a layer-like lattice has a
much greater heat of formation, and is obtainable under high
pressure. This is suggested by the fact that in most cases of
Table I of allotropic modifications, one of the lattices is layer-
like19. . . ” [19]. The footnote in the text began: “Diamond is a
valence lattice, but graphite is a layer lattice. . . ” [19]. Thus,
in the first paper on metallic hydrogen, the layered structure
of graphite (see Figure 1), so critical to producing the black-
body spectrum on Earth, was promoted. A solar spectrum
explained through dense hydrogen was certain to eventually
rise to prominence.

2.1 Properties of metallic hydrogen
Initially, Wigner and Huntington estimated that the metallic
state of hydrogen, in its most energetically accessible form
(layered lattice), could be achieved at pressures in the 250,000
atm range (∼25 GPa) [19]. This value was much too opti-
mistic.

The most astounding property of metallic hydrogen
would be its tremendous critical temperature. It was well in
excess of anything Thomas Andrews and his contemporaries
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could have imagined in 1869 [3,4]. While the complete phase
diagram for hydrogen may never be fully known, several at-
tempts have been made to outline its general characteristics,
both in condensed matter physics [23–25] and as related to
astrophysics [26–28]. Franck [29] listed many of the early
contributions to the hydrogen phase diagram, including the
work by Alexey A. Abrikosov [30]. Abrikosov eventually
won the 2003 Nobel prize in physics while at Argonne Na-
tional Laboratories.

The critical point of metallic hydrogen has been constant-
ly revised towards ever higher values. Ebeling and Richert
[23] provided an overview of these estimates through the 20th
century. In 1980, Franck [29] arrived at a critical temperature
for metallic hydrogen in the 6,000–9,000 K range. In 1983,
Ronik and Kundt [26] gave a critical point at a unprecedented
19,100 K and 24 GPa. A slightly more conservative 16,500 K
and 22.5 GPa was soon published [23]. Beyond critical tem-
peratures, the transition pressures in moving from molecular
to metallic hydrogen have constantly been revised upwards.
At present, the values have moved to the 400–600 GPa range:
“Although quantum chemistry calculations have been devel-
oped to a high degree of sophistication, and in general, there
is a close correlation between theory and experiment, this is
not the case for hydrogen. Phase transition calculations that
seek the structure with the lowest lattice energy have difficulty
handling the zero-point energy contributions to the total en-
ergy and zero-point energy is very important for hydrogen.
As a result, the predicted critical transition pressures have
an enormous variation, from as low as 0.25 Mbar to over
20 Mbar, while recent predictions are in the 400 to 600 GPa
range” [25].

2.2 The theory of metallic hydrogen
Several authors have reviewed the metallic hydrogen litera-
ture [31, 32]. In a landmark 1968 publication, Neil Ashcroft
hypothesized that metallic hydrogen might be a high tempera-
ture superconductor [33]. Ashcroft consequently became one
of the most important theoretical physicists with respect to
understanding dense hydrogen in its molecular and metallic
forms [24,33–50]. Ashcroft’s prediction relative to high tem-
perature superconductivity was rapidly echoed by Schneider
and Stoll [51]. Depending on lattice configurations, they cal-
culated that metallic hydrogen would become superconduc-
tive with operational temperatures ranging from 67 to 200
K [51]. Barbee et al. confirmed these calculations, obtain-
ing a temperature of 230±85 K [52]. Metallic hydrogen had
the potential to be the highest temperature superconductor
known. The point was emphasized in 2001, when Maksi-
mov and Savrasov used ab initio calculations to conclude that
metallic hydrogen at high pressure might have a supercon-
ducting critical temperature of 600 K [53].

Ashcroft also examined the ground state of metallic hy-
drogen at zero temperature under conditions of changing spa-
tial densities achieved by varying pressures from ∼1 Mbar

to ∼75 Mbar [34, 35]. At the highest densities (rs = 0.8, 1.2,
1.36, and 1.488), he discovered that crystalline phases were
preferred [35]. However, at the lowest lattice density studied
(rs = 1.64), he found that metallic hydrogen was metastable
between the solid and liquid forms [34, 35]. He postulated
that the existence of a liquid ground state could not be ex-
cluded, but that it was not established [34]. Ashcroft contin-
ued this line of investigation in 1981 and 1982 [36, 37]. He
gathered that liquid metallic hydrogen might become essen-
tially devoid of structure and that the protons and electrons
would simply act as interpenetrating fluids [36]. The Cor-
nell scientist had theoretically constructed a two-component
Fermi-liquid from protons and electrons [36].

Still, there was no direct evidence that metallic hydrogen
at absolute zero would ever completely lose all structural in-
tegrity. As a theoretical physicist, Ashcroft could not really
establish if metallic hydrogen at absolute zero 1) acted as a
two component Fermi liquid, 2) behaved much like the un-
usual theoretical one-component plasma [54, 55], or 3) re-
tained the essential characteristic of a Bravais lattice, an or-
dered proton field with fully degenerate electrons. Nonethe-
less, in his 1981 communication, Ashcroft was careful to
mention that his conclusions were “assuming that it [the hy-
pothetical state of liquid metallic hydrogen] is normal” [36].
He highlighted: “that in assuming the existence of a liquid
phase, the very interesting question still remains of whether
or not it exhibits some form of magnetic, momental, or even
spatial (e.g. liquid crystal) ordering. . . We do not attempt at
this time to resolve the important questions of the existence
or properties of possible “ordered” liquid metallic phases of
hydrogen” [36]. In the ninth footnote to his 1982 treatment,
Ashcroft repeated the warning: “The possibility that liquid
metallic hydrogen exhibits some kind of momental (e.g. su-
perconductive), magnetic, or even spatial (e.g. liquid crystal)
ordering has not been ruled out” [37]. Only experimental
evidence could answer such questions, but none was avail-
able, as liquid metallic hydrogen remained an elusive mate-
rial [25, 31, 32, 56].

Astrophysics was quick to infer that Ashcroft had chosen
a path eventually leading to some form of degeneracy of mat-
ter [57]. In fact, careful reading of these articles suggested
otherwise. Ashcroft’s liquid was a reflection of what theoret-
ical condensed matter physicists were able to calculate at the
time. A liquid with spatial order, thoughtfully preserved in
the text [36] and in the footnotes [37] of his papers, was well
beyond the reach of computational approaches in the absence
of laboratory guidance.

Soon after Ashcroft published his groundbreaking papers
[34–37], MacDonald and Burgess also wondered about the
absence of crystallization in metallic hydrogen [58]. They
insisted that, since electronic screening was important in the
solid state but negligible in the liquid state, metallic hydrogen
would remain fluid at all pressures. Solid metallic hydrogen
could not be stable at any pressure [58]. Ashcroft answered
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that “The prospect of a relatively low-density quantum melted
phase of hydrogen, over a wide range of densities, is a fasci-
nating one. However, we would like to bring up the following
difficulties with concluding too definitely the existence of this
phase for all densities” [38]. Ashcroft then argued that such
a state would exist only over limited densities whose range
would be difficult to predict, as the solid and liquid phases
are both close in energy and widely separated in configura-
tion [38].

When Ashcroft returned to the ground state of metallic
hydrogen in 1984, he assumed that the protons occupied the
sites of a rigid Bravais lattice [39]. Using the Wigner-Seitz
approximation which he regarded as physically appealing,
Ashcroft calculated a lower bounds on the density of metallic
hydrogen at its transition pressure. This density would be on
the order 0.60 g/cm3 corresponding to rs = 1.65 [39]. Metal-
lic hydrogen, if it was stable at all, would have to possess a
greater density.

Given the nature of metallic hydrogen, both as a theoreti-
cal problem and as a prized material, significant Russian and
Ukranian contributions were made in this area [32,53,59–65],
beginning with Alexey Abrikosov [30]. In an important com-
munication, Abrikosov was one of the first to examine the
destruction of an atomic lattice under high compression [59].
He noted: “that at sufficiently small volumes the positive zero-
point oscillation energy exceeds the negative Coulomb en-
ergy, and this leads to a destruction of the crystal lattice”
[59]. Abrikosov remarked that “the inter-atomic distances
at the transition point are greater than the nuclear dimen-
sions only for the lightest elements, hydrogen and helium.
Thus, such a transition can take place only in these two el-
ements” [59]. It seemed as though elevated pressures might
lead to the destruction of the crystal lattice, but Abrikosov
never considered that fusion might act to relieve the stresses
of compression. Beyond a certain point, perhaps crystals be-
came incompressible. It was unclear if the small volumes
required to give prominence to the zero-point oscillations in
metallic hydrogen might ever be reached.

After Abrikosov’s classic paper was released [59], Brov-
man et al. were the first to hypothesize that metallic hydrogen
might be a metastable substance [61]. Kagan’s group [32,61]
advanced that metallic hydrogen synthesized at elevated pres-
sures might be completely stable even at zero pressure. This
behavior would be much like diamond, the metastable form
of carbon. Brovman et al. [61] calculated that the most sta-
ble lattice of metallic hydrogen would be hexagonal with a
triangular string structure [60] . The conjecture would spawn
the possibility of industrial and propellant roles for metallic
hydrogen [25]. Many years later, Kaim et al. [64] would once
again address the metastable nature of metallic hydrogen and
essentially confirm Kagan’s findings [61].

However, the most interesting facet of Kagan’s work [61]
was the observation that metallic hydrogen displayed liquid
tendencies: “there occurs in metallic hydrogen a unique ten-

dency towards the formation of a family of structures with
very close energies. . . In a certain sense the picture recalls
the situation with graphite, but is apparently even more
strongly pronounced. . . the formation of the planar family is
evidence of the unique liquid-like tendencies that take place
in metallic hydrogen under pressure” [61]. They continued:
“As a result it is impossible to exclude beforehand, in prin-
ciple, the possibility that the transition from the molecular
phase to the metallic phase is a transition into the state of a
liquid metal. (It may turn out that the situation will be dif-
ferent in hydrogen than in deuterium.) The phase diagram
could have in this case a very special character. For exam-
ple, with increasing pressure, the liquid phase could go over
into the crystalline phase, but at extremely high densities a
liquid would again be produced, but now as a result of the
predominant role of the energy of the zero point oscillations
(see the paper by Abrikosov7). The metastable state could re-
main crystalline in this case” [61]. The footnote referred to
the work just discussed above by Abrikosov [59]. Relative to
the liquid metallic hydrogen model of the Sun, the work by
Brovman et al. [61] would remain landmark.

Barbee et al. [52, 66] continued the quest to calculate the
most stable structure for hydrogen in solid form. The work
supported Wigner and Huntington’s [19] contention that a
layered Bravais lattice form of metallic hydrogen was the
most stable in the 380±50 to 860±100 GPa range [66]. Above
such values, the body centered cubic was preferred. Below
380±50 GPa the molecular non-metallic hexagonal-close-
packed arrangement was most stable. The authors highlight
some of the difficulties faced by theoretical condensed matter
physics: “A metal-insulator phase is expected near 200 GPa,
in the m-hcp phase, but this transition pressure is harder to
predict because of the shortcomings of local-density theory
and the fact that structures with similar enthalpies (e.g. dia-
mond and graphite) may have completely different band
structures” [66].

At about the same time, an interest developed in theo-
retical physics for examining the mono-, di-, and trilayered
forms of atomic hydrogen [67–69]. While it could be argued
that such structures were not physically realistic, their study
generated additional insight into metallic hydrogen. Signif-
icantly, they demonstrated that very small changes in lattice
parameters could alter the conductive behavior substantially,
creating insulators from metals.

For his part, Neil Ashcroft maintained his interest in the
structure of hydrogen. In 1993, he once again examined the
metal-insulator transition in this element [40]. At this time,
Ashcroft moved increasingly towards the idea that dense hy-
drogen might lack local structure at the lower densities. It
seemed as if the stability of crystal forms was becoming ques-
tionable for him, even at the higher densities: “At sufficiently
high densities (rs 6 1.5), the predicted states of H (eq. 1) cer-
tainly include monatomic crystalline arrangements [6], at
least where the dynamics of the protons can be ignored” [40].
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Though recognizing the presence of crystalline forms, he em-
phasized the dynamics of the protons. Observing that the
proton pairing in molecular hydrogen was robust, Ashcroft
eventually proposed that molecular metallic hydrogen might
be energetically preferred [42]. This was a material very dif-
ferent than first proposed by Wigner and Huntington [19]. At
low temperatures and at pressures less than 110 GPa, Ashcroft
argued that molecular hydrogen existed as a rotational crystal
[40,42]. At low densities (1.5< rs < 2), he envisioned that hy-
drogen might become a low temperature quantum fluid [45].

Ashcroft moved further towards the idea that, at the
proper density, liquid hydrogen was a superfluid [47, 48]. In
doing so, he revisited the ideas elucidated when first deal-
ing with two component Fermi liquids [36, 37] and expanded
on his work with Moulopoulos [41]. Ashcroft appropriately
highlighted that experiments up to 300 GPa proved that mol-
ecular H-H stretching modes continued to exist at these high
pressures [47]. He insisted that both proton-proton and
electron-electron pairing could become the dominant inter-
action, given the proper conditions [41]. The concept that
liquid metallic hydrogen was a two gap superconductor was
also promoted by Babaev [70]. In such a superfluid, both pro-
tons and electrons could flow in the same direction, providing
mass transfer without charge transfer. Alternatively, the sys-
tem could result in a superconducting mode wherein proton
and electrons flowed in opposite direction, resulting in the
flow of both mass and charge [48]. Ashcroft then emphasized
that “the neutral superfluid mode does not couple to an exter-
nal magnetic field, while the charged superconducting mode
does” [48]. The work did not address metallic hydrogen in its
densest form. Ashcroft mentions that: “Above any supercon-
ducting transition temperature (and above any Bose conden-
sation temperature) liquid metallic hydrogen and deuterium
should begin to adopt properties similar to those of conven-
tional liquid metals, at least in the structural characteristics
important to electron scattering” [47].

Ashcroft’s hypothesis that metallic hydrogen might ex-
ist as a quantum fluid immediately gained theoretical sup-
port [71]. Given increasing compression, Bonev et al. [71]
calculated that solid molecular hydrogen [72] would be trans-
formed into a quantum fluid state. Additional pressure would
then lead to the monatomic crystal [19, 71]. With increasing
pressure, it could be computed that hydrogen might undergo a
transition from a liquid-molecular state into a non-molecular
liquid [71]. This would become known as the liquid-liquid
transition [71]. By extending the work of Brovman et al.
[61], it was possible to visualize that hydrogen had a zero-
temperature structured liquid ground state. With enough pres-
sure, hydrogen could then move from the two component
Fermi liquid [36, 37, 41, 46–48, 70], to the crystalline solid
[19], and finally into a zero-temperature structured liquid
state [61]. Alternatively, metallic hydrogen might move from
a two component Fermi system directly either into a struc-
tured liquid metal [61] or into the solid classical form of

metallic hydrogen [19]. A wide array of theoretical possibili-
ties now existed for the state of hydrogen under dense condi-
tions.

While the theory of liquid metals [73] has remained a fas-
cinating branch of condensed matter physics, hydrogen liquid
metals, though they appear simple on the surface, continued
to offer unequalled challenges. With only sparse experimental
data (see Section 2.4), theoretical condensed matter physics
had little guidance from the laboratory. Even so, progress was
being made, if only in the realization that metallic hydrogen
was a material filled with mystery and promise. Modern con-
densed matter theory persisted in providing exciting results,
often from the most prestigious groups [74–81].

Relative to solar physics, it was clear that the superfluid
form of metallic hydrogen [36,37,41,46–48,70], devoid of all
structure, could never be found on the surface of the Sun. The
material required a very specific critical density along with
low temperatures not found on the solar surface. Superfluid
metallic hydrogen resembled nothing of the layered struc-
ture [19, 61] which mimicked graphite and was most likely
to generate the solar spectrum. Superfluid metallic hydro-
gen [36, 37, 41, 46–48, 70] might never be found anywhere.

Fillinov et al. [74] studied dense hydrogen states at
temperatures ranging from 10,000 to 100,000 K examining
plasma phase transitions. Interestingly, at 10,000 K, they no-
ticed droplet formation at certain densities (1023 cm−3). But
at the highest densities studied (1026 cm−3), they observed
an ordering of protons into a Wigner crystal. These were
tremendous densities on the order of ∼150 g/cm3. Militzer
and Graham extended theoretical calculations to the petapas-
cal range, a full eight orders of magnitude beyond the pres-
sures of the molecular phase [76]. Such computations were
appropriate only for the interior of astrophysical objects. Mil-
itzer and Graham [76] considered astounding hydrogen den-
sities (2100 g/cm3), but, in contrast to Abrikosov classic pa-
per [59], the lattice was not destroyed and the calculations
open serious questions as to the nature of the solid state.

Remaining in the realm of physically attainable pressures,
Attaccalite and Sorella [77] demonstrated that the molecular
liquid phase of hydrogen should be stable at pressures on the
order of 300 GPa at ∼400 K. The melting curves for hydro-
gen and its phase boundaries have likewise been addressed
[78, 79] revealing that theoretical approaches have remain-
ed difficult and open to new discoveries. Miguel Morales,
while working with David Ceperley and Carlo Pierle-
oni [80], recently addressed the problem of metallic hydrogen
by considering a range of temperatures and densities
(2, 0006T 6 10, 000 K; 0.76 ρ6 2.4 g/cm−3). Such condi-
tions were appropriate for liquid metallic hydrogen devoid
of structure, much like the one-component plasma [54, 55].
At elevated temperatures and densities, the system was ob-
served to be a fully metallic liquid plasma [80]. However, a
combination of lower densities and temperatures resulted in
formation of an insulator [80]. Ceperley’s group also con-
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sidered electrical conductivity in high pressure liquid metal-
lic hydrogen [81]. The work was noteworthy, as it tried to
examine the liquid-semiconductor to liquid metal transition
first reported experimentally by Weir et al. [82, 83]. Using
either 32 or 54 atom cells, they calculated the transition den-
sity to be near rs ∼ 1.65, a value very close to the experimen-
tally determined number (rs = 1.62) [82, 83]. These calcu-
lations assumed that the liquid was devoid of any structure.
In addition, David Ceperley examined hydrogen at ultra high
pressures, P > 20 TPa [84], a value considerably lower than
that of Militzer and Graham [76]. Furthermore, the Urbana-
Champaign scientist studied the phase diagram for hydrogen
in the ground state [85]. However, the theoretical procedure
utilized was best suited to tritium and deuterium, as infinitely
massive protons were hypothesized to be present. This work
presented an excellent literature review and a remarkable ar-
ray of potentially significant new structures for the ground
state of hydrogen as a function of increasing pressure up to
5 TPa [85].

2.3 Metallic hydrogen in astrophysics
Soon after Wigner and Huntington [19] published their clas-
sic paper, liquid metallic hydrogen entered the realm of astro-
physics. Its introduction as a constituent of the giant planets
and the white dwarfs far preceded any experimental confir-
mation. Liquid metallic hydrogen would eventually occupy a
peripheral position in astronomy, well removed from the Sun
and most stars of the main sequence.

In 1946, Kronig et al. [86] proposed that metallic hydro-
gen existed at the center of the Earth. Their work was mo-
tivated by a recent report postulating that the Earth’s center
was composed of residual solar matter containing up to 30%
hydrogen. Kronig et al. [86] calculated a density for metal-
lic hydrogen of 0.8 g/cm3. The result was apparently inde-
pendent of Wigner and Huntington [19] as they seemed un-
aware of this previous communication. Then in 1950, W.H.
Ramsey extended the study of metallic hydrogen to the plan-
ets and the white dwarfs [87]. According to Ramsey, at the
International Astronomical Union meeting in Paris of 1935,
H. N. Russell [88] had pointed out: “that both the planets and
the white dwarfs are cold in the sense that the density at any
interval point is determined by the pressure at that point. In
other words, the influence of temperature is so small that it
can be neglected to a good approximation. Thus, in the ac-
cepted theory of the white dwarfs it is assumed that the elec-
trons constitute a degenerate Fermi gas at absolute zero tem-
perature” [87]. The minutes of the meeting highlight how
Russell believed that the maximum radius of a cold body was
equal to one tenth of the solar radius, or about the diameter of
Jupiter [88, p. 260]. It was a crucial statement which linked
studies of the giant planets with those of the white dwarfs. At
the pressures inside white dwarfs and giant planets, all solids
were viewed as metallic [87]. Hydrogen was no exception. In
the end, Ramsey deduced that metallic hydrogen could not be

produced inside a small planet like the Earth [87]. Hence, it
was primarily because of this work [87] that the quest for liq-
uid metallic hydrogen would be extended simultaneously to
the celestial objects with features of mass and density lying
to either side of the Sun. In these objects, the study of liquid
metallic hydrogen [26–28, 89, 90] progressed quickly to the
fully degenerate liquid state (i.e. — states where both pro-
tons and electrons were unrestricted by lattice confinements).

Astrophysical bodies are not pure laboratory samples.
They are an assembly of mixtures and alloys. As such, once
scientists gained interest into the composition of the plan-
ets [91–95] and the white dwarfs (see [96] for a short review
relative to 22Ne), hydrogen/helium mixtures [97,98] and their
alloys [49, 50, 99] were certain to attract attention. Along
with Ashcroft, Eva Zurek and her coworkers [50] discovered
that lithium had the capability of greatly stabilizing the met-
allization of hydrogen. Even the phase diagram for carbon
under extreme conditions grew in importance, as potentially
relevant to understanding Neptune, Uranus, and the white
dwarf [100, 101]. A vast number of publications flourished,
but they shared one common factor: the paucity of laboratory
data. Nellis et al. extended results from the laboratory to in-
terior of Jupiter [94, 95], well before his findings [82] were
independently confirmed. Nellis’ work on the production of
liquid metallic hydrogen (see Section 2.4) at 140 GPa and
3,000 K was supported by conductivity measurements [82],
although the merits of these measurements were to remain
in doubt. In any case, astrophysics continued to insist that
the large planets and white dwarfs were constituted of liquid
metallic hydrogen devoid of structure and existing in fully de-
generate states. At pressure of ∼500 GPa (5 Mbar), William
Nellis maintained that materials were either semiconductors
or fully degenerate metals [102]. Experimental confirmation
of a fully degenerate state for liquid metallic hydrogen at such
pressures was unproven. In the laboratory, all forms of metal-
lic hydrogen remained ethereal with theoretical predictions
far surpassing experimental reality.

2.4 Laboratory quests for metallic hydrogen
Throughout the 20th century, the study of extraordinary states
of matter has represented one of the most fascinating aspects
of physics [102, 103]. The generation of extremes in tem-
peratures, pressures, and densities has always involved com-
plex and sophisticated experimental resources, often attain-
able only through national or multinational initiatives [103].
Nonetheless, with regards to metallic hydrogen [102], many
efforts have been conducted in university level laboratories.
Frederic Golden has provided an excellent review of the
search for metallic hydrogen which Ho-Kwang Mao dubbed
the “Holy Grail” of condensed matter physics [104]. Golden
touches on the early Russian and American attempts to syn-
thesize the material, along with a general description of meth-
ods [104]. Given the prize [56], experimental progress has
been limited.
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In June 1989, Ho-Kwang Mao and Russell Hemley, from
the Geophysical Laboratory of the Carnegie Institution, re-
ported evidence of metallization for hydrogen at 77 K and
250 GPa in the journal Science [105]. The key finding was
the near opaqueness of the sample at the highest pressures.
Isaac Silvera, working at the Lyman Laboratory of Physics
at Harvard, was studying the metallization problem in paral-
lel with Hemley [106–111]. He rapidly contested the validity
of Hemley’s claims and submitted a letter to Science [106]
to which Mao and Hemley responded [107]. Silvera argued
that visual darkening provided insufficient evidence for met-
allization and that further tests were needed [106]. Mao and
Hemley defended their result, but in the end, conceded that
“The observations and spectroscopic measurements clearly
indicate that significant changes in solid hydrogen occur with
increasing pressure, but further work is needed to charac-
terize in detail its optical, electrical, and structural proper-
ties under these conditions” [107]. Silvera soon reported that
there was no evidence of metallization up to 230 GPa from 77
to 295 K [110]. Metallic hydrogen had slipped away, but Ho-
Kwang Mao, Russell Hemley, and Isaac Silvera would come
to rank amongst the experimental leaders in the struggle to
synthesize the material.

A few years later, Weir, Mitchell, and Nellis reported
anew that metallic hydrogen had been produced [82]. Us-
ing shock compressed experiments [102, p. 1510–1514], the
metallization of fluid molecular hydrogen was thought to
have been achieved at 140 GPa and 3,000 K [82]. The com-
munication was supported through conductivity measure-
ments [82] a vital link in establishing metallization. The re-
sults were once again contested [112], though Nellis and Weir
maintained their position [113]. In arguing against metal-
lization, Besson brought in data with deuterium suggesting
that its samples might represent highly degenerate material,
something very different from molecular metallization in hy-
drogen [112]. Beyond this, Besson was concerned that the
Al2O3 windows had affected the experiment [112]. Nellis
and Weir countered that “Our experiment and analysis yield
the simple picture of a dense metallic fluid comprised pri-
marily of molecular H2 dimers and a relatively low disso-
ciation fraction of ∼5% of H monomers” [115]. The entire
sequence of observation was on the order of just a few hun-
dred nanoseconds [102, p. 1512], hardly time to conduct de-
tailed structural analysis, while introducing tremendous dif-
ficulties in properly measuring both pressures and conduc-
tivities. William Nellis once again addressed his metalliza-
tion experiments, but this time with Neil Ashcroft as a co-
author [114]. During the discussion which followed the pa-
per, Nellis admitted that “the exact nature of this unusual
fluid needs to be determined” [114, p. 135]. Though Nel-
lis eventually claimed that “Metallic fluid H is readily pro-
duced by dynamic high pressures” [102, p. 1564], only ques-
tionable evidence existed for this state [82]. The shock ex-
periments of metallic hydrogen from this group produced no

additional results and other groups never confirmed the find-
ings. The lack of lattice structure was debatable and mankind
was no closer to metallic hydrogen. For his part, William
Nellis moved to arguments of degeneracy, without solid ex-
perimental grounds [102].

In 1996, a collaboration between the University of Paris
and the Geophysical Laboratory at the Carnegie Institution
would make the next vital step forward [115]. Loubeyre et al.
[115] examined both solid hydrogen and deuterium with X-
ray diffraction at pressures just exceeding 100 GPa at 300 K.
They discovered that solid hydrogen “becomes increasingly
anisotropic with pressures” [115]. In like manner, the layered
structure of graphite was considered anisotropic. Loubeyre
et al. [115] tried to generate the equation of state for hydro-
gen as a function of temperature and pressure. They con-
cluded that their results differed substantially from ab ini-
tio calculations “indicating that theoretical understanding of
the behavior of dense hydrogen remains incomplete” [115].
Narayana et al. then studied solid hydrogen up to 342 GPa
at 300 K [116]. These were pressures similar to those at the
center of the Earth [117], but no evidence of metallization
was found. The findings confirmed Ramsey’s conclusion that
the interior of the Earth could not support the metallic state of
hydrogen [87]. In 2002, Loubeyre et al. again presented evi-
dence that solid hydrogen became black, this time at 320 GPa
and 100 K [118]. These values were not far removed from the
250 GPa used by Mao and Hemley in 1989 [105]. By observ-
ing the vibron mode, they maintain that molecular hydrogen
in the solid form existed at least until 316 GPa, but Narayana
had just reported that solid hydrogen remained transparent
up to 342 GPa at 300 K [116]. Two of the world’s major
groups were again at odds with one another. Perhaps the
discrepancies could be explained by difficulties in recording
proper pressures at such values [102, p. 1514–1533]. After
all, these studies were far from trivial in nature. Loubeyre
et al. [118] refrained from stating that metallization had been
achieved. Rather, they predicted that the process should occur
near 450 GPa [118].

Mankind has remained unable to synthesize metallic hy-
drogen in the laboratory. However, as pressures rose and ex-
perimental settings improved, the characteristics of dense hy-
drogen did become increasingly established [119–125]. Great
attention was placed on constructing phase diagrams for hy-
drogen (see [119] for a review). Determination of the peak
in the melt line of this element has consequently been the
subject of intense study (e.g. [121–124]). By this time, the
broken symmetry and hydrogen-A phase for dense hydrogen
were reasonably established, but neither form was metallic
(see [122] for a brief review). Blackbody radiation finally en-
tered such studies, with the goal to properly establish temper-
atures [122]. Along these lines, statements such as: “we have
shown that the emissivity of platinum is essentially indepen-
dent of temperature in the temperature region of our study”
[122] would only serve as a reminder that not all was correct
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with our understanding of blackbody radiation [13, 14]. For
its part, metallic hydrogen continued to be ephemeral.

2.5 Commentary on liquid metallic hydrogen
As was seen in Section 2.3, within astrophysics, liquid metal-
lic hydrogen is believed to exist as fully degenerate matter
within the interior of white dwarfs and giant planets such as
Jupiter or Saturn. Some have suggested that these planets also
possessed liquid metallic helium, or a liquid metallic alloy of
hydrogen and helium. Solid metallic hydrogen would have
no role in astrophysics [27], as every hypothesis was either
a molecular or a fully degenerate liquid. The conjecture that
condensed matter could become degenerate in the large plan-
ets was far from what Chandrasekhar had envisioned when
he first promoted degeneracy [57]. As a fully degenerate ma-
terial, liquid metallic hydrogen could not sustain any useful
current or magnetic field. Positive charges in liberal motion
along with negative charges do not seem very amicable, either
to potential generation or net current flow. At the same time,
current flow with mass transfer seemed unreasonable in as-
trophysical objects. Direct laboratory observations remained
much too elusive to reach any confirmation of these theoret-
ical ideas. Some element of structure might always exist in
metallic hydrogen independent of temperature. The super-
fluid form could remain ever theoretical, as Ashcroft had first
carefully cautioned in the work with Oliva [36, 37].

The application of fully degenerate matter to the large
planets and the white dwarfs was an unusual concept in light
of a fully gaseous Sun. If Jupiter contained metallic hydro-
gen as degenerate matter and the same was true for the white
dwarf, then it would not be unreasonable to place at least
some condensed hydrogen on the Sun. Solar temperatures
would prevent degenerate states and thus layered liquid
metallic hydrogen represented a remarkable constitutive el-
ement.

When it was first conceived, the most energetically ac-
cessible form of metallic hydrogen was the layered lattice ar-
rangement similar to that of graphite. Solid metallic hydro-
gen was viewed almost as a one component plasma [54, 55],
wherein all electrons were degenerate and distributed over a
hexagonal Bravais lattice formed from ordered protons [19].
In this sense, solid metallic hydrogen was considered as de-
generate only relative to the flow of its electrons. Today, the-
oretical astrophysics has abandoned early thoughts of solid
or liquid metallic hydrogen possessing a Bravais lattice [19],
opting instead for fully degenerate materials where both pro-
tons and electrons flow freely. Conversely, experimentalists
hope to harness metallic hydrogen for processes as varied as
earthly fusion and rocket propulsion [25]. Such processes
would not be easily approachable with a fully degenerate ma-
terial. Hence, many experimental physicists are likely to be
skeptical of a fully degenerate state for metallic hydrogen.

The progress towards dense hydrogen states has been an
intriguing aspect of condensed matter physics. Ashcroft’s

two component Fermi liquid has remained a fascinating sub-
stance. However, given the combination of low temperatures,
exact densities, and atypical conductive properties, it could
have little practical role in human advancement. Current flow
involving mass displacement was a concept which seemed to
oppose structural stability, even though it could sustain mag-
netic fields. Conversely, when proton and electron displace-
ment occurred in the same direction, there could be no current
or the generation of magnetically interesting properties.

Theoretical condensed matter physics promoted hydro-
gen at extreme densities [76, 84], but hydrogen might not be
compressible to such levels. In permitting essentially infinite
compression of the lattice, it was debatable whether or not
condensed matter physics had adopted a behavior similar to
the ideal gas. Moreover, if compression was great enough,
the solid might resist further attempts at reducing lattice di-
mensions. Fusion might relieve the stresses associated with
compression.

3 Lessons from the Sun
Though the Sun would always remain devoid of the great
advantage of our earthly laboratories, it has historically pro-
vided us with an amazing insight into nature. When Sir
Joseph Lockyer and Pierre Jules César Janssen independently
observed the lines of helium within solar spectra acquired in
1868 [126–130], they must have wondered if this unknown el-
ement would ever be discovered. Lockyer named this element
Hēlios, the Greek name for the Sun god and the Sun [126].
Eventually, William Ramsay would isolate helium from cle-
veite [131–133], and the Sun would be credited for providing
the first indication that helium existed. The identification of
Coronium would follow a parallel story [134–136]. It took
nearly three quarters of a century for Bengt Edlén and Wal-
ter Grotrian to finally identify Coronium from transition lines
produced by highly oxidized iron, like Fe+13 and Fe+14 [136,
p. 170]. Hence, a combination of earthly science and celes-
tial observations became critical to the development of astron-
omy. This spirit of discovery has taught astronomers how to
tackle even the most perplexing problems. The understanding
of the solar spectrum should not be an exception.

3.1 Graphite, metallic hydrogen, and the solar spectrum
If graphite played a critical role, both in the construction of
blackbodies [14], and historically in the structure of the Sun
itself [2], it was because science has always recognized that
graphite possessed a unique ability towards the production
of Planck’s spectrum [6, 13, 14]. Hastings was searching for
a material which would possess many of the properties of
graphite [8]. Graphite, the layered form of carbon, differed
significantly in optical properties from its cubic counterpart,
diamond. Structure was vital to the production of spectra.
That materials were condensed was not sufficient, but a dis-
tinct lattice arrangement seemed central [9]. As a conse-
quence, it would be expected that the layered form of metallic
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hydrogen would resemble graphite itself in its optical prop-
erties. In contrast, fully degenerate forms of hydrogen [36,
37, 41, 46–48, 70–72] could never approach such optical be-
havior. Devoid of a true lattice, such a substance, if it truly
existed anywhere, would be completely unable to generate
a blackbody spectrum [6]. These are the lessons from our
earthly laboratories, after examining thousands of materials
over extreme ranges of frequencies and temperatures [13, 14,
137]. The structural lattice of graphite and soot was to re-
main unique in its thermal properties [13,14]. It should serve
as a guide for the nature of any condensed material placed
either on the photosphere or within sunspots. The generation
of a thermal spectrum with a blackbody lineshape has been
solely a quality of condensed matter, not of gases, degenerate
matter, or any other state which physicists might create.

Unlike the giant planets, the Sun possessed a unique fea-
ture: the ability to generate tremendous internal pressures
and temperatures. Based on the solar spectrum [138–140]
and other physical evidence [141], it was therefore reasonable
to postulate that liquid metallic hydrogen must constitute the
bulk of the solar mass and specifically the photospheric mate-
rial [20,142–149]. In considering a solar building block, ther-
mal emission required a distinct lattice [150], as the absence
of such structure would lead to the stellar opacity problem [9].
The author has previously made the point: “As a result, the
photosphere must be treated as condensed matter. Unfortu-
nately, it is counterintuitive than an object at extreme tem-
peratures can possess lattice structure. Nonetheless, given
the evidence for condensed matter4, the solar constitutive el-
ement (primarily H) must form a lattice. The presence of
powerful solar magnetic fields and gravitational forces make
liquid metallic hydrogen a distinct possibility for the con-
densed state of the photosphere. In this case, the hydrogen
nuclei can be viewed as arranged in an array forming an
essentially incompressible solar lattice. The hydrogen elec-
trons are contained within the metallic conduction bands. The
inter-nuclear distance is being maintained by the need to keep
the quantum conditions such that metallic conduction bands
can be produced. Hydrogen contains no inner shell electrons.
All the electrons are completely delocalized within the metal-
lic conduction bands. As such, hydrogen in this state is not
only a liquid metal (reminiscent of liquid sodium) but can also
be viewed as a liquid metallic plasma” [149]. The footnote
referred to reference [141] in this work.

In the solar framework, the electrons would translate
freely within the confines of conduction bands formed by the
Bravais lattice of the protons. Though not a one-component
plasma in a theoretical sense [54, 55], liquid metallic hydro-
gen could be considered as a one-component plasma in the
physical sense since the electrons were delocalized. But liq-
uid metallic hydrogen would possess a true Bravais lattice
and, perhaps, even liquid crystal behavior [151–153]. In this
regard, Ashcroft had left open the possibility that liquid
metallic hydrogen was a liquid crystal in 1981 and 1982 [36,

37]. Ashcroft had been unable to exclude the possibility when
he advanced the two-component Fermi liquid [36,37]. Liquid
metallic hydrogen could well have an ordered lattice which
oscillates between structural forms. The finding by Brov-
man et al. [61] that metallic hydrogen, much like graphite,
could adopt a family of structures with nearly the same en-
ergy should be considered in this regard.

In any event, it would be difficult to conceive that conduc-
tion bands could truly exist without a lattice and the impor-
tance of the Bravais lattice in the formation of metals should
not be dismissed. To a large extent, liquid metallic hydro-
gen should preserve the layered structure of solid metallic
hydrogen as anticipated by Wigner and Huntington [19]. But
the metallic character might be somewhat reduced in the low
pressures of the photosphere. In fact, this could be advan-
tageous for emission, better resembling graphite. Indeed, if
the graphitic spectrum was to be produced, the structure and
conductive properties of liquid metallic hydrogen should re-
semble graphite as much as possible. This is because graphite
represents the premier laboratory model.

3.2 Metallic hydrogen and solar structure
Metallic hydrogen, with its critical temperatures in the thou-
sands of degrees Kelvin [23–26], overcomes all concerns
raised regarding a liquid Sun based on Andrews [20] and his
findings in ordinary gases [3, 4]. A liquid Sun composed
of metallic hydrogen benefits from elevated critical temper-
atures for liquefaction, permitting hydrogen to adopt a con-
densed state even within an object like the Sun. Along these
lines, it is doubtful that metallic hydrogen could really be-
come infinitely compressed. Such a scenario appears un-
likely, as the presence of conduction bands involves quantum
restrictions on the lattice. If the internuclear distances are not
ideal, quantum mechanical conditions should fail to support
conduction. Two boundary conditions should exist. If the in-
teratomic distance becomes too large, the substance should
become an insulator. Similarly, if the interatomic distance
becomes too small, the crystal should collapse [59] and con-
duction cease. In this respect, it would be important to note
that the Sun has dynamo action and maintains large magnetic
fields. Both of these phenomena make destruction of the con-
ducting lattice unlikely [141].

It remains unclear why condensed structures resist com-
pression, but invoking fusion as a means of releasing the
strain of compressions should be a viable solution. This is
especially the case if compared to the destruction of the crys-
tal [59] and the creation of fully degenerate matter [36,37,41,
46–48, 70]. Degeneracy removes all of the forces which lead
to fusion. As such, it should be more reasonable to maintain
the relative incompressibility of condensed matter. The Sun,
after all, has a very ordinary density of 1.4 g/cm3 [141] and
the same is true for the giant planets. Thus, Jeans’ idea that
the Sun represents a rotating liquid mass of reasonably con-
stant density should not be dismissed [2]. Condensed mat-
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ter and metallic hydrogen provide a framework for ordinary
densities, even in light of enormous pressures. The reward
of such an approach is threefold leading to: 1) a reasonable
framework to generate the solar spectrum, 2) a decent ability
to impart structure, and 3) a practical path towards fusion.

A Sun composed of metallic hydrogen provides an in-
teresting model to explain sunspots and other structural el-
ements. The photospheric material in this case might be con-
sidered as liquid metallic hydrogen where the lattice dimen-
sions are relaxed at lowered pressures. Perhaps, the material
exists much like graphite at the limits of conductive behav-
ior. Conversely, within sunspots, pressures would be more
elevated, and liquid metallic hydrogen might assume a more
compact lattice, with increased metallic behavior. This would
help account for the stronger magnetic fields observed within
sunspots. As a result, scientists could be considering the con-
version from a Type I lattice in the photosphere to a Type II
lattice in the sunspots [141]. Such a scenario has great advan-
tages in terms of simplicity.

Gases have always been an unsustainable building mate-
rial for an object like the Sun. Gases know no surface and
cannot, even momentarily, impart structure. Hence, one can-
not be surprised to find that there is no physical evidence
which supports a gaseous Sun, while ample evidence [141]
has been revealed for its condensed state [20,142–149]. In or-
der to bring structure to the gas, astrophysics must depend on
the action of magnetic fields. However, strong magnetic fields
themselves are a property of condensed matter, not gases
[141]. In order to maintain a gaseous Sun and impart it with
structures, astrophysics must therefore have recourse to phe-
nomena best produced by condensed matter.

A simple illustration of these issues can be focused on the
understanding of solar prominences. Such objects appear as
sheet-like structures in images captured by NASA’s SOHO
satellite (see Figure 2). In a Sun built from layered metallic
hydrogen, it can be envisioned that a layer of material sim-
ply peeled away from the surface to form a prominence. In
contrast, within a gaseous body, the creation of such over-
whelming structures would remain difficult to explain, even
with magnetic fields forming and maintaining these entities.
Perhaps it would be more logical to presume that magnetic
fields were simply associated with the presence of metallic
hydrogen, whether on the surface of the Sun itself or within
the prominences.

Moreover, the active photosphere and chromosphere sup-
ports structural features [154]. Prominences contain fine
structure [155, 156], which would be easier to explain if a
condensed solar model was adopted. For more than one cen-
tury [157, p. 104], prominences have been known to emit con-
tinuous spectra in addition to the line spectra which character-
ize the quiescent state [158–161]. Eilnar Tandberg-Hanssen
has long studied prominences and has provided an excellent
review of the subject matter [160]. Like other solar physicists,
because the Sun was considered as a gas, he viewed promi-

Fig. 2: Sheet like appearance of solar prominences. NASA de-
scribes the image as follows: “A collage of prominences, which
are huge clouds of relatively cool dense plasma suspended in the
Sun’s hot, thin corona. At times, they can erupt, escaping the
Sun’s atmosphere. For all four images, emission in this spectral
line of EIT 304Å shows the upper chromosphere at a temperature
of about 60,000 degrees K. The hottest areas appear almost white,
while the darker red areas indicate cooler temperatures. Going
clockwise from the upper left, the images are from: 15 May 2001;
28 March 2000; 18 January 2000, and 2 February 2001”. Cour-
tesy of SOHO/[Extreme ultraviolet Imaging Telescope (EIT)] con-
sortium. SOHO is a project of international cooperation between
ESA and NASA. http://sohowww.nascom.nasa.gov/gallery/images/
promquad.html (accessed May 31, 2011).

nences as gaseous in nature [160]. Tandberg-Hanssen main-
tained that the continuous spectrum associated with some qui-
escent prominences was being generated by the scattering of
light emitted from the photosphere [161]. This was because
gaseous prominences could have no means of generating con-
tinuous spectra by themselves. They should have produced
only line spectra. Conversely, if the Sun was made from
condensed metallic hydrogen, the prominences could directly
produce the continuous spectrum. No scattering would need
to be invoked. If the density of the prominence material in
some cases could not sustain a continuous spectrum, then
only line spectra would be generated. Thus, as the promi-
nence dissipated with time, it would be expected that the con-
tinuous spectrum might weaken or become absent. It is possi-
ble to consider that prominences are formed by layered metal-
lic hydrogen separating from the inferior levels of the photo-
sphere. A slight change in density could account for such
actions reflecting an abrupt transformation from a more com-
pact lattice to a less dense form. This hypothesis might ex-
plain why entire sheets of material appear to be ejected, some-
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thing which would be difficult to understand otherwise.
It is possible, one further observation worth pondering in-

volves a figure presented by Fortov in his new text [103]. The
figure in question (Figure 7.7 in [103]) consists of a plot of the
log of object diameter versus the log of mass. On such a plot,
a straight line passes through all astrophysical objects within
our solar system, from the smallest comic dust, to the mete-
orites, to the comets, to the asteroids, to the satellites of plan-
ets, to the planets, and finally to the Sun [103, p. 192]. This
plot provides another line of evidence that the Sun should
be viewed as condensed matter. Every object on the graph
can be considered as condensed. Uranus and Neptune are
currently viewed as having metallosilicate cores and mantles
of ices [103, p. 193]. Jupiter and Saturn are largely liquid
metallic hydrogen or helium in either molecular or atomic
form [103, p. 193]. As the only remaining fully gaseous ob-
ject in the solar system, it may be reasonable to suggest that
the Sun should not stand alone on such a graph.

4 Conclusion

Relative to the Sun, a condensed approach brings interesting
contrasts and dilemmas versus the gaseous models. The latter
are endowed with tremendous mathematical flexibility [1, 2],
but their physical relevance appears limited. Gases cannot
by themselves impart structure and the solar spectrum is not
easily explained in a gaseous framework [9]. The gaseous
stars suffer from the stellar opacity problem [9]. Conversely,
a liquid metallic hydrogen model imparts a wonderful abil-
ity to explain the origin of the solar spectrum relying on the
layered structure held in common with graphite [141–149].
Metallic hydrogen possesses a very high critical temperature
and can exist as condensed matter even on the solar surface
accounting for many features of the Sun best characterized
by material endowed with a lattice [141]. Most of the physi-
cal attributes of the Sun are more simply explained within the
framework of a liquid model [141]. However, a condensed
Sun is not as open to theoretical formulations. The advan-
tages of a liquid Sun are now so numerous [20,141–149] that
it is difficult to conceive why the model was not proposed
long ago. This speaks to the allure of the gaseous Sun and the
mathematical beauty of the associated equations of state.

In closing, it should be highlighted that there is currently
an effort to describe the Sun as “liquid-like” (e.g. [162]). In
the end, the author believes that such terminology should be
avoided. If the Sun is condensed, it should be viewed as
liquid, not “liquid-like”. Even gases could be “liquid-like”.
Such terms cannot be sufficient, since a real lattice is required
for production of the solar thermal spectrum. No compromise
can be made on this point for those who have studied thermal
emission in real materials. “Liquid-like” might refer to any-
thing from a gas, to a plasma, to fully degenerate matter, to
supercritical fluid and none are necessarily endowed with a
lattice. The contention of this work remains that the pho-

tosphere of the Sun is liquid, with true lattice structure and
ordered interatomic distances. The adoption of liquid metal-
lic hydrogen as a solar constituent brings with it a wealth of
possibilities in describing solar structures and understanding
the solar spectrum. Central to this advancement, the lattice
must remain the foremost element in all of condensed mat-
ter, whether here on Earth, within the Sun, and even, in the
firmament of the stars.
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17. Unsöld A. Über die Struktur der Fraunhofersehen Linien und die
quantitative Spektralanalyse der Sonnenatmosphäre. Zeitschrift für
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In this exposition, the existence of the solar surface will be briefly explored. Within
the context of modern solar theory, the Sun cannot have a distinct surface. Gases are
incapable of supporting such structures. The loss of a defined solar surface occurred in
1865 and can be directly attributed to Hervé Faye (Faye H. Sur la constitution physique
du soleil. Les Mondes, 1865, v.7, 293–306). Modern theory has echoed Faye affirming
the absence of this vital structural element. Conversely, experimental evidence firmly
supports that the Sun does indeed possess a surface. For nearly 150 years, astronomy
has chosen to disregard direct observational evidence in favor of theoretical models.

Herbert Spencer was the first to advance that the body of
the Sun was gaseous [1], but he believed, much like Gustav
Kirchhoff [2], that the photosphere was liquid [3, 4]. For his
part, Father Angelo Secchi [5, 6] promoted the idea that the
Sun was a gaseous body with solid or liquid particulate mat-
ter floating within its photosphere. Soon after Father Secchi’s
second Italian paper [6] was translated into French by l’Abbé
François Moigno, Harvé Faye made claims of independent
and simultaneous discovery [3, 7, 8].

Harvé Faye almost immediately published his own work
in Les Mondes [9]. In this communication, he deprived the
Sun of its distinct surface. He based the loss of a solar sur-
face on the gaseous nature of the interior and the associated
convection currents. The salient sections of Faye’s classic
1865 article stated: “So then the exterior surface of the Sun,
which from far appears so perfectly spherical, is no longer a
layered surface in the mathematical sense of the word. The
surfaces, rigorously made up of layers, correspond to a state
of equilibrium that does not exist in the Sun, since the ascend-
ing and descending currents reign there perpetually from the
interior to the superficial area; but since these currents only
act in the vertical direction, the equilibrium is also not trou-
bled in that sense, that is to say, perpendicularly to the leveled
layers that would form if the currents came to cease. If, there-
fore, the mass was not animated by a movement of rotation,
(for now we will make of it an abstraction), there would not
be at its heart any lateral movement, no transfer of matter in
the perpendicular direction of the rays. The exterior surface
of the photosphere being the limit that will attain the ascend-
ing currents which carry the phenomenon of incandescence in
the superior layers, a very-admissible symmetry suffices in a
globe where the most complete homogeneity must have freely
established itself, to give to this limit surface the shape of a
sphere, but a sphere that is incredibly uneven” [9].

In the same article, Hervé Faye emphasized that the pho-
tospheric surface was illusionary: “This limit is in any case
only apparent: the general milieu where the photosphere is
incessantly forming surpasses without doubt, more or less,
the highest crests or summits of the incandescent clouds, but

we do not know the effective limit; the only thing that one is
permitted to affirm, is that these invisible layers, to which the
name atmosphere does not seem to me applicable, would not
be able to attain a height of 3′, the excess of the perihelion
distance of the great comet of 1843 on the radius of the pho-
tosphere” [9]. Though astronomy has denied the existence of
a distinct solar surface as a question of utmost complexity in-
volving opacity arguments [10], the conjecture was actually
proposed by Faye in 1865 within a framework of question-
able value [9]. Hervé Faye’s contributions to solar theory
have been extensively addressed [3] and many, like his fa-
mous Les Mondes communication [9], were not supported by
mathematics. Early solar theory rested on vague hypotheses.

It was only much later that Faye’s ideas would gain the
support of mathematical formulation. In 1891, August
Schmidt of Stuttgart wrote a small pamphlet which solidi-
fied Faye’s conjectures [11]. Within two years, Schmidt re-
ceived the support of Knoft and, in 1895, Wilczynski pub-
lished a detailed summary of their ideas in the Astrophysi-
cal Journal [11]. The illusionary nature of the solar surface
was finally supported by mathematics. James Keeler was the
first to voice an objection to Schmidt’s theory, responding im-
mediately to Wilczynski’s article [12]: “But however diffi-
cult it may be for present theories to account for the tenuity
of the solar atmosphere immediately above the photosphere,
and however readily the same fact may be accounted for by
the theory of Schmidt, it is certain that the observer who has
studied the structure of the Sun’s surface, and particularly the
aspect of the spots and other markings as they approach the
limb, must feel convinced that these forms actually occur at
practically the same level, that is, that the photosphere is an
actual and not an optical surface. Hence it is, no doubt, that
the theory is apt to be more favorably regarded by mathemati-
cians than by observers” [12]. Twenty years after Schmidt
proposed his ideas, they had still not gained the support of
observational astronomers such as Charles Abbot, the direc-
tor of the Smithsonian Observatory: “Schmidt’s views have
obtained considerable acceptance, but not from observers of
solar phenomena” [13, p. 232].
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In 1896, Edwin B. Frost [14] discussed Wilson’s theory
[15] in which sunspots represented depressions on the solar
photosphere [3]. He maintained that the theory was not yet
well established and required further investigation. Nonethe-
less, the highlight of his paper would be a comment relative to
the existence of a true solar surface. Frost’s work [14] formed
an appropriate reminder that the presence of the solar surface
had been long denied by those who, by advocating gaseous
solar models, must reject solar structure as mere illusion: “In
speaking of levels we must proceed from some accepted plane
of reference; and the most natural plane, or surface of refer-
ence, would be the solar photosphere. Here we are abruptly
confronted by the theory of Schmidt, elaborated in a conve-
nient form by Knoft, according to which the photosphere is
merely an optical illusion, produced by circular refraction in
the Sun itself, supposed to be a globe of glowing gas without
a condensed stratum. Prominences, faculae, spots, and gran-
ulation are explained as effects of anomalous refractions due
to local changes of density somewhere in the gas ball. This
theory, worked out as it is by careful mathematical reasoning,
deserves and has received respectful consideration. Never-
theless, in view of the physical improbability of Schmidt’s pri-
mary assumption that in its outer portions the gaseous mass
maintains its state without condensation, the physicist will
feel obliged to reject the theory, which also suffers from the
fundamental defect of failing to account for the solar spec-
trum on the accepted principles of physics. Moreover, any
one who has with some continuousness studied the phenom-
ena of the solar surface must affirm that he has observed re-
alities, not illusions. The perspective effects on prominences
as they pass around the limb, the motion and permanence of
the spots, the displacements of the spectral lines on the ap-
proaching and receding limbs, and in fact all the phenomena
concerned with solar rotation, are distinctly contradictory to
Schmidt’s theory. In dismissing it from further consideration,
however, we shall take with us the important inference that
refraction within and on the Sun itself may modify in some
considerable degree the phenomena we observed” [14].

Though Faye and Schmidt denied the presence of a dis-
tinct surface on the Sun, it was clear that observational as-
tronomers were not all in agreement. The point was also
made in 1913 by Edward Walter Maunder, the great solar
physicist: “But under ordinary conditions, we do not see the
chromosphere itself, but look down through it on the photo-
sphere, or general radiating surface. This, to the eye, cer-
tainly looks like a definite shell, but some theorists have been
so impressed with the difficulty of conceiving that a gaseous
body like the Sun could, under the conditions of such stu-
pendous temperatures as there exist, have any defined limit
at all, that they deny that what we see on the Sun is a real
boundary, and argue that it only appears so to us through
the effects of the anomalous refraction or dispersion of light.
Such theories introduce difficulties greater and more numer-
ous than those that they clear away, and they are not gen-

erally accepted by the practical observers of the Sun. They
seem incompatible with the apparent structure of the photo-
sphere, which is everywhere made up of a complicated mot-
tling: minute grains somewhat resembling those of rice in
shape, of intense brightness, and irregularly scattered. This
mottling is sometimes coarsely, sometimes finely textured; in
some regions it is sharp and well defined, in others misty or
blurred, and in both cases they are often arranged in large
elaborate patterns, the figures of the pattern sometimes ex-
tending for a hundred thousand miles or more in any direc-
tion. The rice like grains or granules of which these figures
are built up, and the darker pores between them, are, on the
other hand, comparatively small, and do not, on the average,
exceed two to four hundred miles in diameter” [16, p. 28].

That same year, Alfred Fowler [17] the British spectro-
scopist who trained as Lockyer’s assistant, commented on
problems in astronomy [18]. Fowler served as the first secre-
tary of the International Astronomical Union [17]. Fowler’s
writings reflected that the ideas of Hervé Faye [9] and August
Schmidt [11] continued to impact astronomy beyond 1913
[3, 4], even though observational astronomers were not con-
vinced: “The apparently definite bounding-surface of the Sun
which is ordinarily revealed to the naked eye, or seen in the
telescope, has such an appearance of reality that its existence
has been taken for granted in most of the attempts which have
been made to interpret solar phenomena. . . Thus the photo-
sphere is usually regarded as a stratum of cirrus or cumulus
clouds, consisting of small solid or liquid particles, radiat-
ing light and heat in virtue of their state of incandescence. . .
An effort to escape from this difficulty was made in the view
suggested by Johnstone Stoney, and vigorously advocated by
Sir Robert Ball, that the photospheric particles consist of
highly refractory substances carbon and silicon (with a pref-
erence for carbon), both of which are known to exist on the
Sun...The photosphere is thus regarded as an optical illusion,
and remarkable consequences in relation to spots and other
phenomena are involved. The hypothesis appears to take no
account of absorption, and, while of a certain mathematical
interest, it seems to have but little application to the actual
Sun” [18]. It was well known that Johnstone Stoney [19]
advocated that the solar photosphere contained carbon par-
ticles [4].

Even in the 21st century, astronomy has maintained that
the Sun’s surface is an illusion. For instance, in 2003, the Na-
tional Solar Observatory claimed that “The density decreases
with distance from the surface until light at last can travel
freely and thus gives the illusion of a ‘visible surface’ ” [20].

Nonetheless, spectacular images of the solar surface have
been acquired in recent years, all of which manifest phenom-
enal structural elements on or near the solar surface. High
resolution images acquired by the Swedish Solar Telescope
[20–23] reveal a solar surface in three dimensions filled with
structural elements. Figure 1 displays an image which is pub-
licly available for reproduction obtained by the Swedish So-
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Fig. 1: Part of a sunspot group near the disk center acquired with
the Swedish 1-m Solar Telescope by Göran B. Scharmer, Boris V.
Gudiksen, Dan Kiselman, Mats G. Löfdahl, and Luc H. M. Rouppe
van der Voort [21]. The image has been described as follows by
the Institute for Solar Research of the Royal Swedish Academy of
Sciences: “Large field-of-view image of sunspots in Active Region
10030 observed on 15 July 2002. The image has been colored yellow
for aesthetic reasons” http://www.solarphysics.kva.se

lar Telescope of the Royal Swedish Academy of Science. The
author has previously commented on these results: “The so-
lar surface has recently been imaged in high resolution using
the Swedish Solar Telescope [24, 25]. These images reveal
a clear solar surface in 3D with valleys, canyons, and walls.
Relative to these findings, the authors insist that a true sur-
face is not being seen. Such statements are prompted by be-
lief in the gaseous models of the Sun. The gaseous models
cannot provide an adequate means for generating a real sur-
face. Solar opacity arguments are advanced to caution the
reader against interpretation that a real surface is being im-
aged. Nonetheless, a real surface is required by the liquid
model. It appears that a real surface is being seen. Only
our theoretical arguments seem to support our disbelief that
a surface is present” [24]. References [24] and [25] in the
quotation referred to [21, 22] in the current work. A study
of Lites et al. [23] illustrates how these authors hesitated to
regard the solar surface as real, precisely because they con-
sidered that the Sun was gaseous in nature: “However, since
the angular resolution of the SST [Swedish Solar Telescope]
is comparable to the optical scale of the photosphere (about
one scale height), we may no longer regard the photospheric
surface as a discontinuity; optical depth effects must be con-
sidered” [23]. Though the authors reported three-dimensional
structure, they added quotation marks around the word “sur-

Fig. 2: Doppler image of a solar flare and the associated distur-
bance on the solar surface acquired by the NASA/ESA SOHO satel-
lite. Such data was described as “resembling ripples from a pebble,
thrown into a pond” [25]. Courtesy of SOHO/[Michelson Doppler
Imager] consortium. SOHO is a project of international cooperation
between ESA and NASA.

face” precisely because a gaseous Sun cannot support such a
feature. They referred to the “optical depth unit surface”, a
concept inherently tied to gaseous models of the Sun. At the
same time, the authors displayed a qualified desire for con-
densed matter: “This gives the (perhaps false) visual impres-
sion of a solid surface of granules that protrude up a consid-
erable distance from the surface, and that a raised structure
is “illuminated” by a light source in the vicinity of the ob-
server” [23].

Beyond the evidence provided by the Swedish Solar Tele-
scope and countless other observations, there was clear
Doppler confirmation that the photosphere of the Sun was
behaving as a distinct surface [25, 26]. In 1998, Kosovichev
and Zharkova published their Nature paper X-ray flare sparks
quake inside the Sun [25]. Doppler imaging revealed trans-
verse waves on the surface of the Sun, as reproduced in Fig-
ure 2: “We have also detected flare ripples, circular wave
packets propagating from the flare and resembling ripples
from a pebble, thrown into a pond” [25]. In these images,
the “optical illusion” was now acting as a real surface. The
ripples were clearly transverse in nature, a phenomenon dif-
ficult to explain using a gaseous solar model. Ripples on a
pond are characteristic of the liquid or solid state.

Hervé Faye’s contention that the Sun was devoid of a real
surface has never been supported by observational evidence;
the solar surface has long ago been established. Though the-
ory may hypothesize a gaseous Sun, it must nevertheless sup-
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port observational findings. Perhaps, now that a reasonable
alternative to a gaseous Sun has be formulated [27], astro-
physics will discard the idea that the solar surface is an illu-
sion, embrace the liquid nature of the Sun, and move to better
comprehend this physical reality.
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Father Angelo Secchi used the existence of solar granulation as a central line of rea-
soning when he advanced that the Sun was a gaseous body with a photosphere contain-
ing incandescent particulate matter (Secchi A. Sulla Struttura della Fotosfera Solare.
Bullettino Meteorologico dell’Osservatorio del Collegio Romano, 30 November 1864,
v.3(11), 1–3). Secchi saw the granules as condensed matter emitting the photospheric
spectrum, while the darkened intergranular lanes conveyed the presence of a gaseous
solar interior. Secchi also considered the nature of sunspots and limb darkening. In
the context of modern solar models, opacity arguments currently account for the emis-
sive properties of the photosphere. Optical depth is thought to explain limb darkening.
Both temperature variations and magnetic fields are invoked to justify the weakened
emissivities of sunspots, even though the presence of static magnetic fields in materi-
als is not usually associated with modified emissivity. Conversely, within the context
of a liquid metallic hydrogen solar model, the appearance of granules, limb darkening,
and sunspots can be elegantly understood through the varying directional emissivity of
condensed matter. A single explanation is applicable to all three phenomena. Granular
contrast can be directly associated with the generation of limb darkening. Depending on
size, granules can be analyzed by considering Kolmogoroff’s formulations and Bénard
convection, respectively, both of which were observed using incompressible liquids,
not gases. Granules follow the 2-dimensional space filling laws of Aboav-Weiner and
Lewis. Their adherence to these structural laws provides supportive evidence that the
granular surface of the Sun represents elements which can only be constructed from
condensed matter. A gaseous Sun cannot be confined to a 2-dimensional framework.
Mesogranules, supergranules, and giant cells constitute additional entities which further
support the idea of a condensed Sun. With respect to sunspots, the decrease in emis-
sivity with increasing magnetic field strength lends powerful observational support to
the idea that these structures are comprised of liquid metallic hydrogen. In this model,
the inter-atomic lattice dimensions within sunspots are reduced. This increases the den-
sity and metallic character relative to photospheric material, while at the same time
decreasing emissivity. Metals are well known to have lowered directional emissivities
with respect to non-metals. Greater metallicity produces lower emissivity. The idea
that density is increased within sunspots is supported by helioseismology. Thus, a liq-
uid metallic hydrogen model brings with it many advantages in understanding both the
emissivity of the solar surface and its vast array of structures. These realities reveal that
Father Secchi, like Herbert Spencer and Gustav Kirchhoff, was correct in his insistence
that condensed matter is present on the photosphere. Secchi and his contemporaries
were well aware that gases are unable to impart the observed structure.

1 Introduction

The appearance of sunspots has fascinated mankind for cen-
turies [1–8] and while limb darkening [9–11] has been docu-
mented from the days of Galileo [3, p.274], the phenomenon
only became well-established in the 1800’s [7, 12]. Solar
granulations have also long captivated solar science [13, 14].
Although humanity has gazed at the Sun since time immemo-
rial, our understanding of these phenomena remains limited.
In a large measure, this reflects the unassailable nature of the
Sun. At the same time, our lack of understanding mirrors the
incapacity of the gaseous models to properly address ques-

tions related to solar structure. Gases will always remain de-
void of structural attributes.

Strangely, if Father Angelo Secchi [2] first advanced that
the Sun was constituted of a gaseous body surrounded by a
photosphere containing particulate matter [16, 17], it was be-
cause he was searching to understand photospheric structure.
The nature of solar granulations troubled Secchi [2, 17]. He
solved the problem by endowing the body of the Sun with a
gaseous nature while maintaining a partially condensed pho-
tosphere. Secchi’s proposed photosphere could not adhere to
the full properties of condensed matter. Sixty years later, the-
oretical physics advocated a completely gaseous solar model.
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As a result, it has been nearly impossible to synthesize a re-
alistic and cohesive portrayal of sunspots, granulation, and
limb darkening, even though a cursory review of the question
suggests otherwise.

2 Granulations and the gaseous models

2.1 Ideas of the 19th century

Secchi built his solar model on two driving forces: 1) Nas-
myth’s early description of solar granulation [18, 19] and
2) Magnus’ demonstration that solid sodium hydroxide in-
creased the luminosity of the gaseous flame [20]. Based on
Magnus [20], Secchi advanced [17] that some condensed
matter was present within the photosphere, as gases were
devoid of the emissive power required to produce the solar
spectrum [2]. Secchi considered that the darker appearance
of intergranular lanes reflected the inferior radiative ability
of the gaseous solar body. He believed that Nasmyth’s dis-
covery was noteworthy [18, 19], though remarking that gran-
ular features had previously been observed on the solar sur-
face: “First of all, are these new findings? We believe that,
in the end, these are the same granulations that have long
since been pointed out by observers, under the name of “lu-
cules” and “pores” and that with the new method they can
better be distinguished” [17]. Secchi’s description of granu-
lation was important to the history of astronomy, as the Jesuit
scientist was regarded as one of the leading solar observers of
his time [2, 21]. His representations of granules depicted in
his classic text [21, p.31–34] (reproduced in part within [14,
p.4] and [1, p.143–145]) were nothing short of astounding. In
1870, Secchi presented drawings which remain respectable
by today’s standards and which far surpassed the illustrations
which had made James Nasmyth famous only a few years be-
fore (see drawings reproduced in [13]).

In the mid-1860s, considerable controversy erupted be-
tween James Nasmyth [22] and the Reverend William Rutter
Dawes [23] over the appearance of the solar granulation [13].
Nasmyth supported the notion that granules had a consistent
structure and resembled regular overlapping “willow leaves”.
For his part, Dawes maintained that they had been discovered
long before Nasmyth and that the term “willow leaves” was
inappropriate as the features displayed an irregular form [13].
The discussion then involved George Airy as the Astronomer
Royal, Warren de la Rue, John Herschel, William Huggins,
Father Angelo Secchi, and others [13]. Much of the debate
would once again transpire in The Reader [2]. In 1865, no
less than ten letters appeared in the popular magazine and in-
cluded contributions from Secchi himself [24–33]. Scientists
took the controversy beyond conventional journals into the
public forum.

With time, Dawes’ view [13, 30] rose to prominence and
the concept of “willow leaves” faded from solar physics. With
respect to granulations, Dawes reminded his readers that:
“Their existence was well known to Sir W. Herschel” [30]. He

cited Herschel directly [30]: “There is all over the Sun a great
unevenness in the surface which has the appearance of a mix-
ture of small points of an unequal light” [34]. Dawes elabo-
rated on his own position: “I have proposed to term them
granules or granulations, as more suitable than any more
definite appellation, and therefore unlikely to mislead” [30].
Nasmyth discovered nothing new [13, 18, 19], but he gener-
ated tremendous interest in the nature of solar granules. In
turn, this prompted Secchi to put forth his solar model [16,
17]. Dawes did not live to see the resolution of the conflict.

As for Secchi, he observed both the granules and the in-
tergranular lanes. He addressed the appearance of the solar
surface as follows: “The bottom of the solar disc appeared to
be formed of a fine black mesh whose links were very thin and
full of bright points. It was not so much the shape of the grid
that surprised us — for we had seen it also at other times with
older methods — as its blackness, which was truly extraordi-
nary. It was such that we suspected some illusion, but in con-
centrating on certain darker points and finding them of un-
changing and precise forms, we no longer remained in doubt
about the reality of the aspect. Of this grid-like structure we
can give an approximate idea in saying that the Sun looked
like a ordinary piece of rough paper seen through a strong
microscope; on this paper the prominences are numerous and
irregular, and where the light falls rather obliquely, the bot-
tom of the grooves are almost black compared to the more el-
evated parts, which appear extremely white. . . The grid-like
solar structure seemed to us to offer nothing regular in those
parts of the disc that are continuous, and thus the term granu-
lar appears very appropriate. The granular structure is more
visible near the spots, but it is not recognizable in the facu-
lae; these present themselves like luminous clusters without
distinguishable separation, emitting continual light without
the interruption of dots or of that black mesh. In the end, we
have found the granular structure more notable and easy to
distinguish in the middle of the disc than near the limb, and
in the zones near the sun’s equator, more than in the polar
zones” [17].

It was based on these observations that Secchi advanced
his model of a gaseous Sun with a partially condensed photo-
sphere: “Indeed this appearance suggests to us what is per-
haps a bold hypothesis. As in our atmosphere, when it is
cooled to a certain point, there exists a fine substance capable
of transforming itself in fine powder and of forming clouds in
suspension, (water transforming into so-called “vesicular”
vapor or into small solid icicles), so in the enflamed solar
atmosphere there might be an abundance of matter capable
of being transformed to a similar state at the highest tem-
peratures. These corpuscles, in immense supply, would form
an almost continuous layer of real clouds, suspended in the
transparent atmosphere which envelopes the sun, and being
comparable to solid bodies suspended in a gas, they might
have a greater radiant force of calorific and luminous rays
than the gas in which they are suspended. We may thus ex-
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Fig. 1: High resolution image of solar granules acquired by Vasco
Henriques on May 23, 2010 using the Swedish 1-m Solar Telescope
(SST). “The SST is operated on the island of La Palma by the Insti-
tute for Solar Physics of the Royal Swedish Academy of Sciences in
the Spanish Observatorio del Roque de los Muchachos of the Insti-
tuto de Astrofı́sica de Canarias”, http://www.solarphysics.kva.se.

plain why the spots (that are places where these clouds are
torn) show less light and less heat, even if the temperature
is the same. The excellent results obtained by Magnus, who
has proved that a solid immersed in an incandescent gas be-
comes more radiant in heat and light than the same gas, seem
to lend support to this hypothesis, which reconciles the rest of
the known solar phenomena” [17]. With Secchi’s words, oth-
ers quickly followed suit [2, 25] and the Sun became viewed
as having a gaseous body [2]. Such was the authority of Fa-
ther Angelo Secchi in astronomy.

Objects which appeared as “rice grains” or “willow
leaves” on the Sun’s surface offered a rather poor founda-
tion for scientific advancement. Chacornac would distance
himself from these concepts: “As to the form of the objects
observed a subject so warmly discussed at the present time
— I did not see, with the large instrument of the Paris Ob-
servatory, nor have I ever yet seen, that the form is limited
to one only, either “willow leaf” or “rice grain”. I have
always seen the “crystals” of the photospheric atmosphere
entangled (enchevêtrés) in a thousand ways, and connected
among themselves by one or many points in their peripheries;
I have always observed these photospheric clouds affecting
forms reminding one of the flocculent mass in an incandescent
metal, in suspension in a liquid. . . I have always in my de-
scriptions compared the “crystals” of the photospheric mat-
ter to this silver solder in a state of fusion” [25]. With these
words, Chacornac became one of the first to invoke crys-
talline structure on the surface of the Sun. In the same let-
ter [25], he echoed Secchi’s model published in Les Mondes
[17] three days prior, without properly referencing Secchi:

“. . . they constitute one of the essential conditions of the na-
ture of this luminous matter, of which the elements are con-
tained in the exterior atmosphere of the Sun as vapour is con-
tained in our air” [25]. Chacornac’s description of the crys-
talline structure of granules would be revisited using theoret-
ical analysis, more than 130 years later [35].

Scientists of the 19th century advocated that convection
currents were the cause of granular formation. Gaseous mate-
rial rose from deep within the Sun and then condensed on the
photospheric surface before sinking once again in the gaseous
atmosphere back towards the interior. The modern gaseous
models promote similar hypotheses, but do not permit the
condensation of matter. In 1881, Hastings described gran-
ules as follows: “In our theory, then, the granules are those
portions of upward currents where precipitation is most ac-
tive, while the darker portions, between the bodies, are where
the cooler products of this change with accompanying vapors
are sinking to lower levels” [36]. The convective nature of the
granular field was well recognized, even though solar physi-
cists lacked the mathematical tools required to address such
problems.

2.2 Modern concepts of granules

The careful analysis of the solar granulation is important,
as such studies reveal that the photosphere possesses objects
with defined structures. The presence of such features pro-
vides compelling evidence that the Sun is constituted from
condensed matter. Today, the study of solar granulation in-
volves sophisticated image acquisition (see Figure 1) and data
processing [14, 15, 35, 37–51]. Granules are widely regarded
as the result of convective phenomena, wherein subsurface
heat is being transported to the solar surface [14, 15, 37, 44,
50]. Convective processes move material upwards within the
granule. Following radiative cooling, matter then sinks into
the intergranule lanes [43]. The velocities of up and down
flows can reach 1200 m/s in granular centers and intergranular
lanes [43]. According to the gaseous models of the Sun, once
the material reaches the surface layer, radiative heat losses re-
sult in greatly lowered opacity and the atmosphere of the Sun
becomes transparent [37].

Granules vary in size from ∼0.3–4 arcsec with most hav-
ing a rough diameter of 1–2 arcsec giving a mean of ∼1.35
arcsec (∼1,000 km) [14,37,38]. Del Moro finds that no gran-
ule has an area larger than 1 Mm2 [48]. Other investigators
obtain maximal values in the 3-5 Mm2 range [38, 45]. Small
granules are very numerous, but they do not account for much
of the solar surface [38]. They tend to be concentrated in
downdraft regions, whereas the larger granules are located in
areas of strong up currents [45]. The intergranular distance
is on the order of 1.76 arcsec [38] and by some measures the
darker intergranular lanes account for about 32% of the so-
lar surface [42]. Conversely, Abdussamatov and Zlatopol’skii
report that on a mesogranular scale (see below) the intergran-
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ular lanes can occupy as much as 55% of the photospheric
area [44]. Roudier and Muller provide an excellent review
of many key facts relative to granules [38]. The structures
tend to be irregular in shape, although they can be properly
described as polygons with a slight prevalence of pentagons
over hexagons [35].

If the log of the number of granules of a given size is
plotted against the log of their area, two distinct lines can be
used to fit all granules with a critical diameter of 1.31 arcsec
(see Figure 7 in [38]). This suggest that “granules are self-
similar” [15, 38, 45] which then implies structure. Smaller
granules fit the first line and are thought to be produced by
turbulent phenomena of a “Kolmogorov-type” [38]. Because
they are believed to be the result of turbulent eddy motions,
Roudier and Muller argue that these small structures should
be viewed as “photospheric turbulent elements” [38], an idea
consistent with their more prevalent occurrence in the down-
draft regions [44]. Conversely, they state that only medium
and larger structures should be viewed as true “granules” as
these alone properly transport convective energy [38].

Mean granular lifetimes range from ∼5 minutes to 16
minutes with a maximum of approximately 30 minutes [14,
46]. Granules are subject to three evolutionary mechanisms.
Most often, they are produced through the fragmentation of
larger systems [39, 40, 46, 49]. They often “die” through the
merger of smaller entities [46]. They seldom appear from,
but frequently dissolve into, the background [46]. The larger
granules tend to have the largest lifetimes [48]. Granules that
are “long lived” have a tendency to form clusters [49]. Dark
dots often form within granules and these result in violent
fragmentation of the structure producing “exploding gran-
ules” [39, 47, 51]. The formation of these dark dots results
in fragmentation within a couple of minutes and the features
have no link to magnetic fields [39,47]. Only very large gran-
ules explode [48]. Exploding granules are often very bright,
initially suggesting the upward flow of matter followed by
great expansion [39]. Their dark dots eventually evolve into
intergranular dark regions which are indicative of downward
flow even though some have argued, using opacity arguments,
that dark dots represent upward material displacement [40].

Mark Rast proposed that exploding granules “can be bet-
ter understood if granulation is viewed as downflow-domin-
ated-surface-driven convection rather than as a collection of
more deeply driven upflowing thermal plumes” [51]. Though
not mentioned by Rast, such an idea would benefit from the
presence of a real solar surface which only a condensed model
of the Sun could provide [52].

The smaller the granule, the more likely it is to die with-
out fragmentation or merging [40]. Conversely, if the granule
is large, it is likely to merge or fragment [40]. The brightest
region and the strongest upflows within large granules tend to
be near the intergranular lanes and consequently are not lo-
cated near the center of the structure [53]. A family of gran-
ules shares either fragmentation or merging and can have a

lifetime approaching 46 minutes [40].
Granules can be organized into larger assemblies: meso-

granulation, supergranulation, and giant cells [41–45]. Such
assemblies share common and simultaneous changes in size,
temperature, or other parameters [43]. Mesogranulation ar-
eas usually tend to be brighter, more dynamically active [42].
They are thought to represent a greater uplifting of matter
and can span from 6–9 arcsec [43] and have lifetimes rang-
ing from 30 minutes to 6 hours [48]. They are viewed as
connected to common convective origins located at depths
of 3,000–8,000 km [43]. Supergranular cells are believed to
have their origins at depths of 20,000–30,000 km, while giant
cells might stem from convective processes located as deep
as 200,000 km below the surface [43]. These hypothetical
depths are inherently linked to the gaseous models of the Sun.

Giant cells divide successively into supergranular and
mesogranular structures [43]. However, Rast believes that
mesogranulation and supergranulations are “secondary man-
ifestations of granulation itself ” [51]. He provides an excel-
lent review of the solar granulation and these structures [53].
Granules tend to have limited vertical flows on the order of
1 km/s while the mesogranulation with their ∼5,000–10,000
km diameters, can have flows approaching 60 km/s [53, 54].
Ikhsanov et al. suggest that the solar surface supports pro-
togranules which are intermediate in size between granules
and mesogranules [54]. Supergranulations possess diameters
of ∼30,000 km, display a 20 hour lifetime, and can manifest
horizontal flows on the order of 400 km/s [53]. Such horizon-
tal flows are contrary to a fully gaseous model of the Sun, as
highlighted by the author (see §10 in [55]). Recently, Arkhy-
pov et al. have found that Kolmogorov turbulence determines
large scale surface activity on the photosphere [56] and claim
these indicate that sub-surface convection motion can be de-
tected through photospheric activity of supergiant complexes.

Granules display varying emissivities, but most studies
simply report values for the granules and the intergranular
lanes (e.g. [44] reports +8±7.5% for granules and −7±5.5%
for the intergranular lanes). These descriptions appear to be
over simplified as a smooth transition exists between the max-
imum brightness of a granule and the darkest point of the in-
tergranular lane. As a result, considerable variability can be
expected in such values.

Center to limb variations in granular intensities have also
been investigated [57, 58]. Initially, Hidalgo et al. reported
that granular contrast increased slightly towards the limb up
µ = 0.6, followed by a decrease in contrast moving further
away from the solar center [57]. It is not clear if this change
was due to an increase in brightness. Later, in a wavelength
dependent study (0.8 µm and 1.55 µm), Cuberes et al. ob-
served a monotonic decrease in contrast from the center of
the solar surface (µ = 1) towards the limb (µ = 0.3) [58]. The
change was steeper at the lower wavelength [58]. No peak
was observed in contrast variation at either frequency [58].
The contrast at the center of the solar surface was dependent
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on wavelength, with larger contrast (6.1%) at 0.8 µm, while
only 2.9% at 1.55 µm [58].

Title et al. [59,60] have studied the formation of granules
in association with magnetic fields and discovered significant
differences relative to size, intensity variation, and lifetime.

Recently, Getling et al. published a series of stunning
reports implying that the solar surface possesses a series of
ridges and trenches [61–64]. On first inspection, the results
appear valid and the authors have gone through considerable
lengths to eliminate artifacts [64]. If these findings are gen-
uine, they suggest that the solar surface contains “quaziregu-
lar” structural systems of great breath and regularity [61–64].
Nonetheless, it is currently unclear if these fascinating results
will withstand scrutiny. If so, they would constitute additional
support for the condensed nature of the photosphere.

Solar granulations have been the subject of intense theo-
retical work (e.g. [65]). From the onset [66–68], such studies
have been subject to the charge that they can, at times, con-
stitute “little more than an exercise in parameter fitting” [67].
Clearly, the gaseous models of state do offer significant flex-
ibility with respect to the number of usable parameters [69].
Given enough variables, fits can almost always be achieved.
Nonetheless, this brief review of solar granulation reveals that
these elements are filled with structural properties based on
size, behavior, and lifetimes. In this regard, it is instructive to
consider how solar granulations conform to the laws of con-
vection, turbulence, and structure as obtained in condensed
matter (see §3, §4, and §5).

3 Granules and the laboratory

The analysis of granulations as convective processes has al-
ways rested on the science of liquids. In 1900, Bénard con-
vection was first observed in the liquid state [70, 71] and the
process continues to be a property of condensed matter. Bray
et al. re-emphasized that Bénard convection was dominated
by surface tension, not buoyancy [14, p.116].

Bénard (or Bénard-Marangoni) convection [72–74] is
characterized by hexagonal structures. In fact, such features
are properties of both Bénard convection [70–74] and
many solar granules [14]. It is difficult to discount the pres-
ence of these structural elements on the surface of the Sun as
coincidental, even though many solar physicist deny the pres-
ence of Bénard convection. Yet, even the laws of Kolmogo-
roff turbulence are strictly applicable only to an incompress-
ible fluid [14, p.14], a framework well-beyond that afforded
by the gaseous Sun. Still, since solar physicists currently en-
dorse a gaseous model of the Sun, granular convection has al-
ways been viewed as a buoyancy driven phenomenon. Bénard
convection cannot occur on the surface of the Sun if a gaseous
body is to be preserved. To propose otherwise automatically
requires surface tension, an impossibility for gaseous models.
Nonetheless, it is particularly troubling that most laboratory
experiments used to treat granulation have been performed on

incompressible liquids [14, p.116]. To avoid surface tension,
experimentalists study incompressible liquids placed between
rigid plates [14, p.116]. Such a setting is hardly the equivalent
of the hypothetical and illusionary gaseous solar surface.

4 Granulations and crystal structure

Beyond these applications of liquids to the treatment of gran-
ular convection, Noever has used the methods of statistical
crystallography to analyze the solar surface [35]. He has re-
ported that the granular field displayed a remarkable simi-
larity to crystals [35]. Solar granulation followed both the
laws of Aboav-Weaire and of Lewis [75–77] for space fill-
ing structures in two dimensions. The agreement with the
Aboav-Weaire law had an R value of 0.998, indicating “a
correlation which does not extend beyond the nearest neigh-
bor cells” [35]. Noever also found that granules followed
the perimeter law, suggesting that many sided structures have
larger perimeters (R = 0.987) [35]. Adherence to the perime-
ter law implied that “energy is carried by the cell boundaries”
[35]. Noever stated: “It is particularly noteworthy that prior
to grain fragmentation, a dark region of low luminosity typi-
cally appears near this predicted low energy core of each cell.
The perimeter law predicts this outcome derived not from any
specific fluid parameters but from a statistical picture of lat-
tices alone” [35]. With these words, Noever accounted for the
origin of exploding granules without any recourse to convec-
tion, based solely on structural energy considerations. Struc-
ture led to behavior and this directly implied that the granula-
tions are condensed matter. Noever further demonstrated that
granules obey Lewis’ law which relates two dimensional area
and cell sidedness (R = 0.984) [35]. This places a restric-
tion on granulation based on the need to fill two dimensional
space entirely [35]. Gases cannot assume two dimensional
space filling forms and cannot follow the laws of structure.
Liquids alone can truly account for the convective and struc-
tural nature of granules.

Regrettably, Noever’s work has been largely neglected
[78–81] receiving only one citation relative to solar science
[81]. Nonetheless, it represented a critical contribution in the
understanding of granulations, precisely because it implied
that granules are condensed matter.

5 Emissivity: A common link for solar surface struc-
tures

5.1 Metals and sunspots

Non-metals are known to possess directional spectral emis-
sivities which monotonically decrease with increasing angle
as illustrated schematically in Fig. 2 [82–84]. Their normal
emissivity is typically higher than their directional spectral
emissivity. Conversely, metals tend to have lower normal
spectral emissivities relative to their directional spectral emis-
sivities. For metals, the directional spectral emissivities usu-
ally rise with increasing angle until they fall precipitously as
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Fig. 2: Schematic representation of directional spectral emissivities
for non-conductors (A) and conductors (B). Note that in non-metals,
the spectral emissivity decreases monotonically with viewing angle.
Conversely, in metals, while the normal emissivity can be substan-
tially reduced, the emissivity can rise with increasing angle before
precipitously dropping (adapted from [83]).

orthogonal viewing is approached [82,83]. These simple con-
siderations provide tremendous insight to the structure of the
photosphere in the context of a condensed solar model [52].

Consider the liquid metallic hydrogen model of the Sun
[52]. When first proposed [85], liquid metallic hydrogen was
hypothesized to assume a layered graphite-like structure.
This lattice was subsequently adopted for the solar photo-
sphere [52].

Since graphite itself is a great emitter, but only a modest
conductor, one can hypothesize that liquid metallic hydrogen
on the surface of the Sun is not highly metallic [52]. The
inter-atomic distance in the lattice must be such that the pho-
tosphere displays little metallic character, but great graphite-
like emissivity. This would correspond to the Type-I lattice
structure previously discussed by the author [52, 55]. How-
ever, within sunspots, the interatomic distance would contract
and liquid metallic hydrogen would increase its metallic char-
acter while at the same time, lowering its emissivity. In the
limit, this would correspond to the Type II lattice [52].

The point can be amplified by examining the emissive
behavior of sunspots with respect to magnetic field inten-
sity [86, 87]. Leonard and Choudhary have reported that the
emissivity of sunspot umbral regions drops with magnetic
field strength suggesting the approach to a saturation limit
(see Figure 2 in [86]). They stated: “Although there is a
large scatter, it is tempting to infer that the sunspot umbral
intensity attains a maximum value beyond which the magnetic
field increases without substantial intensity drop, resulting in
a ‘saturation effect’ ” [86]. While more data of this nature
is required, these preliminary findings imply that a limiting
structural lattice might be reached within sunspots.

Sunspots are known to have substructure [88] and, as they
can be the source of powerful magnetic fields [89], such ob-

servations [86] further support the notion that they are metal-
lic in character [52]. The dark nuclei of sunspots clearly have
lower emissivities and possess the highest magnetic fields [8,
p.80]. Conversely, the light bridges display higher emissiv-
ities and lower magnetic fields [8, p.85–86], implying that
they are less-metallic in character. The dark cores detected
in sunspot penumbral filaments might be a reflection of in-
creased metallicity in these elements [90].

Supportively, helioseismology reveals that sound waves
travel much faster through sunspots than through normal pho-
tospheric matter [91, 92]. This suggests that the modulus of
elasticity is higher within sunspots, in accordance with the
hypothesis that the material is both more metallic and slightly
denser than photospheric matter.

Consequently, greater attention might be placed on eval-
uating directional emissivity within sunspots. Measurements
from these regions are already giving hints that emissivities
may be increasing with angle of visualization. This is re-
flected in the “problems of stray light” into the sunspots [8,
p.75–77]. The effect of “stray light” acts to increase the ob-
served emissivity of sunspots in precisely the same manner
that an increased metallic character would produce (see Eq. 8
in [8, p.75]). As a result, such data may already be affirming
the metallic character of sunspots by mimicking the behavior
manifested in Fig. 2. “Stray light” arguments might have been
introduced simply to address a finding which could not be ex-
plained otherwise by the gaseous solar models. The observa-
tion of large sunspots at high resolution should enable scien-
tists to clearly establish the directional emissivity of sunspots
without any “stray light” effects and thereby possibly affirm
their metallic nature.

It is appropriate to consider that sunspots might repre-
sent liquid metallic hydrogen whose lattice density has in-
creased along with a corresponding rise in metallic nature:
the stronger the metallic character, the stronger the associ-
ated magnetic fields and the weaker the emitted light inten-
sity. This is precisely what one observes in sunspots [86].
Emissivity is strongly dependent on magnetic field intensity.
As magnetic field intensity increases, sunspot emissivity pro-
gressively falls until a plateau region appears to be reached
[86]. This would correspond to the limit of compressibility
of the lattice. Beyond this point, liquid metallic hydrogen
should become essentially incompressible, the Type II lattice
having been reached.

Along these lines, it is interesting to note that liquid
graphite displays two lattice forms which differ in spatial di-
mensions, densities, and metallic character [93]. Liquid
graphite [93] appears to provide an interesting parallel with
the two structural lattice Types required in a liquid metallic
hydrogen model of the Sun [52].

These results can only be explained with difficulty using
the gaseous models. After all, the presence of magnetic fields
by themselves can have no effect on emissivity. It is well
known that a piece of iron does not change its emissivity on
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becoming magnetized. Emissivity changes demand changes
in structure [94] and the gaseous solar models afford none.

5.2 Emissivity, granulation, and limb darkening

Frank Very was the first to monitor the limb darkening of the
Sun [12] as a function of frequency. Very examined the pho-
tosphere at 7 wavelengths ranging from 0.416 µm to
1.5 µm [12]. He found that limb darkening was much more
pronounced at shorter wavelength [12]. Since that time, ex-
tensive studies of limb darkening have been performed (e.g.
[9–11]). Pierce and his collaborators provided an detailed list
of coefficients for polynomial representations of limb dark-
ening spanning a wide range of frequencies [9, 10]. Overall,
these functions demonstrated that the photosphere behaves as
a non-metal.

Today, limb darkening constitutes a central pillar of the
gaseous solar models. The phenomenon remains linked to so-
lar opacity arguments [95]. Nonetheless, when Very first con-
sidered the frequency dependence of limb darkening [12], he
did not ponder only upon opacity arguments. He questioned
whether limb darkening could be explained by the granulated
aspect of the solar surface [12].

Solar granules display emissive characteristics which
change towards their periphery as the dark intergranule lanes
are reached. They also display center to limb variations [57,
58]. In fact, it is likely that the same phenomenon is being
observed both locally near the granules and over the expanse
of the entire solar surface as the limb is visualized. Granules
manifest a brightness which fades in the intergranule lanes
in the same manner as darkening manifests itself from the
center of the solar body to the limb. As such, higher spatial
resolution on granules may soon reveal that they individually
exhibit the same features as observed globally in limb darken-
ing. This would be expected if the emissivity of the Sun sim-
ply reflected the constitution of its condensed surface. Each
individual granule would become a local manifestation of the
limb darkening observed over the entire solar disk.

6 Conclusions

From the days of their discovery by William Herschel [34],
granules have offered solar science a vast and fascinating ar-
ray of structural forms which follow specific evolutionary
paths and predetermined timelines. By every measure, gran-
ules are real entities, not illusions. They obey the laws of
two-dimensional structures and manifest themselves as ob-
jects which can be analyzed, categorized, and mathematically
evaluated. They appear and behave as condensed matter.

Conversely, a gaseous Sun should be devoid of structural
elements: sunspots, granules, prominences, and flares which
rupture the solar surface. It should be a blob, a haze, a non-
descript mass — not a body filled with structure, as Secchi
so elegantly described in his classic text [21]. A brief study
of granulations and sunspots demonstrates that these are real

structures which follow in every manner the behavior of con-
densed matter. The issues are not only structural, but involve
the ability to have variable emissivities and powerful mag-
netic fields. On the Earth, the generation of strong magnetic
fields remains associated with metallic character [55]. Gases
can never produce magnetic fields of themselves. They sim-
ply respond to such phenomena.

The fact that sunspots possess strong magnetic fields
might guide the synthesis of liquid metallic hydrogen on the
Earth [52]. If the Sun is really made of liquid metallic hy-
drogen, then our study of sunspots implies that the material
is easily endowed with magnetic properties. Therefore, it is
possible that the synthesis of metallic hydrogen on the Earth
could benefit by placing the entire experimental setting within
a modest magnetic field on the order of 0.5 Tesla. This would
correspond to the maximal 5,000–6,000 gauss field observed
within sunspots [86, 87]. Large bore human magnetic reso-
nance imaging (MRI) magnets currently operate up to fields
of 9.4 Tesla, thereby confirming that suitable magnet technol-
ogy exists for such studies [96].

At the same time, it is clear that the proper study of granu-
lar and sunspot emissivity will require much stronger optical
space telescopes devoid of the “seeing problems” [1, p.23–25]
when visualizing the Sun from the Earth. Resolutions must
be increased tremendously such that emissivity can be prop-
erly mapped across an individual granule or sunspot umbra.
When studying granulations, such maps should be married
with Doppler imaging of the solar topology in order to link
emissivity to angular changes in the surface. In this manner,
solar physicists should be able to directly associate observed
darkening with the emissive behavior of the solar surface it-
self, whether locally on the granular scale, or globally, as ob-
servers compare the solar center to the limb. In addition, the
study of directional emissivities in sunspots should eventually
affirm their metallic nature making investments in powerful
space solar telescopes vital to the proper understanding of the
solar surface.

As we continue to ponder the nature of the Sun, it is ap-
propriate to close by recalling the brilliance of Father Secchi
as an astronomer. Above all, Secchi valued observations. He
painstakingly generated drawings of the Sun in an attempt to
describe solar structures. Through his writings, he demon-
strated that observation must lead theory. Short of data, we
know nothing of the Sun. Therefore, should solar physics
advance, the tradition of careful observation which Secchi
inspired must be imitated. Even 140 years after the pub-
lication of Le Soleil [21], Secchi continues to astound, as
Sobotka highlights [8]: “In 1870 appeared the first edition
of a fundamental work in solar astronomy by P. A. Secchi:
Le Soleil. Most of the basic concepts of the sunspots’ mor-
phology can be found there. Secchi made his visual observa-
tions from 1865 to 1870 with a resolution approaching to 0′′.3
in some cases. In his wonderful drawings he presented not
only the basic morphological features like multiple umbrae,
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light bridges, and penumbral filamentary structure, but also
“knots” in bright penumbral filaments (penumbral grains)
and internal structure of light bridges. He also noticed spa-
tial variations in umbral brightness and the darkest regions —
“holes” — in the umbra (dark nuclei). In three of his draw-
ings even some umbral dots can be seen, although he did not
describe them”. Now, endowed with the gifts of modern tech-
nology, solar physicists must be better equipped to properly
describe what Secchi himself could only observe in awe using
a simple telescope.
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In this note, energy partition within the Sun is briefly addressed. It is argued that the
laws of thermal emission cannot be directly applied to the Sun, as the continuous solar
spectrum (Tapp ∼ 6, 000 K) reveals but a small fraction of the true solar energy profile.
Without considering the energy linked to fusion itself, it is hypothesized that most of the
photospheric energy remains trapped in the Sun’s translational degrees of freedom and
associated convection currents. The Sun is known to support both convective granules
and differential rotation on its surface. The emission of X-rays in association with
eruptive flares and the elevated temperatures of the corona might provide some measure
of these energies. At the same time, it is expected that a fraction of the solar energy
remains tied to the filling of conduction bands by electrons especially within sunspots.
This constitutes a degree of freedom whose importance cannot be easily assessed. The
discussion highlights how little is truly understood about energy partition in the Sun.

The discussion of energy partition in materials may be con-
sidered to be so complex at times that, perhaps, the most
prudent course of action rests in avoiding the entire subject.
In the laboratory, the evaluation of energy partition demands
years of study involving many hurdles for meager rewards.
Nonetheless, before progress can be made in any field, the
issues at hand must be identified. It is worthwhile to high-
light some general ideas relative to energy partition in the
Sun which would eventually afford a detailed mathematical
approach to the question. Relative to solar physics, energy
partition is complicated by the presence of both conduction
and convection on the solar surface.

The interior of the Sun is currently hypothesized to ap-
proach temperatures of ∼15,600,000K, while the corona man-
ifests values on the order of 2,000,000–3,000,000 K [1, p.10].
Solar physicists maintain that the solar photosphere exists at
a temperature of ∼5,780K [1, p.10] in an apparent violation
of the second law of thermodynamics [2–4]. This surface
temperature is based on the application of the laws of ther-
mal emission [5–7] to the solar spectrum [1, p.3–9] as first
recorded in its entirety by Langley [8–10]. Still, the assign-
ment of a temperature to the photosphere has not been without
controversy.

Throughout the 19th century, great variations existed with
respect to the temperature of the photosphere (see [11, p.268–
279] and [12, p.48–52] for reviews). In 1898, Scheiner
brought apparent unification to the problem when he applied
Stefan’s law [6] to data acquired by Pouillet, Secchi, Vio-
lle, Soret, Langley, Wilson, Gray, Paschen, and Rosetti [13].
Scheiner demonstrated that these previously discordant stud-
ies (see [14] for many of the original values) resulted in cal-
culated solar temperatures of 5,000 to 6,200 K, with only one
observation standing at 10,000 K [13]. Scheiner believed in
a gaseous model and insisted that, even though the Sun’s lay-
ers supported differing temperatures, it might be viewed as a

blackbody. However, such an object did not meet the equilib-
rium conditions required by Kirchhoff [15, 16]. This imme-
diately brought into question any temperature derived from
such methods.

Scheiner was not alone in advocating that the laws of
thermal radiation could be applied to the Sun. Two years
earlier, in order to justify the extraction of the photospheric
temperature from the laws of thermal radiation, Ebert stated
that: “With respect to electromagnetic radiation, the principal
mass of the Sun acts like a black body” [17]. In 1895, most
scientists believed that Secchi’s model of the Sun [18,19] was
valid. Ebert considered this framework when he initially ex-
pressed doubt about the blackbody nature of the Sun: “There
remains only the question, whether we can regard the incan-
descent particles of the Sun, which yield the continuous spec-
trum, as comparable to a black body with respect to their total
radiating capacity” [17]. Frank Very [20] was more adamant
in questioning the applications of the laws of emission to so-
lar data when, in 1908, he stated in Science: “It is doubtful
whether radiation formulae obtained from measures through
a limited range of temperature for solid bodies, composed of
complex molecules, are applicable to solar conditions at the
photospheric level, where it is improbable that any molecules
remain undissociated. Extrapolations from Stefan’s law of
the proportionality of total radiation from a black body to
the fourth power of the absolute temperature, are therefore
not certainly applicable to the problem, even though the law
has been verified through a range of some hundreds of de-
grees” [20]. Nonetheless, Very immediately applied Stefan’s
law to the Sun [20].

The sternest warning against applying the laws of radia-
tion to the Sun would come from Max Planck [21]. The father
of modern physics removed all doubt relative to his position
when he wrote: “Now the apparent temperature of the Sun is
obviously nothing but the temperature of the solar rays, de-
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pending entirely on the nature of the rays, and hence a prop-
erty of the rays and not a property of the Sun itself. Therefore
it would be not only more convenient, but also more correct,
to apply this notation directly, instead of speaking of a fic-
titious temperature of the Sun, which can be made to have
meaning only by the introduction of an assumption that does
not hold in reality” [22, §101]. If Planck was so forceful in
his comment, he rested his case on solid grounds: “It is only
in the case of stable thermodynamic equilibrium that there is
but one temperature, which then is common to the medium
itself and to all rays whatever color crossing it in different
directions” [22, §101]. Planck recognized with these words
that the Sun was not in thermal equilibrium and hence he re-
fused to accept the concept of “apparent” or “effective” solar
temperatures [22, §101].

Perhaps more than anyone, Max Planck recognized that
the laws of thermal emission had been obtained in settings
involving complete thermal equilibrium. Kirchhoff’s formu-
lation was restricted to radiation within a rigid enclosure [15,
16,22] sustaining full thermal equilibrium. There could be no
net conduction or convection processes present. Based on his
objection, Planck recognized that the Sun supported convec-
tion currents. Carrington’s differential solar rotation had been
well known for over fifty years [18] and the convective nature
of granular field was also firmly established [23]. In view
of Planck’s warning, a more considered approach should be
adopted relative to applying the laws of thermal emission to
the Sun.

Max Planck specifically excluded conduction when treat-
ing radiation, on the grounds that it’s presence violated ther-
mal equilibrium: “Now the condition of thermodynamic equi-
librium requires that the temperature shall be everywhere the
same and shall not vary with time. Therefore in any given
arbitrary time just as much radiant heat must be absorbed
as is emitted in each volume-element of the medium. For the
heat of the body depends only on the heat radiation, since,
on account of the uniformity in temperature, no conduction
of heat can take place” [22, §25]. Like conduction, convec-
tion reduces emissivity. It is known that the emissivity of
gases can fall with temperature in clear violation of Stefan’s
law [24]. These two realities, the presence of conduction and
convection on the photosphere, are likely to explain Planck’s
hesitation to state anything about the Sun, based solely on the
acquisition of its spectrum. Nonetheless, perhaps it is pos-
sible to extract something of value from the solar spectrum
with respect to energy distribution within the Sun.

Relative to thermal radiation, the availability of electri-
cally conductive paths can alter emissivity. In metals, normal
emissivity can be substantially reduced [25–27]. Silver is an
excellent conductor, but a poor emitter [28]. In fact, polished
silver has one of the highest coefficients of reflection. It can
be concluded that electronic conduction reduces emissivity.

When energy enters or escapes from an object, it does so
by filling or vacating available degrees of freedom [24]. With-

out considering nuclear processes, the degrees of freedom are
either translational, vibrational, rotational, or electronic [24].
As a rule, electronic degrees of freedom become particularly
important at elevated temperatures. Within a gaseous Sun,
constituent atoms are viewed as existing in a dissociated state.
Such monoatomic species can have recourse only to transla-
tional and electronic degrees of freedom. Vibrational and ro-
tational degrees of freedom are restricted to species which are
at least diatomic.

In a solid, such as graphite at room temperature, the dom-
inant degrees of freedom are likely to be vibrational [24].
Graphite displays a reasonable thermal conductivity in the
hexagonal plane (390 W/m×K for ab direction) [29, p.44–
57]. This compares well with the thermal conductivity of
silver (420 W/m×K) [29, p.57]. Conversely, the thermal cond-
uctivity of graphite drops substantially between layers
(∼2 W/m×K) [29, p.57]. In graphite, thermal conductivity is
linked to the vibrations of the lattice and these degrees of free-
dom [29, p.56].

Relative to electrical conductivity, graphite is a “semi-
metal” [29, p.57]. Its resistivity is ∼ 3×10−3 ohm×m between
layers making it is good insulator [29, p.61]. However, in the
hexagonal plane, graphite has a resistivity of approximately
2.5–5×10−6 ohm×m [29, p.61] making it reasonably metallic,
but still well below silver which has an electrical resistivity
of ∼ 1.59×10−8 at 293 K [30, p.12–40]. Even in its favored
plane, graphite is a significantly inferior conductor relative
to silver. Consequently, the electrical conductivity of silver
must be responsible for its weak emissivity, since its thermal
conductivity is similar to graphite at least in one plane. This
leads to the conclusion that the vibrational degrees of freedom
are responsible for the excellent emissivity of graphite. As-
suming that the object is at rest, the graphitic lattice does not
permit translations or rotations, while the electronic degrees
of freedom are unlikely to be significantly populated. As a
result, when emissivity is properly coupled to temperature,
it appears that the vibrational state of the sample primarily
dominates [24].

In the gaseous models of the Sun, hydrogen and helium
must exist as isolated atoms, many of which are devoid of
electrons. Since the gaseous Sun has no lattice, it cannot sup-
port either thermal conduction through such a structure or en-
ergy transfer through electronic conduction bands. It cannot
have recourse to lattice vibrations as a degree of freedom.
Consequently, a gaseous Sun must rely almost exclusively
on translational and electronic degrees of freedom as recep-
tacles for energy. Yet, laboratory experience dictates that
these degrees of freedom cannot support thermal emission of
a Planckian nature [7]. Such is the great flaw of gaseous mod-
els which solar opacity approaches cannot reconcile [31]. To
explain solar thermal emission, a mechanism similar to that
which exists in graphite must be invoked. The dominant de-
grees of freedom in graphite are vibrational and linked to the
existence of the lattice itself. In contrast, a gaseous Sun has

90 Robitaille P.-M. On the Temperature of the Photosphere: Energy Partition in the Sun



July, 2011 PROGRESS IN PHYSICS Volume 3

no lattice and therefore cannot produce a thermal spectrum.
Opacity arguments do not suffice to rectify these problems in
a gaseous solar model [31].

Conversely, within a liquid metallic hydrogen model of
the Sun [32], a lattice exists. In fact, from the days when
it was first proposed by Wigner and Huntington [33], metal-
lic hydrogen has been hypothesized to be able to assume a
layered lattice similar to graphite. Such a lattice configura-
tion will possess vibrational degrees of freedom which mimic
those found in graphite, as required to properly account for
the production of the solar spectrum. Accordingly, the ther-
mal spectrum itself should be regarded as one of the strongest
proof that the Sun is condensed matter, as its generation re-
quires a lattice which dictates the interatomic spacing of con-
densed matter.

It appears that the solar spectrum is reporting only a small
fraction of the true energy content of the photosphere, pro-
viding information which is limited to the vibrational state of
the solar lattice. Much more substantial energy is stored in
the translational degrees of freedom. This is manifested by
the convection currents of the granules [23] and the differ-
ential solar rotation observed by Carrington [18]. Moreover,
there is strong evidence to suggest that sunspots are metal-
lic [23] and, therefore, maintain electronic conduction bands
with their own associated energy.

These realities explain why the temperature of the solar
photosphere does not constitute a violation of the second law
of thermodynamics. The 5,780 K [1, p.10] measured is linked
only to the vibrational degrees of freedom of the photospheric
lattice. However, the true energy of the photosphere is dom-
inated by its translational degrees of freedom. This helps to
account for the production of X-rays in association with so-
lar flares rupturing the photospheric surface [34]. When this
occurs, we are likely to be monitoring some measure of the
translational energy associated with the photosphere, as mat-
ter moves horizontally across the surface and collides orthog-
onally with the flare’s vertical displacement of material. In a
sense, the flare is providing resistance to the horizontal flow
of matter on the photosphere. As surface matter collides with
the flare, its energy is revealed and X-ray emissions are ob-
tained [34]. Similarly, the temperatures of the corona in the
2,000,000–3,000,000 K range [35, p.3–10] reflect a coupling
of these atoms to the translational degrees of freedom on the
photosphere. No violation of the second law exists. The en-
ergy content of the photosphere is likely to correspond to tem-
peratures of ∼7,000,000 K, when properly accounting for all
of these phenomena as the author has previously stated [36].
In that case, the photospheric spectrum may be considered as
reporting an apparent temperature, with little relevance to the
real temperature of the surface [36]. Alternatively, it is also
possible to reconcile the emission spectrum to the real tem-
perature of the photosphere. The approach would be similar
to that adopted when dealing with the microwave background
problem [37] and, unfortunately, involves a reconsideration of

Boltzmann’s constant [38].
The consideration of energy partition in the Sun opens

new avenues of discovery in physics. Most notably, it brings
into question the universality of blackbody radiation, as first
advocated by Gustav Kirchhoff [15,16]. A priori, the gaseous
Sun fails to meet Kirchhoff’s requirement for thermal equi-
librium with an enclosure, as Max Planck recognized [22,
§101]. Regrettably, Kirchhoff’s law itself is unsound [39,40],
destroying any perceived ability of gases to emit blackbody
spectra. The issue is critical to the survival of the gaseous
solar models. If local thermal equilibrium and its extension
of Kirchhoff’s formulation fails to guarantee that a black-
body spectrum is produced at the center of the Sun, then the
gaseous models have no mechanism to generate its continu-
ous emission. In part, this forms the basis of the solar opacity
problem [31].
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6. Stefan J. Über die Beziehung zwischen der Warmestrahlung und der
Temperature. Sitzungsberichte der mathematischnaturwissenschaft-
lichen Classe der kaiserlichen Akademie der Wissenschaften, Wien
1879, v.79, 391–428.
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The standard gaseous model of the Sun is grounded on the concept of local thermal equi-
librium. Given this condition, Arthur Milne postulated that Kirchhoff’s law could be ap-
plied within the deep solar interior and that a blackbody spectrum could be generated in
this region, based solely on equilibrium arguments. Varying internal solar opacity then
ensured that a blackbody spectrum could be emitted at the photosphere. In this work,
it is demonstrated that local thermal equilibrium and solar opacity arguments provide a
weak framework to account for the production of the thermal spectrum. The problems
are numerous, including: 1) the validity of Kirchhoff’s formulation, 2) the soundness
of local thermal equilibrium arguments, 3) the requirements for understanding the ele-
mental composition of the Sun, and 4) the computation of solar opacities. The OPAL
calculations and the Opacity Project will be briefly introduced. These represent modern
approaches to the thermal emission of stars. As a whole, this treatment emphasizes the
dramatic steps undertaken to explain the origins of the continuous solar spectrum in the
context of a gaseous Sun.

1 Introduction

The mechanism by which the solar spectrum is produced has
long preoccupied astrophysics [1–4]. Though Langley estab-
lished that the photosphere’s emission [5–7] generally con-
formed to a blackbody lineshape [8,9], two lines of reasoning
initially prevailed as to its formation. It was hypothesized
that the photosphere contained condensed carbon [1, 2], as
graphite was the premier blackbody source on Earth [3, 4].
Alternatively, it was believed that the pressure broadening of
hydrogen could account for the spectrum [1, 2]. Although
Kirchhoff had formulated his law of thermal emission in 1859
[10], observational astronomers appeared dissatisfied with the
idea that Langley’s spectrum [5–7] could be produced by as-
suming thermodynamic equilibrium and enclosure [9, p.1–
45]. They insisted on placing carbon particles on the Sun
for sixty years [1,2] and essentially dismissed any notion that
Kirchhoff’s law afforded a sufficient framework to generate
the solar spectrum.

It would take the work of men [11] like Schuster [12],
Schwarzschild [13], Eddington [14–17], Rosseland [18, 19]
and Milne [20–23] to finally remove graphite from the Sun
[2]. These communications [12–23] formed the foundation
of radiation transfer within stars. They consequently came to
represent the heart of modern stellar physics. As a group,
these authors used elegant approaches, but without excep-
tion [12–23], their mathematical treatments relied on thermal
equilibrium and the validity of Kirchhoff’s law [10]. In ad-
dition, since the standard model of the Sun was deprived of
condensed matter, astronomers would have to account for the
production of the solar spectrum with physical atoms, ions,
and electrons. Graphite was gone, but the theoretical alter-
native, solar opacity arguments, provided a questionable re-
placement.

2 Kirchhoff’s law and local thermal equilibrium

Arthur Milne [2] was perhaps the first to advocate that the
interior of the Sun could be regarded as existing in a state of
local thermal equilibrium [20–23]. Milne’s definition became
central to astrophysical thought and will, therefore, be largely
recalled: “It is convenient to have a phrase to describe the
circumstances under which the relation jν = kνBν(T ) holds
exactly. When a small portion of matter has a definite tem-
perature T , and is behaving, i.e. emitting, as if it formed a
part of an equilibrium enclosure at temperature T , we shall
say that it is in “local thermodynamic equilibrium” at tem-
perature T . We shall examine later in particular cases the
conditions under which material is in local thermodynamic
equilibrium. It is not necessary that the temperature shall
be uniform. In an non-isothermal state, we may still have lo-
cal thermodynamic equilibrium everywhere. The temperature
may vary from point to point, but each point may be charac-
terized by a definite temperature T and the element of matter
at each point may be behaving as if in thermodynamic equi-
librium at temperature T” [23, p.81]. Milne’s treatment was
centered on Kirchhoff’s law: jν = kνBν(T ) [10]. Nonethe-
less, there was a risk that Milne’s setting was so broad that
virtually any non-equilibrium process, no matter how violent,
could be considered in local thermal equilibrium, provided
that sufficiently small volumes of matter were being consid-
ered. No restriction was placed on confirming the validity of
these arguments.

Much like Milne, Chandrasekhar described local thermal
equilibrium as follows: “. . . we often encounter physical sys-
tems which, though they cannot be described as being in rig-
orous thermodynamical equilibrium, may yet permit the in-
troduction of a temperature T to describe the local properties
of the system to a very high degree of accuracy. The interior
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of a star, if in a steady and static state, is a case in point. For,
even if the temperature at the center of the Sun, for instance,
were 108 degree, the mean temperature gradient would cor-
respond to a change of only 6 degrees in the temperature over
a distance of 104 cm. This fact, coupled with a probably high
value for the stellar absorption coefficient, enables us to as-
cribe a temperature T at each point P such that the prop-
erties of an element of mass in the neighborhood of P are
the same as if it were adiabatically inclosed in an inclosure
at a temperature T” [24, p.205]. Similar points were raised
in Clayton’s classic text [25, p.175]. These discussions were
focused strongly on assumptions which pertain to a gaseous
model.

On the surface, it would seem that Chandrasekhar’s tem-
perature gradient of only 6 degrees across 100 meters could
be considered quite small [24, p.205]. Yet, the oceans of the
Earth sustain convection currents based on much smaller tem-
perature gradients. In fact, oceanographers might reject equi-
librium arguments globally for the oceans, even though these
temperature gradients are on the order of just a few degrees
over spans of thousands of kilometers. The oceans contain
convection currents as a direct manifestation of their lack of
thermal equilibrium. Convection precludes the existence of
equilibrium. As a result, a temperature variation of 6 degrees
over a span of 100 meters should be treated as an enormous
temperature gradient, not a condition approaching thermal
equilibrium. The oceans demonstrate that Chandrasekhar’s
conditions, even if relaxed 1,000 fold, would still constitute
powerful driving forces for convection, thereby eliminating
all possibility of viewing the solar interior as existing in a
state of thermal equilibrium.

Well before the days of Chandrasekhar, Milne elaborated
further on local thermal equilibrium in the gaseous frame-
work: “The interior of a star is in a state of local thermo-
dynamic equilibrium of this character. As we approach the
boundary from the inside, the state of local thermodynamic
equilibrium gives place to an entirely different state, in which
the influence of external radiation on an element is para-
mount. It will be shown that when an element at tempera-
ture T is subjected to radiation, which is not black radia-
tion of temperature T , the extent to which it behalves as if
in thermodynamic equilibrium locally depends on the rela-
tive importance of collisions as a cause of atomic absorptions
and emissions. If the atoms are sufficiently battered about by
colliding with one another, they assume a state (distribution
of stationary states) characteristic of thermodynamic equilib-
rium at temperature T; if they are not sufficiently battered
about, their “temperature” becomes irrelevant and they emit
and absorb at a rate which is determined by the incident ra-
diation. It is clear that collisions will be the more numerous,
and therefore likely to be more effective, the higher the den-
sity. This permits us to see in a general way why the state
of local thermodynamic equilibrium in the interior of a star
breaks down as we approach the surface...This assumption

will certainly be satisfied in the far interior, since in the limit
at great distances the conditions are those of an enclosure. . .
It follows that the intensity of radiation at dσ in the direc-
tion θ is Bν(T ), the intensity of black radiation for tempera-
ture T” [23, p.81–83].

The argument advanced by Milne was framed in the con-
text of the laws of gases. Milne saw the rapid collisions oc-
curring at the center of the Sun as sufficient to establish equi-
librium, but the requirements set forth by Kirchhoff [10] and
Planck [8, 9] required something more significant. They de-
manded that the walls of the enclosure be rigid [9].

If a gas is highly compressed, the collisions with neigh-
boring particles will enable the flow of heat through con-
duction. Gold has a density of 19.3 g/cm3 [26, p.12–205]
and many solids [26, p.12–80] have densities which are just
slightly more than one order of magnitude (about a factor of
30) below the 150 g/cm3 currently hypothesized for the center
of the Sun [27, p.10]. When heat enters solids, it can travel
through conduction, either thermally through its vibrational
lattice or electronically through its conduction bands. Clearly,
gases cannot sustain conduction bands, but they are subject
to thermal conductive processes, especially at these densities.
As such, when an atom in the gaseous model vibrates at the
center of the Sun, it can transfer its energy to its “non-rigid”
neighbor. Milne cannot assume that the atoms at the center of
the Sun are devoid of collisional energy exchange, precisely
because the atoms are not rigid. The center of the Sun can-
not meet the requirements for a rigid enclosure as set forth
by Kirchhoff and Planck [8–10]. The arguments of enclosure
and “local thermal equilibrium” are invalid based on these
considerations.

At the same time, Planck required that the source of
blackbody radiation was found in material particles. Planck’s
entire Heat Radiation [9] was based on the analysis of a ma-
terial oscillator not present at the center of the gaseous Sun:
“For among all conceivable distributions of energy the nor-
mal one, that is, the one peculiar to black radiation, is char-
acterized by the fact that in it the rays of all frequencies have
the same temperature. But the temperature of a radiation can-
not be determined unless it be brought into thermodynamic
equilibrium with a systems of molecules or oscillators, the
temperature of which is known from other sources. For if
we did not consider any emitting and absorbing matter there
would be no possibility of defining the entropy and tempera-
ture of the radiation, and the simple propagation of free ra-
diation would be a reversible process, in which the entropy
and temperature of separate pencils would not undergo any
change. Now we have deduced in the preceding section all
the characteristic properties of the thermodynamic equilib-
rium of a system of ideal oscillators. Hence, if we succeed
in indicating a state of radiation which is in thermodynamic
equilibrium with the system of oscillators, the temperature of
the radiation can be no other than that of the oscillators, and
therewith the problem is solved” [9, §144].
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Max Planck required that a perfect absorber be present in
order to produce blackbody radiation. Milne neglected this
important line from Heat Radiation: “Hence in a vacuum
bounded by totally reflecting walls any state of radiation may
persist” [9, §51]. Planck then argued that, if an arbitrarily
small quantity of matter was introduced, the radiation in the
enclosure will change to a new state. However, it will not
be a blackbody state unless the substance is not transparent
for any frequency. Planck chose a piece of carbon to ensure
blackbody radiation [9, §51]. The desired radiation does not
simply appear [9, §51], as Milne and his contemporaries sur-
mised. The presence of an enclosure, by itself, could never
satisfy the requirements for the production of blackbody radi-
ation. Planck insisted throughout Heat Radiation on the need
for a physical oscillator and he reminded his readers that only
“material particles” can be involved in emission [9, §4] and
absorption [9, §12]. A physical oscillator which acted as a
perfect absorber must be present. Milne has not advanced
such a species at the center of the Sun.

Instead, Milne, like Schuster [12], Schwarzschild [13],
and Eddington [14–17] before him, automatically presumed
that the invocation of Kirchhoff’s law provided sufficient
proof that the interior of the Sun harbored black radiation,
despite the absence of the rigid enclosure required by Kirch-
hoff [10]. Blackbody radiation was inserted at the center of
the Sun without any requirement on the material generating
the needed photons. All that was required was enclosure
(even if not strictly rigid) and a newly hypothesized “local
thermodynamic equilibrium”. For Milne, the presence of an
enclosure was insured by the hypothesis that the density at the
center of the Sun was sufficiently elevated to restrict photonic
and atomic diffusion [20–23].

In reality, Milne’s idea fell far short of the requirements
to produce blackbody radiation. He was considering a set-
ting where conduction, not radiation, could dominate heat ex-
change. Consequently, his arguments relative to radiative heat
transfer were without strong scientific justification. Milne
had neglected the observation that the collision of adjacent
atoms constituted the universally accepted exchange mecha-
nism for thermal conduction, not equilibrium. It was for this
reason that Planck insisted on a rigid enclosure.

A careful review of blackbody radiation has revealed that
the production of such a spectrum always requires the pres-
ence of a perfect absorber [3]. Planck himself constantly
brought forth the carbon particle as inherently linked to the
validity of his arguments [3]. Kirchhoff’s reasoning that an
adiabatic enclosure could contain black radiation has been
exposed as flawed and his law of thermal emission as erro-
neous [3, 4, 28–30]. The universality of blackbody radiation
simply does not exist [3, 4, 28–30]. Yet, even if Kirchhoff’s
law was valid, Milne’s argument was fallacious, as he lacked
both the rigid enclosure and the materially perfect oscillator
required by Max Planck to ensure that a blackbody spectrum
could be produced at the center of the Sun.

3 Solar and stellar opacity

Solar opacity [22, 31, 32, 34–39] plays a vital role in all mod-
ern gaseous models of the Sun [24,25,40–46] and is currently
at the center of our understanding of the stars. Therefore, the
study of solar opacity has far reaching implications through-
out modern astronomy.

Opacity, κ, refers to the ability of a material to absorb
incoming radiation. Monochromatic opacity, κν, is associated
with a single frequency. The extinction coefficient, α (cm−1),
is equal to the opacity, κ (cm2/g) multiplied by the density of
the material, ρ (g/cm3).

To calculate opacity within the solar interior, solar physi-
cists first accept that the Sun can radiate internally. By itself,
this constitutes a notable departure from the rest of Earthly
physics. For all objects on Earth, internal heat transfer occurs
through conductive and convective paths, not internal radia-
tion. Radiation allows objects to achieve thermal equilibrium
with one another, not within themselves. As a result, the idea
that the Sun transfers internal energy through radiation di-
rectly implies that astrophysics treats the solar interior as the
sum of its individual atomic, ionic, and electronic species.
The Sun as a single object does not exist in the gaseous mod-
els. Only in such a scenario would internal radiation permit
the transfer of energy between the constituent objects which
make up the Sun. Still, Milne required that, within the center
of the Sun, atoms, ions, and electrons were packed such that
collisions occur. This scenario rendered conduction probable,
greatly impacting any radiative field.

In gaseous solar models, thermal photons at X-ray fre-
quencies, with a characteristic blackbody appearance, are be-
lieved to be produced at the center of the Sun. Over the course
of thousands of years, Eddington stated that these thermal
photons slowly leaked out of the solar body [16]. As they tra-
versed increasingly elevated layers of the solar mass, photons
gradually lost some of their energy. The entire solar spec-
trum was shifting from the X-ray to the visible range, while
preserving a blackbody appearance [16].

3.1 Opacity mechanisms

Stellar opacity involves the removal of energy from a beam
of photons originating in the core of the Sun through four
mechanisms: 1) bound-bound, 2) bound-free, 3) free-free,
and 4) scattering processes (see [41, p.137–141] for an ex-
cellent description). Bound-bound processes rely on spec-
troscopic line absorption, either within an atom or an ion.
Bound-free mechanisms result in the dissociation of a pre-
viously bound electron by an incoming photon. The electron
becomes completely free of the atom or ion. Free-free pro-
cesses are inverse Bremsstrahlung mechanisms, whereby a
free electron and an ion interact during which time the com-
bined species is able to absorb a photon [41, p.138]. In scat-
tering mechanisms, the momentum of the photon is being
transferred to a scattering electron. Theoretical astrophysics
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calculates opacities for the Sun by taking the summation of
these processes, for all atoms, ions, and electrons at all tem-
peratures within the solar interior.

The negative hydrogen ion was advanced as a significant
determinant of solar opacity by Wildt [47]. The concept im-
mediately received the support of Chandrasekhar who calcu-
lated that the negative hydrogen atom within the context of a
gaseous solar model would contribute greatly to solar opacity
in the 4,000–24,000 Å range [48–51]. Of course, the nega-
tive hydrogen ion spectrum extended over much of the pho-
tospheric emission (∼2,500–25,000 Å).

Nonetheless, the negative hydrogen ion could never, by
itself, generate the continuous solar spectrum with its charac-
teristic thermal appearance. For gaseous models, the produc-
tion of the thermal spectrum involves the slow conversion of
a hypothetically X-ray blackbody spectrum produced in the
solar interior to the visible spectrum observed at the photo-
sphere. Thus, if a blackbody spectrum did exist at the center
of the Sun, it would be characterized by a Wien displacement
temperature of ∼15,000,000 K. Such a spectrum would be
centered in the X-ray region. It would then have to be gradu-
ally shifted, while always maintaining its thermal appearance,
to much lower frequencies.

Consequently, astrophysics is requiring that a perfect mix-
ture of atoms, ions, and electrons exists at all layers within
the Sun. In each layer, these mixtures could then produce the
desired local blackbody spectrum. Within each solar layer,
a new perfect mixture must exist in order that its absorptive
characteristics enable the production of a new shifted thermal
spectrum.

Therefore, despite Chandrasekhar’s findings [48–51], the
computation of solar opacity has remained a tremendously
complex undertaking. For example, the American astrophys-
ics community has invested heavily in calculating the opacity
contributions from neutral and ionized gases. In a project in-
volving international collaboration, the Los Alamos National
Laboratory led Opacity Project [33, 34] provided an abso-
lutely phenomenal treatment of nearly every possible atomic
species inside the stars, in widely varying states of oxidation.
Similar findings have been obtained at the Lawrence Liver-
more National Laboratories. These studies have resulted in
the OPAL opacity values [35–39], but none of the opacity
mechanisms considered by these methods can be used to ex-
plain the origin of the blackbody spectrum in graphite. This
suggests that these mechanisms are not truly related to the
production of the solar spectrum.

3.2 Rosseland mean opacities
The determination of internal solar opacity values must be
performed at each individual frequency of interest, since the
production of a blackbody spectrum always remains frequen-
cy dependent. The problem becomes so overwhelming that
astrophysics has chosen to adopt Rosseland mean opacities
[18, 19]. Through Rosseland’s approach, a single frequency

independent value of opacity can be obtained for each solar
level.

On the surface, it could be argued that Rosseland mean
opacities merely reduce an otherwise intractable problem.
They lower computational requirements and greatly simplify
the presentation of opacity data. Rosseland mean opacities
enable solar physics to sidestep the reality that, at each level
of the solar interior, it is impossible to generate a purely
blackbody spectrum with strict adherence to Planckian be-
havior at all frequencies. It is not feasible to build a blackbody
spectrum from the sum of non-blackbody processes. For in-
stance, during the computation stage, a single bound-bound
transition will introduce a “spike-like” contribution in the cal-
culated spectrum. Each “spike” being associated with line
absorption. Such a “spike” must then be compensated by us-
ing the sums of processes (other bound-bound processes, or
bound-free, free-free and scattering mechanisms) whose ex-
istence will always remain in doubt at the levels required to
incorporate the initial “spike” into the final solution for the
blackbody lineshape. The entire process becomes an exer-
cise in parameter fitting, devoid of confirmatory physical ev-
idence.

Still, Rosseland mean opacities remain at the heart of
modern solar models [24, 25, 40–46]. Within each layer in
the Sun, a mean opacity can be inferred based on expected
atomic, ionic, and electronic species. However, the sum of
the processes (bound-bound, bound-free, free-free, scatter-
ing) utilized in Rosseland mean opacity computations cannot
be infinite. Thus, rather than analyze mean opacities, sci-
entists can convince themselves of the futility of these ap-
proaches by taking the mean opacity solutions and using the
same species and concentrations to calculate the associated
frequency dependent spectra. Such solutions will not corre-
spond to black body spectra. As a result, Rosseland mean
opacities form a weak foundation for the gaseous solar mod-
els. The summation of numerous spectral processes which
are individually unrelated to thermal radiation can never give
rise to a truly black spectrum.

3.3 Elemental compositions
To further complicate matters, the computation of solar opac-
ity, as a function of depth, requires that the elemental com-
position of the Sun [52] remains independent of spatial posi-
tion. Such, a requirement can never be justified. Our current
understanding of the solar composition rests, and will always
rest, on that which can be evaluated at the level of the pho-
tosphere. All extensions of the solar composition to the solar
interior and all claims of constant elemental constitution with
depth should be regarded as scientific conjecture.

4 Conclusion
Through opacity considerations, solar physicists believe that
an X-ray based blackbody spectrum, produced at the center
of the Sun, can be emitted at the solar surface in the visible
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range. However, from the moment that the Sun was hypoth-
esized to exist in the gaseous state in the mid-1800s, objec-
tions were raised as to the ability of gases to emit a blackbody
spectrum [1]. The interior of a gaseous Sun was thought to
be essentially transparent to radiation. This was the position
advocated by Herbert Spencer when he complained that, if
sunspots were openings in the photosphere, one should be
able to see through them to the other side [1]. In fact, the same
“famous objection” was voiced by Kirchhoff himself [1]. Ac-
cording to Kirchhoff, the interior of the Sun could only sus-
tain blackbody radiation if it was surrounded by a condensed
photosphere [1]. Kirchhoff well understood that no gas, in
isolation, ever produced a blackbody spectrum. The presence
of condensed matter was always required.

In support of Kirchhoff’s liquid photosphere [1], there are
numerous lines of evidence that the photosphere is condensed
matter [53]. Granules, sunspots, and limb darkening provide
additional evidence [56]. Sunspot emissivities are highly sug-
gestive of metallic character [56] strengthening the case for
condensed matter. All of these factors should be considered
when advancing the proper phase of the photosphere and the
mechanism associated with solar thermal emission.

Nonetheless, despite clear violations with regards to en-
closure, thermal equilibrium, and the presence of a perfect
absorber as required by Max Planck [9], solar physics has
tried to account for the generation of the Planckian spectrum.
Yet, none of the mechanisms advanced can be used to ex-
plained the simple thermal spectrum of graphite itself. In fact,
although physics advocates an understanding of internal ther-
mal radiation within the Sun, it has produced no mechanism
by which the simplest earthly spectrum can be explained.
This constitutes a powerful reminder that tremendous diffi-
culties remain relative to the science of blackbody radiation
[3,4]. In the end, stellar opacity calculations represent a myr-
iad of physical impossibilities. None of the suggested opacity
mechanisms (bound-bound, bound-free, free-free, and scat-
tering) are related to the emission of a single photon by
graphite.

As such, beyond an inability to support structure, the
shortcomings of any gaseous solar model rests on opacity.
Even though Milne and his predecessors were incorrect in
inferring that a blackbody spectrum could be produced at the
center of the Sun, the gaseous models contain numerous other
stumbling blocks on their way to generating a continuous
spectrum at the solar surface. A truly remarkable thesis has
been advanced to explain the photospheric spectrum within
the gaseous model. In the end, astrophysics has championed
a solution for obtaining the solar spectrum which cannot sur-
vive the careful scrutiny of the spectroscopic scientific com-
munity.

Each spectroscopic signature in nature is linked to a
unique physical process. For instance, a Lyman or a Balmer
series can only be produced by electronic transitions within
the hydrogen atom. Similarly, atomic line spectra are unique

to each individual elemental or ionic species. Nuclear mag-
netic resonance (NMR) spectra are obtained from particular
spin transitions within a well defined physical and experimen-
tal context. Physics does not search for the Lyman series in
NMR spectra. One process is electronic, the other nuclear.
Within the gaseous Sun, modern astrophysics currently be-
lieves that it can produce the graphitic spectrum using pro-
cesses which do not exist in graphite. It is improper to ad-
vance that a blackbody spectrum can be produced in the Sun
using physical mechanism which are not present on Earth
within all the blackbodies currently studied in our laborato-
ries [3, 4]. The use of a nearly infinite sum of atomic, ionic,
and electronic processes which can alter their absorption and
emission precisely in a manner which preserves the black-
body appearance of the solar spectrum at all depths within
the Sun represents a non-scientific exercise based solely on
the desire to salvage the gaseous equations of state. It is well-
known that thermal emissivity in gases can drop with increas-
ing temperature. Neither pressure broadened gases nor any of
the atomic, ionic, and electronic processes advocated in the
interior of the Sun have a fourth power of temperature be-
havior. Furthermore, the gaseous models depend on knowl-
edge of the internal constitution of the stars based on the so-
lar elemental constituents. Mankind will always lack such
information.

As a result, this work constitutes an invitation to recon-
sider the phase of the Sun [53–55]. The gaseous models suf-
fer from two insurmountable weaknesses: 1) the inability to
account for photospheric structures [56], and 2) the lack of
a proper mechanism to generate the solar spectrum. Obser-
vational astrophysics has long documented the existence of
features of the solar surface which demand the presence of
condensed matter [56]. The belief that opacity arguments
can account for the illusionary nature of the solar surface
and all associated structures, discounts the realization that the
photosphere also behaves as condensed matter [56, 57]. He-
lioseismology demonstrates that the Sun acts as a resonant
cavity [53]. On Earth, resonant cavities are manufactured
from condensed matter [4]. It is not reasonable to expect that
a gaseous Sun can create an illusionary surface in the visi-
ble range using negative hydrogen ion opacity, while at the
same time and in the same layer, produce a surface which is
nearly perfectly reflecting for wavelengths which extend over
many thousands of meters. Such are the requirements, if the
Sun really acts as a resonant cavity [58, p.60]. Perfect res-
onators sustain standing waves which are never absorbed [4].
Accordingly, the photosphere of the gaseous Sun must be
strongly opaque in the visible region while powerfully reflect-
ing in the sub-audio. In addition, the gaseous models must
account for the presence of transverse waves on the surface
of the Sun when gases are known to sustain only longitudinal
waves [53, 57]. It remains the case that seismology is a sci-
ence of condensed matter [53]. To account for seismological
behavior in a gaseous Sun using opacity arguments consti-
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tutes a significant departure from accepted Earthly physics.
Given the problems which surround solar opacity, it re-

mains difficult to understand how the gaseous models of the
Sun have survived over much of the twentieth century. Local
thermal equilibrium does not exist at the center of the Sun.
Both Kirchhoff and Planck require rigid enclosure which is
not found in the Sun [9, 10]. Planck has also warned that
the Sun fails to meet the requirements for being treated as a
blackbody [59]. Milne’s rapid collisional regime constitutes
a path to conduction, not equilibrium [20–23]. Milne and his
contemporaries cannot infer that a blackbody spectrum exists
at the center of the Sun based on Kirchhhoff’s law [10], even
if the law was valid [60]. Unfortunately, not only does the Sun
fail to meet the requirements for enclosure and local thermal
equilibrium, but Kirchhoff’s law itself is erroneous [3,4]. The
production of a blackbody spectrum requires the presence of
a perfect absorber. Max Planck appeared well-aware of this
reality [3,59]. Gaseous opacity arguments will always fall far
short of what was required. In the end, the mechanism used to
generate the solar spectrum should be shared with graphite it-
self. The most likely physical cause remains the vibration of
atomic nuclei within the confines of a layered graphite-like
lattice [28, 55].
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10. Kirchhoff G. Über das Verhältnis zwischen dem Emissionsverögen
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13. Schwarzschild K. Über das Gleichgewicht der Sonnenamospäre.
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In this brief note, the implications of a condensed Sun will be examined. A celestial
body composed of liquid metallic hydrogen brings great promise to astronomy, relative
to understanding thermal emission and solar structure. At the same time, as an incom-
pressible liquid, a condensed Sun calls into question virtually everything which is cur-
rently believed with respect to the evolution and nature of the stars. Should the Sun be
condensed, then neutron stars and white dwarfs will fail to reach the enormous densities
they are currently believed to possess. Much of cosmology also falls into question, as
the incompressibility of matter curtails any thought that a primordial atom once existed.
Aging stars can no longer collapse and black holes will know no formative mechanism.
A condensed Sun also hints that great strides must still be made in understanding the
nature of liquids. The Sun has revealed that liquids possess a much greater potential for
lattice order than previously believed. In addition, lessons may be gained with regards
to the synthesis of liquid metallic hydrogen and the use of condensed matter as the basis
for initiating fusion on Earth.

“Young people, especially young women, often ask me
for advice. Here it is, valeat quantum. Do not under-
take a scientific career in quest of fame or money. There
are easier and better ways to reach them. Undertake it
only if nothing else will satisfy you; for nothing else is
probably what you will receive. Your reward will be
the widening of the horizon as you climb. And if you
achieve that reward you will ask no other.”

Cecilia Payne-Gaposchkin [1]

When Cecilia Payne [1] discovered that the stars are primarily
composed of hydrogen [2], she encountered strong opposi-
tion from Arthur Eddington, her first mentor, and from Henry
Norris Russell [3]. Nonetheless, Cecilia Payne’s work engen-
dered a new age in astronomy: hydrogen became the build-
ing block of the universe. Russell would eventually come to
echo Payne’s position [4]. In those days, it was natural to
assume that a hydrogen-based Sun would be gaseous [5, 6].
Ten years after Payne published her classic report, Wigner
and Huntington proposed that condensed metallic hydrogen
could be synthesized [7]. In so doing, they unknowingly pro-
vided James Jeans with the material he had lacked in con-
structing liquid stars [5]. Still, though liquid metallic hydro-
gen became a component of the giant planets and the white
dwarf [8], the concept of condensed matter was kept well re-
moved from the Sun.

Now that liquid metallic hydrogen has been advanced as a
solar building block (see [8] and citations therein), it is likely
that opposition will be raised, for many will foresee unset-
tling changes in astronomy. A liquid Sun brings into ques-
tion our understanding of nearly every facet of this science:
from stellar structure and evolution [9], the existence of black

holes [10], the premordial atom [11], dark energy [12], and
dark matter [13]. It is not easy to abandon familiar ideas and
begin anew.

However, some scientists will realize that a liquid metallic
hydrogen model of the Sun [8], not only opens new avenues,
but it also unifies much of human knowledge into a cohesive
and elegant framework. A liquid metallic Sun invites astron-
omy to revisit the days of Kirchhoff [14] and Stewart [15], and
to recall the powerful lessons learned from studying the ther-
mal emission of materials [16,17]. It emphasizes that our tele-
scopes observe structural realities and not illusions [18, 19].
In recognizing the full character of these structures, all of the
great solar astronomers from Galileo [20], to Secchi [21], to
Hale [22] are honored. These observers knew that solar struc-
tures (granules, sunspots, pores, flares, prominences, etc. . . )
were manifesting something profound about nature.

For astrophysicists, the Sun imparts lessons which may
well have direct applications for mankind. For instance, the
solar body holds the key to fusion. If the Sun is made from
condensed matter [8], then our experiments should focus on
this state. Sunspots may also guard the secret to synthesizing
metallic hydrogen on Earth [8]. If sunspots are truly metal-
lic [18], as reflected by their magnetic fields [22], then at-
tempts to form liquid metallic hydrogen on Earth [8] might
benefit from the presence of magnetic fields. Our analysis
of the photospheric constitution and the continuous thermal
spectrum should be trying to tell us something about liquids
and their long range order. It is currently believed that liq-
uids possess only short term order [23]. In this regard, per-
haps physics has lacked caution in bombarding the fragile liq-
uid lattice with X-rays and neutrons [24, 25]. These methods
may fail to properly sample the underlying structure. Gentler
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approaches may reveal structure where none was previously
believed to exist. The solar spectrum implies long range or-
der, much like that observed in graphite [16,17,26]. As such,
liquid metallic hydrogen on the photosphere could provide
the framework for long range order, despite the fact that its
only binding force lies in the need to maintain electronic con-
duction bands (see [8] and references therein). Most impor-
tantly, however, the Sun might be trying to tell us that we still
do not properly understand thermal emission [16, 17, 27]. If
gaseous models exist to this day, it is because the mechanism
which produces the blackbody spectrum in graphite contin-
ues to be elusive [16, 17, 27]. Of all spectroscopic signatures,
blackbody radiation remains the only one which has not been
explained fully. These problems constitute serious and im-
portant questions for humanity. Unlocking these mysteries is
certain to keep scientists occupied, as we continue to ponder
upon the lessons discerned from the Sun.

Dedication

This work is dedicated to the memory of Miss Beckly [28,
p.134], Annie Scott Dill Russell [28, p.144–146], Margaret
Huggins [29], Henrietta Swan Leavitt [30, 31], Annie Jump
Cannon [32–34], Antonia Maury [35], Williamina Paton
Stevens Fleming [36–38], Cecilia Payne-Gaposchkin [1] and
the forgotten women of astronomy [39, 40].
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Pierre-Marie Luc Robitaille: A Jubilee Celebration

Dmitri Rabounski
E-mail: rabounski@ptep-online.com

We celebrate the 50th birthday anniversary of Prof. Pierre-Marie Robitaille, the author
of Progress in Physics who is one of the leading experts in the Nuclear Magnetic Reso-
nance Imaging. Prof. Robitaille is known as the designer of the most world’s first Ultra
High Field MRI scanner. Prof. Robitaille still continues his creative research activity in
the field of thermal physics, connected to the origin of the Microwave Background and
astrophysics.

July 12, 2010 marks the 50th birthday of Professor Pierre-
Marie Robitaille. He was born in North Bay, Ontario, the
third of ten children to Noel Antoine Robitaille and Jacque-
line Alice Roy. Noel Robitaille had moved to Ontario from
his native Quebec when he was stationed as a physician in
the Royal Canadian Air Force. Eventually settling in north-
ern Ontario, he served the villages of Massey and Espanola.
In his role as a local doctor, Noel Robitaille would also care
for the Ojibway population of the region. In 1964, he would
be honored by the Ojibway Nation, becoming the first white
man to bear the distinction of Ojibway chief of the Spanish
River Band. His Indian name, Ke-chutwa-ghizhigud, mean-
ing “Chief Holiday” [1].

Raised by French-Canadian parents, Pierre-Marie Robi-
taille attended L’École St. Joseph in Espanola, Ontario, where
he studied primarily in his native tongue. Upon completion
of the 8th grade, he attended Espanola High School, where
education was conducted in English. As an adolescent, he of-
ten served as an altar boy during daily mass at St. Louis de
France Catholic Church, the French parish of his community.
Surrounded by the forests of Northern Ontario, he enjoyed ice
fishing, hunting, and building log cabins in the woods.

In 1978, just as Robitaille was completing his secondary
education, his father relocated to Cedar Falls, Iowa. Mrs. Ro-
bitaille and her children were to remain in northern Ontario.
In order to maintain ties with his father, Robitaille enrolled
at the University of Iowa in Iowa City. It was there that he
met his future wife, Patricia. Though he relocated to Iowa for
the 1978–1979 school year, Robitaille rarely saw his father.
Therefore, he moved to Cedar Falls, Iowa. He would grad-
uate from the University of Northern Iowa, in 1981, with a
degree in general science.

At that time, Robitaille entered a Ph.D. program in bio-
chemistry under the tutelage of Dr. David E. Metzler at Iowa
State University, obtaining an M.S. degree in 1984. His mas-
ters thesis involved NMR equilibrium analysis of polyamines
with vitamin B6. At the same time, Robitaille realized that
in-vivo NMR was beginning to grow. He sought unsuccess-
fully to convince Dr. Metzler to enter this promising new area
of biochemistry and, eventually, entered the field on his own.

Prof. Pierre-Marie Robitaille.

He transferred his graduate appointment to the Department
of Zoology, where he brought in-vivo NMR methods to the
laboratory of George Brown, an electron microscopist. It was
there that he acquired a set of standards for in-vivo 31P-NMR
[2] and conducted some of the first studies of isolated sperm
cells with 31P-NMR [3, 4]. At the same time, Robitaille en-
rolled in the Inorganic Chemistry doctoral program, under the
guidance of Professor Donald Kurtz. He graduated from Iowa
State University with a Ph.D. in 1986, holding majors in Zo-
ology and Inorganic Chemistry. His dissertation was divided
into two parts which he would defend in front of separate
committees, one for each major.

Following his Ph.D. training, Pierre-Marie Robitaille
joined the in-vivo NMR laboratory of Professor Kamil Ugur-
bil at the University of Minnesota. There, he conducted work
in cardiac spectroscopy, operating one of the first small ani-
mal 4.7T/40cm magnetic resonance instruments in the United
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States. It was Professor Ugurbil who urged Robitaille to ap-
ply for faculty positions in magnetic resonance imaging and
spectroscopy. Ultimately, he accepted the position of Director
of Magnetic Resonance Research and Assistant Professor of
Radiology at The Ohio State University, with a startup pack-
age well in excess of $1 million. He was 28.

While at Ohio State, Professor Robitaille established him-
self as a leader in cardiac spectroscopy and magnetic reso-
nance [5, 6]. He would eventually design and assemble the
world’s first Ultra High Field MRI instrument [7–16]. The
results obtained from this scanner would propel MRI into a
new era in imaging technology. Professor Allan Elster, the
Editor of the Journal of Computer Assisted Tomography rec-
ognized the magnitude of the contribution and arranged for a
special issue of the journal to be published outlining some of
the first 8 Tesla results. In is editorial comments relative to
this issue, Dr. Elster wrote:

“This is a landmark issue of the Journal of Computer
Assisted Tomography. Contained within its pages are
amazing images and technical descriptions of the
world’s first whole body human clinical magnetic reso-
nance scanner operating at 8 Tesla. Congratulations to
Pierre-Marie Robitaille and his co-workers in Radiol-
ogy and Engineering at The Ohio State University for
constructing a device some experts said would be im-
possible to build. The total stored magnetic energy in
this 30,000 kg magnet is a remarkable 81 megajoules.
To put this value into perspective, 81 MJoules is the
kinetic energy of a 200-metric ton locomotive barrel-
ing down the track at 100 km per hour! The human
images obtained so far are also astounding (Fig. 1), es-
pecially considering that the system has only been op-
erational for a few months and many radio frequency
coil and pulse sequence issues remain to be worked out.
The Ohio State team has proposed a number of inter-
esting theories concerning susceptibility effects and di-
electric resonance phenomena within the human head
at 8 Tesla. Some of these theories challenge traditional
tenets in MR physics and are admittedly controversial.
As more measurements are obtained and experiments
are conducted, these theories will be refine, improved,
or discarded. Robitaille et. al. have led us to a new
frontier in clinical MR imaging. Perhaps one day in
the not-so-distant future, 1.5 Tesla will be considered
low-field imaging” [14].

The next month, Professor Robitaille established a new
record for high resolution imaging in MRI, once again pub-
lished in JCAT, with the following editorial note:

“Pierre-Marie Robitaille and the Ohio State University
MRI Team have done it again! In this issue they present
the world’s first MR images obtained at 2,000×2,000
resolution — in honor of the new millennium of course.
In case you missed it, please check out the Journal of

Computer Assisted Tomography’s November/Decem-
ber 1999 issue. Here Robitaille and colleagues have
published 10 landmark articles describing the design
and construction of their 8 Tesla whole-body MR scan-
ner, as well as additional remarkable images of the
brain. If you wish to download some of the images di-
rectly (they look even better on a video monitor), please
see the JCAT website at www.rad.bgsm.edu/jcat/
supp.htm. Happy Y2K from all of us at JCAT!” [15].

The birth of Ultra High Field MRI represented a paradigm
shift for many in the MRI community who had previously
believed that human images could never be acquired at such
field strengths [16, 17]. Relative to the creation of the first
UHFMRI systems, Paul Lauterbur (Nobel Prize in Medicine
and Physiology, 2003) wrote:

“In the early machines, low radiofrequencies of 4 MHz
or so meant that RF coil designs were simple (even
inexperienced undergraduates could design and build
such circuits with little knowledge of more than DC
electrical circuits), and the forces on gradient coils
were small. The effects of magnetic susceptibility in-
homogeneity in and around the object being imaged
were negligible, and RF penetration depths were not
a problem for human-scale samples. Everything be-
gan to change as higher fields and higher frequencies
came into use, and the earlier idyllic simplicities be-
gan to seem quaint. The trend continued, however,
driven by the increased signal to noise ratios and the
resultant higher resolution and speed available, and so-
phisticated engineering became more and more essen-
tial, not only for magnets but for gradient systems and
radiofrequency transmitters and receivers, but also for
better software for modeling and correcting distortions.
Experts who had said, and even written, that frequen-
cies above 10 MHz would never be practical watched
in amazement as scientists and engineers pushed in-
strument performances to ever-higher levels at ever-
increasing magnetic field strengths, as this volume
demonstrates” [18].

Prior to assembling the 8 Tesla instrument, Professor
Robitaille envisioned that his career would remain firmly
grounded in MRI. However, the first results at 8 Tesla rela-
tive to RF power requirements in MRI profoundly altered his
scientific outlook. He began to think about MRI as a thermal
process. In the early days of NMR, the T1 relaxation time was
referred to as the “thermal relaxation time”. As a result, Pro-
fessor Robitaille advanced the idea that, if MRI was thermal
process, it should be possible to extract the temperature of the
human head using the laws of thermal emission, in the same
manner that Penzias and Wilson had measured a temperature
of ∼3 K for the microwave background [19]. Unfortunately,
such an approach yielded a Wien’s displacement temperature
of less than 1 K for the human head. Surely, something was
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incorrect.
Professor Robitaille viewed magnetic resonance as en-

abling scientists to examine the reverse of the emission prob-
lem in the infrared, as studied by Planck and his predecessors
[20]. Therefore, he turned his attention to thermal radiation
and astrophysics. Soon, he published an abstract which ques-
tioned the assignment of the microwave background to the
cosmos [21]. Then, in a bold step, he placed an ad in the New
York Times [22] announcing the Collapse of the Big Bang
and the Gaseous Sun. The response from the popular press
and the scientific community was immediate and sometimes
harsh [23–25]. Despite claims to the contrary [23], Professor
Robitaille’s advertisement in the New York Times had noth-
ing to do with the concurrent debate in Ohio relative to evo-
lution [23]. The timing was purely coincidental.

Following the ad in the New York Times, Professor Ro-
bitaille turned to Progress in Physics and began outlining his
ideas in a series of papers which spanned a very broad area
of fundamental physics. His papers on the WMAP [26] and
COBE [27] satellites are amongst the most viewed by the
journal audience and, eventually, his position was found
to merit some consideration by the astrophysics commu-
nity [28].

The study of Kirchhoff’s Law of Thermal Emission has
been the driving force behind Prof. Robitaille’s work in as-
trophysics. Robitaille has demonstrated the invalidity of this
law and its subsequent claims for universality [29–33]. Prof.
Robitaille has also argued that the proper analysis of ther-
mal emission should be attributed to Balfour Stewart [32].
Resting on the knowledge that Kirchhoff’s Law was invalid,
Robitaille argued for a liquid model of the Sun [34] and ad-
vanced simple proofs to strengthen his position [35]. Ro-
bitaille maintains that the emission of a thermal spectrum
from the Sun, by itself, comprises all the proof necessary
for a liquid model. Given the error within Kirchhoff Law,
the Sun cannot be a gaseous plasma. It must be condensed
matter.

Robitaille has also based his re-assignment of the mi-
crowave background to the Earth on Kirchhoff’s Law [28].
He has shown that astrophysics did not properly consider the
emission of water itself when contemplating the background
[36, 37]. His recent paper analyzing the Planck satellite [38]
further builds on his position, along with papers by the au-
thors, Rabounski and Borissova [39]. Finally, Robitaille has
questioned the validity of Boltzmann’s constant [40]. This is
the result of the correction of Kirchhoff’s Law [28, 29–33]
and the re-assignment of the microwave background to the
Earth [36–39].

Robitaille maintains a quite lifestyle in Columbus, Ohio.
He has been married to Patricia for 30 years, and they have
three sons: Jacob, Christophe, and Luc. Dr. Robitaille enjoys
sailing his Flying Scot and is an avid builder of timberframe
structures.

The authors would like to acknowledge the contributions
of Patricia Anne Robitaille in providing some factual details
and photographs of her husband.
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Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Vahan N. Minasyan and Valentin N. Samoylov

Scientific Center of Applied Research, JINR, Dubna, 141980, Russia.
E-mail: mvahan n@yahoo.com

We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or
gas) which consists of decoupled electrons and ions in the uppermost hyperfine state.
Hence, we use such a concept as the fluctuation motion of “charged fluid particles”
or “charged fluid points” representing a charged longitudinal elastic wave. In turn,
this elastic wave is quantized by spinless longitudinal Bose charged sound particles
with the rest mass m and charge e0. The existence of spinless Bose charged sound
particles allows us to present a new model for description of Bose or Fermi liquid
via a non-ideal Bose gas of charged sound particles. In this respect, we introduce a
new postulation for the superfluid component of Bose or Fermi liquid determined by
means of charged sound particles in the condensate, which may explain the results of
experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6Li and
40K, and such a Bose gas as 87Rb in the uppermost hyperfine state, where the Bose-
Einstein condensation of charged sound particles is realized by tuning the magnetic
field.

1 Introduction

The Bose-Einstein condensation (BEC) has a wide applica-
tion for investigation of superconductivity of metals and su-
perfluidity of liquids. The primary experimental challenge
to evaporative cooling of spin-polarized hydrogen was made
by a dilution refrigerator, demonstrating that spin-polarized
hydrogen can be confined in a statistic magnetic trap and
thermally decoupled from the walls [1–3]. At the density
N
V ≈ 1013 cm−3 it is observed that the gas consisting of de-
coupled electrons and ions in the uppermost hyperfine state is
evaporatively cooled to a temperature approximately equal to
40 mK.

Here, we remark about BEC that was produced in a va-
por of 87Rb bosonic ions confined by magnetic fields and
evaporatively cooled [4]. The condensate fraction first ap-
peared near a temperature of 170 nanokelvin at the density
N
V = 2.6 × 1012 cm−3. The experiment has shown that the
value of temperature 170 nK is reduced to 20 nK. In reality,
the strongly interacting spin- 1

2
6Li and 40K fermionic gases

were realized via tuning the magnetic field [5]. These experi-
mental achievements in the field of ultra-cold Fermi gases are
based mainly on the possibility of tuning the scattering length
a which becomes much larger in magnitude than the mean in-
teratomic distance by changing the external magnetic field.
In this respect, the concept of Fermi surface loses its mean-
ing due to the broadening produced by pairing of fermions,
the so-called Feshbach resonances in ultracold atomic Fermi
gases. However, in this letter we predict a new method of
liquid cooling which is based on the formation of oscilla-
tors at every point of liquid by tuning the magnetic field,
which in turn leads to vibration of “charged fluid particles”.
These “charged fluid particles” reproduce charged spinless
quasiparticles which determine the superfluidity component

of Bose or Fermi liquid by action of the static magnetic field.
In order to investigate the motion of quantum liquid (or

quantum gas) in the uppermost hyperfine state, we consider
the motion of “charged fluid particles” by means of a charged
longitudinal elastic wave [6]. This longitudinal elastic wave
is quantized by spinless Bose charged sound particles with
the mass m and charge e0. Further, we present a new model
for description of charged Bose or Fermi liquid via a non-
ideal Bose gas consisting of charged sound particles. As op-
posed to London’s postulation about the superfluid compo-
nent of liquid 4He [7], we introduce a new postulation about
the superfluid component of Bose or Fermi liquid via charged
sound particles in the condensate. On the other hand, we es-
timate the zero sound speed which leads to the correct expla-
nation of the experimental result connected with the BEC of
a gas consisting of spin-polarized hydrogen.

2 Quantization of quantum liquid or quantum gas in the
uppermost hyperfine state

Now let us analyze quantization of quantum liquid (or quan-
tum gas) in the uppermost hyperfine state. This quantum liq-
uid (or quantum gas) consists of N Bose or Fermi positive
charged ions with the charge e and mass M confined in the
volume V where they are in a negative electron background
since the entire system of liquid is electro-neutral. Consider-
ing quantum liquid as a continuous medium, we investigate
the fluctuation motion of the number n of “charged fluid par-
ticles” on the basis of hydrodynamics (where a “charged fluid
particle” is defined as a very small volume V0 in regard to the
volume V of the liquid (V0 � V) with the mass m and charge
e0. The volume V0 contains the number N

′
= N

n of liquid
ions, therefore the charge e0 is expressed via the ion charge
as e0 =

eN
n .
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In accordance with the laws of hydrodynamics [6], the
mass density ρ and pressure p of liquid are presented as

ρ = ρ0 + ρ
′

and
p = p0 + p

′
,

where ρ0 =
MN
V and p0 are, respectively, the equilibrium mass

density and pressure; ρ
′

and p
′

are the relative fluctuations of
the mass density and pressure.

As is known, the continuity equation has the form:

∂ρ
′

∂t
= −ρ0 div~v, (1)

which may present as:

ρ
′
= −ρ0 div~u, (2)

where ~v = ∂~u
∂t is the speed of a charged fluid particle; ~u =

~u(~r, t) is the displacement vector of a charged fluid particle
which describes a charged longitudinal sound wave.

On the other hand, Euler’s equation in the first-order-of-
smallness approximation takes the reduced form:

∂~v

∂t
+
∇p

′

ρ0
= 0. (3)

Hence, we consider the fluctuation motion of charged
fluid particles as adiabatic, deriving the following equation:

p
′
=

(
∂p
∂ρ0

)
S
ρ
′
= c2

l ρ
′
, (4)

where S is the entropy; cl =

√(
∂p
∂ρ0

)
S

is the speed of the
charged longitudinal elastic wave.

As is known, the fluctuation motion of charged fluid par-
ticles represents as a potential one:

curl~v = curl
∂~u
∂t
= 0. (5)

Thus, by using the above equation we may get to the wave
equation for the vector of displacement ~u = ~u(~r, t):

∇2~u(~r, t) − 1
c2

l

∂2~u(~r, t)
∂t2 = 0, (6)

which in turn describes the longitudinal charged sound wave.
Now, we state that the longitudinal elastic wave consists

of spinless Bose charged sound particles with the non-zero
rest mass m. Then, the displacement vector u(~r, t) is expres-
sed via a secondary quantization vector of the wave function
of spinless Bose charged sound particles directed along the
wave vector ~k:

~u(~r, t) = ul

(
~φ(~r, t) + ~φ+(~r, t)

)
, (7)

where ul is the normalization constant which is the amplitude
of oscillations; ~φ(~r, t) is the secondary quantization of vector
wave functions for creation and annihilation of one longitudi-
nal charged sound particle with the mass m whose direction ~l
is directed towards the wave vector ~k:

~φ(~r, t) =
1
√

V

∑
~k

~a~k ei(~k~r−kclt) (8)

~φ+(~r, t) =
1
√

V

∑
~k

~a+~k e−i(~k~r−kclt) (9)

with the condition∫
~φ+(~r, t) ~φ(~r, t) dV = n0 +

∑
~k,0

â+~k â~k = n̂, (10)

where ~a+
~k

and ~a~k are, respectively, the Bose vector-operators
of creation and annihilation for a free charged sound particle
with the energy ~

2k2

2m , described by the vector ~k whose direc-
tion coincides with the direction ~l of a traveling charged lon-
gitudinal elastic wave; n̂ is the operator of the total number
of charged sound particles; n̂0 is the total number of charged
sound particles at the condensate level with the wave vector
~k = 0.

Thus, as is seen, the displacement vector ~u(~r, t) satisfies
wave-equation (6) and in turn takes the form:

~u(~r, t) = ~u0 +
ul√
V

∑
~k,0

(
~a~k ei(~k~r−kclt) + ~a+~k e−i(~k~r−kclt)

)
. (11)

While investigating a superfluid liquid, Bogoliubov [8]
separated the atoms of helium in the condensate from those
atoms filling the states above the condensate. In an analo-
gous manner, we may consider the vector operator ~a0 = ~l

√
n0

and ~a+0 = ~l
√

n0 as c-numbers (where ~l is the unit vector in
the direction of propagation of the sound wave) within the
approximation of a macroscopic number of sound particles
in the condensate n0 � 1. These assumptions lead to a bro-
ken Bose-symmetry law for sound particles in the conden-
sate. To extend the concept of a broken Bose-symmetry law
for sound particles in the condensate, we apply the definition
of BEC of sound particles in the condensate as was postulated
by the Penrose-Onsager for the definition of BEC of helium
atoms [9]:

lim
n0,n→∞

n0

n
= const. (12)

On the other hand, we may observe that presence of
charged sound particles filling the condensate level with the
wave vector ~k = 0 leads to the appearance of the constant

displacement ~u0 =
2ul~l
√

n0√
V

of charged sound particles.
To find the normalization constant ul, we introduce the

following condition which allows us to suggest that at abso-
lute zero all sound particles fill the condensate level ~k= 0.
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This reasoning implies that at n0 = n the constant displace-
ment takes the maximal value 2d =

√
|~u0|2 which represents

the maximal distance between two neighboring charged
sound particles. On the other hand, this distance is deter-

mined by the formula d =
(

3V
4πn

) 1
3 , which is in turn substituted

into the expression 2d =
√
|~u0|2. Then, consequently, we get

to the normalization constant ul = 0.65
(

n
V

)− 5
6 .

The condition for conservation of density at each point of
liquid stipulates that

ρ0 =
MN
V
=

mn
V
, (13)

which represents a connection of the mass and density of the
charged sound particles with the mass and density of the ions.
Thus, we argue that liquid (or gas) can be described by the
model of an ideal gas of n charged sound particles with the
mass m and charge e0 in the volume V . Hence, we remark
that the Coulomb scattering between charged sound particles
is neglected in the considered theory.

3 “Charged fluid particles” in trapped static magnetic
field

Now, we consider the Hamiltonian operator Ĥl of liquid [6]
in a trapped static magnetic field [10]:

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
1
2

∫ (
clρ

′

√
ρ0

)2

dV+

+
ρ0

2

∫ (
Ω~ul

)2 dV,

(14)

where Ω = e0H
mc is the trapping frequency of a “charged fluid

particle”; e0 is the charge of a “fluid particle”; H is the ab-
solute value of the magnetic strain; c is the velocity of light
in vacuum. Hence, we note that the charge of a fluid particle
equals e0 = eN

′
= Ne

n , where N
′

is the number of ions in a
small volume V0 of one charged fluid particle.

Substituting ρ
′

from (2) into (14), we obtain

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
ρ0

2

∫ (
cl div~u

)2 dV+

+
ρ0

2

∫ (
Ω~ul

)2 dV.

(15)

Using Dirac’s approach in [11] for quantization of the
electromagnetic field, we have:

∂~u(~r, t)
∂t

= − icl~ul√
V

∑
~k

k
(
~a~k e−ikclt − ~a+−~k eikclt

)
ei~k~r, (16)

as well as

div~u(~r, t) =
i~ul√

V

∑
~k

~k
(
~a~k e−ikclt + ~a+−~k eikclt

)
ei~k~r. (17)

Now, introducing (16) and (17) into (15) and using

1
V

∫
ei(~k1+~k2)~r = δ3

~k1+~k2
,

we obtain the terms in the right side of the Hamiltonian of the
system presented in (15):

ρ0

2

∫ (
∂~u
∂t

)2

dV = −
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k − ~a

+

−~k

) (
~a−~k − ~a

+
~k

)
,

ρ0

2

∫ (
div~u

)2 dV =
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k + ~a

+

−~k

) (
~a−~k + ~a

+
~k

)
and

ρ0

2

∫ (
Ω~ul

)2 dV =
ρ0Ω

2u2
l

2

∑
~k

(
~a~k + ~a

+

−~k

) (
~a−~k + ~a

+
~k

)
.

These expressions determine the reduced form of the
Hamiltonian operator Ĥl by the form:

Ĥl =
∑
~k

(
2ρ0u2

l c2
l k2 + ρ0Ω

2u2
l

)
~a+~k a~k+

+
ρ0Ω

2u2
l

2

∑
~k

(
~a+−~k~a

+
~k
+ ~a~k~a−~k

)
,

(18)

where u2
l is defined by the first term in the right side of (18)

which represents the kinetic energy of a charged sound parti-
cle ~

2k2

2m , if we suggest:

2ρ0u2
l c2

l k2 =
~2k2

2m
. (19)

Then,

u2
l =

~2

4c2
l mρ0

,

which allows one to determine the mass m of a charged sound
particle using the value of the normalization constant ul =

0.65
(

n
V

)− 5
6 and (13):

m =
~

cl

( n
V

) 1
3
. (20)

Thus, the main part of the Hamiltonian operator Ĥl takes
the form:

Ĥl=
∑
~k,0

(
~2k2

2m
+mv2

)
~a+~k a~k+

mv2

2

∑
~k,0

(
~a+−~k ~a

+
~k
+~a~k ~a−~k

)
, (21)

where we denote v = ~Ω√
2mcl

, which in turn is the speed of
charged sound in a Bose or Fermi liquid excited by static
magnetic field; n0 is the number of charged sound particles
in the condensate.
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For the evolution of the energy level, it is necessary to
diagonalize the Hamiltonian Ĥl, which can be accomplished
by introducing the vector Bose-operators ~b+

~k
and ~b~k [12]:

~a~k =
~b~k + L~k ~b

+

−~k√
1 − L2

~k

, (22)

where L~k is the unknown real symmetrical function of the
wave vector ~k.

By substituting (22) into (21), we obtain

Ĥl =
∑
~k,0

ε~k
~b+~k
~b~k, (23)

where ~b+
~k

and ~b~k are the creation and annihilation operators of
charged Bose quasiparticles with the energy:

ε~k =

(~2k2

2m

)2

+ ~2k2v2
1/2

. (24)

In this context, the real symmetrical function L~k of the
wave vector ~k is found to be

L2
~k
=

~2k2

2m + mv2 − ε~k
~2k2

2m + mv2 + ε~k
. (25)

Thus, the average energy of the system takes the form:

Ĥl =
∑
~k,0

ε~k
~b+
~k
~b~k, (26)

where ~b+
~k
~b~k is the average number of charged Bose quasipar-

ticles with the wave vector ~k at the temperature T :

~b+
~k
~b~k =

1

e
ε~k
kT − 1

. (27)

Thus, we have found the spectrum of free charged spin-
less quasiparticles excited in a Bose or Fermi liquid which is
similar to Bogoliubov’s one [8]. In fact, the Hamiltonian of
system (24) describes an ideal Bose gas consisting of charged
spinless phonons at a small wave number k � 2mv

~
but at

k � 2mv
~

the Hamiltonian operator describes an ideal gas
of charged sound particles. This reasoning implies that the
tuning magnetic field forms the superfluidity component of a
Bose or Fermi liquid which is been in the uppermost hyper-
fine state.

4 BEC of charged sound particles

As opposed to London’s postulation concerning BEC of
atoms [7], we state that charged sound particles in the con-
densate define the superfluid component of Bose and Fermi

liquids. Consequently, statistical equilibrium equation (10)
takes the following form:

n0,T +
∑
~k,0

~a+
~k
~a~k = n, (28)

where ~a+
~k
~a~k is the average number of charged sound particles

with the wave vector ~k at the temperature T .
To find the form ~a+

~k
~a~k, we use the linear transformation

presented in (22):

~a+
~k
~a~k =

1 + L2
~p

1 − L2
~p

~b+
~k
~b~k +

L~k
1 − L2

~k

(
~b+
~k
~b+
−~k
+ ~b~k~b−~k

)
+

L2
~k

1 − L2
~k

.

According to the Bloch-De-Dominicis theorem, we have

~b+
~k
~b+
−~k
= ~b~k~b−~k = 0.

In this respect, the equation for the density of charged
sound particles in the condensate takes the following form:

n0,T

V
=

n
V
− 1

V

∑
~k,0

L2
~k

1 − L2
~k

− 1
V

∑
~k,0

1 + L2
~k

1 − L2
~k

~b+
~k
~b~k. (29)

Obviously, at the lambda transition T = Tλ the density
of charged sound particles

n0,Tλ
V = 0. Hence, we note that

the mass m and density n
V of charged sound particles are ex-

pressed via the mass of ions M and density of ions N
V when

solving a system of two equations presented in (13) and (20):

n
V
=

( Mcl

~

N
V

) 3
4

(30)

and

m =
(
~

cl

) 3
4 ( MN

V

) 1
4

. (31)

In conclusion, it should be noted that the given approach
opens up a new direction for investigation of BEC of charged
sound particles in Fermi gases of spin-polarized hydrogen,
6Li and 40K, and in a Bose gas such as 87Rb, because the
model of quantum liquid in the uppermost hyperfine state is
considered in the same way as superfluid liquid helium. In
this letter, we argue for the first time that the superfluid com-
ponent of Bose or Fermi liquid in the uppermost hyperfine
state is determined by means of charged sound particles in the
condensate. In fact, we argue that the lambda transition point
depends on the strain of static magnetic field due to equation
(29) and condition for the density of charged sound particles
n0,Tλ

V = 0.
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Superfluidity Component of Solid 4He and Sound Particles with Spin 1
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We present a new model for solid which is based on such a concept as the fluctuation
motion of “solid particles” or “solid points”. The fluctuation motion of “solid particles”
in solid 4He represents a longitudinal elastic wave which is in turn quantized by neutral
longitudinal Bose sound particles with spin 1 with the rest mass m. Thus, first we re-
move a concept of “lattice” for solid by presentation of new model of one as a vibration
of sound particles by natural frequency Ωl. In this respect, we first postulate that the
superfluid component of a solid 4He is determined by means of sound particles with
spin 1 in the condensate.

1 Introduction

The quantum solid is remarkable object which reveal macro-
scopic quantum phenomena, such as superfluidity and Bose-
Einstein condensation (BEC) of solid 4He [1] which were re-
ported by many authors [2, 3].

The original theory proposed by Einstein in 1907 was of
great historical relevance [4]. In the Einstein model, each
atom oscillates relatively to its neighbors in the lattice which
execute harmonic motions around fixed positions, the knots
of the lattice. He treated the thermal property of the vibration
of a lattice of N atoms as a 3N harmonic independent oscil-
lator by identical own frequency Ω0 which was quantized by
application of the prescription developed by Plank in connec-
tion with the theory of Black Body radiation. The Einstein
model could obtain the Dulong and Petit prediction at high
temperature but could not reproduce an adequate represen-
tation of the the lattice at low temperatures. In 1912, De-
bye proposed to consider the model of the solid [5], by sug-
gestion that the frequencies of the 3N harmonic independent
oscillators are not equal as it was suggested by the Einstein
model. In addition to his suggestion, the acoustic spectrum
of solid may be treated as if the solid represented a homoge-
neous medium, except that the total number of independent
elastic waves is cut off at 3N, to agree with the number of
degrees of freedom of N atoms. In this respect, Debye stated
that one longitudinal and two transverse waves are excited in
solid. These velocities of sound cannot be observed in a solid
at frequencies above the cut-off frequency. Also, he suggested
that phonon is a spinless. Thus, the Debye model correctly
showed that the heat capacity is proportional to the T 3 law
at low temperatures. At high temperatures, he obtained the
Dulong-Petit prediction compatible to experimental results.

The other model of solid was presented by the authors of
this letter in [6] where the solid was considered as continuum
elastic medium consisting of neutral Fermi-atoms, fixed in the
knots of lattice. In this case, we predicted that the lattice rep-
resents as the Bose-gas of Sound-Particles with finite masses
ml and mt, corresponding to a longitudinal and a transverse

elastic field. On the other hand, the lattice was considered as a
new substance of matter consisting of sound particles, which
excite the one longitudinal and one transverse elastic waves
(this approach is differ from Debye one). These waves act on
the Fermi-atoms which are stimulating a vibrations with the
natural frequencies Ωl and Ωt. In this context, we introduced
a new principle of elastic wave-particle duality, which allows
us to build the lattice model. The given model leads to the
same results as presented by Debye’s theory.

However, we consider the model of solid by new way by
introducing of such a concept as the fluctuation motion of
“solid particles” or “solid points”. In this respect, we remove
a concept as a lattice of solid or an atoms, fixed in the knots of
lattice because we deal with the “solid particle” which exist
in any point of the solid. This “solid particle” is a similar to
the “fluid particle” on the basis of hydrodynamics [7] (where
“fluid particle” is determined as a very small volume V0, in re-
gard to the volume V of the liquid (V0 � V), which consists
of a macroscopic number of liquid atoms). The motion of
“solid particle” describes the longitudinal elastic wave which
in turn represents a Bose gas of neutral sound particles with
spin 1 with finite mass m. In this letter, we present a new
model of solid which describes a vibration of sound particles
by natural frequency Ωl. We postulate also that the super-
fluid component of a solid is determined by means of sound
particles in the condensate.

2 Analysis

For beginning let us analyze quantization of a quantum liq-
uid (or quantum gas) which consists of N Bose or Fermi
atoms with the mass M confined in the volume V . Consid-
ering a quantum liquid as a continuum medium, we investi-
gate the fluctuation motion of “fluid particles” on the basis
of hydrodynamics (where “fluid particle” is determined as a
very small volume V0, in regard to the volume V of the liquid
(V0 � V), which consists of a macroscopic number of liquid
atoms).

In accordance with the hydrodynamics laws, the mass

8 V. N. Minasyan and V. N. Samoylov. Superfluidity Component of Solid 4He and Sound Particles with Spin 1



October, 2011 PROGRESS IN PHYSICS Volume 4

density ρ and pressure p for a liquid are presented as

ρ = ρ0 + ρ
′

and
p = p0 + p

′
,

where ρ0 =
MN
V and p0 are, respectively, the equilibrium mass

density and pressure; ρ
′

and p
′

are the relative fluctuations of
the mass density and pressure.

As is known, the continuity equation has the form:

∂ρ
′

∂t
= −ρ0 div ~v, (1)

which may present as:

ρ
′
= −ρ0 div ~u, (2)

where ~v = ∂~u
∂t is the speed of a fluid particle; ~u = ~u(~r, t) is

the displacement vector of a fluid particle which describes a
longitudinal sound wave.

On the other hand, Euler’s equation in the first-order-of-
smallness approximation takes the reduced form:

∂~v

∂t
+
∇p

′

ρ0
= 0. (3)

Hence, we consider the fluctuation motion of fluid parti-
cles as adiabatic, deriving the following equation:

p
′
=

(
∂p
∂ρ0

)
S
ρ
′
= c2

l ρ
′
, (4)

where S is the entropy of liquid; cl =

√(
∂p
∂ρ0

)
S

is the speed of
the longitudinal elastic wave.

As is known, the fluctuation motion of fluid particles rep-
resents as a potential one:

curl~v = curl
∂~u
∂t
= 0. (5)

Thus, by using the above equation we may get to the wave
equation for the vector of displacement ~u = ~u(~r, t):

∇2~u(~r, t) − 1
c2

l

∂2~u(~r, t)
∂t2 = 0, (6)

which in turn gives a description of the longitudinal sound
wave.

Now, we state that the longitudinal elastic wave consists
of neutral spinless Bose sound particles with the non-zero rest
mass m. Then, the displacement vector u(~r, t) is expressed via
a secondary quantization vector of the wave function of spin-
less Bose sound particles directed along the wave vector ~k:

~u(~r, t) = ul

(
~φ(~r, t) + ~φ+(~r, t)

)
, (7)

where ul is the normalization constant which is the ampli-
tude of oscillations; ~φ(~r, t) is the second quantization vector
wave functions for creation and annihilation of one longitu-
dinal sound particle with the mass m whose direction ~l is di-
rected towards the wave vector ~k:

~φ(~r, t) =
1
√

V

∑
~k

~a~k ei(~k~r−kclt) (8)

~φ+(~r, t) =
1
√

V

∑
~k

~a+~k e−i(~k~r−kclt) (9)

with the condition∫
~φ+(~r, t) ~φ(~r, t) dV = n0 +

∑
~k,0

â+~k â~k = n̂, (10)

where ~a+
~k

and ~a~k are, respectively, the Bose vector-operators
of creation and annihilation for a free sound particle with the
energy ~

2k2

2m , described by the vector ~k whose direction coin-
cides with the direction ~l of a traveling longitudinal elastic
wave; n̂ is the operator of the total number of sound particles;
n̂0 is the total number of sound particles at the condensate
level with the wave vector ~k = 0.

Thus, as is seen, the displacement vector ~u(~r, t) satisfies
wave-equation (6) and in turn takes the form:

~u(~r, t) = ~u0 +
ul√
V

∑
~k,0

(
~a~k ei(~k~r−kclt) + ~a+~k e−i(~k~r−kclt)

)
. (11)

While investigating a superfluid liquid, Bogoliubov [8]
separated the atoms of liquid helium 4He in the condensate
from those atoms filling the states above the condensate. In an
analogous manner, we may consider the vector operator ~a0 =
~l
√

n0 and ~a+0 = ~l
√

n0 as c-numbers (where ~l is the unit vec-
tor in the direction of propagation of the sound wave) within
the approximation of a macroscopic number of sound parti-
cles in the condensate n0 � 1. These assumptions lead to
a broken Bose-symmetry law for sound particles in the con-
densate. To extend the concept of a broken Bose-symmetry
law for sound particles in the condensate, we apply the def-
inition of BEC of sound particles in the condensate as was
postulated by the Penrose-Onsager for the definition of BEC
of helium atoms [9]:

lim
n0,n→∞

n0

n
= const. (12)

On the other hand, we may observe that presence of sound
particles filling the condensate level with the wave vector ~k =
0 leads to the appearance of the constant displacement ~u0 =
2ul~l
√

n0√
V

of the sound particles.
To find the normalization constant ul, we introduce the

following condition which allows us to suggest that at abso-
lute zero all sound particles fill the condensate level ~k = 0.

V. N. Minasyan and V. N. Samoylov. Superfluidity Component of Solid 4He and Sound Particles with Spin 1 9



Volume 4 PROGRESS IN PHYSICS October, 2011

This reasoning implies that at n0 = n the constant displace-
ment takes a maximal value 2d =

√
|~u0|2 which represents the

maximal distance between two neighboring sound particles.
On the other hand, this distance is determined by the formula

d =
(

3V
4πn

) 1
3 , which is in turn substituted into the expression

2d =
√
|~u0|2. Then, consequently, we get to the normaliza-

tion constant ul = 0.65
(

n
V

)− 5
6 .

The condition of conservation of density at each point of
the solid stipulates that

ρ0 =
MN
V
=

mn
V
, (13)

which represents a connection of the mass m and density ρ0 of
sound particles with the mass M and density ρ0 of the liquid
helium atoms with mass M.

Now, we consider the Hamiltonian operator Ĥl of a liquid
[8]:

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
1
2

∫ (
clρ

′

√
ρ0

)2

dV. (14)

Substituting ρ
′

from (2) into (14), we obtain

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
ρ0

2

∫ (
cl div ~u

)2 dV. (15)

Using Dirac’s approach in [10] for quantization of the
electromagnetic field, we have:

∂~u(~r, t)
∂t

= − icl~ul√
V

∑
~k

k
(
~a~k e−ikclt − ~a+−~k eikclt

)
ei~k~r (16)

as well as

div~u(~r, t) =
i~ul√

V

∑
~k

~k
(
~a~k e−ikclt + ~a+−~k eikclt

)
ei~k~r. (17)

Now, introducing (16) and (17) into (15) and using

1
V

∫
ei(~k1+~k2)~r = δ3

~k1+~k2
,

we obtain the terms in the right side of the Hamiltonian of the
system presented in (15):

ρ0

2

∫ (
∂~u
∂t

)2

dV = −
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k − ~a

+

−~k

) (
~a−~k − ~a

+
~k

)
and

ρ0

2

∫ (
∂~u
∂t

)2

dV =
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k + ~a

+

−~k

) (
~a−~k + ~a

+
~k

)
.

These expressions determine the reduced form of the
Hamiltonian operator Ĥl by the form:

Ĥl = 2
∑
~k

ρ0u2
l c2

l k2~a+~k a~k, (18)

where u2
l is defined by the first term in the right side of (18)

which represents the kinetic energy of a sound particle ~
2k2

2m ,
if we suggest:

2ρ0u2
l c2

l k2 =
~2k2

2m
. (19)

Then,

u2
l =

~2

4c2
l mρ0

,

which allows one to determine the mass m of a sound particle

using the value of the normalization constant ul = 0.65
(

n
V

)− 5
6

and (13):

m =
~

cl

( n
V

) 1
3
. (20)

Thus, the Hamiltonian operator Ĥl describes an ideal
Bose gas of a spinless sound particles:

Ĥl =
∑
~k

~2k2

2m
~a+~k a~k. (21)

3 Bose quasiparticles in solid

Now let us analyze quantization of a solid 4He which con-
sists of N atoms with the mass M confined in the volume V .
Considering a solid 4He as a continuum medium, we inves-
tigate the fluctuation motion of “solid particles” on the basis
of hydrodynamics (where “solid particle” is determined as a
very small volume V0, in regard to the volume V of the solid
(V0 � V), which consists of a macroscopic number of 4He
atoms in solid).

To do the transition from quantum liquid to the solid 4He,
we introduce a concept as the fluctuation motion of “solid par-
ticles” or “solid points”. In this respect, we remove such con-
cept as a “lattice” of solid 4He or such concept as an atoms,
fixed in the knots of lattice because “solid particles” exist in
any point of the solid. The motion of “solid particles” de-
scribe an elastic wave consisting of the sound particles with
spin 1 which in turn are vibrated by the natural frequency Ωl.

In this respect, we may express the vector displacement of
a longitudinal ultrasonic wave ul(~r, t) via the second quantiza-
tion vector wave functions of one sound particle with spin 1.
Then, Eqs. (8) and (9) take the forms:

~φ(~r, t) =
1
√

V

∑
~k,σ

~a~k,σei(~k~r−kclt) (22)

~φ+(~r, t) =
1
√

V

∑
~k,σ

~a+~k,σe−i(~k~r−kclt) (23)

with condition∫
φ+(~r, σ) φ(~r, σ) dV = n0 +

∑
~k,0,σ

â+~k,σâ~k,σ = n̂, (24)
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where a free sound particles have the mass m and the value of
its spin z-component σ = 0;±1. In this respect, the vector-
operators ~a+

~k,σ
, ~a~k,σ satisfy the Bose commutation relations as:[

â~k,σ, â
+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[â~k,σ, â~k′ ,σ′ ] = 0

[â+~k,σ, â
+
~k′ ,σ′

] = 0.

In this case, the Hamiltonian operator Ĥ of the solid 4He
is represented by the form:

Ĥ =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
1
2

∫ (
clρ

′

√
ρ0

)2

dV+

+
ρ0

2

∫ (
Ωl~ul

)2 dV,

(25)

where

ρ0

2

∫ (
∂~u
∂t

)2

dV = −
ρ0c2

l u2
l

2

∑
~k,σ

k2
(
~a~k,σ−~a

+

−~k,σ

) (
~a−~k,σ−~a

+
~k,σ

)
,

ρ0

2

∫ (
div~u

)2 dV =
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k,σ+~a

+

−~k,σ

) (
~a−~k,σ+~a

+
~k,σ

)
and

ρ0

2

∫ (
Ωl~ul

)2 dV =
ρ0Ω

2u2
l

2

∑
~k

(
~a~k,σ + ~a

+

−~k,σ

) (
~a−~k,σ + ~a

+
~k,σ

)
.

These expressions determine the reduced form of the
Hamiltonian operator Ĥ:

Ĥl =
∑
~k,0,σ

(
~2k2

2m
+ mv2

)
~a+~k,σa~k,σ+

+
mv2

2

∑
~k,0,σ

(
~a+−~k,σ~a

+
~k,σ
+ ~a~k,σ~a−~k,σ

)
,

(26)

where we denote v = ~Ωl√
2mcl

, which in turn is the speed of
sound particle in a solid.

For the evolution of the energy level, it is necessary to
diagonalize the Hamiltonian Ĥl, which can be accomplished
by introducing the vector Bose-operators ~b+

~k
and ~b~k [11]:

~a~k,σ =
~b~k,σ + L~k ~b

+

−~k,σ√
1 − L2

~k

, (27)

where L~k is the unknown real symmetrical function of the
wave vector ~k.

By substituting (27) into (26), we obtain

Ĥ =
∑
~k,0

ε~k
~b+~k,σ
~b~k,σ, (28)

where ~b+
~k,σ

and ~b~k,σ are the creation and annihilation operators
of Bose quasiparticles with spin 1 with the energy:

ε~k =

(~2k2

2m

)2

+ ~2k2v2
1/2

. (29)

In this context, the real symmetrical function L~k of the
wave vector ~k is found to be

L2
~k
=

~2k2

2m + mv2 − ε~k
~2k2

2m + mv2 + ε~k
. (30)

Thus, the average energy of the system takes the form:

Ĥ =
∑
~k,0

ε~k
~b+
~k,σ
~b~k,σ, (31)

where ~b+
~k,σ
~b~k,σ is the average number of Bose quasiparticles

with spin 1 with the wave vector ~k at the temperature T :

~b+
~k,σ
~b~k,σ =

1

e
ε~k
kT − 1

. (32)

Thus, we have found the spectrum of free quasiparticles
with spin 1 which is similar to Bogoliubov’s one [8]. In fact,
the Hamiltonian of system (31) describes an ideal Bose gas
consisting of phonons with spin 1 at a small wave number
k � 2mv

~
but at k � 2mv

~
the Hamiltonian operator describes

an ideal gas of sound particles.

4 BEC of sound particles

As opposed to London’s postulation concerning BEC of
atoms [12], we state that sound particles in the condensate
define the superfluid component of solid 4He. Consequently,
statistical equilibrium equation (10) takes the following form:

n0,T +
∑
~k,0

~a+
~k,σ
~a~k,σ = n, (33)

where ~a+
~k,σ
~a~k,σ is the average number of sound particles with

the wave vector ~k at the temperature T .
To find the form ~a+

~k,σ
~a~k,σ, we use the linear transformation

presented in (22):

~a+
~k,σ
~a~k,σ =

1 + L2
~p

1 − L2
~p

~b+
~k,σ
~b~k,σ+

+
L~k

1 − L2
~k

(
~b+
~k,σ
~b+
−~k,σ
+ ~b~k,σ~b−~k,σ

)
+

L2
~k

1 − L2
~k

.
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According to the Bloch-De-Dominicis theorem, we have

~b+
~k,σ
~b+
−~k,σ
= ~b~k,σ~b−~k,σ = 0.

In this respect, the equation for the density of sound par-
ticles in the condensate takes the following form:

n0,T

V
=

n
V
− 1

V

∑
~k,0,σ

L2
~k

1 − L2
~k

− 1
V

∑
~k,0,σ

1 + L2
~k

1 − L2
~k

~b+
~k,σ
~b~k,σ. (34)

Obviously, at the lambda transition T = Tλ the density of
sound particles

n0,Tλ
V = 0. Hence, we note that the mass m and

density n
V of sound particles are expressed via the mass of

ions M and density of ions N
V when solving a system of two

equations presented in (13) and (20):

n
V
=

( Mcl

~

N
V

) 3
4

(35)

and

m =
(
~

cl

) 3
4 ( MN

V

) 1
4

. (36)

At T → 0 it follows ~b+
~k,σ
~b~k,σ = 0. Then taking into ac-

count the coefficient with number 3 before integral on the
right side of equation (34) because it reflects the value of spin
z-component σ = 0;±1, we obtain

n0,T

n
= 1 − m3v3

~3π2 n
V
. (37)

5 Conclusions

Thus, in this letter, we propose new model for solids which is
different from the well-known models of Einstein and Debye
because: 1) we suggest that the atoms are the Fermi particles
which are absent in the Einstein and Debye models; 2) we
remove such concept as lattice of solid by introducing a con-
cept as the fluctuation motion of “solid particles” or “solid
points”. Thus, we deal with the “solid particle” which ex-
ist in any point of the solid; 3) In our model, we argue that
the phonons in solid have spin 1 which is different from one
presented by Einstein and Debye models; 4) in fact, in this
letter, we first postulate that the superfluid component of a
solid 4He is determined by means of sound particles in the
condensate as opposed to London’s postulation concerning
BEC of atoms [12]. Consequently, such reasoning allows us
to consider the model of solid in a new light.

Submitted on April 18, 2011 / Accepted on April 25, 2011

References
1. Greywall D. S. Search in superfluidity in solid 4He. Physical Review B,

1977, v. 16, 1291–1292.

2. Kim E., Chan M. H. W. Probable observation of a supersolid helium
phase. Nature, 2004, v. 427, 225–227.

3. Diallo S. O. et al. Bose-Einstein Condensation in Solid 4He.Physical
Review Letters, 2007, v. 98, 205301.

4. Einstein A. Die Plancksche Theorie der Strahlung und die Theorie der
spezifischen Waerme. Annalen der Physik, 1907, v. 22, 180–190.

5. Debye P. Zur Theorie der spezifischen Waerme. Annalen der Physik,
1912, v. 39, 789–839.

6. Minasyan V. N., Samoilov V. N. Sound-Particles and Phonons with
Spin 1. Progress in Physics, 2011, v. 1, 81–86; Minasyan V. N.,
Samoilov V. N. Charged Polaritons with Spin 1. Progress in Physics,
2011, v. 2, 7–12.

7. Landau L. D., Lifshiz E. M. Theory of Elasticity. Theoretical Physics,
1987, v. 11, 124–127.

8. Bogoliubov N. N. On the theory of superfludity. Journal of Physics
(USSR), 1974, v. 11, 23–32.

9. Penrose O., Onsager L. Bose-Einstein condensation and liquid helium.
Physical Review, 1956, v. 104, 576–584.

10. Dirac P. A. M. The Principles of Quantum Mechanics. Clarendon press,
Oxford, (1958).

11. Minasyan V. N., Samoilov V. N. Two Type Surface Polaritons Excited
into Nanoholes in Metal Films. Progress in Physics, 2010, v. 2, 3–6.

12. London F. The λ-Phenomenon of Liquid Helium and the Bose-Einstein
Degeneracy. Nature, 1938, v. 141, 643–644.

12 V. N. Minasyan and V. N. Samoylov. Superfluidity Component of Solid 4He and Sound Particles with Spin 1



October, 2011 PROGRESS IN PHYSICS Volume 4

Fermion-Antifermion Asymmetry

Gunn Quznetsov
Chelyabinsk State University, Chelyabinsk, Ural, Russia. E-mail: gunn@mail.ru, quznets@yahoo.com

An event with positive energy transfers this energy photons which carries it on recorders
observers. Observers know that this event occurs, not before it happens. But events with
negative energy should absorb this energy from observers. Consequently, observers
know that this event happens before it happens. Since time is irreversible then only the
events with positive energy can occur. In single-particle states, events with a fermion
have positive energy and occurrences with an antifermion have negative energy. In
double-particle states, events with pair of antifermions have negative energy and events
with pair of fermions and with fermion-antifermion pair have positive energy.

1 Introduction

Let t, x1, x2,x3 be real numbers, and let x := 〈x1, x2, x3〉.
LetA be some pointlike event.
Let ϕ(t, x) be a 4 × 1-complex matrix such that

ϕ†(t, x)ϕ(t, x) = ρ(t, x) (1)

where ρ(t, x) is the probability density ofA.
Let∗ ρ(t, x) = 0 if t > πc

h and/or |x| > πc
h .

In that case ϕ(t, x) obeys some generalization of the Dirac
equation [1]. The Dirac equation for free fermion does have
the following form:


1
c
∂

∂t
−

3∑

s=1

β[s] ∂

∂xs
− i

h
c

nγ[0]

ϕ(t, x) = 0.

Here n is a natural number and

β[1] : =



0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


, β[2] :=



0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


,

β[3] : =



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


, γ[0] :=



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


.

In this case operator Ĥ0 is the free Dirac Hamiltonian if

Ĥ0 := c


3∑

s=1

β[s]i
∂

∂xs
+

h
c

nγ[0]

 .

Let k be a vector 〈k1, k2, k3〉 where ks are integer numbers
and let

ω (k) :=
√

k2
1 + k2

2 + k2
3 + n2

where n is a natural number.

∗c := 299792458, h := 6.6260755−34

Let

e1 (k) :=
1

2
√
ω (k) (ω (k) + n)



ω (k) + n + k3
k1 + ik2

ω (k) + n − k3
−k1 − ik2


,

e2 (k) :=
1

2
√
ω (k) (ω (k) + n)



k1 − ik2
ω (k) + n − k3
−k1 − ik2

ω (k) + n + k3


,

e3 (k) :=
1

2
√
ω (k) (ω (k) + n)



−ω (k) − n + k3
k1 + ik2

ω (k) + n + k3
k1 + ik2


,

e4 (k) :=
1

2
√
ω (k) (ω (k) + n)



k1 − ik2
−ω (k) − n − k3

k1 − ik2
ω (k) + n − k3


.

In that case, functions
e1(k)(2c/h)3/2 exp(−i(h/c)kx) and
e2(k)(2c/h)3/2 exp(−i(h/c)kx)
are eigenvectors of Ĥ0 with eigenvalues (+hω(k)),
and functions
e3(k)(2c/h)3/2 exp(−i(h/c)kx) and
e4(k)(2c/h)3/2 exp(−i(h/c)kx)
are eigenvectors of Ĥ0 with eigenvalues (−hω(k)).

2 Single-Particle States

Let H be some unitary space. Let 0̃ be the zero element of H.
That is any element F̃ of H obeys to the following conditions:

0F̃ = 0̃, 0̃ + F̃ = F̃, 0̃†F̃ = F̃, 0̃† = 0̃.

Let 0̂ be the zero operator on H. That is any element F̃ of
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H obeys to the following condition:

0̂F̃ = 0F̃, and if b̂ is any operator on H then

0̂ + b̂ = b̂ + 0̂ = b̂, 0̂̂b = b̂̂0 = 0̂.

Let 1̂ be the identy operator on H. That is any element F̃
of H obeys to the following condition:

1̂F̃ = 1F̃ = F̃ , and if b̂ is any operator on H then
1̂̂b = b̂̂1 = b̂.

Let linear operators bs,k (s ∈ {1, 2, 3, 4}) act on all ele-
ments of this space. And let these operators fulfill the follow-
ing conditions:

{
b†s,k, bs′,k′

}
:= b†s,kbs′,k′ + bs′,k′b

†
s,k =

(
h

2πc

)3

δk,k′δs,s′ 1̂,

{
bs,k, bs′,k′

}
= bs,kbs′,k′ + bs′,k′bs,k =

{
b†s,k, b

†
s′,k′

}
= 0̂.

Hence,
bs,kbs,k = b†s,kb†s,k = 0̂.

There exists element F̃0 of H such that F̃†0 F̃0 = 1 and for
any bs,k: bs,kF̃0 = 0̃. Hence, F̃†0b†s,k = 0̃.

Let

ψs (x) :=
∑

k

4∑

r=1

br,ker,s (k) exp
(
−i

h
c

kx
)

.

Because
4∑

r=1

er,s (k) er,s′ (k) = δs,s′

and ∑

k

exp
(
−i

h
c

k
(
x − x′

))
=

(
2πc
h

)3

δ
(
x − x′

)

then
{
ψ†s (x) , ψs′

(
x′

)}
:= ψ†s (x)ψs′

(
x′

)
+ ψs′

(
x′

)
ψ†s (x)

= δ
(
x − x′

)
δs,s′ 1̂.

And these operators obey the following conditions:

ψs (x) F̃0 = 0̃, {ψs (x) , ψs′ (x′)} =
{
ψ†s (x) , ψ†s′ (x′)

}
= 0̂.

Hence,

ψs (x)ψs′ (x′) = ψ†s (x)ψ†s′ (x′) = 0̂.

Let

Ψ (t, x) :=
4∑

s=1

ϕs (t, x)ψ†s (x) F̃0.

These functions obey the following condition:

Ψ†
(
t, x′

)
Ψ (t, x) = ϕ†

(
t, x′

)
ϕ (t, x) δ

(
x − x′

)
.

Hence,
∫

dx′ · Ψ† (t, x′) Ψ (t, x) = ρ (t, x) .

Let a Fourier series of ϕs (t, x) has the following form:

ϕs (t, x) =
∑

p

4∑

r=1

cr (t,p) er,s (p) exp
(
−i

h
c

px
)

.

In that case:

Ψ (t,p) :=
(

2πc
h

)3 4∑

r=1

cr (t,p) b†r,pF̃0.

If
H0 (x) := ψ† (x) Ĥ0ψ (x) (2)

thenH0 (x) is called a Hamiltonian Ĥ0 density.
Because

Ĥ0ϕ (t, x) = i
∂

∂t
ϕ (t, x)

then ∫
dx′ · H0

(
x′

)
Ψ (t, x) = i

∂

∂t
Ψ (t, x) . (3)

Therefore, if

Ĥ :=
∫

dx′ · H0
(
x′

)

then Ĥ acts similar to the Hamiltonian on space H.
And if

EΨ

(
F̃0

)
:=

∑

p
Ψ† (t,p) ĤΨ (t,p)

then EΨ

(
F̃0

)
is an energy of Ψ on vacuum F̃0.

Operator Ĥ obeys the following condition:

Ĥ =

(
2πc
h

)3 ∑

k

hω (k)


2∑

r=1

b†r,kbr,k −
4∑

r=3

b†r,kbr,k

 .

This operator is not positive defined and in this case

EΨ

(
F̃0

)
=

(
2πc
h

)3 ∑

p
hω (p)


2∑

r=1

|cr (t,p)|2 −
4∑

r=3

|cr (t,p)|2
 .

This problem is usually solved in the following way [2, p.
54]:

Let:

v1 (k) : = γ[0]e3 (k) ,
v2 (k) : = γ[0]e4 (k) ,

d1,k : = −b†3,−k,

d2,k : = −b†4,−k.
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In that case:

e3 (k) = −v1 (−k) ,
e4 (k) = −v2 (−k) ,

b3,k = −d†1,−k,

b4,k = −d†2,−k.

Therefore,

ψs (x) : =
∑

k

2∑

r=1

(
br,ker,s (k) exp

(
−i

h
c

kx
)

+

+d†r,kvr,s (k) exp
(
i
h
c

kx
))

Ĥ =

(
2πc
h

)3 ∑

k

hω (k)
2∑

r=1

(
b†r,kbr,k + d†r,kdr,k

)

−2
∑

k

hω (k) 1̂.

The first term on the right side of this equality is posi-
tive defined. This term is taken as the desired Hamiltonian.
The second term of this equality is infinity constant. And this
infinity is deleted (?!) [2, p. 58]

But in this case dr,kF̃0 , 0̃. In order to satisfy such condi-
tion, the vacuum element F̃0 must be replaced by the follow-
ing:

F̃0 → Φ̃0 :=
∏

k

4∏

r=3

(
2πc
h

)3

b†r,kF̃0.

But in this case:

ψs (x) Φ̃0 , 0̃.

And condition (3) isn’t carried out.
In order to satisfy such condition, operators ψs (x) must

be replaced by the following:

ψs (x)→ φs (x) :=

:=
∑

k

2∑

r=1

(
br,ker,s (k) exp

(
−i

h
c

kx
)

+ dr,kvr (k) exp
(
i
h
c

kx
))

.

Hence,

Ĥ =

∫
dx · H (x) =

∫
dx · φ† (x) Ĥ0φ (x) =

=

(
2πc
h

)3 ∑

k

hω (k)
2∑

r=1

(
b†r,kbr,k − d†r,kdr,k

)
.

And again we get negative energy.
Let’s consider the meaning of such energy: An event with

positive energy transfers this energy photons which carries it

on recorders observers. Observers know that this event oc-
curs, not before it happens. But event with negative energy
should absorb this energy from observers. Consequently, ob-
servers know that this event happens before it happens. This
contradicts Theorem 3.4.2 [3]. Therefore, events with nega-
tive energy do not occur.

Hence, over vacuum Φ̃0 single fermions can exist, but
there are no single antifermions.

3 Two-Particle States

A two-particle state is defined the following field operator [4]:

ψs1,s2 (x, y) :=

∣∣∣∣∣∣
φs1 (x) φs2 (x)
φs1 (y) φs2 (y)

∣∣∣∣∣∣ .

In that case:

Ĥ = 2h
(

2πc
h

)6 (
Ĥa + Ĥb

)

where

Ĥa : =
∑

k

∑

p
(ω (k) − ω (p))

2∑

r=1

2∑

j=1

×

×
{
v†j (−k) v j (−p) e†r (p) er (k) ×

×
(
+b†r,pd†j,−kd j,−pbr,k

)
+

+
(
+d†r,−pb†j,kb j,kdr,−p

)
+

+v†j (−p) v j (−k) e†r (k) er (p) ×
×

(
−b†r,kd†j,−pd j,−kbr,p

)
+

+
(
−b†r,pd†j,−kd j,−kbr,p

)}

and

Ĥb : =
∑

k

∑

p
(ω (k) + ω (p))

2∑

r=1

2∑

j=1

×

×
{
v†j (−p) v j (−k) v†r (−k) vr (−p) ×

×
(
−d†r,−kd†j,−pd j,−kdr,−p

)
+

+
(
−d†r,−pd†j,−kd j,−kdr,−p

)

+e†r (k) er (p) e†j (p) e j (k) ×
×

(
+b†r,kb†j,pb j,kbr,p

)
+

+
(
+b†r,pb†j,kb j,kbr,p

)}
.

If velocities are small then the following formula is fair.

Ĥ = 4h
(

2πc
h

)6 (
Ĥa + Ĥb

)
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where

Ĥa : =
∑

k

∑

p
(ω (k) − ω (p)) ×

×
2∑

r=1

2∑

j=1

(
d†j,−pb†r,kbr,kd j,−p − b†j,pd†r,−kdr,−kb j,p

)

and

Ĥb : =
∑

k

∑

p
(ω (k) + ω (p)) ×

×
2∑

j=1

2∑

r=1

(
b†j,pb†r,kbr,kb j,p − d†j,−pd†r,−kdr,−kd j,−p

)
.

Therefore, in any case events with pairs of fermions and
events with fermion-antifermion pairs can occur, but events
with pairs of antifermions can not happen.

4 Conclusion

Therefore, an antifermion can exist only with a fermion.
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This letter presents an insight into Planck’s natural-units, that they are geometric-mean-
values of astronomical-quantities, like total-mass of the universe M0 and mass cor-
responding to Hubble’s-constant

(
hH0/c2

)
, providing a theoretical support to the ob-

servational findings of Ragazzoni, R., Turatto, M. & Gaessler [Astrophysical Jour-
nal,587, L1–L4], Lieu, R. & Hillman, L.W [Astrophysical Journal, 585, L77–L80]
and a news item published in Nature [Published on line on 31 March 2003 Nature
DOI 10.1038/news030324-13] that there is no observational evidence for the quantum
structure of space-time. Physicists have been expecting unification of gravitational and
electric forces at Planck’s energy; so they wanted to experimentally create a pair of par-
ticles whose gravitational-radius is equal to their Compton-wavelength. Whereas this
paper shows that in nature there exists a “pair of unequal masses” which satisfies the
condition of equality of gravitational and electrostatic potential-energies of the pair. If
the universe with its total-mass M0 and a particle of mass hH0/c2 both are electrically
charged bodies, then the strengths of electric force and gravitational-force experienced
by them will be equal. It is also pointed-out here that P.A.M. Dirac’s observation of re-
currences of the large-number 1040 and its explanation proposed by Tank [Proceedings
of Indian National Sci. Acad. A, Vol. 63, No. 6, 469–474 (1997)] in 1997, by Sidharth
[arXiv:gen-ph/0509026] in 2005, and by Funkhouser [arXiv:gen-ph/0611115] in 2006,
should be viewed as attempts in search of natural system of units; and the recurrences
R0/re = e2/Gme, mp =

[
M0/mp

]1/2
should be taken more seriously than a mere coin-

cidence, because its explanation by Tank also helped explaining the recurrences of the
critical-acceleration of MOND noticed by Sivaram [Astrophys. and Space Sci. 215,
(1994), 185–189].

1 Introduction

It has been realized by physicists since long that the conven-
tional system of units, like meter, kilogram and second are
arbitrarily chosen units; they do not correspond with any fun-
damental physical quantities; so we find it difficult to observe
any regular pattern. Max Plank proposed a set of natural-
units. Physicists have been expecting unification of gravita-
tional and electric forces at the energies where protons at-
tain the masses close to Planck’s-mass. Large Hadrons Col-
lider [LHC] was expected to yield some interesting results,
because protons were to attain Planck’s mass. It was be-
lieved that space and time are quantized; Planck-length is
the “least-count” for “space” and Planck’s unit of “time” is
the “least-count” for “time”. Whereas this letter shows that
Planck’s units are statistical-quantities, they are geometric-
mean-values of the astronomical-quantities like total-mass of
the universe M0 and mass corresponding to Hubble’s constant
(hH0/c2).

(i) Planck’s length L∗ is a geometric-mean of: Gravita-
tional-Radius corresponding to total mass of the universe M0
and Compton-wavelength corresponding to the total-mass M0

of the universe, i.e.

L∗ =
[(

GM0/c2
)

(h/M0c)
]1/2

.

Also, L∗ is a geometric-mean of: gravitational-radius of the
universe and that of the lightest-particle of mass

(
hH0/c2

)
. L∗

is also a geometric-mean of Compton-wavelengths of M0 and(
hH0/c2

)
.

(ii) Planck’s unit of time T ∗ is a geometric-mean of age-
of-the-universe T0 and the period corresponding the total
mass of the universe h/M0c2.

(iii) Planck’s unit of mass M∗ is a geometric-mean of
total-mass-of the-universe M0 and mass-of-the-lightest-par-
ticle. So, this letter provides a theoretical explanation for the
experimental observations by Ragazzoni et al [1] and Lieu
et. al. [2] that there is no evidence for quantum structure of
space-time.

(iv) The total mass of the universe M0 and mass corre-
sponding to Hubble’s constant

(
hH0/c2

)
form an interesting

pair, that: Gravitational-Radius corresponding to total-mass
of the universe is equal to Compton-wavelength of the light-
est particle, of mass hH0/c2.
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(v) Gravitational-radius of the lightest particle is equal to
the Compton-wavelength of the total-mass of the universe,
M0. Physicists have been trying to generate a pair of particles
of equal masses whose gravitational-radius is equal to their
Compton-wavelength. But in nature, there exists a pair of
unequal masses which satisfies the condition for unification
of forces, that their gravitational-potential-energy should be
equal to the electrostatic-potential-energy. So this pair is ex-
pected to provide some clue to a deeper understanding needed
for unification of gravitational and electric forces.

It is also pointed-out here that P. A. M. Dirac’s observa-
tion of recurrences of the large-number 1040 and its explana-
tion proposed by Tank [4] in 1997, by Sidharth [5] in 2005,
and by Funkhouser [6] in 2006, should be viewed as attempts
in search of natural system of units; and the recurrences
R0/re = e2/Gme, mp =

[
M0/mp

]1/2
should be taken more

seriously than a mere coincidence, because their explanation
by Tank also helped explaining the recurrences of the critical-
acceleration of MOND noticed by Sivaram [7] and led to fur-
ther conclusions discussed in the references [8–10].

2 The Derivations

(i) Gravitational-Radius of the universe is equal to Comp-
ton-wavelength of the lightest particle, of mass hH0/c2:

The gravitational-radius-of-the-universe R0 = GM0/c2;
Here M0 is total-mass of the universe. And Compton-wave-
length of the lightest-particle of mass hH0/c2 ; where H0 is
Hubble’s constant, is:

h/
(
hH0/c2

)
c

i.e. = c/H0,
i.e. = R0,
i.e. = GM0/c2.

(ii) Gravitational-radius of the lightest particle is eq-
ual to Compton-wavelength of the total-mass of the uni-
verse, M0.

i.e. = G
(
hH0/c2

)
/c2,

i.e = GhH0/c4,
i.e. = GhH0/GH0M0c

(Because GH0M0 = c3, based on this author’s previous work
[4]), i.e.= h/M0c which is the Compton-wavelength corre-
sponding to the total-mass-of-the-universe.

(iii-a) Planck’s length L∗ is a geometric-mean of: Gra-
vitational-Radius of the universe and Compton-wave-
length corresponding to the total-mass of the universe:

i.e. L∗ =
[(

GM0/c2
)

(h/M0c)
]1/2

,

i.e. =
[
hG/c3

]1/2
.

Similarly, Planck’s length is a geometric-mean of gravita-
tional-radius and Compton-wavelengths of every particle of
any mass.

(iii-b) Planck’s length L∗ is also a geometric-mean of:
gravitational-radius of the universe and that of the light-
est-particle of mass hH0/c2:

That is: [(
GM0/c2

) (
GhH0/c4

)]1/2
,

i.e. =
[
G2M0hH0/GM0H0c3

]1/2
(Because GH0M0 = c3, based on this author’s previous work
[4]),

i.e. =
[
hG/c3

]1/2
,

i.e. = L∗.

(iii-c) L∗ is also a geometric-mean of Compton-wave-
lengths of M0 and

(
hH0/c2

)
:

That is: [
(h/M0c)

{
h/
(
hH0/c2

)
c
}]1/2

,

i.e. = [(h/M0c) (c/H0)]1/2 ,
i.e. = [(h/M0c) (R0)]1/2 ,

i.e. =
[
(h/M0c)

(
GM0/c2

)]1/2
,

i.e. =
[
hG/c3

]1/2
,

i.e. = L∗.

The references [1–3] also lead to a conclusion that noth-
ing very special is observed at Planck length; there is no ev-
idence for any quantum structure of space-time. This pa-
per has shown that Planck-length is a statistical-quantity, a
geometric-mean-value, not a length of any fundamental-
entity.

(iv) Planck’s unit of time T ∗ is a geometric-mean of
age-of-the-universe and the period corresponding the to-
tal-mass of the universe h/M0c2

Age-of-the-universe T0 = 1/H0.
So the product of the two periods is:

(1/H0)
(
h/M0c2

)
,

i.e. = h/H0M0c2,
i.e. = hG/c5

(Because GH0M0 = c3, based on this author’s previous work
[4])

i.e. = T ∗2,

i.e. T ∗ =
[
(T0)
(
h/M0c2

)]1/2
.

(v) Planck’s unit of mass M∗ is a geometric-mean of
total-mass-of the-universe M0 and mass-of-the-lightest-
-particle :

i.e. =
[
(M0)

(
hH0/c2

)]1/2
,

i.e. =
[
M0hH0c/c3

]1/2
,

i.e. = [M0hH0c/GM0H0]1/2
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(Because GH0M0 = c3, based on this author’s previous work
[4]),

i.e. = [hc/G]1/2 ,
i.e. = M∗.

(vi) P.A.M. Dirac took the classical-radius of the elec-
tron e2/mec2 as a natural unit of length; and found an in-
teresting relation:

R0/re = e2/Gmemp =
[
M0/mp

]1/2
= 1040.

Tank [4] explained the above relation and reached a con-
clusion that the relation implies: (i) Gravitational potential-
energy of the universe is equal to the energy-of-mass of the
universe; (ii) Electrostatic potential-energy of the electron is
equal to the energy-of-mass of it; and (iii) Strengths of elec-
tric-force, strong-force and gravitational-force are proportio-
nal to densities of matter within the electron, the pi-meson
and the universe respectively. Sidharth [5] and Funkhouser
[6] have given a similar explanation for the recurrences of the
Large-Number, but they have not drawn any conclusions for
further application.

From the above comparison of Planck’s natural units and
Dirac’s natural units we are led to a conclusion that Dirac’s
choice of natural units leads to interesting new relations.
These relations should not be ignored as mere coincidences,
because these relations have emerged from right choice of
natural-units.

Sivaram [7] noticed the recurrences of the same value of
acceleration, equal to the “critical-acceleration” of MOND,
at the radial-distance R in the case of the electron, the pro-
ton, the nucleus, the globular-clusters, the spiral-galaxies, the
galactic-clusters and the universe. Tank [8–10] could explain
these recurrences based on equality of potential-energy and
energy-of-mass of these systems, the equality which helped
him to explain Dirac’s large-number-ratios in 1997. Thus,
Dirac’s attempt to choose natural-units has led to a conclu-
sion, of equality of potential-energy and energy-of-mass of
various systems of matter, which helped explaining another
set of recurrences noticed by Sivaram, and to draw further
conclusions discussed in the references [8–10]

Also, if we measure distances in the units of radius-of-
the-universe R0 and measure masses of bodies in the units of
total-mass-of-the-universe M0 then the gravitational-constant
G becomes unity; as follows:

Gravitational-potential-energy of a system of masses
M and m at a distance r is

= (M/M0)
(
mc2
)
/ (r/R0) .
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We analyzed the numerical values of half-lifes of excited electronic states of the H, He
and Li atom, as well as the Li+ ion. By means of a fractal scaling model originally
published by Müller in this journal, we interprete these half-lifes as proton resonance
periods. On the logarithmic scale, the half-lifes were expressed by short continued
fractions, where all numerators are Euler’s number. From this representation it was
concluded that the half-lifes are heavily located in nodes or sub-nodes of the spectrum
of proton resonance periods.

1 Introduction

The model of a chain of similar harmonic oscillators was pro-
posed by Müller [1–3] as a phenomenological theory describ-
ing physical quantities as proton resonance oscillation modes.

In the most general case, the spectrum of eigenfrequen-
cies of a chain system of many proton harmonic oscillators is
given by the continuous fraction equation [2]

f = fp exp S , (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton and S the con-
tinued fraction corresponding to f . S was suggested to be in
the canonical form with all partial numerators equal 1 and the
partial denominators are positive or negative integer values

S = n0 +
1

n1 +
1

n2 +
1

n3 + ...

. (2)

Particularly interesting properties arise when the numer-
ator equals 2 and all denominators are divisible by 3. Such
fractions divide the logarithmic scale in allowed values and
empty gaps, i.e. ranges of numbers which cannot be ex-
pressed with this type of continued fractions. He showed that
these continued fractions generate a self-similar and discrete
spectrum of eigenvalues [1], that is also logarithmically in-
variant. Maximum spectral density areas arise when the free
link n0 and the partial denominators ni are divisible by 3.

In two previous articles [4, 5] we applied a slightly modi-
fied model, where all numerators were substituted by Euler’s
number. This model was particularly successful describing
specific features of the solar system [5].

However, the true physical meaning of the numerator e is
not yet clear. It must now be investigated, for which type of
data exactly this type of continued fractions can be applied.
There might be some data sets, where the numerator is 2, as
it was suggested by Müller in a patent [6].

In this article we analyzed a set of very accurately deter-
mined half-lifes of excited states of atoms on the logarithmic
scale. We show that continued fractions with Euler’s number
as numerator are adequate to describe these data.

2 Data source and computational details

All atomic spectral data were taken from the web site of the
National Institute of Standards and Technology (NIST) [7].
NIST maintains a critical selection of spectral data previously
published in regular scientific journals. For the H, He and Li
atom, reference was given to a publication by Wiese [8].

Table 1 shows such a data compilation for the Hydrogen
atom. We consider here only experimentally observed emis-
sion lines (i.e. not Ritz lines), for which the transition proba-
bilities have been determined. We numbered these lines in the
order of increasing wavelength and eliminated lines with an
already previously listed transition probability. For the Hy-
drogen atom, this procedure resulted then in a set of 109 lines
which have all different transition probabilities. Also, if a
transition probability has a numerical error higher than 1%
(according to NIST), the corresponding line was ignored.

The transition probability as given by NIST has the unit
of frequency [s−1] and is also called the Einstein A coefficient
of spontaneous emission. Consider a large number of atoms
in an excited state i, decaying to the ground state k (k could
also be any lower lying excited state). Equation (3) is then
the rate law

∂N
∂t
= −AikN, (3)

which results in

N(t) = N0 exp(−Aikt), (4)

where N(t) is the number of excited atoms at time t, N0 the
number of excited atoms at t = 0 and Aik the Einstein A co-
efficient for the transition i → k. From this exponential law,
the half-life T1/2 of the transition i→ k can be calculated as

T1/2 =
ln(2)
Aik
. (5)
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Table 1: Observed emission lines of the Hydrogen atom with cor-
responding wavelengths and transition probabilities. Obs.: Line no.
18 represents a forbidden transition.

Line Wavelength Transition Line Wavelength Transition
no. [Å] probability no. [Å] probability

[s−1] [s−1]

1 918.125 5.0659 × 104 56 6562.72482 2.2448 × 107

2 919.342 7.8340 × 104 57 6562.77153 2.2449 × 107

3 920.947 1.2631 × 105 58 6562.79 4.4101 × 107

4 923.148 2.1425 × 105 59 6562.85175 6.4651 × 107

5 926.249 3.8694 × 105 60 8392.40 1.5167 × 103

6 930.751 7.5684 × 105 61 8413.32 1.9643 × 103

7 937.801 1.9728 × 107 62 8437.95 2.5804 × 103

8 937.814 1.6440 × 106 63 8467.26 3.4442 × 103

9 949.742 3.4375 × 107 64 8502.49 4.6801 × 103

10 949.742 4.1250 × 106 65 8545.38 6.4901 × 103

11 972.517 1.2785 × 107 66 8598.39 9.2117 × 103

12 972.541 6.8186 × 107 67 8665.02 1.3431 × 104

13 1025.728 1.6725 × 108 68 8750.46 2.0207 × 104

14 1025.728 5.5751 × 107 69 8862.89 3.1558 × 104

15 1215.6699 6.2648 × 108 70 9015.3 5.1558 × 104

16 1215.6699 6.2649 × 108 71 9229.7 8.9050 × 104

17 1215.6701 4.6986 × 108 72 9546.2 1.6506 × 105

18 1215.67312 2.495 × 10−6 73 10049.8 3.3585 × 105

19 3656.65 9.9657 × 101 74 10938.17 7.7829 × 105

20 3657.25 1.1430 × 102 75 12818.072 2.2008 × 106

21 3658.04 1.3161 × 102 76 15560.46 3.6714 × 103

22 3658.65 1.5216 × 102 77 16411.36 1.6205 × 104

23 3659.41 1.7669 × 102 78 16811.10 2.5565 × 104

24 3660.32 2.0612 × 102 79 17366.885 4.2347 × 104

25 3661.27 2.4162 × 102 80 18179.21 7.4593 × 104

26 3662.22 2.8474 × 102 81 18751.3 8.9860 × 106

27 3663.41 3.3742 × 102 82 21661.178 3.0415 × 105

28 3664.65 4.0224 × 102 83 26258.71 7.7110 × 105

29 3666.08 4.8261 × 102 84 32969.8 6.9078 × 104

30 3667.73 5.8304 × 102 85 37405.76 1.3877 × 105

31 3669.45 7.0963 × 102 86 40522.79 2.6993 × 106

32 3671.32 8.7069 × 102 87 46537.8 3.2528 × 105

33 3673.81 1.0777 × 103 88 51286.5 3.6881 × 104

34 3676.376 1.3467 × 103 89 74599.0 1.0254 × 106

35 3679.370 1.7005 × 103 90 75024.4 1.5609 × 105

36 3682.823 2.1719 × 103 91 81548.4 3.3586 × 103

37 3686.831 2.8093 × 103 92 86644.60 5.0098 × 103

38 3691.551 3.6851 × 103 93 87600.64 3.9049 × 104

39 3697.157 4.9101 × 103 94 93920.3 7.8037 × 103

40 3703.859 6.6583 × 103 95 105035.07 1.2870 × 104

41 3711.978 9.2102 × 103 96 108035.9 2.2679 × 103

42 3721.946 1.3032 × 104 97 113086.81 8.2370 × 104

43 3734.369 1.8927 × 104 98 115395.4 3.3253 × 103

44 3750.151 2.8337 × 104 99 123719.12 4.5608 × 105

45 3770.633 4.3972 × 104 100 123871.53 2.3007 × 104

46 3797.909 7.1225 × 104 101 125870.5 5.0797 × 103

47 3835.397 1.2156 × 105 102 190619.6 2.2720 × 105

48 3889.064 2.2148 × 105 103 278035.0 1.2328 × 105

49 3970.075 4.3889 × 105 104 690717 2.7989 × 104

50 4101.734 9.7320 × 105 105 887610 1.8569 × 104

51 4340.472 2.5304 × 106 106 1118630 1.2709 × 104

52 4861.28694 9.6680 × 106 107 1387500 8.9344 × 103

53 4861.29776 9.6683 × 106 108 1694230 6.4283 × 103

54 4861.35 8.4193 × 106 109 3376000 2.0659 × 103

55 6562.70969 5.3877 × 107

Finally, the numerical values of continued fractions were
always calculated using the the Lenz algorithm as indicated
in reference [9].

3 Results and discussion

Half-lifes of exited states of atoms are abundantly available
from the NIST web site, however, only for the light atoms

such as H, He and Li these data have a very high accuracy.
Considering for instance Fe as a heavy element, most of the
Einstein A coefficients have uncertainties of 10-18% and are
consequently not suitable for a numerical analysis.

Due to results form our previous publications, we suspect
that Müller’s continued fraction formalism with Euler’s num-
ber as numerator can still be applied to many data sets, so
we set all partial numerators in Müller’s continued fractions
(given in equation (2)) to Euler’s number.

We strictly follow the formalism of previous publications
[4–6] and introduce a phase shift p in equation (2). According
to [6] the phase shift can only have the values 0 or ± 3

2 . So we
write for the half-lifes of the excited states:

ln
T1/2

τ
= p + S , (6)

where S is the continued fraction

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

(7)

and τ = λC
c is the oscillation period of a hypothetical photon

with the reduced Compton wavelength of the proton (λC =
h

2πmc = 2.103089086 × 10−16 m) and traveling at light speed
(numerical value 7.015150081 × 10−25 s).

We abbreviate p + S as [p; n0 | n1, n2, n3, . . .]. The free
link n0 and the partial denominators ni are integers divisible
by 3. For convergence reason, we have to include |e+1| as
allowed partial denominator. This means the free link n0 is
allowed to be 0,±3,±6,±9 . . . and all partial denominators ni

can take the values e+1, -e-1, ±6,±9,±12 . . ..
For the calculation of the continued fractions we did not

consider any standard deviation of the published data. Prac-
tically, we developed the continued fraction and determined
only 18 partial denominators. Next we calculated repeatedly
the data value from the continued fraction, every time consid-
ering one more partial denominator. As soon as considering
further denominators did not improve the experimental data
value significantly (on the linear scale), we stopped consider-
ing further denominators and gave the resulting fraction in Ta-
ble 2. This means we demonstrate how accurately the calcu-
lated half-lifes can be expressed through continued fractions.
Additionally we also report the numerical error, which is de-
fined as absolute value of the difference between the half-life
calculated from the NIST transition probability and the value
calculated from the continued fraction representation.

If this numerical error is higher than 1%, we interpret the
result as “no continued fraction found”, otherwise the contin-
ued fraction representation is in satisfying agreement with the
experimental data.

As can be seen from Table 2, with one exception, all half-
lifes could be expressed in a satisfactory manner by a con-
tinued fraction representation. Only one outlier was found,
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which underlines the statistical nature of Müller’s continued
fraction model.

We believe that spectral line number 71 is a true outlier
rather than a bad data point, since the Hydrogen spectrum has
been thoroughly investigated and is definitely the most easiest
one to interpret.

In most cases the numerical errors are several orders of
magnitude lower than the data value. This changes when cal-
culating the continued fractions with number 2 as numerator,
as it was suggested by Müller in a patent [6]. In this case
the number of outliers increases to 12 and the numerical er-
rors of the continued fraction representations are frequently
very slightly lower than the 1% limit. So the numerator e is
definitely the better choice.

It can be seen that around 25% of the half-lifes could be
expressed by two continued fractions, so there is no preferred
accumulation of the half-lifes in the neutral zones. The major-
ity of the continued fraction representations terminates with
a high partial denominator (±9,±12,±15 . . .). This means
there is a general tendency that the half-lifes accumulate in
nodes and sub-nodes of the spectrum of the proton resonance
periods.

Additionally, in the same manner as here described for the
spectral lines of the Hydrogen atom, we analyzed the spectral
data of He, Li (neutral atoms) and the Li+ ion. From the NIST
database resulted 142 spectral lines for the He atom, 57 lines
for the Li atom and 129 lines for the Li+ ion.

Again, it was analogously possible to express the half-
lifes on the logarithmic scale by continued fraction represen-
tations with Euler’s number as numerators. Very few out-
liers were found, 6 in the He data set, only one in the Li data
set and 7 in the set of the Li+ lines (continued fractions not
given). Regarding the numerical errors, no significant differ-
ences were detected, when comparing with the Hydrogen set.

This result is a contribution to the importance of Euler’s
number as a possible numerator in the model of oscillations
in a chain system. We have now identified the half-lifes of ex-
cited states with respect to individual electronic transitions as
a further data set where this (still phenomenological) model
can be applied. For the half-lifes, apparently it does not mat-
ter how many nucleons are in the atom and whether the atom
is neutral or charged. It even seems to be that the model ap-
plies for both, allowed and forbidden transitions, however,
this should be verified with further data; we have here only
one forbidden transition in our data set.

4 Conclusions

Numerical investigation of a large data set of 437 half-lifes
of electronic transitions from different atoms revealed that
Müller’s continued fraction model with e as numerator is ad-
equate to express these data on the logarithmic scale. There
is a general tendency that half-lifes accumulate in nodes and
sub-nodes of the spectrum of proton resonance periods. This

accumulation does not seem to be influenced by the atomic
charge or the atomic number (chemical element). It can be
said that every excited state of an atom (with corresponding
transition), has different oscillation properties and goes in res-
onance with the appropriate proton oscillation. Then, during
one proton oscillation period, 50% of the excited atoms be-
come de-excited to a lower-lying state.

This viewpoint has some similarity to the teaching of
modern quantum electrodynamics. This theory states that
spontaneous emission from atoms is caused by a 50:50 contri-
bution from radiation reaction and vacuum fluctuations [10].
So both models assume an external influence coupled to the
atoms, either the proton resonance spectrum or the vacuum
fluctuations.
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Table 2: Continued fraction representation of half-lifes of excited
states of the Hydrogen atom

Line Half-life [s] Numerical
no. Continued fraction representation error [s]

1 1.36826068529 × 10−5

[0; 45 | -e-1, -e-1, e+1, -6, 6, -e-1, 6] 2.5 × 10−11

[1.5; 42 | e+1, -e-1, 24, -6, 9] 1.5 × 10−11

2 8.84793439571 × 10−6

[1.5; 42 | 6, -9, e+1] 3.7 × 10−8

3 5.48766669749 × 10−6

[1.5; 42 | 765] 3.0 × 10−11

4 3.23522604695 × 10−6

[0; 42 | e+1, -e-1, e+1, -9, 12] 4.2 × 10−11

[1.5; 42 | -6, e+1, -6, -e-1, -9] 1.6 × 10−11

5 1.79135571551 × 10−6

[0; 42 | 6, e+1, -e-1] 1.7 × 10−8

6 9.15843745785 × 10−7

[0; 42 | -9, -6, 9, 6, -21, 117] 1.7 × 10−19

7 3.51351977169 × 10−8

[0; 39 | -6, e+1, -e-1] 4.7 × 10−10

[1.5; 36 | e+1, -e-1, e+1, e+1, -e-1] 4.4 × 10−11

8 4.21622372603 × 10−7

[1.5; 39 | 6, 12, e+1, 6] 6.2 × 10−12

9 2.01642816163 × 10−8

[1.5; 36 | 6, e+1, -6, 6, -e-1, 18] 2.0 × 10−15

10 1.68035680136 × 10−7

[1.5; 39 | -6, 6, e+1, -e-1, e+1] 3.4 × 10−10

11 5.42156574548 × 10−8

[0; 39 | -24, 27, -24, -18] 3.6 × 10−17

12 1.01655351621 × 10−8

[1.5; 36 | -9, -6, -42] 4.2 × 10−14

13 4.1443777612 × 10−9

[0; 36 | 9, -6, -e-1] 4.8 × 10−12

14 1.24329102717 × 10−8

[1.5; 36 | -33] 4.9 × 10−11

15 1.106415497 × 10−9

[1.5; 33 | 6, -6, e+1, e+1, -e-1, 12] 1.1 × 10−15

16 1.10639783645 × 10−9

[1.5; 33 | 6, -6, e+1, e+1, -e-1, 6, 15] 4.3 × 10−17

17 1.47522066267 × 10−9

[0; 36 | -e-1, -39, -e-1, e+1, 9, 6] 4.8 × 10−17

[1.5; 33 | e+1, -12, e+1, -9, 12, 12] 8.9 × 10−18

18 277814.501226
[0; 69 | -e-1, 6, -e-1, -141] 0.17
[1.5; 66 | e+1, 6, -81] 0.97

19 0.00695532858264
[0; 51 | -9, e+1, -e-1, e+1] 9.2 × 10−5

20 0.00606427979493
[0; 51 | -6, 6, 15] 5.7 × 10−7

21 0.00526667563681
[0; 51 | -e-1, -e-1, -e-1, 6, 12] 4.2 × 10−8

[1.5; 48 | e+1, -e-1, -e-1, 6, -e-1, e+1, -30] 6.8 × 10−10

22 0.00455538367876
[0; 51 | -e-1, 12, e+1, -e-1, 12, 9] 8.9 × 10−10

[1.5; 48 | e+1, 90, -e-1, e+1, 9] 7.1 × 10−10

23 0.00392295648062
[0; 51 | -e-1, e+1, -12, -12, 54] 1.2 × 10−10

24 0.00336283320668
[1.5; 48 | 6, 6, 39, -6, -18] 2.1 × 10−11

25 0.00286874919527
[1.5; 48 | 9, e+1, -e-1, e+1, -e-1] 2.7 × 10−5

26 0.00243431615003
[1.5; 48 | 27, e+1, e+1, -18] 3.2 × 10−9

27 0.00205425635872
[1.5; 48 | -39, e+1, -e-1, -e-1, e+1, -33] 2.2 × 10−11

Line Half-life [s] Numerical
no. Continued fraction representation error [s]
28 0.00172321793099

[1.5; 48 | -12, e+1, -e-1, e+1, -e-1, e+1, 12] 2.3 × 10−9

29 0.00143624703293
[1.5; 48 | -6, -9, e+1, -6, e+1] 3.7 × 10−8

30 0.00118885013131
[0; 48 | e+1, -e-1, -e-1, -e-1, e+1] 1.4 × 10−6

[1.5; 48 | -e-1, -e-1, -9, -6, 9] 1.6 × 10−9

31 0.000976772656962
[0; 48 | e+1, 12, -e-1, e+1] 5.4 × 10−7

32 0.000796089515855
[0; 48 | 6, -9, e+1, -e-1] 6.6 × 10−7

33 0.000643172664526
[0; 48 | 9, e+1, -e-1] 4.4 × 10−6

34 0.000514700512779
[0; 48 | 60, e+1, -e-1, -60] 2.0 × 10−11

35 0.000407613749227
[0; 48 | -15, e+1, e+1, -e-1, -9] 1.8 × 10−9

36 0.000319143229688
[0; 48 | -6, -9, -e-1, e+1, -6] 4.3 × 10−9

37 0.000246733058256
[0; 48 | -e-1, -12, -6, 6] 3.3 × 10−9

38 0.000188094537614
[0; 48 | -e-1, e+1, -e-1, -9, 6] 6.2 × 10−9

[1.5; 45 | 6, -e-1, e+1, -6, e+1, -351] 6.9 × 10−13

39 0.000141167630101
[1.5; 45 | 12, -e-1, e+1] 8.2 × 10−7

40 0.000104102726005
[1.5; 45 | -51, 9] 4.2 × 10−9

41 7.525864591 × 10−5

[1.5; 45 | -6, -e-1, e+1, -e-1] 9.0 × 10−7

42 5.31880893616 × 10−5

[0; 45 | e+1, -12, -e-1, e+1, -9] 5.3 × 10−10

[1.5; 45 | -e-1, -90, e+1, 60] 5.1 × 10−13

43 3.66221366598 × 10−5

[0; 45 | 6, e+1, -15, -e-1, -e-1, 18] 5.8 × 10−13

44 2.44608526153 × 10−5

[0; 45 | -1446] 3.6 × 10−11

45 1.57633762522 × 10−5

[0; 45 | -6, -18, e+1] 3.1 × 10−9

46 9.73179614686 × 10−6

[0; 45 | -e-1, e+1, -12, -e-1, e+1, 9] 1.8 × 10−11

[1.5; 42 | e+1, e+1, -e-1, e+1, -e-1, e+1, -6, 6] 2.0 × 10−11

47 5.70209921487 × 10−6

[1.5; 42 | 66, -e-1, e+1, -e-1] 4.6 × 10−10

48 3.12961522738 × 10−6

[0; 42 | e+1, -e-1, 6, -31650] 7.5 × 10−17

49 1.57931869161 × 10−6

[0; 42 | 12, -e-1, e+1, -e-1] 1.8 × 10−8

50 7.12235080723 × 10−7

[0; 42 | -6, e+1, -e-1, 6] 6.3 × 10−10

[1.5; 39 | e+1, -e-1, e+1, 9] 4.4 × 10−10

51 2.73927908852 × 10−7

[1.5; 39 | 441, e+1, 12] 1.6 × 10−14

52 7.16949917832 × 10−8

[0; 39 | 15, e+1, -e-1] 3.7 × 10−10

53 7.16927671421 × 10−8

[0; 39 | 15, e+1, -e-1] 3.7 × 10−10

54 8.23283622819 × 10−8

[0; 39 | 9, -48] 5.0 × 10−12

55 1.2865363338 × 10−8

[1.5; 36 | -51, -e-1] 4.8 × 10−12

56 3.08779036244 × 10−8

[0; 39 | -e-1, -9, -30] 8.1 × 10−13

[1.5; 36 | e+1, -6, -6, e+1, -9] 4.1 × 10−13
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Line Half-life [s] Numerical
no. Continued fraction representation error [s]
57 3.08765281554 × 10−8

[0; 39 | -e-1, -9, -27, e+1, 30] 5.5 × 10−16

[1.5; 36 | e+1, -6, -6, e+1, -6, -69] 2.4 × 10−16

58 1.57172667413 × 10−8

[1.5; 36 | 18, 9] 7.5 × 10−12

59 1.07213682783 × 10−8

[1.5; 36 | -12, 6, e+1, 9] 8.2 × 10−14

60 0.000457010074873
[0; 48 | -36, -e-1, -e-1, 72] 8.3 × 10−12

61 0.000352872361941
[0; 48 | -9, e+1, -6, 66] 6.5 × 10−11

62 0.000268620051372
[0; 48 | -e-1, -e-1, 15, -6, 6] 8.3 × 10−10

[1.5; 45 | e+1, -e-1, -9, -6, e+1, 6, -135] 3.4 × 10−14

63 0.000201250560525
[0; 48 | -e-1, e+1, 9, 6] 2.9 × 10−8

[1.5; 45 | e+1, e+1, -15, e+1, 6, e+1, -72] 4.0 × 10−14

64 0.000148105207273
[1.5; 45 | 9, 30, -6, e+1, -6, e+1, e+1] 7.5 × 10−13

65 0.00010680069345
[1.5; 45 | -96, -e-1, e+1] 6.3 × 10−9

66 7.52463910635 × 10−5

[1.5; 45 | -6, -e-1, e+1, -e-1] 8.9 × 10−7

67 5.16080098697 × 10−5

[0; 45 | e+1, -39, -e-1, 6, -e-1, -9, -6, 18] 1.6 × 10−15

[1.5; 45 | -e-1, 24] 6.5 × 10−8

68 3.43023299134 × 10−5

[0; 45 | 9, -e-1, e+1, -27, -6] 3.1 × 10−11

69 2.19642303238 × 10−5

[0; 45 | -24, -e-1, 6, e+1] 4.6 × 10−10

70 1.34440277078 × 10−5

[0; 45 | -e-1, -e-1, 9, -e-1, e+1] 9.5 × 10−9

[1.5; 42 | e+1, -e-1, -15, 12, -e-1, -15] 6.3 × 10−13

71 7.78379764806 × 10−6

[1.5; 42 | 9, -e-1, e+1, -e-1, e+1, -e-1, e+1, -e-1] 1.0 × 10−7

no continued fraction found error 1.3%
72 4.19936496159 × 10−6

[1.5; 42 | -9, -e-1, e+1, -e-1, e+1, -e-1] 3.3 × 10−8

73 2.06385940319 × 10−6

[0; 42 | 6, -e-1, 6, 12, 6, 12] 1.3 × 10−13

[1.5; 42 | -e-1, e+1, -e-1, 9, e+1, 12] 4.2 × 10−12

74 8.90602706652 × 10−7

[0; 42 | -9, 6, e+1, -e-1] 9.1 × 10−10

75 3.14952372119 × 10−7

[1.5; 39 | 18, e+1, 6, 9, -e-1, -6, 9, -9] 2.6 × 10−17

76 0.000188796421136
[0; 48 | -e-1, e+1, -e-1, -e-1, -e-1, e+1] 7.0 × 10−8

[1.5; 45 | 6, -e-1, e+1, -e-1, 6] 6.1 × 10−8

77 4.27736612502 × 10−5

[1.5; 45 | -e-1, e+1, -6, 15] 4.4 × 10−9

78 2.71131304737 × 10−5

[0; 45 | 27, -27, e+1, e+1, 9] 2.0 × 10−13

79 1.63682712013 × 10−5

[0; 45 | -6, -e-1, 138] 3.9 × 10−11

80 9.29238910568 × 10−6

[0; 45 | -e-1, e+1, -e-1, 33] 6.2 × 10−10

[1.5; 42 | 6, -e-1, e+1, e+1, -15] 1.3 × 10−10

81 7.71363432628 × 10−8

[0; 39 | 12, -e-1, -e-1, -9] 2.2 × 10−12

82 2.27896492047 × 10−6

[0; 42 | e+1, e+1, e+1, e+1, -e-1, e+1, -6, -15] 1.3 × 10−13

[1.5; 42 | -e-1, e+1, e+1, 45] 2.9 × 10−11

Line Half-life [s] Numerical
no. Continued fraction representation error [s]
83 8.9890699074 × 10−7

[0; 42 | -9, 27] 7.5 × 10−11

84 1.00342682266 × 10−5

[0; 45 | -e-1, e+1, 9, -9] 7.6 × 10−10

[1.5; 42 | e+1, e+1, -21] 2.9 × 10−9

85 4.9949353647 × 10−6

[1.5; 42 | -30, -105, 6] 3.2 × 10−13

86 2.56787752588 × 10−7

[1.5; 39 | -48, e+1] 2.5 × 10−10

87 2.130924682 × 10−6

[1.5; 42 | -e-1, e+1, -6, 39, -30] 8.3 × 10−14

88 1.87941536444 × 10−5

[0; 45 | -9, -e-1, e+1, -e-1] 1.4 × 10−7

89 6.75977355725 × 10−7

[0; 42 | -e-1, -e-1, e+1, 6, -6, 12] 8.3 × 10−13

[1.5; 39 | e+1, -e-1, -312, 24] 5.5 × 10−15

90 4.44068922135 × 10−6

[1.5; 42 | -12, -e-1, e+1, -e-1] 6.5 × 10−9

91 0.000206379795319
[0; 48 | -e-1, e+1, e+1, -e-1, -e-1, -e-1,
e+1, 909] 1.2 × 10−14

[1.5; 45 | e+1, e+1, e+1, -e-1, -e-1, -e-1, -12] 5.0 × 10−11

92 0.000138358253934
[1.5; 45 | 12, -12, 111] 1.5 × 10−11

93 1.77507024651 × 10−5

[0; 45 | -9, e+1, e+1] 2.7 × 10−8

94 8.88228892141 × 10−5

[1.5; 45 | -12, -e-1, 9, -e-1, e+1, e+1, -6, -6] 4.5 × 10−13

95 5.38575897871 × 10−5

[0; 45 | e+1, -9, -e-1, e+1, -e-1] 8.3 × 10−8

[1.5; 45 | -e-1, -27] 4.5 × 10−8

96 0.000305633925905
[0; 48 | -6, 9, 15, 21, -e-1, -12, -e-1, -18] 1.9 × 10−16

97 8.41504407624 × 10−6

[1.5; 42 | 6, 9, -24, 6, -33, -e-1, 12] 7.3 × 10−17

98 0.000208446510258
[0; 48 | -e-1, 6, -e-1, e+1, -e-1] 8.3 × 10−7

[1.5; 45 | e+1, 6, -e-1, 6] 5.7 × 10−8

99 1.51979297614 × 10−6

[0; 42 | 12, 6, e+1] 7.1 × 10−10

100 3.01276646481 × 10−5

[0; 45 | 12, e+1, -e-1, e+1] 9.4 × 10−8

101 0.000136454353714
[1.5; 45 | 12, 6, -e-1, 6, e+1, -6, -12] 1.6 × 10−12

102 3.0508238581 × 10−6

[0; 42 | e+1, -e-1, 27] 7.5 × 10−10

[1.5; 42 | -e-1, -e-1, e+1, -6, -9] 8.1 × 10−11

103 5.62254364504 × 10−6

[1.5; 42 | 99, -e-1, e+1] 6.6 × 10−10

104 2.476498555 × 10−5

[0; 45 | 261, -e-1] 7.8 × 10−10

105 3.73281911013 × 10−5

[0; 45 | 6, 6, -30, -6, -6] 2.1 × 10−12

106 5.45398678543 × 10−5

[0; 45 | e+1, -9, 6, -e-1, -30] 4.0 × 10−11

[1.5; 45 | -e-1, -18, e+1] 7.3 × 10−8

107 7.75818387983 × 10−5

[1.5; 45 | -9, e+1, -e-1, e+1, -e-1] 6.5 × 10−7

108 0.000107827447468
[1.5; 45 | -147, -6, e+1] 4.3 × 10−10

109 0.000335518263498
[0; 48 | -6, -e-1, e+1, -e-1, e+1] 1.9 × 10−6
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The Schrödinger equation is derived classically assuming that particles present local
random spatial fluctuations compatible with the presence of the zero-point field. With-
out specifying the forces arising from this permanent matter-field interaction but ex-
ploring its fundamental properties (homogeneity, isotropy and random aspect) to justify
the emergence of the continuity equation in one-particle context, these fluctuations are
described in terms of the probability density. Specifically, the starting point is the as-
sumption that the local activities, which turn the path followed by the particle totally
unpredictable, must be associated with an energy proportional to ∂P/∂t. The polar form
of the wave function, which connects the obtained classical equations with the corre-
sponding quantum equation, emerges as a by-product of the approach.

1 Introduction

The evolution of the wave function in single-particle quantum
systems is described by the Schrödinger equation

− ~
2

2m
∇2ψ + Vψ = i~

∂ψ

∂t
, (1)

where m is the mass and V is a potential. The complex wave
function is generally presented in its polar form

ψ =
√

P exp(iS/~), (2)

where P= |ψ|2 is the probability density, and S/~ is a phase.
Substituting (2) into (1) results in two equations

∂P
∂t

+ ∇ ·
(
P
∇S
m

)
= 0, (3)

and

∂S
∂t

+
(∇S )2

2m
+ V + Q = 0, (4)

where

Q = − ~
2

4m

[∇2P
P
− 1

2
(∇P)2

P2

]
(5)

is known as quantum potential. At the classical limit (~→ 0)
Q vanishes and (4) reduces to the Hamilton-Jacobi equation.
For this reason, Bohm [1] suggested that S is the classical ac-
tion function, which relates to the actual velocity, v =∇S/m,
of the particle. In this way (3) simply expresses the conserva-
tion of probability.

This alternative way of writing the Schrödinger equation
presents advantages as regards its interpretation in terms of
classical variables. However, the problem of ignoring the path
followed by the particle persists. And more, we have an ob-
vious increase in complexity: The Schrödinger equation is a

single function and quite simple, on the other hand, the equa-
tion (4) is somewhat complicated - and still requires the con-
tinuity equation to account local activities. And above all,
thinking that the quantum revolution, highly non-classical,
has its origin in a classical equation with an additional po-
tential is not very easy. In reality, Q is not a traditional po-
tential, but part of the description of the motion, that is, P is
playing the role of a dynamical variable at the same footing
as S . Thus S and P can be said to codetermine each other.
However, in approximate schemes to get information about
quantum systems it can be used as a potential [2].

Equation (4) is referred as stochastic Hamilton-Jacobi-
Bohm equation. Despite the fact that P is unique for a given
quantum system, it is interpreted as a differential equation de-
scribing an ensemble of trajectories. This is grounded in the
fact that the action S was originally defined as a field variable
related with a set of potential trajectories [3].

It is paid much attention to equation (4) and less concern
about (3). From a dynamical point of view, the emergence
of the continuity equation is the most remarkable result: It
highlights the local loss of determinism (∂P/∂t , 0), is valid
for one-particle systems (it was obtained in this way), and
contains inherently the multiple path aspect of quantum sys-
tems [4], exactly how is assigned to equation (4).

Fundamentally, to have ∂P/∂t , 0 (change of probability
at a given position), and thus to justify the emergence of the
equation (3), it is necessary that the particle runs local random
spatial fluctuations. Otherwise, there are local preferences,
and these combined with the dynamics that emanates from
the potential V (deterministic) results in a classical trajectory.
Therefore these fluctuations require the presence of external
forces with special features. Indeed, these forces exist and
are related with the zero-point field (ZPF). They are formally
treated in the context of the stochastic electrodynamics [5,6],
and under certain conditions they may be measured [7, 8].
However, their definition is outside the scope of this work;
just let’s enumerate its indispensable characteristics to justify
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the continuity equation in the context of one-particle dynam-
ics.

The above rewriting of the Schrödinger equation starts
from propositions valid within the quantum formalism and
arrives at seemingly classical equations. What will be done
in the present paper is to follow an inverse path. The starting
point is the fact that the local changes of the probability den-
sity — associated with isotropic random spatial fluctuations
impressed by the ZPF — must be related with an energy.

2 The multi path aspect of the motion

Suppose a particle of mass m performing a motion with ve-
locity v. If the associated probability density P is a continu-
ous function of the coordinates and time, then its dynamical
evolution along the trajectory is given by

dP
dt

=
∂P
∂t

+ v · ∇P, (6)

where ∂P/∂t refers to the change of probability at a given po-
sition, and the second term accounts for the spatial changes.
As P is a probability, then we cannot precise the angle be-
tween ∇P and v. Moreover, in principle, ∇P can show an
isotropic distribution around each position. Indeed, as P is a
conserved quantity, then the change of the probability density
inside a given volume Ω (arbitrary), containing the instanta-
neous position of the particle, must be equal to the probability
flux through a surface A surrounding this volume. Formally,
we have

∂

∂t

∫

Ω

PdΩ = −
∫

A
Pṙ · dA, (7)

where ṙ is a velocity, and the vector field Pṙ represents all
possible probability currents that cross the surface A. Obvi-
ously, if the particle is inside this volume, it emerges follow-
ing one of these possibilities. In accordance with the proper-
ties of the ZPF, the field Pṙ must present an isotropic distri-
bution, however, as the velocity of the particle is dictated by
the dynamics of the system as a whole, then there are some
privileged probability currents (the resulting motion is not a
random walk). According to Green’s theorem and equation
(7), each one of the possible currents obeys

∂P
∂t

+ ∇ · (Pṙ) = 0. (8)

As this process is repeated at all positions where the parti-
cle can be found, linking the successive probability currents,
according to which the particle emerges from each volume Ω,
is defined a path described by the velocity

v =
∇S
m
, (9)

where S is the Hamilton-Jacobi function of one possible path
[3, see p. 36]. Therefore equation (8) must be written as (3).

If the local activities are ignored (classical limit), then the
function S is defined on a single trajectory. This also can be
easily inferred making ∂P/∂t = 0 in equation (7). In this case
the probability flux that enters the volume Ω equals the one
that emerges from it. This means that the particle has only
one possibility (probability current) to leave each successive
volume Ω.

If the external field acts on the particle everywhere (ho-
mogeneously), without preferred directions (isotropic) and in
a totally unpredictable (random) way, that is, like the ZPF,
then we will have a local motion compatible with the con-
tinuity equation. Therefore, as the particle has several pos-
sibilities to leave each position (following one possible cur-
rent Pṙ), this assigns a multi path aspect to the motion. This
means that the particle can travel on each one of them indis-
criminately; there is no preferred path. Note, not having a
preferred path means that all are equally probable. We realize
that this fact is consistent with the formulation of quantum
mechanics in terms of path integrals, where Feynman and Hi-
bbs [4, see p. 28] begin with the following statement: “Now
we can give the quantum-mechanical rule. We must say how
much each trajectory contributes to the total amplitude to go
from a to b. It is not that just the particular path of extreme
action contributes; rather, it is that all the paths contribute.
They contribute in equal amounts to the total amplitude, but
contribute as different phases. The phase of the contribution
from a given path is the action S for that path in units of the
quantum of action ~”. Coincidently, this is a description of the
evolution operator exp (iS/~) (unitary), present in (2), which
is the core of the path integrals.

3 The main proposition

In a classical system, the particles are actuated by forces in
such a way that they move along single predictable trajecto-
ries, and this leads to ∂P/∂t = 0 everywhere (the local activ-
ities are ignored). By other side, if particles are being actu-
ated by a field, with the characteristics pointed above, local
exchange of energy between them occurs in such a way that
∂P/∂t , 0. Admitting that this is a fact, let’s write an effective
stationary action function S e f f that, in addition to describing
a path through the function S , also takes into account the local
activities described in terms of probability density, that is,

S e f f = S + S l, (10)

where S l is a local action that depends only on P. Follow-
ing the same formalism obeyed by the stationary Hamilton’s
function, the energy and momentum of the particle over a pos-
sible path are, respectively, written as

H = −∂S e f f

∂t
= −∂S

∂t
− F

∂P
∂t
, (11)

and
p = ∇S e f f = ∇S + F∇P, (12)
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where F = ∂S l/∂P should be a function of P which must
comply the dynamics of the system. Specifically, this func-
tion must obey the conservation of probability and the lo-
cal conservation of energy (the particle cannot extract energy
from the field indefinitely).

The motion equations of the system can be obtained in the
following way: As S and P are taking values on a volume,
then the average energy of the multi path system need to be
written in the form

H̄ =

∫
d3rPH =

∫
d3rH , (13)

where the integral is taken over whole space. Here,H has the
role of Hamiltonian density. With H given by (11) we have

H̄ =

∫
d3rP

(
−∂S
∂t
− F

∂P
∂t

)
. (14)

As H̄, written in this way, is a functional of the func-
tions S and P, taking the functional derivatives with respect
to these functions, according to the well known rules

δH̄
δξ

=
∂H
∂ξ
− ∂

∂xα

(
∂H

∂(∂ξ/∂xα)

)
, (15)

where xα = x, y, z, t and ξ = S or P, we obtain respectively

δH̄
δS

=
∂P
∂t

(16)

and
δH̄
δP

= −∂S
∂t
. (17)

This shows that the proposition (10) preserves the shapes
of the canonical equations, where S and P behave as dynami-
cal conjugate variables of the canonically transformed Hamil-
tonian H̄ [1].

Taking into account the momentum (12), the energy (11)
can be expressed by

H =
|∇S + F∇P|2

2m
+ V, (18)

then (13) can also be written as

H̄ =

∫
d3rP

( |∇S + F∇P|2
2m

+ V
)
, (19)

and, consequently, the canonical equation (16) takes the form
[
∂P
∂t

+ ∇ ·
(
P
∇S
m

)]
+ (F + PF

′
)
(∇P)2

m
+ PF

∇2P
m

= 0, (20)

where F
′
= ∂F / ∂P. The first term, being the continuity equa-

tion, is zero, and the trivial solution of the resulting equation
gives simultaneously F = cte/P and F = 0. However, if this

trivial solution is valid, F is not defined in the field of real
numbers.

Generalizing the constant to complex numbers, the non
zero solution is written as F = (S 1 + iS 0)/P, where S 1 and
S 0 are real constants (they have dimension of action). Thus,
returning this complex shape of F into (19), from (16), results

[
∂P
∂t

+ ∇ ·
(
P
∇S
m

)]
+ S 1

∇2P
m

= 0, (21)

which shows that probability conservation is obeyed if F is a
pure imaginary (S 1 = 0). As this occurs independently of the
P−1 functionality, then it only justifies the complex aspect of
the trivial solution of (20).

Another evidence that F is pure imaginary comes from
the fact that the momentum (12) is apparently incompatible
with the actual velocity (9); it seems that we should have

v =
∇S
m

+ F
∇P
m
. (22)

In reality, this behavior is not entirely unexpected, since,
as we saw earlier, the actual velocity is the end result of the
system dynamics as a whole, that is, S is also dictated by
the local activities. Therefore, to reconcile these equations, F
shall be such that (9) refers to the real part of (22).

The resulting apparent complex character of the energy
(11) and the momentum (12) is only a stage of the calcula-
tions. In effect, the canonical equations (16) and (17) can
also be obtained even making

∫
d3rP

(
−F

∂P
∂t

)
= 0 (23)

in Eq. (14), which makes the average energy (14) real. How-
ever, this implies that, on average, the exchange of energy
between the particle and the field is zero, meaning that the
energy provided by field is promptly returned to it in equal
amount. This, besides constituting the desired local energy
balance — it can be related with atomic stability [9] — also
puts some insight in the complex shape of the mentioned real
quantities.

In fact, the local energy balance (23) is satisfied by the
trivial solution of (20), expressed by

F =
∂S l

∂P
= ı

S o

P
, (24)

as can be easily verified from the normalization of P. So this
proven the P−1 functionality, which is not achieved only from
probability conservation, as pointed above.

Substituting (24) into (19), results in

H̄ =

∫
d3rP

(
(∇S )2

2m
+

S 2
o

2m
(∇P)2

P2 + V
)
, (25)

which, with the canonical equations (16) and (17), reproduces
the equations (3) and (4), respectively, if S 0 is identified with
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~/2. Therefore, to complete the classical derivation of the
Schrödinger equation, the anzatz (2) must also be obtained in
a classical context. This is the subject of the next section.

4 Parameterization of the equations

Knowing any one of the solutions (one of the paths) of the
motion equations resulting from (25), the energy and momen-
tum at each position, according to the equations (13), (12) and
(24), are, respectively, given by

H = −∂S
∂t
− ıS o

P
∂P
∂t

(26)

and

p = ∇S +
ıS o

P
∇P. (27)

Integrating these partial differential equations (minus a
possible constant), we obtain the following dimensionless
equation

1
2ıS o


∑

i

∫ xi

0
pidxi −

∫ t

0
Hdt

 =
S

2ıS o
+ ln

√
P, (28)

as can be easily verified by following the inverse procedure.
The upper limits of the integrals are the coordinates and time
of the positions occupied by the particle along a possible path,
therefore the left hand side of (28) is a complex function of
these parameters, which will be defined in the following way:

lnψ =
1

2ıS o


∑

i

∫ qi

0
pidqi −

∫ t

0
Edt

 . (29)

As both sides of (28) are independent of the path followed
by the particle, we can write the following relation between
S and P, valid for all paths:

lnψ =
S

2ıS o
+ ln

√
P, (30)

or

ψ =
√

P exp
(

S
2ıS o

)
. (31)

This equation with S 0 = ~/2 is in full agreement with (2).
And more, for constant energy and momentum the function
defined in (29) is a solution of the Schrödinger equation for a
free particle.

Finally, let’s re-write the equations obtained in this work
in terms of ψ. From (30) and its complex conjugate we obtain
the following parametric shapes for S and P:

S =
ı~

2
(
lgψ − lnψ∗

)
(32)

and
P = ψ∗ψ. (33)

Consequently, the equations (25), (26) and (27) can be
re-written, respectively, in the forms:

H̄ =

∫
d3r

(
~2

2m
∇ψ∗ · ∇ψ + ψ∗Vψ

)
, (34)

ı~
∂ψ

∂t
= Hψ, (35)

and
−ı~∇ψ = pψ. (36)

Applying the divergence operator on both sides of equa-
tion (36), allied to fact that p is coordinate independent (it is
independent of the followed path), gives

−ı~∇ · ∇ψ = p · ∇ψ, (37)

and expressing p in terms of the complex conjugate of (36),
we obtain the equality

−ψ∗∇2ψ = ∇ψ∗ · ∇ψ. (38)

Therefore the equation (34) can be written in the well
known quantum form

H̄ =

∫
d3rψ∗

(
− ~

2

2m
∇2 + V

)
ψ. (39)

5 Conclusion

The approach shows that the Schrödinger equation and its ac-
cessory are necessary and natural equations, parameterized
shapes of the complicated — not to say unsolvable — equa-
tions resulting from a classical treatment including a special
field with homogeneous, isotropic and random characteris-
tics.
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The paper introduces a simple quantum model to calculate in a general way allowed
frequencies and energy levels of the anharmonic oscillator. The theoretical basis of
the approach has been introduced in two early papers aimed to infer the properties of
quantum systems exploiting the uncertainty principle only. Although for clarity the
anharmonic oscillator is described having in mind the lattice oscillations of atoms/ions,
the quantum formalism of the model and approach have general character and can be
extended to any oscillating system. The results show that the harmonic energy levels
split into a complex system of anharmonic energy levels dependent upon the number of
terms of the Hamiltonian that describes the anharmonicity.

1 Introduction

The anharmonic phenomena, well known in physics [1], re-
gard a wide range of properties of practical and theoretical
interest; e.g. in acoustics they account for large variations of
sound velocity in solids [2], in optics for non-linear interac-
tion of powerful light with lattice vibrations [3]. Moreover are
known physical effects that lead to a behavior impossible in
harmonic oscillators, like the “foldover effect” [4] and “super-
harmonic resonance” [5]; both are due to the dependency of
the eigenfrequency of nonlinear oscillators on the amplitude
and to the non-harmoniticity of the oscillations. In solid state
physics, non-linear effects occur when atoms consisting of a
positively charged nucleus surrounded by a cloud of electrons
are subjected to an electric field; the displacement of nucleus
and electrons causes an electric dipole moment, whose inter-
action with the applied field is linear for small field intensities
only [6].

The present paper aims to propose a quantum mechani-
cal approach to tackle the problem of non-harmonic oscilla-
tions in a general way, i.e. regardless of the particular issue of
specific interest, and in line with the concepts introduced in
two papers [7,8] concerning simple quantum systems, many-
electron atoms/ions and diatomic molecules. The basic idea
of these papers starts from a critical review of the concepts
of positions and momenta of interacting particles in a quan-
tum system, where the dynamical variables are perturbed in
a complex way by mutual interactions and change within ap-
propriate ranges of values in agreement with boundary con-
ditions like the minimum total energy.

Consider for instance the hydrogenlike atoms. It is rea-
sonable to regard radial momentum pρ and distance ρ be-
tween electron and nucleus as variables included within
proper ranges of values; so it is certainly possible to write
0 < ρ ≤ ∆ρ and 0 < pρ ≤ ∆pρ if ∆ρ and ∆pρ have arbi-
trary sizes, including even the chance of infinite sizes. The
only basic hypothesis of the quoted papers was that in gen-
eral any ranges of conjugate dynamical variables ∆x and ∆px

have physical meaning of quantum uncertainty ranges, thus to

be regarded according to the basic ideas of quantum statistics;
hence

∆x∆px = n~, (1.1)

with n arbitrary integer.
No hypothesis is necessary about ∆x and ∆px, which are

by definition arbitrary, unknown and unpredictable. Eq. (1.1)
was the unique assumption in [7, 8] and does so also in the
model proposed here. Despite the apparently agnostic char-
acter of eq. (1.1), the results inferred in the quoted papers
were in all cases completely analogous to that of the usual
wave mechanics formalism; in particular it was found that
the quantum numbers actually coincide with the numbers of
allowed states in the phase space for the concerned systems.
Eq. (1.1) only is enough to give the classical Hamiltonian,
Hcl, the physical meaning of quantum Hamiltonian, Hq; it
simply requires considering the ranges of dynamical variables
rather than the dynamical variables themselves, which are
therefore disregarded since the beginning. For instance, in
a one-dimensional problem like that of a mass constrained to
oscillate along a fixed direction, it means that hold the posi-
tions

Hcl(x, px)⇒ Hq(∆x,∆px)⇒ Hq(∆px, n). (1.2)

The uncertainty is regarded in this way as fundamental
principle of nature rather than as mere consequence of com-
mutation rules of quantum operators. The case of the har-
monic oscillator, already introduced in [7], has central impor-
tance here; its quantum formulation according to eq. (1.1)
and positions (1.2) is so short and simple that it is sketched
in the next section 2 to make the present paper clearer and
self-consistent.

The next section aims also to emphasize how the concepts
so far introduced enable the quantum approach. For clarity
the anharmonic oscillator is regarded in section 3 having in
mind the lattice oscillations of atoms/ions, yet through a very
general approach that can be extended to any quantum sys-
tem. The discussion on the results of the model and the con-
clusion are reported in sections 4 and 5.
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2 The harmonic oscillator

With the positions 1,2, the classical energy equation E =
p2/2m + khar(x − xo)2/2 of the oscillating mass around the
equilibrium position xo reads ∆E = ∆p2/2m+khar∆x2/2, hav-
ing omitted for simplicity the subscript x; owing to eq. (1.1),
E = E(∆p, n) is now because of n a random quantity within
an energy range ∆E that corresponds to local uncertainty of
dynamical variables within ∆x and ∆p. Both these latter and
∆E are assumed positive by definition. Then, one finds

∆E =
∆p2

2m
+

m(n~ωhar)2/2
∆p2 , ω2

har =
khar

m
. (2.1)

Eq. (2.1) has a minimum as a function of ∆p, i.e.

∆pmin =
√

mn~ωhar, ∆Emin = n~ωhar, (2.2)

being now n the number of vibrational states. Although for
n = 0 there are no vibrational states, the necessity that ∆p , 0
compels ∆E , 0 and thus ∆E0 = ∆p2

0/2m , 0 with ∆p0 =

∆pmin(n = 0). In this particular case, the problem reduces to
that of a free particle in the box, i.e. ∆p0 is related to the zero
point energy. This requires ∆p0 = ∆pmin(n = 1), because the
minimum quantum uncertainty of ∆p can be nothing else but
that of ∆pmin for n = 1. The numerical correspondence be-
tween non-vibrational momentum range, ∆p0, and first vibra-
tional momentum range, ∆pmin(n = 1), means that at the zero
point energy state the mass m is delocalized in a space range,
∆x0 = ∆x(n = 0), equal to that, ∆x(n = 1), pertinent to the
lowest vibrational state. In other words, the oscillation am-
plitude at the ground energy level is the same as the delocal-
ization range size of the particle with zero point energy only.
Hence ∆p0 =

√
m~ωhar defines E0 = ∆p2

0/2m = ~ω/2. The
minimum of ∆E must be ∆Emin = Emin − ~ωhar/2; then, re-
garding Emin = Ehar as the harmonic energy level, the known
result

Ehar = n~ωhar +
~ωhar

2
(2.3)

is obtained considering uncertainty ranges of eq. (1.1) only,
and without any further hypothesis. Note that with ∆p =
∆phar

∆p2

2m
=
ω2

harmn2~2

2∆p2 =
n~ωhar

2
,

in agreement with the virial theorem as Emin is given by the
sum of kinetic and potential terms, whereas the zero point
term has kinetic character only. Also note in this respect that
∆pmin and ∆p0 are merely particular range sizes, among all
the ones allowed in principle, fulfilling the condition of min-
imum Emin and E0.

These results do not contradict the complete arbitrariness
of ∆p and ∆x, since in principle there is no compelling rea-
son to regard the particular ranges of eqs. (2.2) in a different
way with respect to all the other ones allowed by eq. (1.1);
rather the results merely show the preferential propensity of

nature for the states of minimum energy. In effect it is not
surprising that the energy calculated with extremal values of
dynamical variables in the ranges of eq. (2.1) does not coin-
cide, in general, with the most probable energy. In conclu-
sion, this example highlights that the physical properties of
a quantum system can be inferred without solving any wave
equation simply replacing the local dynamical variables with
the respective quantum uncertainty ranges: the key problem
becomes then that of counting correctly case by case the ap-
propriate number of allowed states, as shown in [7,8] for more
complex quantum systems.

It appears that, once accepting the eq. (1.1) and the conse-
quent positions 1,2, have actual physical meaning the uncer-
tainty ranges rather than the dynamical variables themselves;
these latter are considered here random, unknown and unpre-
dictable within the respective ranges and thus are disregarded
since the beginning when formulating the physical problem.
Just this is the essence of eq. (2.1). Eventually note that the
vibrational quantum number n appears to be here the num-
ber of quantum states allowed to the oscillator. Since the
present approach gives sensible results for harmonic oscil-
lations, there is no reason to exclude that the same holds for
anharmonic oscillations as well. The next paragraph aims to
generalize the kind of approach just introduced to the case of
anharmonic oscillations.

3 The anharmonic oscillator

The classical Hamiltonian reads now

E = p2/2m +
N∑

i=2

a′i(n~)
−i(x − xo)i, (3.1)

being N the arbitrary number of terms of the series including
quadratic and anharmonic terms and a′i proper coefficients as-
sumed known; indeed the values of these coefficients charac-
terize distinctively the specific kind of oscillating system. The
signs of a′3 and a′4 are taken here negative [9]; the former ex-
presses the asymmetry of the mutual repulsion between atoms
or ions, e.g. in a metallic lattice, the latter describes the soft-
ening of the vibration at large amplitudes. The higher order
terms allow to describe these effects in a more general way, so
their sign and values must agree with the idea that the global
consequence of anharmonicity is to lower the potential en-
ergy of oscillation; indeed the potential energy reads a′2(x −
xo)2 f (x), i.e. it consists of a quadratic term with x-dependent
correction factor f (x) = 1 +

∑N
i=3(a′i/a

′
2)(x − xo)i−2 < 1.

By analogy with the harmonic case, the coefficient of the
quadratic term, anyway related to the force constant kan, is
reasonably expected to have still the form m(n~ωan)2/2 with
oscillation frequency defined now by ω2

an = kan/m. Moreover
the dependence of this term on ωan suggests that in general
a′i = a′i(ωan) are to be expected as well.

The following discussion aims to guess this dependence
and the relationship between ωan and ωhar through the same
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approach shown previously; so, as done in section 2, we aim
to calculate ∆Emin and infer next the anharmonic vibrational
levels Ean and zero point energy E0, being clearly ∆Emin =

Emin − E0 and Ean = Emin.
According to the position (1.2) and eq. (1.1), the quantum

energy equation corresponding to eq. (3.1) reads

∆E =
∆p2

2m
+

N∑
i=2

a′i
∆pi . (3.2)

This equation, minimized with respect to the range ∆p,
yields

∆pmin = m
N∑

i=2

ia′i∆p−(i+1)
min , (3.3)

being

∆Emin = ∆E(∆pmin), ∆pmin = ∆pmin(ωan).

For assigned coefficients a′i , the first equation admits in
general N + 2 solutions ∆pmin, some of which can be how-
ever imaginary. Being the momentum uncertainty range ∆p
real positive by definition, let I′ ≤ N + 2 be the number of
positive real roots; so I′ possible values of ∆pmin describe
the allowed momentum ranges of the oscillating particle that
fulfil the minimum condition. A further limitation to these
values is that the series must converge. Disregard also the
values of ∆pmin that with the given a′i possibly do not ful-
fil the inequality

∣∣∣(i + 1)a′i+1∆p−(i+2)
min

∣∣∣ << ∣∣∣ia′i∆p−(i+1)
min

∣∣∣ inferred
from eq. (3.2), i.e. ∣∣∣a′i+1

∣∣∣ << ∣∣∣a′i∆pmin
∣∣∣ . (3.4)

Then I ≤ I′ is the number of real roots of physical interest
to be considered in the following. Trivial manipulations of eq.
(3.2) to eliminate m with the help of eq. (3.3) yield

∆E =
1
2

(
∆p
∆pmin

)2 N∑
i=2

ia′i
∆pi

min

+

N∑
i=2

a′i
∆pi . (3.5)

To extract the allowed physical information from this
equation one should minimize with respect to ∆p and then
proceed as shown in the harmonic case. Actually this mini-
mum condition has been already exploited to infer eq. (3.3)
itself, which suggests that eq. (3.5) should not need being
minimized once more. To understand this point replace ∆p
with ∆pmin in eq. (3.5) and consider first the resulting equa-
tion ∆E(∆pmin) =

∑N
i=2(1+ i/2)a′i∆p−i

min in the harmonic case;
then N = 2, i.e. a′i>2 = 0, yields 3a′2∆p−2

min/2. By comparison
with eq. (2.1) this result takes a more familiar form replacing
a′2 with a2∆p4

min/m where a2 is a dimensionless proportional-
ity coefficient linking a′2 and ∆pmin; in this way one obtains

∆E(∆pmin) =
3a2∆p2

min

2m
,

which has the same form of eqs. (2.2) a proportionality fac-
tor apart. As expected, an immediate connection with the
harmonic case is possible uniquely on the basis of the con-
dition 3,3 without introducing explicitly neither ωhar nor the
equations of ∆phar and ∆Ehar. Express thus in general the
coefficients a′i as a function of ∆pmin as follows

a′i =
∆pi+2

min

m
ai,

N∑
i=2

iai = 1, 1 ≤ j ≤ I (3.6)

where ai are new constants that fulfil the boundary condi-
tion expressed by the second equation, straightforward conse-
quence of eq. (3.3). Note that a′i are uniquely defined for the
specific oscillating system, whereas the appropriate notation
of the various ai should be a( j)

i to emphasize that a set of these
coefficients is defined by each solution ∆p( j)

min of physical in-
terest calculated through eq. (3.3). This would also compel
indicating in eq. (3.5) ∆E( j) and then ∆E( j)

min. To simplify the
notations the superscript ( j) will be omitted, stressing how-
ever once for all that if N > 2 then eq. (3.5) actually rep-
resents anyone among I admissible equations. Replacing a′i
into the energy equation (3.5), one finds

∆E =

( ∆p
∆pm

)2 1
2
+

N∑
i=2

ai

(
∆pm

∆p

)i ∆p2
min

m
.

This suggests putting

q
∆E
∆Emin

=
1
2

(
∆p
∆pmin

)2

+

N∑
i=2

ai

(
∆pmin

∆p

)i

, (3.7)

∆Emin = q
∆p2

min

m
, a2 =

1
2

1 − N∑
i=3

iai

 .
The proportionality factor q aims to fulfil the reasonable

condition ∆E = ∆Emin for ∆p = ∆pmin and express in a gen-
eral way the expected link between ∆Emin and ∆p2

min/m. Triv-
ial calculations yield

q = 1 +
N∑

i=3

(1 − i/2)ai. (3.8)

Of course q must be intended here as q( j) likewise as a( j)
i .

Whatever ai might be, eq. (3.7) does not need being min-
imized; it simply expresses as a function of ∆p/∆pmin the
energy deviation from the harmonic condition for assigned
values of the coefficients a′i≥2 , 0. Eq. (3.7) and a2 are
uniquely defined in the particular case ai>2 = 0 only, which
corresponds to q = 1 as well. Moreover the form of the sec-
ond equation, analogous to that of eqs. (2.2), suggests that
∆pmin and ∆Emin must be also equal or proportional to the
respective harmonic quantities ∆phar and ∆Ehar. So putting
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in general ∆Emin = w
2∆Ehar and ∆pmin = w∆phar, with w

proportionality factor, one finds

q
w2

∆E
∆Ehar

=
1

2w2

(
∆p
∆phar

)2

+

N∑
i=2

aiw
i
(
∆phar

∆p

)i

, (3.9)

ωan = w
2ωhar.

Likewise q, also w must be intended in general as w( j). So
eqs. (3.9) define I anharmonic frequencies ω( j)

an , ωhar, here
designated shortlyωan, corresponding to the unique harmonic
frequency ωhar; i.e. the various ∆Emin describe the splitting
of each n-th vibrational energy level n~ωhar. The anharmonic
potential of eq. (3.9) is expected to depend upon ωan through
the dimensionless coefficients ai, by analogy with the depen-
dence of the harmonic term upon ω2

har. Thus, to complete the
task of the present section it is necessary: (i) to define the fac-
tor w of eq. (3.9); (ii) to highlight the analytical form of the
functions ai = ai(ωan); (iii) to express the potential energy of
equation (3.9) as a function of ωan through these coefficients.

Rewrite to this purpose the coefficients of eq. (3.2) as
shown in following series

q∆E =
1
2
∆p2

m
+

N∑
i=2

a′′i
mi/2(n~ωan)i/2+1

∆pi , (3.10)

where the powers of n~ωan and m have been determined by
dimensional consistency of the various terms with both ∆E
and ∆pi. Minimizing with respect to ∆p and equating to zero,
one finds

RE =
1
2

R2
p +

N∑
i=2

a′′i R−i
p , (3.11)

where

RE = q
∆E
∆Ehar

, Rp =
∆p
∆phar

, a′′i = aiw
i+2.

With the coefficients a′′i and ai linked by the last posi-
tion, eq. 3,(11) is identical to eq. (3.9); this consistency sup-
ports therefore the positions of both eqs. (3.6) and (3.10). To
specify w put first N = 2 in eq. (3.9); minimizing R2

p/2w
2 +

a2w
2/R2

p with respect to Rp yields R4
p = 2a2w

4. Since the
minimum of Rp can be nothing else but 1 by definition, w =
(2a2)−1/4 yields w = 1, whereas in this particular case a2 =

1/2. As expected, eq. (3.9) is thus uniquely defined for
ai>2 = 0 only. Note that the coefficient of the quadratic term
of eq. (3.10) reads a′′2 m(n~ωan)2; if the result w = (2a2)−1/4

previously obtained for N = 2 still holds for any N with
a2 given now by the last eq. (3.7), then a′′2 = a2w

4 yields
a′′2 = 1/2 and thus the expected form m(n~ωan)2/2 formerly
quoted whatever ai>2 might be.

This consideration encourages one to conclude with the
help of eq. (3.7)

w2 = (2a2)−1/2 =

1 − N∑
i=3

iai

−1/2

,

a′′i = ai

1 − N∑
i=3

iai

−i/4−1/2

.

Replacing a′′i in eq. (3.10) one finds

∆E =
1
2q
∆p2

m
+

+

N∑
i=2

q−1ai
mi/2(n~ωhar)i/2+1

∆pi

1 − N∑
i=3

iai

−
3
4 (i+2)

.

(3.12)

This is the sought generalization of eq. (2.1) when a′i>2 ,
0; the positions so far introduced link eq. (3.2) with the har-
monic case. Moreover eq. (3.9) yields

ωan =

1 − N∑
i=3

iai

−1/2

ωhar. (3.13)

With the given choice of w2, therefore, ai≥3 = 0 yield not
only ωan = ωhar but also ∆pmin = ∆phar and ∆Emin = ∆Ehar.
Hence

∆Emin = n~ωan =

1 − N∑
i=3

iai

−1/2

n~ωhar, (3.14)

∆pmin =
√

mn~ωan =

1 − N∑
i=3

iai

−1/4 √
mn~ωhar.

As concerns the zero point energy E0 hold the consid-
erations of the previous section, i.e. ∆Emin = Emin − E0;
moreover also now for n = 0 the minimum of eq. (3.12)
reduces to ∆p2

0/2qm, with ∆p2
0 = ∆p2

min(n = 0). As ex-
plained before, even in lack of vibrational states ∆pmin , 0
compels putting ∆p0 = ∆p(0)

min(n = 1) by virtue of eq. (3.14)

so that E0 =

(
1 −

N∑
i=3

ia(0)
i

)−1/2

~ωhar/2q; since in general are

allowed several values of ∆pmin, the notation emphasizes that
one must consider here the set of values of a( j)

i corresponding
to the smallest among the various ∆p( j)

min.
In conclusion, since the anharmonic energy and momen-

tum must correspond to the respective ∆Emin and ∆pmin, it is
possible to summarize the previous results, with full notation
for clarity, as follows with the help of eq. (3.8)

E( j)
an =

1 − N∑
i=3

ia( j)
i

−1/2

n( j)~ωhar+

+
1
2

1 + N∑
i=3

(1 − i/2)a(0)
i

−11 − N∑
i=3

ia(0)
i

−1/2

~ωhar,

(3.15)

with
1 ≤ j ≤ I,
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∆p( j)
an =

1 − N∑
i=3

ia( j)
i

−1/4 √
mn( j)~ωhar,

ω
( j)
an =

1 − N∑
i=3

ia( j)
i

−1/2

ωhar,

a( j)
i =

ma′i(
∆p( j)

min

)i+2 .

4 Discussion

The strategy of the papers [7, 8] to exploit via eq. (1.1) the
classical Hamiltonians of the system of interest was outlined
in section 2 and then extended in section 3 to the anharmonic
case. The first task of the discussion aims to clarify the clas-
sical and quantum ways to regard the harmonic and anhar-
monic oscillation. The classical potential energy of eq. (3.1),
Ucl = Ucl(x− xo), concerns a withholding force progressively
increasing as a function of x − xo while the oscillation turns
gradually from harmonic into anharmonic behaviour. More-
over if momentum and position of m are both exactly known,
Ucl can be defined with arbitrary accuracy simply increasing
the number of terms of the series.

This description is clearly inadequate for the potential en-
ergy, Uq = Uq(∆p, n), of the quantum eq. (3.2); in principle
the exact elongation of m with respect to the rest position and
the corresponding momentum are not jointly specifiable, i.e.
the limit ∆x → 0 could not be described by finite values of
∆pmin. Indeed ∆pmin → ∞ compels ∆p → ∞ that yields
∆E = ∆p2/2m regardless of a′i ; this limit corresponds to the
classical case of a free particle in a one-dimensional box, of
no interest here, rather than to the harmonic limit expected
for ∆x→ 0. Eventually the quantum uncertainty compels re-
garding in a different way also the number of terms of Ucl and
of Uq: in the former case N is in principle arbitrary, being sig-
nificant its actual ability to provide a description as detailed
as possible of the local state of motion of m, in the latter case
does not, being instead significant its actual ability to intro-
duce the allowed physical information into the system.

If for instance the model aims to describe softening and
asymmetry effects only, then are justified terms like ∆xi with
powers and signs [9] pertinent to these effects only. Solving
eq. (3.1) requires exploiting the functional relationship Ucl

upon ∆x through numerical methods, solving eq. (3.2) re-
quires instead a different reasoning because the anharmonic
effects inherent the various ∆xi are related to the respective
∆p−i through eq. (1.1) only: the previous results show that
a general physical principle, the minimum energy, is enough
to this purpose. According to the classical eq. (3.1) the har-
monicity requires a′i≥3∆xi << a′2∆x2 in agreement with the
convergence condition (3.4); the quantum eq. (3.2) requires
a′i≥3∆p−i << a′2∆p−2, which is still a statement of “small” os-
cillation amplitudes since a′i∆p−i ∝ a′i∆xi. Both definitions

are thus equivalent, yet the latter is more interesting because
it involves eq. (1.1) and allows further considerations on the
classical and quantum concepts of harmonicity. Eq. (3.4) and
the first eq. (3.3) yield for i ≥ 3

a′i≥3∆p−i << a′2∆p−2 ⇒ ai

(
∆pmin

∆p

)i

<< a2

(
∆pmin

∆p

)2

.

Noting that ∆p is arbitrary by assumption and that ∆pmin
≤ ∆p by definition, it turns out that the second inequality can
be merely fulfilled by ∆p/∆pmin >> 1 regardless of the val-
ues of the ratios a2/ai and a′2/a

′
i . Since in principle a′i only are

required to fulfil the convergence condition (3.4), whereas the
values of ai are ineffective in this respect because their values
are consequently defined in the successive eq. (3.6) only, the
conclusion is that small oscillation amplitudes do not require
necessarily vanishing ai>2. According to eq. (3.13), how-
ever, just these latter define w that in turn control ωan and
thus the splitting of energy levels. The fact that in general
w ≡ w( j) , 1 even for small oscillations supports the idea
that the quantum harmonicity is a particular case, but not a
limit case, of the quantum anharmonicity; in other words, an
oscillating quantum system does not change gradually from
harmonic to anharmonic behaviour.

This conclusion is confirmed also considering the depen-
dence of the constants w on ai. In eq. (3.6) large values of
∆pmin entail small ai and thus w such that the correspond-
ing allowed frequencies ωan are expected to have values sim-
ilar to ωhar; the contrary holds for small values of ∆pmin, to
which correspond larger values of w and therefore larger gaps
ωan − ωhar.

Hence, when considering the totality of allowed frequen-
cies consistent with the different sizes of all ranges ∆pmin,
even small values of a′i classically compatible with the har-
monic condition entail anyway relevant splitting and gap of
energy levels with respect to ωhar typical of the anharmonic-
ity; otherwise stated, the quantum harmonicity requires a′i≥3 =

0 exactly. The harmonic ground level is a reference energy
rather than an attainable limit energy because fails the classi-
cal expectation of anharmonic frequencies progressively de-
viating from ωhar along with a′i ; the last eq. (3.7) shows in-
deed that even the first quadratic coefficient a2 of potential
energy differs from the corresponding harmonic coefficient
unless ai≥3 = 0. It is also significant the fact that the unique
ωhar, classically defined in eq. (2.1) through the force con-
stant khar of Hooke law only, never corresponds to a unique
ωan whatever a′i≥3 , 0 might be; this latter, although formally
introduced in the early eq. (3.3) as ω2

an = kan/m, has quan-
tum character after being subsequently redefined by eq. (3.9)
through the multiplicity of values of w.

It is however worth noting in this respect a further chance
to define the oscillation frequency in a mere quantum way
through an uncertainty equation having a form seemingly dif-
ferent but conceptually equivalent to eq. (1.1). Introduce the
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time range ∆t necessary to displace m by ∆x with finite aver-
age velocity vx; defining then ∆t = ∆x/vx and ∆E = ∆pvx, eq.
(1.1) takes a form that introduces new dynamical variables
t and E having random, unpredictable and unknown values
within the respective uncertainty ranges defined by the same
n~. Of course ∆t and ∆E are completely arbitrary, as they
must be, likewise ∆x and vx. Thus, with the constrain of equal
n, eq. (1.1) reads equivalently as

∆E∆t = n~, ∆t = t − to, (4.1)

being the constant to the arbitrary origin of time coordinates.
Eq. (4.1) is not a trivial copy of eq. (1.1): it introduces new
information through vx and shows that during successive time
steps ∆t the energy ranges ∆E change randomly and unpre-
dictably depending on n. Of course the eq. (1.1) could have
been inferred itself in the same way from eq. (4.1), i.e. re-
garding this latter as the fundamental statement. Relating eqs.
(1.1) and (4.1) via the same arbitrary integer n, whatever it
might be, means describing the oscillation of m through en-
ergy and time uncertainty ranges. This is equivalent to say
that the time coordinate is regarded in an analogous way as
the space coordinate hitherto concerned.

To show the consequences of this assertion, consider that
1/∆t has in general physical dimensions of frequency; then
eq. (4.1) can be rewritten as ∆En = n~ω§, being ω§ a function
somehow related to any frequency ω. If in particular ω§ is
specified to be just the previous frequency ωhar, whatever the
value of this latter might be, eq. (4.1) reads

∆En = n~ωhar. (4.2)

The notation emphasizes that the particular case ω§ ≡
ωhar enables a direct conceptual link with eq. (2.3), i.e. it
concerns the harmonicity; having found that n is according to
eq. (1.1) the number of vibrational states of the oscillator and
n~ωhar their energy levels, then without need of minimizing
anything one infers that ∆En is again the energy gap between
the n-th excited state of the harmonic oscillator and its ground
state of zero point energy; the condition of minimum energy
and ∆pmin are now replaced by the specific meaning of ∆t.

This conclusion shows that a particular property of the
oscillating system is correlated to a particular property of the
uncertainty ranges, thus confirming the actual physical mean-
ing of these latter. So En falling within ∆En are still now
random, unpredictable and unknown because of n. While
ωhar was formerly defined by the formal position 2,1, now
eq. (4.1) reveals its actual quantum meaning due to its direct
link with the time uncertainty ∆t.

This last result is significant for the present discussion: it
justifies the different outcomes of the quantum approach with
respect to the classical expectation in terms of uncertainty
about the dynamical variables of m only; thus, as shown in [7,
8], this result disregards any phenomenological/classical hint
to describe the system. In other words, instead of thinking to

a withholding spring bound to a mass moving back and forth,
the oscillation can be imagined in a more abstract way. It is
enough to introduce an arbitrary energy range ∆En to which
corresponds a respective quantum frequency 1/∆tn; then the
form of eq. (1.1) is suitable to introduce an appropriate po-
tential energy with elongation extent described by a unique
quadratic term or by a series of terms, whose coefficients are
respectively expressed as a function of ωhar or ωan like in eqs.
(2.1) or (3.10).

The worth of this conclusion is due to the generality of
the resulting concept of oscillation, which skips any informa-
tion on actual kind of motion of m, particular property of the
oscillating mass, specific nature of the withholding force and
hypothesis on the allowed range of frequencies. Both time
and space uncertainties allow thus to describe an oscillating
system in a fully quantum way, without writing and solving
its wave equation. The previous results highlight the link of
the allowed frequencies to the terms of Uq, see in particu-
lar the remarks about eqs. (3.5) and 3,13. A consequence
of this point of view is that replacing Ucl with Uq compels
the existence of several momentum uncertainty ranges ∆pmin
and thus of as many ωan even when one would expect a mere
perturbation of the unique ωhar: the physical information pro-
vided by the quadratic term only is uniquely defined, instead
the various values of ∆pmin and ωan for N > 2 in eq. (3.2)
reveal according to the last eq. (3.7) multiple anharmonic
effects that influence also the quadratic term. The quantum
uncertainty is therefore crucial in describing the oscillation.

For instance let us show that, at least for certain frequen-
cies, the anharmonic oscillator appears to be a system intrin-
sically unstable. Let i be the index of any high order term of
the series such that a′i/∆pi << a′2/∆p2 is true by definition
because of the convergence condition; so a′i/∆pi represents
a small contribution to the total energy of oscillation. Let
δa′i/∆pi be its value altered by the change of the coefficient
ai because of an external perturbation acting on the oscilla-
tor; if for instance an impurity diffuses through the lattice in
proximity of the given oscillating atom/ion, the stress field
around this impurity or its possible charge field reasonably
modify the local repulsion between atoms/ions or the soften-
ing effects at large oscillation amplitudes, as a consequence of
which the anharmonic coefficients a′3 and/or a′4 are expected
to change.

Let us exemplify any perturbation like this through a suit-
able change of some a′i of the i-th energy terms in eq. (3.2);
here however we consider for simplicity one term only to de-
scribe the local effect. The proof that some ∆pmin and result-
ing ∆Emin are strongly affected even by a very small change
of any a′i>2 is easy in the particular case where the series de-
scribing the potential energy converges very quickly. Differ-
entiating eq. (3.6) one finds

δa′i = a′i

(
(i + 2)

δ∆pmin

∆pmin
+
δai

ai

)
.
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Fix the value of δa′i ; if the local perturbation of the lattice
affects a′i in such a way that δa′i >> a′i , i.e. it alters signifi-
cantly ai, then the quantity in parenthesis is very large. If this
happens while holds for δa′i also the condition δa′i/∆pi <<
a′2/∆p2, still possible because no hypothesis has been made
on the strength of the perturbation, then considering that the
quadratic term provides the most essential contribution to the
total potential energy the result is: even a small perturbation
δa′i/∆pi of the whole oscillation energy is able to change sig-
nificantly both ∆pmin and ai that define ωan, see eqs. (3.13) to
(3.15). The altered size of the range ∆pmin, actually verified
by preliminary numerical simulations carried out with coeffi-
cients a′i arbitrarily chosen to match the aforesaid condition,
means in particular that the whole energy of the system ad-
mits not only a different ωan allowed to the oscillator but also
a larger range of corresponding momenta pmin allowed to m;
this does not exclude even the chance of chaotic motion re-
lated to a random sequence of values ωan during a weak per-
turbation transient due to the diffusing impurity.

The reason of such instability rests once again on the dif-
ferent way of regarding the oscillation amplitudes in classical
and quantum physics. The former admits the limit ∆x → 0
regardless of ∆p, the latter does not; so the quantum oscilla-
tion range of physical interest cannot be arbitrarily small or
change arbitrarily without violating the crucial condition of
minimum energy. Indeed the oscillation range sizes corre-
sponding to the vibrational levels are quantized themselves

∆xmin =

√
n~
ωanm

, ∆x0 =

√
~

ω(0)
an m
.

At this point it is worth remembering what has been previ-
ously emphasized, i.e. that the sizes of the ranges ∆x and ∆p
are unspecified and indefinable; ∆xmin and ∆pmin are merely
particular values showing the propensity of nature to fulfil
the condition of minimum energy, however without contra-
dicting the assumption that the uncertainty ranges are in prin-
ciple completely arbitrary. So oscillation ranges that do not
fulfil the former condition are certainly possible but unstable
because of mere quantum reasons, i.e. they do not correspond
to momentum range sizes that minimize the oscillation energy
levels.

This conclusion is important because its validity follows
uniquely from the assumption of convergence of the potential
series only, i.e. it concerns a realistic condition effectively
possible for the oscillator rather than an unusual and improb-
able limit case. Also, this result holds whatever the origin
of the anharmonicity might be and confirms the physical di-
versity of harmonic and anharmonic quantum systems. Note
however that the former is actually an ideal abstraction only;
what can be expected in practice is a strong or weak anhar-
monicity, unless some specific physical reason requires just a
potential energy with quadratic term only. So the results of
the present approach should be regarded as the realistic be-

haviour of any oscillating system, rather than a sophisticated
improvement of the naive harmonic behaviour; now this latter
appears thus in general reductive and incomplete, rather than
merely approximate. Yet eq. (3.15) shows that the zero point
energy is formally analogous in both cases, a numerical dif-
ference apart: the only difference between the harmonic and
anharmonic cases is that instead of considering the unique
~ωhar/2 one must select the smallest ω( j)

an to calculate ~ω(0)
an /2.

Note eventually that easy considerations allow to general-
ize the concept of perturbed oscillator in the conceptual frame
of the present model. So far the present approach aimed to in-
troduce the terms a3 and a4 to account for the anharmonicity,
so that eqs. (3.2) to (3.15) tacitly assume an isolated oscillat-
ing system. Simple considerations however allow to further
generalize the physical meaning of eq. (3.2) taking advan-
tage of the fact that the present model works with a number
of high order terms in principle arbitrary. In particular coef-
ficients and number of terms could be exploited to describe
even an oscillating system perturbed by an external force, for
instance due to the interaction with other oscillators; indeed
this force can be certainly described as a series development
having the form

∑
a′′i ∆xi if it is related, in the most general

case non-linearly, to the displacement extent of the oscillating
mass. Of course i can be even negative if the force vanishes at
infinite distance. So, whatever the nature of the perturbation
might be, this means that the potential energy of the system
changes by an additional amount −∑

a′′i (1 + i)−1∆xi+1 to be
summed up with the corresponding terms of eq. (3.1). In
any case, however, adding an arbitrary number of such en-
ergy terms to those intrinsically characterizing the oscillator
does not change in principle the approach so far exposed, ex-
cept of course the numerical value of the various ai of eq.
(3.9), which are now replaced by the sum a′′i +a′i for each i-th
power of oscillation elongation. So nothing hinders to regard
the energy range ∆Ean of this equation as ∆Ean+pert still nor-
malized to that of an isolated harmonic oscillator; it is enough
that the coefficients a′i up to the N-th order are still known,
i.e. defined by the particular kind of oscillating system and
external perturbation, yet without necessarily assuming any
constrain on their signs, now determined by the sum of both
effects. Even in the case where the force is described by terms
like α′/∆xi one would find an equation like (3.2) containing
however terms like a′k∆pk with k > 2. Also in this case, mini-
mizing with respect to ∆p would yield an appropriate number
of roots ∆pmin and thus prospective conclusions in principle
completely analogous to that previously carried out. In the
present case holds therefore the following position

ωan+pertTw2ωhar.

As expected, the previous scheme of vibrational levels is
modified the external perturbation that affects w. This last re-
sult confirms the very general character of the way to describe
any oscillating system simply with the help of the fundamen-
tal eq. (1.1).
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5 Conclusion

The computational scheme introduced in the present paper is
very simple: the most important achievements hitherto ex-
posed do not require numerical calculations, but are conse-
quence of general considerations on basic concepts of quan-
tum mechanics. The general character of the approach, e.g.
due to the arbitrary number N of anharmonic terms, and the
possibility of extension to the case of a perturbed oscillator,
propose the model as a useful tool in a broad variety of phys-
ical problems.
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Gravity and the Conservation of Energy
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The Schwarzschild metric apportions the energy equivalence of a mass into a time com-
ponent, a space component and a gravitational component. This apportionment indi-
cates there is a source of gravitational energy as well as a limit to the magnitude of
gravitational energy.

1 Introduction

Albert Einstein asserted that his field equations are in essence
a restatement of the conservation of energy and momentum
[1, pp. 145–149]. Every solution of the field equations, there-
fore, must account for all energy in the system described by
the solution. How do solutions to the field equations account
for gravitational energy?

This paper explains how within Schwarzschild’s solution
[2] to Einstein’s field equations the effects of gravity can be
represented as a velocity and as an apportionment of mass-
energy equivalence. This allows an accounting for gravita-
tional energy as part of mass-energy equivalence.

The paper first considers a spacetime without gravity, as
described by the Minkowski metric. The Minkowski metric
can be rewritten as a summation of velocities and as an ap-
portionment of energy equivalence.

The paper then shows the Schwarzschild metric, which
adds a spherical non-rotating mass to the spacetime defined
by the Minkowski metric, can also be rewritten as a summa-
tion of velocities and as an apportionment of energy equiva-
lence. The apportionment of energy equivalence includes a
gravitational component. This indicates gravitational energy
has a source and a limit to its magnitude.

2 The Minkowski Metric

The Minkowski metric was originally derived based on Her-
mann Minkowski’s fundamental axiom for space-time set out
in an address [3] given in September 1908:

The substance at any world-point may always, with the
appropriate determination of space and time, be looked
upon as at rest.

Minkowski’s fundamental axiom for the space-time con-
tinuum indicates that for the substance at a world point (e.g.,
a particle) there exists a local reference frame, with its own
local space and time coordinates, in which the substance is at
rest with respect to the local space coordinates (but not with
respect to the local time coordinate).

For example, assume the local reference frame for a parti-
cle has the local space coordinates (ξ, η, ς) and the local time
coordinate τ. For the particle, with respect to the local refer-
ence frame,

dξ
dτ

=
dη
dτ

=
dς
dτ

= 0. (1)

The Minkowski metric is often expressed using Cartesian
reference coordinates (x, y, z, t) and the local time coordinate
τ, i.e.,

c2dτ2 = c2dt2 − dx2 − dy2 − dz2. (2)

The Minkowski metric can also be expressed using spherical
coordinates, i.e.,

c2dτ2 = c2dt2 − dr2 − r2dθ2 − (rsinθ)2dφ2. (3)

3 Selection of a reference frame from which to measure
velocity

In order to measure velocity in the Minkowski metric (and
the Schwarzschild metric) it is important to select and consis-
tently use a reference frame. In the Minkowski metric there
are two reference frames to choose from. The first is the lo-
cal reference frame defined by local coordinates (ξ, η, ς, τ).
The other is the reference frame (referred to herein as the
coordinate reference frame) defined by reference coordinates
(x, y, z, t).

There is a distinct disadvantage to use of the local refer-
ence frame to make measurements: in its own local reference
frame an object is always at rest, that is, as indicated by (1)
there is no spatial velocity, i.e., no change in the values of
the local space coordinates (ξ, η, ς) with respect to passage of
time as measured by the time coordinate τ.

In the coordinate reference frame, however, there can be
a detectable motion through the space coordinates. This is
referred to herein as spatial velocity (~vs), which is a vector
sum of the motion in three dimensions of space, i.e.,

~vs = ~vx +~vy +~vz, (4)

and which has a magnitude vs where

vs =
∣∣∣~vs

∣∣∣ =

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

, (5)

as measured by the coordinate reference frame.
Because of this distinct advantage of making measure-

ments from the coordinate reference frame, this is the ref-
erence frame that will be consistently used herein to make
measurements.
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4 Expressing the Minkowski Metric as a sum of veloci-
ties

The Minkowski metric, shown in (2), can be rearranged into
the form of a sum of velocities. Since the observer is mak-
ing measurements from the coordinate reference frame, mo-
mentum and energy will need to be measured with respect to
changes in the reference time coordinate t. The Minkowski
metric is therefore rearranged to show this. Specifically, (2)
can be rearranged as

c2dt2 = c2dτ2 + dx2 + dy2 + dz2, (6)

and therefore,

c2 = c2
(

dτ
dt

)2

+

(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

, (7)

which can be reduced to

c2 = c2
(

dτ
dt

)2

+ v2
s . (8)

Let a time velocity vτ be defined as

vτ = c
dτ
dt
, (9)

so that vτ is a measure of the rate of passage of time as mea-
sured by the local time coordinate τ with respect to the rate
of the passage of time as measured by the reference time co-
ordinate t. This allows (7) to be rewritten as

c2 = v2
τ + v2

s . (10)

Since the time dimension is regarded as being orthogonal
to the space dimensions, (10) can be written in the form of a
vector sum, i.e.,

c =
∣∣∣~vτ +~vs

∣∣∣ . (11)

Equation (11) is the Minkowski metric written as a sum
of velocities. That is, the vector sum of the velocity in the
dimensions of time and space is always equal to the speed of
light c.

5 Energy equivalence in the Minkowski metric

The Minkowski metric, like all solutions to Einstein’s field
equations, describes a matterless field [1, p. 143]. In order
to see how the Minkowski metric apportions energy equiv-
alence, it is only necessary to place a particle with mass m
anywhere in the field. From (11), a momentum of mass m
across four dimensions of time and space can be expressed as

mc =
∣∣∣m~vτ + m~vs

∣∣∣ . (12)

Equation (10) can also be rewritten as

mc2 = mv2
τ + mv2

s . (13)

Equation (13) indicates how the Minkowski metric appor-
tions the energy equivalence [4],

E = mc2, (14)

of mass m into an energy component Eτ in the time dimen-
sion, where

Eτ = mv2
τ, (15)

and an energy component in the space dimensions, where

Es = mv2
s , (16)

so that
E = mc2 = Eτ + Es. (17)

6 The Schwarzschild metric

The full Schwarzschild metric for a spherical non-rotating
mass M with a Schwarzschild radius R, is typically expressed
with the reference coordinates in the form of spherical coor-
dinates, i.e.,

c2dτ2=c2
(
1−R

r

)
dt2− dr2

(1−R/r)
−r2dθ2−(r sin θ)2dφ2. (18)

When M = 0 and thus R = 0, the Schwarzschild metric
reduces to the Minkowski metric.

7 Expressing the Schwarzschild Metric as a sum of ve-
locities

In order to express the Schwarzschild metric as a sum of ve-
locities, a gravitational velocity vg can be defined using the
Newtonian definition of gravitational escape velocity, that is

vg = c

√
R
r
. (19)

Likewise because in the Schwarzschild metric space is
curved a spatial velocity velocity vss through curved space
can be defined as

vss =

√
1

1 − R/r

(
dr
dt

)2

+ r2

(
dθ
dt

)2

+ (r sin θ)2

(
dφ
dt

)2

. (20)

The Schwarzschild metric in (18) can now be expressed
as a sum of the velocities vτ, vg and vss. That is, (19) can be
rearranged as

c2dt2 = c2dτ2 + c2 R
r

dt2 +
dr2

(1 − R/r)
+

+r2dθ2 + (r sin θ)2dφ2,

(21)

and thus

c2 = c2
(

dτ
dt

)2

+ c2 R
r

+
1

1 − R/r

(
dr
dt

)2

+

+r2
(

dθ
dt

)2

+ (r sin θ)2
(

dφ
dt

)2

.

(22)
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Using the definition of vss set out in (20), the definition of
vτ set out in (9) and the definition of vg set out in (19), allows
(22) to be simplified to

c2 = v2
τ + v2

g + v2
ss. (23)

If a gravitational dimension is regarded as being orthog-
onal to both the dimensions of curved space and the time di-
mension, (23) can be written in the form of a vector sum, i.e.,

c =
∣∣∣~vτ +~vg +~vss

∣∣∣ . (24)

Equation (24) is the Schwarzschild metric written as a
sum of velocities. That is, the vector sum of the velocity in
the dimensions of time, space and gravity is always equal to
the speed of light c.

8 Using the Schwarzschild metric to apportion energy
equivalence

In order to see how the Schwarzschild metric apportions en-
ergy equivalence, it is only necessary to place a particle with
mass m anywhere in the field. From (24), a momentum of
mass m across five dimensions of time, space and gravity can
be expressed as

mc =
∣∣∣m~vτ + m~vg + m~vss

∣∣∣ . (25)

Equation (10) can also be rewritten as

mc2 = mv2
τ + mv2

g + mv2
ss. (26)

Equation (26) indicates how the Schwarzschild metric ap-
portions the energy equivalence of mass m into an energy
component Eτ, an energy component Ess in the space dimen-
sions, and an energy Eg component where

Eg = mv2
g, (27)

so that
E = mc2 = Eτ + Eg + Ess. (28)

9 Reciprocity in the apportionment of energy equiva-
lence

In a system of two particles, one particle having a mass m1
and a Schwarzschild radius of R1 and the other particle having
a mass m2 and a Schwarzschild radius of R2, the Schwarzs-
child metric allows the energy equivalence of each mass to
be apportion into, time, space and gravity components. For
example, when spatial coordinates (r1, θ1, φ1) are measured
with respect to m1 and local time τ1 is measured at the loca-
tion of m2, the energy equivalence of m2 can be apportioned
using the Schwarzchild metric,

c2dτ2
1 = c2

(
1 − R1

r1

)
dt2

1 −
dr2

1

(1 − R1/r1)
− r2

1dθ2
1−

−(r1 sin θ1)2dφ2
1,

(29)

into the following apportionment of energy equivalence:

m2c2 = m2v
2
τ1

+ m2v
2
g1

+ m2v
2
ss1

= Eτ1 + Eg1 + Es1 . (30)

Likewise, when spatial coordinates (r2, θ2, φ2) are mea-
sured with respect to m2 and local time τ2 is measured at the
location of m1, the energy equivalence of m1 can be appor-
tioned using the Schwarzschild metric,

c2dτ2
2 = c2

(
1 − R2

r2

)
dt2

2 −
dr2

2

(1 − R2/r2)
− r2

2dθ2
2−

−(r2 sin θ2)2dφ2
2,

(31)

into the following apportionment of energy equivalence:

m1c2 = m1v
2
τ2

+ m1v
2
g2

+ m1v
2
ss2

= Eτ2 + Eg2 + Es2 . (32)

10 Implications

The Schwarzschild metric apportions the energy equivalence
of a mass into a time component, a spatial component and
a gravitational component. This suggests that the source of
gravitational energy is the energy equivalence of the mass af-
fected by gravity and therefore that the magnitude of gravi-
tational energy cannot exceed the energy equivalence of that
mass. As pointed out by Weller [5, 6], this presents a very
significant difficulty for those who view gravity as an unlim-
ited source of energy to perform such tasks as forming black
holes and creating universes. This also tends to confirm the
assertions of Schwarzschild [7] and Einstein [8] that there is
indeed a maximum density of matter.
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In my paper [3], I obtain a Cold Big Bang Cosmology, fitting the cosmological data,
with an absolute zero primordial temperature, a natural cutoff for the cosmological data
to a vanishingly small entropy at a singular microstate of a comoving domain of the cos-
mological fluid. This solution resides on a negative pressure solution from the general
relativity field equation and on a postulate regarding a Heisenberg indeterminacy mech-
anism related to the energy fluctuation obtained from the solution of the field equations
under the Robertson-Walker comoving elementar line element context in virtue of the
adoption of the Cosmological Principle. In this paper, we see the, positive, differential
energy fluctuation, purely obtained from the general relativity cosmological solution
in [3], leads to the quantum mechanical argument of the postulate in [3], provided this
energy fluctuation is quantized, strongly supporting the postulate in [3]. I discuss the
postulate in [3], showing the result for the energy fluctuation follows from a discreteness
hypothesis.

1 To the Heisenberg Indeterminacy Relation

Recalling the eqn. (53) in [3], purely derived from the general
relativity field equations under the cosmological context:

δEρ =
E+

0√
1 − Ṙ2/c2

Ṙ δṘ
c2 , (1)

the δEρ, given by the eqn. (1), seems to be exclusively valid
when δṘ is infinitesimal, since this expression is a first order
expansion term, where we do tacitly suppose the vanishing of
high order terms. But its form will remain valid in a case of
finite variation, as derived is this paper, under the same condi-
tions presented in [3]. The eqn. (1), in terms of indeterminacy,
says:

• There is an indeterminacy δEρ, at a given t, hence at
a given R(t) and Ṙ(t), related to a small intetermin-
acy δṘ(t).

A given spherical shell within a t-sliced hypersurface of
simultaneity must enclose the following indeterminacy, if the
least possible infinitesimal continuous variation given by the
field equations in [3], eqn.(1) here, presents discreteness, viz.,
if the δEρ cannot be an infinitesimal in its entire meaning, al-
beit mantaining its very small value, as a vanishingly small
quantity, but reaching a minimum, reaching a discrete quan-
tum of energy fluctuation,

k∑

l=1

(
δEρ

)
l
=

E+
0 Ṙ/c2

√
1 − Ṙ2/c2

∣∣∣∣∣∣∣
t

k∑

l=1

(
δṘ

)
l
. (2)

The eqn. (2) is obtained from eqn. (1) by the summation
over the simultaneous fluctuations within the spherical shell
(since the quantum minimal energy is a spatially localized
object, and the t-sliced spherical shell, a R(t)-spherical subset

of simultaneous cosmological points pertaining to a t-sliced
hypersurface of simultaneity, is full of cosmological substra-
tum), where k denotes a partition, k fundamental fluctuating
pieces of the simultaneous spacelike spherical shell within a
t-sliced hypersurface. This sum gives the entire fluctuation
within the shell. Since these pieces are within a hypersurface
of simulteneity, they have got the same cosmological instant
t. Hence, they have the same R(t) and the same Ṙ(t) (points
within the t-sliced spherical shell cannot have different R(t),
since R(t) is a one-to-one function R(t) : t 7→ R(t), and does
not depend on spacelike variables; the t-sliced spherical shell
is a set of instantaneous points pertaining to a t-sliced hy-
persurface of simultaneity such that these points are spatially
distributed over an t-instantaneous volume enclosed by a t-
instantaneous spherical surface with radius R(t)), the reason
why the summation index l does not take into account the
common factor at the right-hand side of the eqn. (2). From
eqn. (57) in [3], we rewrite the eqn. (2):

k∑

l=1

(
δEρ

)
l
=

E+
0 R2

0

R3
√

1 − Ṙ2/c2

∣∣∣∣∣∣∣
t

k∑

l=1

(δR)l . (3)

Now, we reach the total instantaneous fluctuations within
the spherical shell at the cosmological instant t, a sum of
spacelike localized instantaneous fundamental fluctuations
within the spherical shell, giving the total instantaneous fuc-
tuation within this shell. Being the instantaneous spherical
shell full of cosmological fluid at t, at each fundamental posi-
tion within the spherical shell we have got a fundamental en-
ergy fluctuation with its intrinsical and fundamental quantum
R0 =

√
2Gh/c3 of indeterminacy [3], an inherent spherically

symmetric indeterminacy at each position within the t-sliced
spacelike shell.
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Hence, the total fluctuation is now quantized:

NtδEρ =
E+

0 R2
0

R3
√

1 − Ṙ2/c2

∣∣∣∣∣∣∣
t

NtR0, (4)

where Nt is the number of instantaneous fundamental do-
mains, the number of fundamental fluctuations within the in-
stantaneous spherical shell contained within a t-sliced hyper-
surface of simultaneity. Since R0 is a fundamental quantum of
local indeterminacy, the same R0 is common to all the instan-
taneous spacelike points within the shell, the same (δR)l = R0
quantum of fluctuation at its respective point within the t-
instantaneous spherical shell contained in a t-sliced surface
of simultaneity for all the points in this shell, ∀ l.∗ But Nt is
given by:

Nt =
R3

R3
0

. (5)

Using the eqn. (5) in the eqn. (4), we obtain:

Nt δEρ =
E+

0√
1 − Ṙ2/c2

. (6)

The eqn. (6) gives the total positive fluctuation whitin the
t-instantaneous spherical shell, the result used in my postu-
late in [3]. Furthermore, comparing the eqns. (1) and (6), we
see the infinitesimal relation given by the eqn. (1) is valid in
the finite fluctuation process given by the eqn. (6), provided
ṘδṘ ≈ c2, a result used in the appendix of [3] to obtain its
eqn. (56).

The Heisenberg indeterminacy principle reads, for the en-
tire fluctuation at a given t:

(
Nt δEρ

)
δt =

E+
0 δt√

1 − Ṙ2/c2
≥ h

4π
. (7)

The increasing smearing out indeterminacy over the cos-
mological fluid, related to the primordial indeterminacy in
virtue of the Universe expansion as postulated in [3]:

• The actual energy content of the universe is a conse-
quence of the increasing indeterminacy of the primor-
dial era. Any origin of a comoving reference frame
within the cosmological substratum has an inherent in-
determinacy. Hence, the indeterminacy of the energy
content of the universe may create the impression that
the universe has not enough energy, raising illusions
as dark energy and dark matter speculations. In other
words, since the original source of energy emerges as
an indeterminacy, we postulate this indeterminacy con-
tinues being the energy content of the observational
universe: δE(t) = E+(t) = E+

0 /
√

1 − Ṙ2/c2,

follows from the increasing Nt, as one infers from the eqns.
(5) and (7).

∗See [3]. We are in a context of validity of the Cosmological Principle.
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In a previous preprint, [2], reproduced here within the appendix in its revised version,
we were confronted, to reach the validity of the second law of thermodynamics for an
unique collapse of an unique quantum object, to the necessity of an ensemble of mea-
sures to be accomplished within copies of identical isolated systems. The validity of
the second law of thermodynamics within the context of the wave function collapse was
sustained by the large number of microstates related to a given collapsed state. Now,
we will consider just one pure initial state containing just one initial state of the quan-
tum subsystem, not an ensemble of identically prepared initial quantum subsystems,
e.g., just one photon from a very low intensity beam prepared with an equiprobable
eigenset containing two elements, an unique observation raising two likelihood out-
comes. Again, we will show the statistical interpretation must prevail, albeit the quan-
tum subsystem being a singular, unique, pure state element within its unitary quantum
subsystem ensemble set. This feature leads to an inherent probabilistic character, even
for a pure one-element quantum subsystem object.

1 A toy: the fair coin eigenset

Let a two-state coin, fifty-fifty, with eigenset {φ1, φ2}, be our
quantum subsystem. The initial state of this unique subsys-
tem reads:

Ψ =

2∑
k=1

ak φk =

√
2

2
φ1 +

√
2

2
φ2 , (1)

with:

ak =

∫
V
φ∗kΨdV =

√
2

2
∀ k ∈ {1, 2} . (2)

The eigenstates φ1 and φ2 are different eigenstates.
The unique element [given by eqn. (1)] subsystem plus

an unique ideal apparatus subsystem Φ will define an isolated
system. The memory state of the subsystem apparatus is ini-
tially empty, and the initial state of the system is:

ΨΦ|t=0 =

 √2
2
φ1 +

√
2

2
φ2

Φ[void]. (3)

After a measure operator U acting on Ψ ⊗ Φ|t=0, the system
propagates forward in time to the (t = τ)-state, the collapsed
state for short:

ΨΦ|t=τ =
√

2
2
φ1 φ[φ1] +

√
2

2
φ2 φ[φ2] . (4)

The observer is represented by the Φ apparatus subsystem,
being in its own Hilbert state space HΦ. Since Φ[φ1] and Φ[φ2]
are different states belonging to HΦ, these apparatus states are
mutually exclusive in HΦ.

• How many final microstates of the isolated system are
there?

The answer depends on which space the apparatus Φ resides.
For Φ, the collapsed microstate is a member of HΦ. The state
given by the eqn. (4) cannot be observed in HΦ, hence can-
not be counted from HΦ by the apparatus subsystem. There
are two possible final states for the hypothetical one-element
measure that are members of HΦ, Φ[φ1] and Φ[φ2], but both
cannot be obtained at the same time. The collapse evolves
but just one member of HΦ subsists as an equilibrium appara-
tus subsystem state after the collapse. The entropy of a final
collapsed state Φ[φk] in HΦ(τ) is zero, since, under an one-
element measure with an unique initial quantum coin state
given by eqn. (1), there is just one manner to obtain the Φ[φk]
collapsed state, since the other equally like manner leads to
a different collapsed state and should not be considered as
being another microstate of the same Φ[φk]. But both the pos-
sible collapsed states leads to a same final null entropy. This
unique object measure leads to reversible collapse, since the
variation of entropy between states is null in any case. We
will see this unique object quantum subsystem must be re-
lated to a global statistical context.

Choosing an unique coin to accomplish an unique mea-
sure, one is establishing there exists just an unique way to
obtain the initial coin, to construct the initial coin. But, in
fact, there is not. You may make the same coin with another
bunch of metallic atoms. We do not take it into account, since
a set of identical elements is an unitary set, being irrelevant
which element we use to accomplish the measure. But two
distinct but identical coins do not necessarily lead to identical
outcomes. Hence, if one takes into account the identical man-

42 Armando V.D.B. Assis. Comments on the Statistical Nature and on the Irreversibility of the Wave Function Collapse



October, 2011 PROGRESS IN PHYSICS Volume 4

ners, including the previous global context within the Uni-
verse, from which the system may evolve to the collapse, one
does not modify the initial null entropy of the system, since
identical coins are identical coins into the input (t = 0) but not
necessarily identical coins from the output (t = τ). Suppose
you may construct the unique coin only from two different
ways,W1 orW2. ViaW1, there is one possible microstate for
each collapsed result as observed by Φ[φ1] or Φ[φ2] in the ap-
paratus subsystem reality. In the apparatus reality, the initial
number of microstates of the system is also vanished, since
the initial number of microstates is 1 × 1 (in the apparatus
world, we do not describe the system via eqn. (3), since this
is an object that is not an element of HΦ. The initial state
of the quantum subsystem, our coin, given by the eqn. (1),
is unique for Φ[void]. Initially, there is just one possibility for
each subsystem state in the apparatus reality, hence w0 = 1×1
is the initial number of microstates of the [global] system as
observed within the apparatus reality. The apparatus dialec-
tics does not handle objects like the ones in the eqns. (3) and
(4).). Analogously, via W2, there is one possible microstate
for each collapsed state. But, when W1 and W2 are taken
into consideration, two possible microstates emerge for each
collapsed state, with the same initial null entropy.

When one accomplishes an one-element collapse experi-
ment with various identical initial quantum subsystems (e.g.,
taking W1 and W2 into consideration), the result is one be-
tween the possible ones from identical objects (indistinguish-
able coins). A particular collapse result turns out to be in-
serted in a global probabilistic context related to the various
identical manners by which the Universe may evolve from
the past to their states in which there exist identical isolated
experiments to be initiated at t = 0, in virtue of the entropic
evolution of the Universe. The Universe entropically evolves
under their various possibilities, and two different manners
to construct a same coin are different ways under which the
Universe may evolve to a same initial coin state, hence the
null entropy, but not necessarily to the same collapsed state.
Hence, even an isolated collapse from an unique coin has a
global statistical context related to the different manners the
Universe might have evolved, and an unique coin exhibits its
global statistical bias. Since the Universe is large, a given ini-
tial subsystem, our two-state coin initial quantum subsystem,
has a miriad of possible histories up to t = 0, say N1, but with
none of these manners giving a different object, all giving the
same Ψ at t = 0. Analogously, one has, as Φ[void] possible
initial states, a bag with N2 identical elements, all given by
Φ[void]. When you isolate the system, you obtain an isolated
bag with N1 × N2 identical elements given by the eqn. (3).
The number of microstates related to this bag is w0 = 1. The
number of microstates related to Φ[φk] is not w f = 1 anymore,
but [2]:

lim
N1N2→∞

N1N2∑
l=1

ξ
p
l = lim

N1N2→∞

[N1N2

2
+ f (N1N2)

]
> 1, (5)

being N1×N2 the number of final histories of collapse, where
the histories are, now, being instantaneously counted at τ,
within the Universe entropic evolution.

Taking into account the the different manners by which
an initial subsystem may be obtained does not change the
probability of a given collapsed state, conversely, defines it
via a natural frequentist interpretation within a global con-
text. The probability associated to a given collapsed state
when an unique experiment is accomplished with an unique
one-element initial state is the one associated to the frequen-
tist interpretation taking into account the various manners to
construct the initial state. Since the Universe may provide in-
finitely many manners to construct an isolated system, when
one takes an exemplar into account, the probabilistical char-
acter is inherent to individual processes, since a particular re-
sult resides within a global statistical context related to differ-
ent states of the Universe that leads to the same initial isolated
system. Even a single photon within a low intensity beam
may be constructed by different manners. A single photon
does not know this, obviously, but it behaves under a global
statistical context related to the different manners by which
the Universe may evolve to that in which a beam of a single
photon is within an isolated system with an apparatus.

There are not two final microstates, Φ[φ1] and Φ[φ2], for
the collapsed apparatus, and one should not say the entropy
variation is ∆S = k ln 2 − k ln 1, since different microstates
are physically distinguishable a posteriori, carrying different
measurable physical properties, encapsulated within the dif-
ference between the eigenvectors Φ[φ1] and Φ[φ2]. In fact, an
unique one-element collapse is a reversible process for quan-
tum initial subsystems with just an unique element. But it
is very difficult to observe, since the Universe entropically
evolves among a miriad of possibilities leading to identical
initial quantum subsystems, inserting an individual measure
within the Universe’s entropy evolution statistical context, be-
ing the number of final collapsed microstates of a given col-
lapsed state greater than 1, leading to an irreversible collapse
even with a single photon beam as initial quantum subsystem,
e.g., since this single photon within the beam turns out to be
in a context of a very large number of available microstates
for each possible collapsed state, a context in which the final
entropy of a given collapsed state is greater than the initial
null entropy.

2 Appendix: comments on the entropy of the wave
function collapse

2.1 The Boltzmann formula: a source of misconception
for a reckless vision

At a first glance [1], one may think the wave function collapse
violates the second law of thermodynamics, since a quantum
system prepared as a superposition of eigenstates of a given
operator suddenly undergoes to a more restrictive state. But
this is not the case, in virtue of the fact that a superposition
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and a eigenstate are states on equal footing. The use of the
Boltzmann formula:

S = k lnw, (6)

for the entropy S of a thermodynamically closed system
leads, at a first glance, to the impression that the entropy
should have a greater value before the collapse, under an erro-
neous assumption that the initial number, w0, of microstates,
w, should be greater than the final number of microstates,
w f , in virtue of the needed quantity of eigenstates, w0 > 1,
used to construct the wave function before the collapse, in
contrast to the apparent w f = 1 after the collapse, where
k = 1.38 × 10−23 JK−1 is the Boltzmann constant. We will
see that the converse occurs. Furthermore, one should, firstly,
define the thermodynamically closed system as consisting of
two subsystems: the quantum object subsystem plus the clas-
sical apparatus subsystem.

2.2 A simple solution for this apparent paradox

Consider a quantum subsystem Ψ [4]: prepared as a superpo-
sition of the n eigenstates {φk}, with 1 ≤ k ≤ n, of a given
operator Φ with finite non-degenerated spectrum:

Ψ = a1 φ1 + · · · + an φn =

n∑
k=1

ak φk, (7)

where:
ak =

∫
V
φ∗kΨdV, (8)

is the inner product the Hilbert state space is equipped with.
The * denotes the complex conjugation and dV the elementar
volume of the physical space V of a given representation.

Up to the measure, before the interaction between a clas-
sical apparatus subsystem, designed to obtain observable ein-
genvalues of the operator Φ, and a quantum subsystem Ψ
given by eqn. (7), there exists just one microstate of the global
system consisted by apparatus subsystem plus quantum sub-
system, since these two subsystems are not initially correlated
and the initial microstate of the quantum subsystem Ψ is just
the unique state Ψ as well the initial microstate of the classi-
cal apparatus subsystem is the unique one in which it has no
registered eigenvalue.

Hence, in virtue of the initial independence of the subsys-
tems, the initial microstate of the global thermodynamically
closed system has multiplicity w0 = 1 × 1 = 1, being the ini-
tial entropy of the global system given by:

S 0 = k ln 1 = 0, (9)

in virtue of the eqn. (6).
One may argue the initial state of the classical appara-

tus subsystem has got a multiplicity greater than 1, since this
subsystem seems to have internal modes compatible with an
empty memory. We emphasize this is not the case, since the

state of the memory defines the apparatus state, being this
state an empty one in spite of any apparatus internal modes
before an accomplished measure∗. The same comment is
valid for the quantum subsystem, since the state of this sub-
system is Ψ, previously defined by the superposition of a Φ
operator eigenstates, {φk}, being the object Ψ an unique one.
These objects, by definition, are initially constrained to these
defined states, and one does not need to take into account the
different manners by which these subsystems should equally
evolve to their respective initial states.

Once a measure is accomplished, there will exist n pos-
sible eigenvalues to be registered within the memory of the
classical apparatus subsystem, viz., since there are n different
final situations for the global system, where n is the number
of non-degenerated eigenvectors of theΦ operator. A reckless
short-term analysis would lead to the conclusion that the fi-
nal number of microstates of the global system, w f , should be
w f = n, since it seems to be the number of ways by which a fi-
nal collapsed state is reached. But such a conclusion is wrong,
since the final state is not simply a collapsed one with a la-
bel on it. Differently from a case in which a pair of unbiased
dice is thrown, where a particular result of a throw of dice is
not physically different from any other result, except for the
labels on them, a given collapsed state encapsulates physical
content. Each collapsed state is a different final state with
its characteristic multiplicity, and one should not enroll the
possible collapsed states within a same bag with w f = n pos-
sible collapsed elements. Comparing with the throw of dice
case, if you erased the dice numbers, their labels, you could
not infer the difference between the results, but the physical
content within the collapsed wave function result would lead
one to infer the difference between different results, between
different outcomes of collapse of Ψ.

• Different physical characteristics imply different out-
comes for the wave function collapse and define evolu-
tions from the initial global system to new states of the
global system, instead of different configurations for a
same final state.

In the throw of dice example, the different outcomes are dif-
ferent configurations of a same final state. If the collapsed

∗The irrelevance of the apparatus internal modes compatible with a
given apparatus memory state asserts the hypothesis of an unbiased ap-
paratus subsystem. Any result to be measured by the apparatus subsys-
tem must have the same number of equally like apparatus microstates. If
some result was related to a different number of apparatus compatible mi-
crostates, the results with the maximal number of apparatus compatible mi-
crostates would be biased. The collapse should not be caused by apparata
biases. In virtue of this hypothesis, one may neglect the apparatus inter-
nal modes compatible with a particular apparatus memory state, since the
same number of internal modes is common to all the memory states, and
the variation of entropy cancels out the same common number (say wa):
∆S = S f − S 0 = k ln

(
w f × wa

)
− k ln (1 × 1 × wa) = k lnw f − k ln (1 × 1),

where w f is the number of microstates of a given final state of the global iso-
lated system in which the apparatus has registered the respective collapsed
state, considering the apparatus memory state as its unique degree of free-
dom.
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wave function was a state with n different possible configu-
rations for this same collapsed state, the final number of mi-
crostates would be w f = n, but this is not the case.

For the collapsed states, the multiplicities of the possible
final results are not necessarily the same, since they depend
on the outcome probabilities of their respective eigenvalues.
Let p be the label of the eigenvalue with the least reliable
(, 0)∗ outcome probability. The outcome probability of a
given eigenvalue is given by Max Born’s rule, from which
the least probability, of the p-labeled eigenvalue, is simply
given by a∗pap, where [see eqn. (8)]:

a∗pap =

∣∣∣∣∣∫
V
φ∗pΨdV

∣∣∣∣∣2 , 0. (10)

Applying a frequentist interpretation for the probability,
the least multiplicity of microstates is† Na∗pap, where N is
the quantity of state-balls within an a posteriori interpreted
quantum-subsystem-urn (we are emphasizing that the inter-
action with the classical apparatus subsystem permits a clas-
sical‡, under the frequentist sense, a posteriori, interpretation
of probabilities, since any quantum effects of probabilistic su-
perposition of amplitudes cease after the collapse, permitting
a frequentist interpretation via Born’s rule). Such a frequen-
tist interpretation requires N → ∞, i.e., infinitely many mea-
sures to be accomplished on identical quantum subsystems
by the classical apparatus subsystem, but we will back to this
point later.

The least final entropy of the global system, related to the
outcome probability of the p-labeled eigenvalue, reads:

S f = k ln
(
Na∗pap

)
. (11)

From the eqns. (9) and (11), the least possible entropy varia-
tion turns out to be:

∆S = S f − S 0 = k ln
(
Na∗pap

)
. (12)

From the eqn. (12), we infer that the second law of thermo-
dynamics holds iff :

Na∗pap ≥ 1⇒ a∗pap ≥
1
N
, (13)

∗If ap = 0, the respective eigenstate φp, within the superposition repre-
senting Ψ [see eqn. (7)], turns out to be an impossible collapsed state. Such
consideration would be totally void, since the final microstate associated to
it would never occur, being ∆S = k ln 0 − k ln 1 = −∞ [see eqns. (6) and
(9)] a violation of the second law of thermodynamics, in accordance with the
impossibility of a final microstate with ap = 0.

†See the discussion leading to the eqns. (19) and (20), regarding the
meaning of N.

‡Here, the classical designation resides within the counting process after
the collapse. We are not saying the final collapsed state leads to a classical
interpretation of the quantum object, we are emphasizing that the dialec-
tics after the collapse to interpret frequency of a given collapsed state is the
classical one via Born’s rule. One does not count quantum waves, but the
discrete signals of a collapsed object. Surely, alluding, e.g., to the double-slit
canonical example, the diffraction pattern on the screen has not a discrete
counterpart, but the points on the screen, when the intensity of the source is
reduced, have and may be counted.

since N > 0. Now, we will prove the following theorem:

Theorem: The second law of thermodynamics holds for the
wave function collapse under a frequentist interpretation via
Max Born’s rule and, once accomplished the collapse, the
collapse is an irreversible phenomenon.

Proof: Suppose the converse, i.e., that the second law of ther-
modynamics does not hold for the wave function collapse un-
der a frequentist interpretation via Max Born’s rule. In virtue
of eqn. (12), one has:

∆S = S f − S 0 = k ln
(
Na∗pap

)
< 0⇒ Na∗pap < 1. (14)

Since§ ap , 0, N ≥ 1/(a∗pap) violates the condition stated by
the eqn. (14). But N → ∞, in virtue of the frequentist inter-
pretation, hence N > 1/(a∗pap), and the eqn. (14) is an absurd.
We conclude the second law of thermodynamics holds within
the terms of this theorem. The proof the collapse is an irre-
versible phenomenon follows as a corollary of this theorem.
In fact:

N > 1/(a∗pap)⇒ Na∗pap > 1 ∴

∆S = k ln
(
Na∗pap

)
> 0, (15)

and the collapse of the wave function is an irreversible phe-
nomenon, being ∆S > 0 the entropy variation of the thermo-
dynamically closed system: quantum subsystem plus classi-
cal apparatus subsystem. �

The law of large numbers states the probability of an event
p, Pp, is given by the limit:

lim
N→∞

∑N
l=1 ξ

p
l

N
= Pp , (16)

where ξp
l assumes the value 1 when the event p occurs, or

zero otherwise. If a∗pap ≡ Pp , 0, the limit must obey:

lim
N→∞

∑N
l=1 ξ

p
l

N
=

limN→∞
∑N

l=1 ξ
p
l

limN→∞ N
, 0. (17)

From eqn. (17), we conclude limN→∞
∑N

l=1 ξ
p
l cannot be finite,

since N grows without limit. Hence:

lim
N→∞

N∑
l=1

ξ
p
l > 1. (18)

Particularly, the eqn. (18) gives the number of microstates of
the p-labelled eigenstate, proving the above theorem. Rigor-
ously, one should substitute:

N → N +
f (N)
a∗pap

, (19)

§Remember the reliability defining the p-labeled eigenstate, see eqn.
(10) again and its inherent paragraph.
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within the above theorem proof, with:

lim
N→∞

f (N)
N
= 0. (20)

Such choice leads to:

N∑
l=1

ξ
p
l = Na∗pap =

(
N +

f (N)
a∗pap

)
a∗pap =

= N
(
a∗pap +

f (N)
N

)
∴

(21)

∑N
l=1 ξ

p
l

N
= a∗pap +

f (N)
N
. (22)

Taking the limit N → ∞ in eqn. (22), we recover the law of
large numbers. Taking the limit N → ∞ in eqn. (21), one
obtains in virtue of the eqn. (18):

lim
N→∞

N∑
l=1

ξ
p
l = lim

N→∞

(
N +

f (N)
a∗pap

)
a∗pap > 1 , (23)

therefore

lim
N→∞

(
N +

f (N)
a∗pap

)
>

1
a∗pap

. (24)

Eqn. (24) is the argument used to prove the theorem, as one
infers from the eqn. (19).

3 Conclusion

Finally, we conclude the reversible collapse of the wave func-
tion is an extremely rare statistical phenomenon. Once a col-
lapse is reached, it is irreversible since there are a miriad of
indistinguishable but distinct outcomes that may be equally
reached, leading to a large number of Universe microstates
with this same collapsed result. Hence, if one seeks to over-
come the collapse: there exist fundamental issues to bypass.
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Our Mathematical Universe: I. How the Monster Group Dictates All of Physics
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A 4th family b’ quark would confirm that our physical Universe is mathematical and
is discrete at the Planck scale. I explain how the Fischer-Greiss Monster Group dic-
tates the Standard Model of leptons and quarks in discrete 4-D internal symmetry space
and, combined with discrete 4-D spacetime, uniquely produces the finite group Weyl
E8 x Weyl E8 = “Weyl” SO(9,1). The Monster’s j-invariant function determines mass
ratios of the particles in finite binary rotational subgroups of the Standard Model gauge
group, dictates Möbius transformations that lead to the conservation laws, and connects
interactions to triality, the Leech lattice, and Golay-24 information coding.

1 Introduction

The ultimate idea that our physical Universe is mathematical
at the fundamental scale has been conjectured for many cen-
turies. In the past, our marginal understanding of the origin
of the physical rules of the Universe has been peppered with
huge gaps, but today our increased understanding of funda-
mental particles promises to eliminate most of those gaps to
enable us to determine with reasonable certainty whether this
conjecture is true or false.

My principal goal is to show that if a 4th quark fam-
ily exists, the physical rules of the Universe follow directly
from mathematical properties dictated by the Fischer-Greiss
Monster Group via the Monster’s j-invariant function and the
Möbius transformation in discrete spacetime, with everything
related to the Golay-24 information code for the Leech lattice.

In a series of articles and conference talks beginning in
1992 [1–3] I have been predicting that a 4th quark family with
a b’ quark at about 80 GeV and a t’ quark at about 2600 GeV
will be produced at the colliders. Its detection will support
these proposals:

1. The Standard Model (SM) of leptons and quarks pro-
vides an excellent approximation to the actual discrete
symmetry groups of these fundamental particles and
requires little modification for extension to the Planck
scale.

2. There are 3 lepton families and 4 quark families, each
family of two states defined by a different finite binary
rotational subgroup of the SU(2)L x U(1)Y part of the
SM gauge group.

3. The leptons are 3-D polyhedral entities, and the quarks
are 4-D polytope entities which combine into 3-D col-
orless hadrons, color being a 4-D property with exact
symmetry derived from 4-D rotations.

4. Lepton and quark approximate mass values are deter-
mined by the j-invariant function of elliptic modular
functions, being related to the above subgroups and
Möbius transformations in both discrete lattice spaces
and continuous spaces.

5. Both 4-D spacetime and 4-D internal symmetry space
are discrete at the Planck scale, and both spaces can
be telescoped upwards mathematically by icosians to
8-D spaces that uniquely combine into 10-D discrete
spacetime with discrete Weyl E8 x Weyl E8 symmetry
(not the E8 x E8 Lie group of superstrings/M-theory).

6. All the above is related to the Fischer-Greiss Monster
Group which herein I argue actually dictates all the
rules of physics, except perhaps the entropy law.

7. Consequently, our physical Universe is mathematical
with only one set of rules and physical constants, which
eliminates any multiverse with different values.

8. We live in the only possible Universe, the one with 4-D
discrete spacetime dictated by the Monster Group and
its relation to information coding and the Leech lattice.

My discrete geometrical approach briefly outlined above
fits within the realm of the SM, so its past successes should
still apply. One simply must “discretize” the SM lagrangian.
Even Noether’s theorem works in discrete spaces [4] to con-
nect conservation laws to symmetries, the conserved quantity
being continuous but periodic.

2 Brief orientation for discreteness

A few years ago a comprehensive review [5] summarized
many of the historical mathematical and physical arguments
for considering the Universe to be mathematical. Included
were the three hypotheses: (1) the External Reality Hypoth-
esis (ERH) — there exists an external physical reality com-
pletely independent of us humans; (2) the Mathematical Uni-
verse Hypothesis (MUH) — our external physical reality is
a mathematical structure; and (3) the Computable Universe
Hypothesis (CUH) — the mathematical structure that is our
external physical reality is defined by computable functions.
Recall that a computable function must be specifiable by a
finite number of bits. The mathematical details are in that
article.

The ERH is relatively easy to accept, for the universe cer-
tainly existed long before we humans came on the scene. The
MUH is the conjecture for which I hope the data from the
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colliders will help us decide. One assumption here is that
Gödel’s Incompleteness Theorem is not an impediment, i.e.,
there is no limit to being able to determine the ultimate source
of all the rules of Nature and what these rules actually are.

The most interesting statements [5] regarding challenges
to the CUH are “. . . virtually all historically successful theo-
ries of physics violate the CUH . . . ” and “The main source
of CUH violation comes from incorporating the continuum,
usually in the form of real or complex numbers, which can-
not even comprise the input to a finite computation since they
generically require infinitely many bits to specify.” To me,
therein lies the problem: continuous spaces.

In particle physics, we consider two spaces: (1) a con-
tinuous spacetime for particle movement such as translations,
rotations and Lorentz transformations, and (2) a continuous
internal symmetry space at each spacetime point for the local
gauge interactions of the Standard Model. In both spaces we
have successfully used continuous functions for our descrip-
tions of the behavior of Nature.

My proposed solution to this problem is to consider both
spaces to be discrete spaces “hidden” underneath the continu-
ous approximation, as if we do not yet have enough resolution
to detect this discreteness. All our successful physics theo-
ries are then excellent effective theories containing continu-
ous fields and continuous wave function amplitudes in this
approximate world.

We will not be entering a strange new world by consider-
ing a discrete approach, for we use difference equations, lat-
tice models, and discrete computations to approximate con-
tinuum physics all the time in numerical calculations, and the
results are quite reliable and amazingly accurate. Therefore,
I suggest that a fundamental discreteness at the Plank scale of
about 10−35 meters is not unreasonable [3].

The possibility that the Monster Group, whose influence
looms over all of mathematics, could dictate all of physics
was put forth in several of my previous papers and confer-
ence talks over the last two decades, but other physicists have
conjectured a similar proposal. What the others have not re-
alized is the direct connection in a discrete internal symme-
try space from the Monster to the lepton and quark states via
the j-invariant of elliptic modular functions. In this article, I
provide additional essential arguments to establish the hege-
mony of the Monster Group and I arrive at the conclusions
that spacetime is discrete and our Universe is mathematical.

3 The Monster and the j-invariant

The very large discrete symmetry group called the Monster
group M is a finite simple group because it has only two
normal subgroups, the trivial one-dimensional group and the
whole group itself. Finite simple groups can be used as build-
ing blocks in that any other type of finite group can be con-
structed from them. The list of all finite simple groups is:
(i) the cyclic groups Cp, with p prime, (ii) the alternating

groups An, n > 4, (iii) 16 infinite families of Lie groups, and
(iv) 26 sporadic groups. The smallest sporadic is the Math-
ieu Group M11 of order 7920 discovered in 1861, while the
largest sporadic is the Monster M constructed in 1980 with
order of about 8 x 1053. The Monster has 194 different irre-
ducible representations, with the smallest irreducible matrix
representations of M being in space dimensions 1, 196883,
21296876, and 842609326.

As I explain in the next section, the most direct connec-
tion of M with the SM of leptons and quarks is via the j-
invariant of elliptic modular functions

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . (1)

where q = e2iπτ and τ is a ratio for a 2-D lattice that we will
define in a later section. I.e., this 2-D lattice approach in our
discrete spaces leads directly to the symmetry groups for the
lepton and quark families and for the Lorentz transformations
in spacetime.

As has been determined by mathematicians, the coeffi-
cients of the powers of q are simple linear combinations of
dimensions of irreducible representations of the identity oper-
ation of M, a correlation known as “Monstrous Moonshine”.
E.g., 196884 = 1 + 196883, and 21493760 = 21296876 +
196883 + 1, etc. More mathematical and historical informa-
tion about the Monster can be learned from the online papers
and books by T. Gannon [6].

4 Binary rotation groups and the j-invariant

Here I review the connection between the j-invariant and the
discrete symmetry groups for the leptons and quarks. I have
proposed [1–3] that the lepton and quark flavors, being elec-
troweak eigenstates, correspond to orthogonal states in spe-
cific discrete symmetry groups called finite binary rotational
groups. These seven subgroups of the SM local gauge group
act in the R3 and R4 real subspaces of the 2-D unitary space
C2 for SU(2)L x U(1)Y . In fact, I am using discrete R3 and R4.

The lepton families correspond to the 3-D finite binary
rotational groups called the binary tetrahedral group 2T, the
binary octahedral group 2O, and the binary icosahedral group
2I, also labelled as [3, 3, 2], [4, 3, 2], and [5, 3, 2], respec-
tively, in Table 1. These are groups of discrete symmetry rota-
tions and reflections. Binary here refers to the double cover of
the SO(3) rotation group by Spin(3) = SU(2), so these groups
are finite subgroups of SU(2) and SU(2)L x U(1)Y .

Having exhausted the group possibilities inR3, one moves
up one real spatial dimension to R4 in order to define the
quark families, which then correspond to the finite binary ro-
tation groups [3, 3, 3], [4, 3, 3], [3, 4, 3], and [5, 3, 3] of the
regular 4-D convex polytopes. One may not need the number
of quark families to match the number of lepton families for
anomaly cancellation because this geometrical approach de-
fines leptons and quarks as 3-D and 4-D entities, respectively.
I.e., the interactions are not among point particles.
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Leptons Quarks

Pred. Emp. Pred. Emp.
Mass Mass Mass Mass

group order family N (MeV) (MeV) group order family N (GeV) (GeV)

. .

. [3, 3, 3] 120 d−1/3 1/4 0.011 0.007

. u+2/3 0.38 0.004

[3, 3, 2] 24 e− 1 [1] 0.511 [4, 3, 3] 384 s−1/3 1 0.046 0.2
νe 0? 0.0? c+2/3 [1.5] 1.5

[4, 3, 2] 48 µ− 108 108 103.5 [3, 4, 3] 1152 b−1/3 108 [5] 5.0
νµ 0? 0.0? t+2/3 160 171.4

[5, 3, 2] 120 τ− 1728 1728 1771.0 [5, 3, 3] 14400 b’−1/3 1728 ∼ 80 ?.?
ντ 0? 0.0? t’+2/3 ∼ 2600 ?.?

Table 1: Lepton and quark families for the binary rotational groups [a, b, c], their j-invariant proportionality constant N, and the predicted
mass values for the quarks based upon group-to-group N ratios with the charm quark mass [1.5 GeV] and bottom quark mass [5 GeV] as
reference masses for ratios of the “up-like” and “down-like” quark states, respectively. These are the “bare” mass predictions. Drawings
with these symmetries are online [3].

Each lepton group represents the binary rotational sym-
metries of familiar 3-D regular polyhedrons, the tetrahedron,
the octahedron, and the icosahedron. In terms of two com-
plex variables z1 and z2, there are three algebraic equations
for each regular polyhedron that remain invariant under the
operations of its binary group, corresponding to the complex
equations for the vertices, the face centers, and the edge cen-
ters. Call these three equations W1, W2 and W3, respectively.
F. Klein, in a famous 1884 book [7], reported that these three
equations are not independent because they form a mathemat-
ical syzygy. He showed that two independent equations W1
and W2, say, have a ratio proportional to the j-invariant

j(τ) =
W1

NW2
(2)

where N is a specific integer, being 1, 108, and 1728, for the
three groups, 2T, 2O, and 2I, respectively. Certain integrals,
including a mass integral, for the particle states would involve
these N values as important factors.

The four binary rotational groups for the quarks are han-
dled [8] by projecting their physical 4-D polytopes onto the
2-D unitary plane C2 and realizing that their symmetries lead
to the same invariant algebraic equations as for the leptons,
with the addition of one other symmetry group syzygy for [3,
3, 3]. The corresponding N values are thus 1/4, 1, 108, 1728.

These N values suggest the pairings of the lepton families
to quark families as shown horizontally in Table 1. Notice
that these family pairings are different from the traditional ad
hoc pairings that are normally suggested for the SM because
here there exist fundamental geometrical connections.

5 Particle mass values

The influence of the j-invariant of the Monster continues. In
spaces where the j-invariant applies, all rational functions (ra-
tio of two polynomials) are proportional to the j-invariant
and invariant under all fractional linear transformations (also
called Möbius transformations). For physics purposes, mass
of a fundamental particle is proportional to the j-invariant
because mass is an invariant under Möbius transformations.
Conservation laws in physics can be related to Möbius trans-
formations in both discrete and continuous spaces.

At this stage there is no absolute mass scale, so I must use
mass ratios only, selecting a different reference mass value for
the “up” states and for the “down” states. For the lepton mass
values, we have the N ratios 1:108:1728. Table 1 shows the
predicted and the actual values. The patterns of ratios match
roughly and they were the clue to considering these binary
rotational groups.

Note that without using the reference empirical masses
for the ratios, the two predicted states in each family would
be degenerate with the same mass. One should form two
new orthogonal linear superposition states from these origi-
nal degenerate states. These states would have different “bare
mass” values and would be sensitive to the “vacuum” envi-
ronment.

For the electroweak interactions, a zero-order approxima-
tion to the quark CKM mixing matrix and the lepton PMNS
mixing matrix follows directly from the characteristic equa-
tions of the 3-D and 4-D symmetries projected to the unitary
plane C2, producing unitary eigenvectors and eigenvalues λ j

= exp[iε j]. The two angles (ε1, ε2) are (π, π) for [3,3,2], (2π/3,
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4π/3) for [4,3,2], (2π/5, 8π/5) for [5,3,2], (2π/5, 8π/5) for
[3,3,3], (π/3, π) for [4,3,3], (π/6, 7π/6) for [3,4,3], and (π/15,
19π/15) for [5,3,3].

One can define a 3 x 3 unitary matrix [9] and substitute
angle difference values for the lepton mixing matrix PMNS
and a 3 x 3 quark mixing matrix CKM3, producing

PMNS =

 0.5 0.866 ε
−0.579 0.335 0.743
0.643 −0.372 0.669

 (3)

CKM3 =

 0.978 0.208 ε
−0.180 0.847 0.5
0.104 −0.489 0.866

 (4)

with ε small. Several of the off-diagonal values in VCKM3
would require higher order corrections in order to better agree
with empirically determined values.

A 4 x 4 unitary mixing matrix for our four quark families
that brings in c34 and s34 in the 3rd and 4th rows leads to

VCKM4 =


0.978 0.208 ε1 ε2
−0.180 0.847 0.5 ε3
0.099 −0.465 0.842 0.309
−0.032 0.151 −0.268 0.951

 (5)

with all the ε values small. Adjustments can be made by con-
sidering higher order corrections.

One should not ignore the fact that a degrees-of-freedom
argument would make neutrinos that are zero mass exactly.
My two lepton states in each family have 4 d.o.f. total, which
can partition into the massive electron state with 3 d.o.f., leav-
ing just 1 d.o.f. for the neutrino state. Thus, the neutrino is
massless and can have one helicity state only. Alternately, if
both lepton states per family share the 4 d.o.f. equally with
2 d.o.f. each, then these would be two massless states, i.e.,
possibly two sterile neutrino states. Nature appears to have
chosen the unequal split, but sterile neutrinos are still a possi-
bility. As to the quarks, the two 4-D quark family states have
a total of 6 d.o.f. to split 3-3, guaranteeing the existence of
the two massive quark states per family we measure.

The discovery of the b’ quark, probably by the FCNC de-
cay b’→ b + γ, is the acid test of this geometrical approach
toward understanding the SM. There is already some hint in
the Fermilab data for this decay but the signal/noise ratio is
not good enough. The 4th quark family has recently been in
vogue because the baryonic particle-antiparticle asymmetry
in the Universe (BAU) can then be explained by CP violation
with a new value for the Jarlskog invariant that is about 1013

times larger [10] than for only 3 quark families. As far as I
know, the b’ quark remains a viable possibility.

6 Discrete internal symmetry space

In this geometrical approach, the internal symmetry space is
discrete C2 at the Planck scale. Therefore we must consider

the mathematical properties of a 2-D hexagonal lattice (or of
a 2-D rectangular lattice) of mathematical nodes either with
two real axes R2, or two complex axes C2, or two quaternion
axesH2, etc. All its nodes can be represented by integer linear
combinations of two complex numbers that we label ω1 and
ω2 forming a right-handed basis (ω1, ω2). We can change
these two numbers without changing the lattice by letting

ω′1 = aω1 + bω2
ω′2 = cω1 + dω2

(6)

where a, b, c, and d, are integer elements of a 2 x 2 matrix
with determinant 1. Such matrices form a symmetry group
called the “modular group” SL(2, Z) which is related to el-
liptic curves. Actually, all that matters is the ratio τ = ω1/ω2
which defines the τ for the j-invariant in Eq. 1. Since

f (τ) = f
(aτ + b

cτ + d

)
, (7)

all modular functions f (τ) on the lattice depend only upon its
shape. The j-invariant is such a function, and all other SL(2,
Z)-invariant functions are rational functions of j(τ).

Eq. 7 defines the fractional linear transformations, i.e.,
the Möbius transformations, which are based upon the trans-
formations τ→ 1 + τ and τ→ -1/τ for translations, rotations,
etc. In the limit when the node spacing approaches zero, the
continuous approximation appears and the Möbius transfor-
mations include the continuous symmetry transformations.

7 Geometry of the boson interactions

The 12 bosons of the SM, 8 gluons and 4 EW bosons, op-
erate on the fermion states in a continuous internal symmetry
space. For a continuous space one can map the complex plane
C = R2 and unitary plane C2 = R4 to the 2-D Riemann sphere.
Its 2-D surface has no demarcations, thus allowing any small
or large rotation. Consequently, the symmetry group for the
SM interactions is the continuous gauge group of operations.

In my geometrical approach this internal symmetry space
is discrete, so only specific finite rotation groups can produce
these boson operations. However, when the internal sym-
metry space is discrete and particle symmetries are defined
by the specific finite binary rotation groups for leptons and
quarks, the Riemann surface is tessellated, i.e., composed of
identical equilateral triangles, their number uniquely deter-
mined by the binary rotation group. Then the number of rota-
tional operations becomes severely restricted and each boson
operator must respect the integrity of the symmetry group for
the lepton or quark families participating in the interaction.

Geometry provides the important clue. We desire a small
group in our discrete space for defining these interactions
(i.e., producing the appropriate rotations by the bosons), and
we find the binary icosahedral group 2I or [5, 3, 2]. How-
ever, there will be some missed operations on the symmetry
for the binary octahedral group 2O. But if we take 2I twice,
i.e., including its “reciprocal” [5, 3, 2], then we get it all.
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In order to appreciate this geometry, quaternion algebra
simplifies the game. Recall that the SU(2) matrix representa-
tion and the unit quaternion q are related by

q = w1 + xi + yj + zk⇐⇒
(
w + iz x + iy
−x + iy w − iz

)
(8)

where the i, j, and k are unit imaginaries, the coefficients w,
x, y, and z are real, and w2+x2+y2+z2 = 1. We can represent
the two orthogonal lepton or quark states in each family by
two orthogonal unit quaternions in C2.

There is also a conjugate plane C′2 for the antiparticles
and its Riemann sphere. The conjugate quaternion is q’ =w1
- xi - yj - zk. What we discuss for the particle states works
for the antiparticle states, too. Having a conjugate space is
very special. Clifford algebra and Bott periodicity dictate that
only R4, R8, and other real spaces Rn with dimensions divis-
ible by four have two equivalent conjugate spaces. This spe-
cific mathematical property dictates a world with both particle
states and their antiparticle states for these dimensions only.

One more mathematical fact. The group U(1)Y for weak
hypercharge Y in SU(2)L x U(1)Y has the important role of
reducing the symmetry between the two spaces, normal and
conjugate, in R4 = C2 from being simply equivalent to their
being gauge equivalent. The physics consequence is that par-
ticles and antiparticles have the same positive mass but all
other properties can be opposite sign. Alternately, we can
use the 2-element inversion group Ci to accomplish the same
distinction as well as to determine the intrinsic parity of the
particle states, odd for particles and even for antiparticles.

Furthermore, the use of quaternions for the electroweak
operations tells us that the L in SU(2)L, which means left-
handed chirality only for the weak interaction, is really dic-
tated by quaternion properties, so that the left-handed physics
restriction for the weak interaction in C2 follows. That is,
in the normal unitary plane all unit quaternions have left-
handed screw transformations that mix the two orthogonal
states and right-handed screw transformations that do not.
Put another way, the quaternions transform the two orthogo-
nal flavor states as left-handed doublets and right-handed sin-
glets. For example, in the first lepton family, they are (νeL,
eL) and (νeR) and (eR). In the conjugate unitary plane for an-
tiparticles, the quaternion transformations have the opposite
handedness.

Now back to rotating the Riemann sphere. In the simplest
electroweak (EW) interactions of a boson with an incoming
fermion, the fermion state either remains the same (via γ or
Z0) or changes from the initial state to an orthogonal state (via
W±). As examples, the γ may be the identity and the Z0 may
produce a 4π rotation, while the W± operates between differ-
ent states. The 120 operations of the binary icosahedral group
2I are represented by 120 unit quaternions, and 2I contains
almost all the rotation operations needed for the 7 fermion
family groups. However, several symmetry operations of 2O

would be absent. One needs to add the “reciprocal” binary
icosahedral group to include all the operations of 2O, making
a grand total of 240 operations. (n.b. One could also consider
just the generators to realize the same result.)

Here comes an interesting and unexpected mathematical
consequence. The first set of 120 quaternions can be ex-
pressed as 120 special unit quaternions known as icosians
which telescope 4-D discrete-space quaternions up to being
8-D discrete-space octonions to locate points that form a spe-
cial lattice in R8 called D8. The second set of 120 quaternions
does the same, forming another D8 lattice in R8 by filling the
holes in the first D8 lattice.

The icosians are special unit quaternions qi which have
the mathematical form

qi = (e1 + e2
√

5) + (e3 + e4
√

5)i+
+(e5 + e6

√
5) j + (e7 + e8

√
5)k

(9)

where the eight e j are special rational numbers. The impor-
tant mathematical fact here is that in each pair, such as (e3
+ e4
√

5), exactly one of the e j is nonzero. Therefore, even
though the icosians are telescoping us up to an 8-D space,
their primary importance is that they represent 4-D operations
in R4 even though we can now define identical quaternion op-
erations via octonions in the much larger R8 space also.

Together, these two D8 lattices of 120 icosians each com-
bine to form the 240 octonions that define the famous E8 lat-
tice in R8. The symmetry group for this E8 lattice is not the
Lie group E8 but the discrete group Weyl E8.

Therefore, the operations of the SM occur in discrete 4-D
internal symmetry space, but they operate also in the discrete
8-D space because these icosians span both spaces simultane-
ously.

8 Quark color, gluons, and hadron states

Now I must back up to show that the gluon interactions can
occur in R4 for SU(3)C even though one normally expects the
larger space C3. Because 4-D rotations are simultaneous rota-
tions in two orthogonal planes, each of the three quark color
charges Red, Green, and Blue, can be assigned to the three
possible rotation plane pairs [wx, yz], [xy, zw], and [yw, xz],
respectively. Actually, because these three 4-D rotation pairs
are equivalent and we could have made the color assignments
in any order, we learn the mathematical reason for color being
an exact physical symmetry.

Contained within the above specific icosians are the gluon
operations on the color states, but one can use a specific 4
x 4 rotation block matrix R to define the transition from one
color state in the 4-D space to another. There are 8 orthogonal
gluon matrices in agreement with the 8 gluons of the SU(3)C

gauge group of the SM.
Hadrons are colorless quark combinations, so they occur

when the combined resultant 4 x 4 matrices produce no net 4-
D rotation, i.e., are the identity matrix. One can show that this
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colorless state exists for three combinations of quark states
only: (1) the quark-antiquark pair with color and anticolor,
(2) three quarks, or (3) three antiquarks, with the appropriate
linear combinations of colors or anticolors.

The mathematics itself distinguishes quarks (and baryon
number) from leptons: the quarks are 4-D entities and the
leptons are 3-D entities, with only the 4-D entities capable of
the color interaction because color is an exact symmetry in
R4. Quark confinement results because isolated quarks are 4-
D entities which cannot exist in a 3-D space, so one can never
have an isolated single quark in our 3-D spatial world.

The colorless hadron states, being those special mathe-
matical combinations of quark 4-D entities, are now actually
3-D entities like the lepton states are. That is, the color-
less combinations of quarks are 3-D composite particle states
because their geometrical intersections define 3-D geometric
entities.

Therefore, in my geometrical version of the SM, we have
3-D lepton states, 3-D hadron states, 3-D electroweak boson
states, but 4-D quark states and 4-D gluon states. The 4-D
quark and gluon states are confined, i.e., they cannot exist as
separate entities in our 3-D spatial world, but the 3-D lep-
ton, 3-D hadron, and 3-D electroweak boson states can move
through 4-D discrete spacetime with its 3 spatial dimensions.

9 Geometry of discrete 4-D spacetime

Our 3-D particles move in discrete 4-D spacetime. We know
that continuous 4-D spacetime has symmetries related to its
continuous Lorentz group SO(3,1). For a discrete 4-D space-
time and its Lorentz transformations we need to determine a
finite subgroup of SO(3,1) for its discrete symmetry.

A clever mathematical approach to 4-D spacetime was in-
troduced by R. Penrose [11] long ago, who showed how to
utilize his “heavenly sphere” to account for Lorentz transfor-
mations, etc. This “heavenly sphere” is actually 4-D space-
time (t, x, y, z) mapped onto the Riemann sphere. Consider
being in the center of the “heavenly sphere” so that light rays
from stars overhead pass through unique points on the unit
celestial sphere surrounding you. A Lorentz boost is a con-
formal transformation of the star locations: the constellations
will look distorted because the apparent lengths of the lines
connecting the stars will change but the angles between these
connecting lines will remain the same.

In our discrete 4-D spacetime we need to tesselate this
Riemann surface into identical equilateral triangles and then
perform the symmetry transformations of the sphere. But
we have already achieved this tesselation earlier with the bi-
nary rotation groups when we considered the discrete internal
symmetry space mapped to the Riemann sphere, so we know
the result. Using the isomorphism SO(3,1) = PSL(2,C), we
see [2] that the group mathematics connects the conformal
transformations just described to the Möbius group via

SO(3, 1) = Möbius group = PSL(2,C), (10)

with the discrete Lorentz transformations of the tessellated
Riemann sphere already contained in SO(3,1). Thus, we have
a unit quaternion group PSL(2,C) (equivalently, an SU(2) ma-
trix or spinor) representation of the Lorentz transformation.

Therefore, we are back to our discrete symmetries of the
binary polyhedral groups because they are finite modular sub-
groups of the Möbius group PSL(2,C). Therefore, the 240
special quaternions called icosians are now required for dis-
crete Lorentz boosts and discrete rotations in the discrete 4-D
spacetime. We obtain a second E8 lattice in R8 with symme-
try group Weyl E8.

10 Unification of spacetime and the Standard Model

We can now unite the discrete internal symmetry space oper-
ations with the discrete spacetime operations [2]. The direct
product of our two Weyl E8 groups results in a subgroup of
the continuous group PSL(2,O), where O represents all the
unit octonions. For the continuous case, PSL(2,C) has be-
come PSL(2,O) = SO(9,1), the Lorentz group in 10-D space-
time. That is, the final combined spacetime is bigger than I
expected, being isomorphic to a 10-D spacetime instead of an
8-D spacetime.

Applying this result to our discrete case, the combined
finite subgroup

finite PSL(2,O) = finite SO(9, 1), (11)

the finite Lorentz group in discrete 10-D spacetime. The same
result, expressed in terms of the direct product of the Weyl E8
groups is

Weyl E8 x Weyl E8 = “Weyl′′ SO(9, 1), (12)

a finite subgroup of SO(9,1).
Therefore, the big surprise is that the combination of a

4-D discrete spacetime with a 4-D discrete internal symmetry
space creates a unique connection to 10-D discrete spacetime,
not to an 8-D discrete spacetime. Unlike the situation with
continuous spaces, we do not have a 6-D “curled up” internal
symmetry space with about 10500 possibilities.

The mathematics has dictated a beautiful result: there
seems to be only one way for our Universe to exist when
spacetime is discrete.

11 A physical particle model

Even though the mathematics telescopes us up from R4 to R8,
we still need a physical model of particles in the discrete 4-D
spacetime defining our Universe. The leptons, hadrons, and
the electroweak bosons are non-point-like 3-D entities that
appear to be point-like particles at our normal size resolution
of about 1011 times larger than the Planck scale.

Peering in at the Planck scale, however, I expect the dis-
crete 4-D internal symmetry space at each spacetime point
to conjoin into the discrete 4-D spacetime. In order to do
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so, each particle must emerge by “gathering in” nodes of the
lattice to make its 3-D or 4-D entity with its correct symme-
try. For example, if the particle is an electron, we expect the
symmetry of the node collection will be tetrahedral to agree
with its [3, 3, 2] symmetry. If the lattice of nodes was orig-
inally uniformly spaced in this region of discrete space, then
the existence of the electron has distorted this lattice with a
decreasing distortion amount for increasing distance from the
electron’s center.

Note that this geometrical approach assumes that the lat-
tice nodes themselves do not have any measurable physical
properties. Consequently, we have arrived finally at the end
of the hierarchy of physical particles within particles. At this
point in the geometrical approach we simply must accept this
gathering-of-nodes process because the mathematics dictates
this process via graph theory and Kuratowski’s theorem.

Kuratowski’s theorem is important here because it states
that a graph is planar if and only if it does not contain a Kura-
towski subgraph K5 or K3,3. For example, if an n-dimensional
graph (a lattice of nodes) in a spatial dimension higher that 2-
D does not contain a Kuratowski K5 subgraph, also known
as the complete graph of five vertices, then this n-D graph
reduces to 2-D.

But the first quark family’s binary rotational group [3, 3,
3] symmetry is the rotationally symmetric version of the Ku-
ratowski subgraph K5. Therefore, at least one quark state of
the first quark family is stable as it moves through the lattice,
while all other quark families have states that will decay down
to [3, 3, 3] quark states. Indeed, the physics agrees with this
mathematical prediction.

At the DISCRETE’08 conference in December, 2008
where I tried to present this geometrical approach in my allot-
ted 20 minutes (!), C. Jarlskog asked me an interesting ques-
tion: Why can’t the universe have only quarks and gluons?
I.e., a QCD world seems complete by itself. Why complicate
the material world with leptons and the electroweak interac-
tion? To which I immediately answered: Kuratowski’s The-
orem in mathematics does not allow such a world, but I was
not encouraged to elaborate with any of the details.

Here is the rest of my argument. If quarks are 4-D en-
tities, most quark states decay because they do not have the
structure of K5 (or K3,3), so the initial structure will re-form
into two or more new particles. In a universe with only quarks
and gluons, a problem arises because gluons change only the
color state for a particular quark but cannot change one quark
flavor into another. In order to obey Kuratowski’s theorem,
Nature had no choice but to bring in more particles, notably
the leptons and the electroweak interaction bosons. Voilà!

The immortality of the electron with group [3,3,2] seems
to depend upon its close geometrical relation to the regular
K5 symmetry group [3, 3, 3]. Of course, the electron could
annihilate with its antiparticle (and so can a quark).

At this point one might be concerned about the emergence
of fermion particles from the “vacuum” state. In order to ac-

count for all the particles in the known Universe, the equiv-
alent of about one new hydrogen atom per cubic meter per
10 million years is required. This process can occur because
fermions are represented by spinors, and spinors originate
from zero-length vectors. That is, according to E. Cartan, one
zero-length vector splits into a spinor and conjugate spinor
mathematically. The spinor is the fermion such as an elec-
tron and the conjugate spinor is the anti-fermion positron, for
example. If their total energy remains zero by adding up all
energy forms, then this creation process is viable.

As the electron or any 3-D particle moves through the lat-
tice, I would expect that the particle’s lattice distortion ef-
fect moves with it, with its previous distortions relaxing back
toward being a regular lattice while the oncoming positions
become more distorted. Mathematically, the Möbius trans-
formations guarantee the integrity of this movement. That
is, for our lattice, the transformation τ → 1+ τ ensures that
the movement process is identical everywhere in the lattice.
The second Möbius transformation τ→ - 1/τ when combined
with the one above allows rotations and other linear transfor-
mations to occur in the lattice.

This lattice distortion by a particle in 4-D discrete space-
time is the “warping of spacetime” associated with the grav-
itational interaction proposed by A. Einstein in the general
theory of relativity. In this way, gravitation appears to be dif-
ferent from the other fundamental interactions which appear
to be more localized.

More details of this particle model, such as the geometry
of the gravitational interaction, the origin of the rules of quan-
tum mechanics, the origin of time, and the information coding
of the fundamental particles, will be discussed thoroughly in
the second paper of this series.

12 Triality, the Leech lattice, and information coding

We know that particle EW interactions can be described in
lowest order by the Feynman diagram (Fig. 1) involving three
particles with three lines meeting at a point. There can be two
fermions interacting with one of the electroweak (W±, Z0,
or γ) or color (8 gluons) bosons. There can be three gluons
interacting. More complicated diagrams can be drawn but
they will all be made from combinations of this generic one.

This lowest order Feynman diagram with two fermions
and one boson is a mathematical triality diagram with the
fermions representing spinors and the boson representing a
vector Jordan algebra entity. Triality is a relationship between
three vector spaces over a field F that are all isomorphic to
each other. Thus, the common vector space is isomorphic to
R, C, H, or O, i.e., involving spinors in dimensions 1, 2, 4,
and 8, respectively [12].

In our 4-D discrete spacetime the fermion states can be
represented by quaternions. In fact, Clifford algebra tells us
that there will be two quaternion representations in R4 called
the right-handed spinor representation S+4 and the left-handed
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Fig. 1: The incoming fermion emits or absorbs a boson and a
fermion exits. E.g., an electron emits a photon and continues in a dif-
ferent direction. This diagram represents triality among two spinors
(electron in and electron out) and a vector boson.

spinor representation S−4 . In general, for even dimensional
spacetimes, i.e., even n values, the two spinor representations
have dimension 2n/2−1, but the vector representation has di-
mension n. For example, in n = 4 space, the boson vector
representation is a 4 x 4 real matrix and the fermion spinor
representation is a 2 x 2 complex matrix or, equivalently, also
a 4 x 4 real matrix. I.e., the fermions and bosons are the same
dimension.

We know that the icosians telescope us up to discrete 8-D.
With n = 8, the spinor representations are again the same size
as the vector representation, both represented by 8 x 8 real
matrices. Even so, they are not equivalent representations.
However, one can permute the vector, left-handed spinor, and
right-handed spinor representations into each other [12]. In
4-D, for example, there is a parity operator that can do this
change of a left-handed spinor into a right-handed spinor and
vice-versa.

For the generic Feynman diagram, one can think about
the two fermions and the one boson as being three E8 lat-
tices which come together momentarily to form a 24-D lat-
tice called the Leech lattice. The Monster Group again plays
its governing role through the j-invariant function. The nu-
merator of j(τ), being 1 + 720 q + 146512 q2 + . . ., is the
generating function for the lattice vectors in this product of
three copies of the E8 lattice. And for conformal field theo-
ries, the j-invariant is the partition function for the Monster
Group [13].

Another very important mathematical connection takes us
to information coding theory. One could say that each particle
in the triality diagram brings in its 8-bit Hamming code word
to temporarily form the 24-bit binary Golay code word or,
equivalently, the 12-bit ternary Golay code word, related to
the Leech lattice. The 8-bit Hamming code has 72 distinct
code words in 9 different but overlapping sets [14], the exact
number required for the fundamental particles of the SM: 6
leptons plus 8 x 3 = 24 quarks sums to 30 fermion states;
when doubled for anti-particles, makes 60 particle states; then
add the 12 bosons to get 72. The 24-bit Golay code word
encodes 12 data bits defining up to 212 = 4096 different items,
easily covering the possible interaction triples of the SM.

These code words support the hegemony of the Monster

Group because the allowed SM interactions of the leptons and
quarks can be related to information theory in 24 dimensions.
The second article includes details of the Turyn construction
for these Golay-Leech lattice code words and their relation-
ship to quantum information theory and the Monster Group.

13 Conclusion

In this brief article I have outlined specific connections be-
tween the mathematics of the Monster Group and fundamen-
tal physics particles and rules. These connections support the
three hypotheses ERH, MUH, and CUH, so I conclude that
the Universe is mathematical and that we live in the only pos-
sible one. I await the empirical confirmation by the discovery
of the 4th quark family, particularly the b’ quark at about 80
GeV. Hopefully, the wait will not be long.
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The structure of spin and isospin is analyzed. Although both spin and isospin are related
to the same SU(2) group, they represent different dynamical effects. The Wigner-Racah
algebra is used for providing a description of bound states of several Dirac particles in
general and of the proton state in particular. Isospin states of the four ∆(1232) baryons
are discussed. The work explains the small contribution of quarks spin to the overall
proton spin (the proton spin crisis). It is also proved that the addition of QCD’s color is
not required for a construction of an antisymmetric state for the ∆++(1232) baryon.

1 Introduction

The isospin notion has been conceived by W. Heisenberg in
1932 [1, see p. 106]. It aims to construct a mathematical ba-
sis that represents the proton-neutron similarity with respect
to the strong nuclear force. Both spin and isospin have the
same SU(2) group structure. Thus, like spin multiplets of a
quantum state, one combines corresponding states of nuclear
isobars in an isospin multiplet. For example, the ground state
of the 14C, 14O and the Jπ = 0+ excited state of 14N are mem-
bers of an isospin triplet. Obviously, one must remember that
isospin is a useful approximation that neglects proton-neutron
differences that are related to their mass and their electromag-
netic interactions.

Later developments have shown that the proton-neutron
similarity stems from the similarity between the u, d quarks.
It follows that the usefulness of isospin symmetry extends to
particle physics. For example, the three pions are members
of an isospin triplet. Due to historical development, isospin
notation takes different form in nuclear and particle physics.
Here T and I denote isospin in nuclear and particle physics,
respectively. In this work the symbol T is used, mainly be-
cause of the following reason. In the case of spin, the symbols
J and j denote total and single particle angular momentum
operators, respectively. Similarly, the symbols T and t de-
note the corresponding isospin operators. Thus, due to the
same underlying SU(2) group, isospin relations can be read-
ily borrowed from their corresponding spin counterparts. The
operators T and t are used in the discussion presented in this
work.

This work examines states of electrons and quarks. These
particles have spin-1/2 and experimental data are consistent
with their elementary pointlike property. Evidently, a theo-
retical analysis of an elementary pointlike particle is a much
simpler task than that of a composite particle. The discussion
begins with an examination of relevant properties of elec-
tronic states of atoms. The mathematical structure of the
SU(2) group is used later for a similar analysis of isospin
states.

Two important conclusions are derived from this analy-
sis. First, it is well known that quarks’ spin carry only a small
fraction of the entire proton’s spin [2]. This experimental ev-
idence, which is called the second EMC effect and also the
proton spin crisis, is shown here to be an obvious result of
the multi-configuration structure of states of more than one
Dirac particle. Another result is that the anti-symmetric state
of the ∆++(1232) baryon is well understood and there is no
need to introduce a new degree of freedom for its explana-
tion. It means that the historical starting point of the QCD
construction has no theoretical basis. (Below, the symbol ∆
refers to this isospin quartet of baryons.)

Generally, in order to simplify notation, the specific value
of normalization factor is omitted from the expressions. The
second and the third sections analyze spin and isospin, re-
spectively. The fourth section provides an explanation for the
proton spin crisis. The fifth section explains the antisymmet-
ric structure of the ∆++ baryon (without using color). The last
section contains concluding remarks.

2 Spin States

A comprehensive discussion of angular momentum can be
found in textbooks [3]. In this short work some elements of
this theory are mentioned together with a brief explanation.
This is done for the purpose of arriving rapidly at the main
conclusions. A relativistic notation is used and for this reason
the j j coupling [3] takes place.

Let us begin with a discussion of spin and spatial angu-
lar momentum. These quantities are dimensionless and this
property indicates that they may be coupled. Now, the mag-
netic field depends on space and time. Moreover, the theory
must be consistent with the experimental fact where both spa-
tial angular momentum and spin of an electron have the same
kind of magnetic field. Thus, it is required to construct a rela-
tivistically consistent coupling of these quantities. This is the
theoretical basis for the well known usage of spin and spa-
tial angular momentum coupling in the analysis of electronic
states of atoms.
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A motionless free electron is the simplest case and the
spin-up electron state is [4, see p. 10]

ψ(xµ) = Ce−imt


1
0
0
0

 , (1)

where m denotes the electron’s mass.
A second example is the state of an electron bound to a

hypothetical pointlike very massive positive charge. Here the
electron is bound to a spherically symmetric charge Ze. The
general form of a jπ hydrogen atom wave function is [5, see
pp. 926–927]

ψ(rθϕ) =
(

FY jlm

GY jl′m

)
, (2)

where Y jlm denotes the ordinary Ylm coupled with a spin-1/2
to j, j = l ± 1/2, l ′ = l ± 1, F,G are radial functions and the
parity is (−1)l.

By the general laws of electrodynamics, the state must be
an eigenfunction of angular momentum and parity. Further-
more, here we have a problem of one electron (the source at
the origin is treated as an inert object) and indeed, its wave
function (2) is an eigenfunction of both angular momentum
and parity [5, see p. 927].

The next problem is a set of n-electrons bound to an at-
tractive positive charge at the origin. (This is a kind of an
ideal atom where the source’s volume and spin are ignored.)
Obviously, the general laws of electrodynamics hold and the
system is represented by an eigenfunction of the total angular
momentum and parity Jπ. Here a single electron is affected by
a spherically symmetric attractive field and by the repulsive
fields of the other electrons. Hence, a single electron does not
move in a spherically symmetric field and it cannot be rep-
resented by a well defined single particle angular momentum
and parity.

The general procedure used for solving this problem is to
expand the overall state as a sum of configurations. In every
configuration, the electrons’ single particle angular momen-
tum and parity are well defined. These angular momenta are
coupled to the overall angular momentum J and the product
of the single particle parity is the parity of the entire system.
The role of configurations has already been recognized in the
early decades of quantum physics [6]. An application of the
first generation of electronic computers has provided a nu-
merical proof of the vital role of finding the correct configu-
ration interaction required for a description of even the sim-
plest case of the ground state of the two electron He atom [7].
The result has proved that several configurations are required
for a good description of this state and no configuration dom-
inates the others. This issue plays a very important role in the
interpretation of the state of the proton and of the ∆++.

For example, let us write down the 0+ ground state Heg of

the Helium atom as a sum of configurations:

ψ(Heg) = f0(r1) f0(r2) 1
2
+ 1

2
+ + f1(r1) f1(r2) 1

2
− 1

2
−+

f2(r1) f2(r2) 3
2
− 3

2
− + f3(r1) f3(r2) 3

2
+ 3

2
++

f4(r1) f4(r2) 5
2
+ 5

2
+ + . . .

(3)

Here and below, the radial functions fi(r), gi(r) and hi(r)
denote the two-component Dirac radial wave function (mul-
tiplied be the corresponding coefficients). In order to cou-
ple to J = 0 the two single particle j states must be equal
and in order to make an even total parity both must have the
same parity. These requirements make a severe restriction on
acceptable configurations needed for a description of the 0+

ground state of the He atom.
Higher two-electron total angular momentum allows the

usage of a larger number of acceptable configurations. For
example, the Jπ = 1− state of the He atom can be written as
follows:

ψ(He1−) = g0(r1)h0(r2) 1
2
+ 1

2
− + g1(r1)h1(r2) 1

2
+ 3

2
−+

g2(r1)h2(r2) 1
2
− 3

2
+ + g3(r1)h3(r2) 3

2
− 3

2
++

g4(r1)h4(r2) 3
2
− 5

2
+ + g5(r1)h5(r2) 3

2
+ 5

2
−+

g6(r1)h6(r2) 5
2
+ 5

2
− . . .

(4)

Using the same rules one can apply simple combinatorial
calculations and find a larger number of acceptable configura-
tions for a three or more electron atom. The main conclusion
of this section is that, unlike a quite common belief, there are
only three restrictions on configurations required for a good
description of a Jπ state of more than one Dirac particles:

1. Each configuration must have the total angular momen-
tum J.

2. Each configuration must have the total parity π.

3. Following the Pauli exclusion principle, each configu-
ration should not contain two or more identical single
particle quantum states of the same Dirac particle.

These restrictions indicate that a state can be written as a sum
of many configurations, each of which has a well defined sin-
gle particles angular momentum and parity of its Dirac parti-
cles.

The mathematical basis of this procedure is as follows.
Take the Hilbert sub-space made of configurations that sat-
isfy the three requirements mentioned above and calculate
the Hamiltonian matrix. A diagonalization of this Hamilto-
nian yields eigenvalues and eigenstates. These eigenvalues
and eigenstates are related to a set of physical states that have
the given Jπ. As pointed out above, calculations show that
for a quite good approximation to a quantum state one needs
a not very small number of configurations and that no con-
figuration has a dominant weight. These conclusions will be
used later in this work.
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3 Isopin States

Spin and isospin are based on the same mathematical group
called SU(2). Its three generators are denoted jx, jy, jz. An
equivalent basis is [1, see pp. 357–363]

j+ = jx + i jy, j− = jx − i jy, jz. (5)

All the j operators mentioned above commute with the
total j 2 operator. For this reason, if one of them operates
on a member of a (2J + 1) multiplet of an SU(2) irreducible
representation then the result belongs to this multiplet. The
two j± operators are of a particular importance. Thus, let
ψJ,M denote a member of such a multiplet and one finds

JzJ−ψJ,M = (M − 1)J−ψJ,M . (6)

This relation means that J− casts ψJ,M into ψJ,M−1

J−ψJ,M =
√

J(J + 1) − M(M − 1)ψJ,M−1, (7)

where the appropriate coefficient is written explicitly. Analo-
gous relations hold for the J+ operator.

Let us turn to isospin. The required operators are simply
obtained by taking the mathematical structure of spin and re-
placing the total spin operator J and the single particle spin
operator j by the corresponding isospin operators T, t. (Here,
like in the spin case, M, m denote the eigenvalue of Tz, tz, re-
spectively.) The issue to be examined is the structure of the
isospin multiplet of the four baryons:

∆−, ∆0, ∆+, ∆++. (8)

These ∆(1232) baryons have the lowest energy of the fam-
ily of the ∆ baryons [8]. The ∆++ baryon has three u quarks
and ψ∆(uuu) denotes its state. Therefore, its isospin state is
T = 3/2, M = 3/2 and the isospin component of the wave
function is symmetric with respect to an exchange of any pair
of quark.

Let us examine the operation of T− on ∆++.

T−ψ∆(uuu) = (t1− + t2− + t3−)ψ∆(uuu)
= ψ∆(duu) + ψ∆(udu) + ψ∆(uud), (9)

where ti− operates on the ith quark. This is the way how one
obtains a yet unnormalized expression for the ∆+ baryon from
that of ∆++. A successive application of T− yields expressions
for every member of the isospin quartet (8).

Now, the ∆++ state is symmetric with respect to its quark
constituents and the same symmetry holds for the isospin op-
erator T− = t1− + t2− + t3−. Hence, also the ∆+ is symmetric
with respect to its uud quark states. This argument proves that
isospin space of every member of the baryonic quartet (8) is
symmetric. The same result can be obtained from a differ-
ent argument. The u, d quarks are fermions and their overall
state must be antisymmetric with respect to an interchange of

any pair of quarks. Now, the isospin operators used above do
not affect other coordinates of quarks. It means that for ev-
ery members of the isospin quartet (8), the entire symmetry
of the other coordinates remain antisymmetric and the isospin
coordinate is symmetric.

The data confirms the similarity between members of an
isospin multiplet. Thus, for example, the mass difference be-
tween the ∆0 and ∆++ baryons is less than 3 MeV [8], whereas
the mass difference between the ∆ multiplet and the nucleons
is about 300 MeV. This evidence shows the goodness of the
isospin notion, where strong interactions dominate the state
of members of an isospin multiplet and the effect of all other
interactions can be regarded as a small perturbation.

4 The Proton Spin Crisis

The proton’s Jπ = 1/2+ state is determined by three valence
uud quarks. The non-negligible probability of the existence
of an additional quark-antiquark pair [1, see p. 282] indicates
that it is a highly relativistic system. The discussion of section
2 holds for the spin-1/2 point-like quarks and the expansion
in configurations is a useful approach. Here the three single
particle jπ represent the uud quarks, in that order. Evidently,
each configuration must satisfy the three requirement written
few lines below (4). However, the Pauli exclusion principle of
restriction 3 does not hold for the d quark. Thus, in analogy to
(3) and (4) one expands the proton’s wave function as a sum
of terms of specific configurations. A truncated expression
for this expansion is shown below:

ψ(uud) = f0(r1) f0(r2)h0(r3) 1
2
+ 1

2
+(0) 1

2
++

f1(r1) f1(r2)h1(r3) 1
2
− 1

2
−(0) 1

2
++

f2(r1)g2(r2)h2(r3) 1
2
+ 1

2
+(1) 1

2
++

f3(r1)g3(r2)h3(r3) 1
2
− 1

2
−(1) 1

2
++

f4(r1)g4(r2)h4(r3) 1
2
+ 1

2
−(0) 1

2
−+

f5(r1)g5(r2)h5(r3) 1
2
+ 1

2
−(1) 1

2
−+

f6(r1)g6(r2)h6(r3) 1
2
+ 3

2
+(1) 1

2
++

f7(r1)g7(r2)h7(r3) 1
2
− 3

2
+(1) 1

2
−+

f8(r1)g8(r2)h8(r3) 1
2
+ 1

2
+(1) 3

2
++

f9(r1)g9(r2)h9(r3) 1
2
− 1

2
−(1) 3

2
++

fa(r1)ga(r2)ha(r3) 1
2
− 3

2
−(1) 1

2
++

fb(r1)gb(r2)hb(r3) 1
2
+ 3

2
−(1) 1

2
−+

fc(r1)gc(r2)hc(r3) 1
2
+ 1

2
−(1) 3

2
− + . . .

(10)

The symbols 0...9,a,b,c are used for enumerating the terms of
(10). Here, like in (3) and (4), fi(r), gi(r) and hi(r) denote the
Dirac two-component radial wave function of the uud quarks,
respectively (multiplied be the corresponding coefficients). In
each term, the number in parentheses indicates how the two
angular momenta of the uu quarks are coupled. Below, Juu

denotes the value of this quantity.
The following remarks explain the form of these terms.

An important issue is the coupling of the two uu quark that
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abide by the Pauli exclusion principle. For this reason, Juu

is given explicitly in each term. Another restriction stems
from the rule of angular momentum addition. Thus, for every
term, the following relation must hold in order to yield a total
spin-1/2 for the proton: Juu = jd ± 1/2. These rules explain
the specific structure of each term of (10) which is described
below.

In terms 0,1 the two spin-1/2 are coupled antisymmetri-
cally to Juu = 0 and the two radial function are the same. In
terms 2,3 these spins are coupled symmetrically to Juu = 1
and antisymmetry is obtained from the two orthogonal radial
functions. In terms 4,5 the different orbitals of the uu quarks
enable antisymmetrization. Thus, the two spin-1/2 functions
are coupled to Juu = 0 and Juu = 1, respectively. The radial
functions are not the same because of the different orbitals.
In terms 6,7 the spins are coupled to Juu = 1. In terms 8,9 we
have a symmetric angular momentum coupling Juu = 1 and
the antisymmetry is obtained from the orthogonality of the
radial function fi(r), gi(r). Terms a,b are analogous to terms
6,7, respectively. In term c the different uu orbitals enable an-
tisymmetrization and they are coupled to Juu = 1.

A comparison of the expansion of the He atom ground
state (3) and that of the proton (10) shows the following
points:

1. If the expansion is truncated after the same value of a
single particle angular momentum then the number of
terms in the proton’s expansion is significantly larger.

2. This conclusion is strengthened by the fact that the pro-
ton has a non-negligible probability of an additional
quark-antiquark pair. Evidently, an inclusion of this
pair increases the number of acceptable configurations.

3. Calculations show that the number of configurations re-
quired for the ground state spin-0 of the two electron
He atom is not very small and that there is no single
configuration that dominates the state [7]. Now the
proton is a spin-1/2 relativistic particle made of three
valence quarks. Therefore, it is very reasonable to as-
sume that its wave function takes a multiconfiguration
form.

Using angular momentum algebra, one realizes that in
most cases an individual quark does not take the proton’s
spin direction. This is seen on two levels. First, the upper
and the lower parts of the quark single particle function have
l = j± 1/2. Furthermore, the relativistic quark state indicates
that the coefficients of the upper and the lower part of the
Dirac four component function take a similar size. Hence,
for the case where j = l − 1/2, the Clebsch-Gordan coef-
ficients [3] used for coupling the spatial angular momentum
and the spin indicate that the spin of either the upper or the
lower Dirac spinor has no definite direction and that the co-
efficient of the spin down is not smaller than that of the spin
up [3, see p. 519].

Let us turn to the coupling of the quark spins. The 3-quark

n p 938

∆− ∆0 ∆+ ∆++
1232

Fig. 1: Energy levels of the nucleon and the ∆ isospin multiplets
(MeV).

terms can be divided into two sets having juu = 0 and juu > 0,
respectively. For juu = 0 one finds that the single particle jd =
1/2 and this spin is partially parallel to the proton’s spin. For
cases where juu > 0, the proton’s quark spins are coupled in a
form where they take both up and down direction so that they
practically cancel each other. The additional quark-antiquark
pair increases spin direction mixture. It can be concluded that
the quark spin contribute a not very large portion of the proton
spin and the rest comes from the quark spatial motion. This
conclusion is supported by experiment [9].

5 The State of the ∆++ Baryon

In textbooks it is argued that without QCD, the state of the
∆++ baryon demonstrates a fiasco of the Fermi-Dirac statis-
tics [10, see p. 5]. The argument is based on the claim that the
∆++ takes the lowest energy state of the ∆ baryons [11] and
therefore, its spatial wave function consists of three single
particle symmetric s-waves of each of its three uuu quarks.
Now the Jπ = 3/2+ state of the ∆ baryons shows that also
their spin is symmetric. It means that the ∆++ is regarded
to have space, spin and isospin symmetric components of its
wave function. As stated above, textbooks claim that this out-
come contradicts the Fermi-Dirac statistics. However, using
the physical issues discussed in this work and the energy level
diagram (see Fig. 1) of the nucleon and the ∆ baryons, it is
proved that this textbook argument is incorrect.

• As explained in section 3, all members of an isospin
multiplet have the same symmetry. Hence, if there is a
problem with the Fermi-Dirac statistics of the ∆++ then
the same problem exists with ∆+ and ∆0. It follows that
if the above mentioned textbook argument is correct
then it is certainly incomplete.

• The data described in fig. 1 shows that ∆+ is an excited
state of the proton. Hence, its larger mass is completely
understood. Thus, there is no problem with the Fermi-
Dirac statistics of the ∆+ baryon. Analogous relations
hold for the neutron and the ∆0 baryons. Using the
identical statistical state of the four ∆ baryons (8), one
realizes that there is no problem with the Fermi-Dirac
statistics of the ∆++ and the ∆− baryons.

• The multi-configuration structure of a bound system of
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Dirac particles is known for about 50 years [7]. In par-
ticular, the multi-configurations structure of all baryons
(like in (10)) proves that, contrary to the above men-
tioned textbook argument [10, see p. 5], the single par-
ticle spatial wave functions of the three u quarks of the
∆++ baryon are not a pure s-wave.

6 Conclusions

This work uses the Wigner-Racah mathematical structure and
proves two very important points. It explains the small con-
tribution of quark’s spin to the overall proton spin. Therefore,
it eliminates the basis for the proton spin crisis. It also proves
that everything is OK with the Fermi-Dirac statistics of the
∆++ baryon. It follows that there is no need to introduce the
QCD’s color degree of freedom in order to build an antisym-
metric wave function for this baryon.
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Einstein’s planetary equation can be solved by the method of successive approxima-
tions.This yields two linearly independent solutions. An analytical solution is presented
for this equation. This solution produces eight linearly independent mathematical solu-
tions, two of which are given approximately by the well-known method of successive
approximations.

1 Introduction

Einstein’s planetary equation is given [1] by

d2u
dφ2 + u − k

l2
=

3k
c2 u2 (1)

where φ and u are the instantaneous angular and reciprocal ra-
dial displacements of the planet in the fixed plane of motion,
with the Sun as origin, l is the constant angular momentum
per unit mass [2] and

k = GM (2)

where M is the rest mass of the Sun, G is the universal grav-
itational constant and c is the speed of light in vacuum. The
method of successive approximations yields the solution of
equation (1) [1] as:

r(φ) =
1

u(φ)
=

(
1 − ε2

0

)
a0

1 + ε0 cos
[(

1 − 3k2

c2l2

)
φ + α

] (3)

where ε0 is the eccentricity, a0 the semi-major axis and α
is the epoch. The second solution of equation (1) obtained
from the method of successive approximations is the solution
(3) with sine instead of cosine. The effect revealed by these
two approximate solutions is an anomalous precession of the
planetary orbit in which the perihelion advances by an angle
per revolution ∆ given [1] by

∆ =
6πk2

c2l2
. (4)

In this article, Einstein’s planetary equation (1) is solved
analytically.

2 Analytical Solution

Suppose the analytical solution of equation (1) is in the form
of a Taylor or Laurent series given as

u(φ) =

∞∑

n=0

An exp {ni (ωφ + φ0)} (5)

where An, ω and φ0 are constants. Then, substituting (5) into
(1), applying the linear independence of the exponential func-
tions and equating corresponding coefficients on both sides

yields the following system of equations:

3k
c2 A2

0 − A0 +
k
l2

= 0 (6)

ω2 = 1 − 6k
c2 A0 (7)

A1 = arbitrary constant (8)

A2 =
3k
c2

(
1 − 22ω2 − 6k

c2 A0

)−1

A2
1 (9)

A3 =
18k2

c4


(
1 − 22ω2 − 6k

c2 A0

)

(
1 − 32ω2 − 6k

c2 A0

)
−1

A3
1

(10)

and so on. Equation (6) is a binomial in A0 and has two pos-
sible roots given by

A0− =
c2

6k

1 −
(
1 − 12k2

c2l2

)1/2 (11)

and

A0+ =
c2

6k

1 +

(
1 − 12k2

c2l2

)1/2 (12)

It follows from substituting (11) into (7) that they are two
possible values of the parameter ω given as:

ω1 =

1 −
1 −

(
1 − 12k2

c2l2

)1/2


1/2

(13)

and

ω2 = −
1 −

1 −
(
1 − 12k2

c2l2

)1/2


1/2

(14)

Similarly, by substituting (12) into (7) other two possible
values of the parameter are obtained as:

ω3 =

1 −
1 +

(
1 − 12k2

c2l2

)1/2


1/2

(15)
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and

ω4 = −
1 −

1 +

(
1 − 12k2

c2l2

)1/2


1/2

. (16)

It follows from equation (9) that A2 has eight possible val-
ues given by

A21 =
3k
c2

(
1 − 22ω2

1 −
6k
c2 A0+

)−1

A2
1 (17)

A22 =
3k
c2

(
1 − 22ω2

1 −
6k
c2 A0−

)−1

A2
1 (18)

A23 =
3k
c2

(
1 − 22ω2

2 −
6k
c2 A0+

)−1

A2
1 (19)

A24 =
3k
c2

(
1 − 22ω2

2 −
6k
c2 A0−

)−1

A2
1 (20)

A25 =
3k
c2

(
1 − 22ω2

3 −
6k
c2 A0+

)−1

A2
1 (21)

A26 =
3k
c2

(
1 − 22ω2

3 −
6k
c2 A0−

)−1

A2
1 (22)

A27 =
3k
c2

(
1 − 22ω2

4 −
6k
c2 A0+

)−1

A2
1 (23)

A28 =
3k
c2

(
1 − 22ω2

4 −
6k
c2 A0−

)−1

A2
1 (24)

Similarly, it follows from (10) that A3 has eight possi-
ble values. The above sequence may be continued to derive
the eight possible corresponding values for each of the con-
stants A4, A5, . . . in terms of the arbitrary constant A1 . This
sequence implies eight mathematically possible analytical so-
lutions of Einstein’s planetary equation of the form:

u(φ) = A0 + A1exp
[
i (ωφ + φ0)

]
+

f2(A1)exp
[
2i (ωφ + φ0)

]
+ ...

fnexp
[
ni (ωφ + φ0)

]
+ ...

(25)

where φ0 and A1 are arbitrary.
Now, consider the first exact analytical solution corre-

sponding to equations (12) and (14). In this case, it follows
from (9) that

A2 = f2(A1) = − k
c2

(
1 − 6k

c2 A0−

)−1

A2
1 (26)

and
A3 = f3(A1) (27)

and in general

An = fn(A1), n = 4, 5, ... (28)

In this case, the exact analytical solution of Einstein’s
planetary equation is a complex function of φ which may be
written in Cartesian form as

u(φ) = x(φ) + iy(φ) (29)

where

x(φ) = A0− + A1 cos (ω1φ + φ0) +

f2(A1) cos 2
[
(ω1φ + φ0)

]
+ . . .

(30)

and
y(φ) = A0− + A1 sin (ω1φ + φ0) +

f2(A1) sin 2
[
(ω1φ + φ0)

]
+ . . .

(31)

Therefore it may be expressed in Euler form as

u(φ) = R(φ)eiΦ(φ) (32)

where R is the magnitude given by

R(φ) =
{
x2 (φ) + y2 (φ)

} 1
2 (33)

and Φ is the argument given by

Φ(φ) = tan−1
{
y(φ)
x(φ)

}
. (34)

Hence by definition the instantaneous radial coordinate of
the planet from the Sun, r , is given by

r (φ) = R−1 (φ) `−iΦ(φ). (35)

3 Physical Interpretation of First Analytical Solution

The instantaneous complex radial displacement r of the
planet from the Sun is given in terms of the angular displace-
ment Φ as

r (φ) = R−1 (φ) `−iΦ(φ). (36)

Therefore the magnitude of the instantaneous complex ra-
dial displacement of the planet from the Sun can be consid-
ered to be the real physically measurable instantaneous radial
displacement, rp. Thus,

rp (φ) = R−1 (φ) =

{
x2 (φ) + y2 (φ)

}− 1
2

. (37)

It may be noted from (9) and (10) that for n > 1 fn(A1) is
of order at most c−2n. Therefore as a first approximation let
us neglect all terms in fn(A1) for n > 1. Then it follows from
(37) and (31)–(32) that

rp (φ) =
A

1 + ε1 cos (ω1φ + φ0)
(38)

where

A =
1

A0−

(
1 +

A2
1

A2
0−

)− 1
2

(39)
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and

ε1 =
A1

A0−

(
1 +

A2
1

A2
0−

)−1

. (40)

Consequently, the orbit is a precesing conic section with
eccentricity and hence semi-major axis given by

a =
A

1 − ε2
1

(41)

and perihelion displacement angle ∆ given by

∆ = 2π
(
ω−1

1 − 1
)
. (42)

It follows from (42) and (14) that the perihelion displace-
ment angle from this analytical method is given explicitly as

∆ =
6πk2

c2l2
+

54πk4

c4l4
. (43)

This is an advance precisely as obtained from the method
of successive approximations. The leading term in (43) is
identically the same as the leading term of the corresponding
advance from the method of successive approximations [1].
Moreso, this analytical method reveals the exact corrections
of all orders of c−2 to the leading term in (44).

It also follows from (40) and (12) that the orbital eccen-
tricity ε1 from this analytical method is given explicitly as

ε1 =
l2A1

k

(
1 +

3k2

c2l2
+ . . .

)−1

[
1 +

l4A2
1

k2

(
1 +

3k2

c2l2
+ . . .

)−2]−1

.

(44)

Thus, an experimental measurement of the orbital eccen-
tricity ε1 in equation (45) is sufficient to determine the pa-
rameter A1 that occurs in the exact analytical solution. It also
follows from this result that the analytical method in this ar-
ticle reveals post-Newtonian corrections of all order of c−2 to
the planetary orbital eccentricity which have not been derived
from the method of successive approximations.

It also follows from equations (41) and (14) that the or-
bital semi-major axis from this analytical method is given ex-
plicitly as

a =
l2(

1 − ε2
1

)
k

(
1 +

3k2

c2l2
+ . . .

)−1

[
1 +

l4A2
1

k2

(
1 +

3k2

c2l2
+ . . .

)−2]−1

.

(45)

Thus, this analytical method reveals post-Newtonian cor-
rections of all orders of c−2 to planetary semi-major axis,
which have not been derived from the method of successive
approximations.

4 Conclusion

This article uncovers an analytical solution to Einstein’s plan-
etary equation. The first analytical solution to the order of
c−2, reveals post-Newtonian corrections to the orbital eccen-
tricity and semi-major axis of a planet. Moreover, up to the
second iterate there is no such correction from the method
of successive approximations. Consequently, these unknown
corrections to orbital eccentricity revealed by the analytical
approach in this article are opened up for experimental inves-
tigation.
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The principal objective of this study is to provide a method to build galactic density
profiles. The models developed in this study were tested against the zCosmos deep
field galactic survey. The herein study suggests that light travel distances need to be
converted into Euclidean distances in order to derive the galactic density profile of the
survey which is the evolution of galactic density over time. In addition, the present
study indicates an 
m of 0.19.

1 Introduction

The main purpose of the herein study is to provide a method
to build galactic density profiles which requires the conver-
sion of light travel distances (LTD) to Euclidean distances.
The LTD is the distance traversed by a photon between the
time it is emitted and the time it reaches the observer. In astro-
nomical units, the Euclidean distance is defined as the equiv-
alent distance that would be traversed by a photon between
the time it is emitted and the time it reaches the observer if
there were no expansion of the Universe.

The zCosmos deep field was used to derive the galatic
density profile based on a sampling method, and to compute
an estimate of the mean mass density of the Universe.

2 Mathematical development and methods

Galactic density profiles have been derived from the normal-
ization of the galactic counts between redshift buckets by di-
viding by the corresponding sample volume. For the scenario
with additive LTD, the LTDs were directly fed into the sam-
pling volume formula eq. (2). For the scenario with a model
of the motion of the photon in an expanding space, the Eu-
clidean distances were fed into the sampling volume formula.

2.1 Method to build galactic density profiles

2.1.1 Normalisation of galactic counts

Let us consider an observer positioned at the center of a
sphere of radius r and looking at a cone of sky in the z di-
rection. The observer is counting galaxies within this cone,
and measures the redshift for each object. A histogram of
the galactic counts versus redshifts is obtained by counting
the set of objects contained within each redshift bucket. This
histogram is required to be normalised in order to obtain the
density profile. Below is derived the expression of the sam-
pling volume of the buckets, function of r0 the lower radius of
the sampling bucket, and �r the radius width of the bucket.
The sampling volume in spherical coordinates is described by
the following integral:

Vr0o;�r =
Z 2�

'=0

Z �0

�=0
sin � d� d'

Z ro+�r

r0
r2dr: (1)

By solving integral (1), the sampling volume for a spher-
ical sampling (�0 = �) is expressed as following:

Vr0;�r =
4�
3
�
(r0 + �r)3 � r3

0
�
; (2)

where Vr0;�r is the sampling volume for a given bucket, r0
the lower radius of the bucket, and �r the radius width of the
bucket.

In order to use eq. (2), the galactic counts need to be
converted into spherical values, by multiplying the counts by
the sphere to survey solid angle ratio (�). Given the zCosmos
survey spectroscopic area of 0.075 square degrees which is
the solid angle, this ratio is the following:

� =
4� (180=�)2

0:075
= 5500038: (3)

The reported survey coverage area of the zCosmos-deep
field is 1 deg2, [8]. However, what is required is the solid
angle which is measured by the area of the survey projected
in the plan described by the right ascension in degrees and
180=� � sin(declination). Note that the sine of declination
term is due to the Jacobian for spherical coordinates. The
spectroscopic area obtained with this procedure is 0.075 deg2
(surface coverage in figure 1).

2.1.2 Conversion of redshifts to LTDs

Two approaches are available for converting the redshifts
from observed galaxies into LTDs, one based on cosmologi-
cal redshifts and the other one on dopplerian redshifts. First,
let us introduce the method based on cosmological redshifts
from the calculator of Wright [16] which uses a Lambda-
CDM cosmology. The followings are generally assumed for
this model: a flat Universe, with parameters: 
M = 0.27,

vac = 0.73 and Ho = 71 [km s�1 Mpc�1].
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Fig. 1: Procedure to compute the spectroscopic area for the zCosmos
survey as defined by the solid angle.

In the dopplerian redshift method, the relationship be-
tween redshifts and recession velocities is the following:

1 + z =

s
1 + v

c
1� v

c
: (4)

From this equation, one may compute the recession ve-
locity for a given redshift. Then the distance is computed as
following:

distance =
v
Ho

: (5)

From subsequent calculations an 
M of 0.19 was
obtained which was used to derive the galactic density profile.
Both methods give comparable distances with differences less
than 5 % for redshifts up to 5.2 using 
M = 0.19. The dif-
ference between dopplerian and cosmological redshifts is dis-
cussed by Bedran [2]. Historically, the first solution to com-
pute distances from cosmological redshifts was obtained by
Mattig [9] which is based on Friedmann equations of general
relativity. Mattig equation with qo = 0.5 also provides dis-
tances close to what is obtained using dopplerian redshifts;
however, Mattig had to assume that conservation of mass is
applicable to the Universe in his derivations which is a big
bang cosmology. On the other hand, dopplerian redshifts do
not require any assumption on the cosmology, and present the
advantage that they also explain blueshifts that are being ob-
served such as for Andromeda.

2.1.3 Sources of data

The zCosmos galactic survey Data Release DR1 was used [8].

2.2 Propagation of light in an expanding space

The main hypothesis for the development of a model for the
propagation of light in an expanding space, is that the speed of
light is frame-independent. Considering redshifts, this means
that the relative movement of a light source does not change
the speed of light emitted; however, it does add or subtract
energy to the photon. In a dopplerian world, this change in
energy level changes the frequency of the source of light, and
not the speed. However, as space between the photon and the
observer expands, this expansion is added to the overall dis-
tance the photon has to travel in order to reach the observer
- in over words the speed of light is frame-independent with
respect to the local space. This implies that there exists a
distance for which the recession speed between the observer
and the photon equals the speed of light, which is the Hubble
sphere, and that recession speed can exceed than the speed of
light for large distances. The frame-independent hypothesis
for the speed of light has been established in the past with
the experiment of Michelson-Morley [10]. Based on obser-
vations of double stars [14, 4] it was shown that the velocity
of propagation of light does not depend on the velocity of
motion of the body emitting the light.

As a consequence of the above, LTDs are not anymore ad-
ditive, meaning that if we have three points aligned in space,
the distance between the two extremes is not anymore equal
to the sum of the two sub-segments as measured in LTDs.

Based on the above hypothesis, the Euclidean distance be-
tween the photon and the observer is described by the follow-
ing differential equation:

dy
dt

= �c+Ho � c � T; (6)

where y is the Euclidean distance between the photon and the
observer, T the LTD between the observer and the photon, c
the celerity of light, and Ho the Hubble constant.

2.3 Conversion of light travel distances to Euclidean dis-
tances

Let us consider a photon initially situated at a Euclidean dis-
tance yo from the observer and moving at celerity c in the
direction of the observer. Let us say T is the initial LTD
between the photon and the observer, and define the Hubble
constant function of LTDs.

The differential equation describing the motion of the
photon in the LTD framework is described by eq. (6). By
taking a reference point in time in the past, and Tb be today
time from this reference point, we get T = Tb � t. Hence,
dt = �dT . Therefore, eq. (6) becomes:

dy
dT

= c�Ho � c � T; (7)

with boundary conditions y(T ) = yo and y(0) = 0.
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By integration from 0 to T, the following relationship re-
lating Euclidean distances y to light travel distances T is ob-
tained:

y = c � T � c �Ho � T 2

2
: (8)

The corresponding horizon computed by setting dy
dT = 0

is Th = 1
Ho which is the Hubble sphere.

2.4 The Hubble constant was determined with respect to
LTDs

In general the literature refers to the Hubble constant mea-
sured with respect to LTDs. A common way to obtain the
Hubble constant is based on standard candles with super-
novae and cepheids [13, 1] and the Tully-Fisher relation [5].
Both the standard candle and Tully-Fisher method rely on
the distance modulus. As shown below the distance modu-
lus gives a measure of LTDs and not Euclidean distances.

Let us recall the derivation of the distance modulus. The
magnitude as defined by [12] is:

m = �2:5 logF +K; (9)

where m is the magnitude, F the brightness or flux and K a
constant. The absolute magnitude is defined as the apparent
magnitude measured at 10 parsecs from the source.

Planck’s law for the energy of the photon leads to a red-
shift correction to the distance modulus

E =
h � c
�
; (10)

where E is the energy of the photon, h the Planck’s constant,
and � the light wavelength.

The ratio of observed to emitted energy flux is derived
from eq. (10), leading to

Eobs
Eemit

=
�emit
�obs

=
1

1 + z
: (11)

From geometrical considerations, the projected surface of
the source of light on the receptor diminishes with a relation-
ship proportional to the inverse of square distance from the
source of light; hence, the following relationship is obtained
for the brightness or flux:

Fobs / Lemit
d2 � Eobs

Eemit
; (12)

where Lemit is the emitted luminosity and d the distance to
the source of light.

Combining eq. (9), (11) and (12), we obtain:

m = �2:5 log
�

Lemit
d2 � (1 + z)

�
+K: (13)

And, because z is close to zero at 10 Parsec:

M = �2:5 log
�
Lemit
100

�
+K; (14)

where M is the absolute magnitude.
Hence, the distance modulus, eq. (13) minus (14) is:

m�M = �5 + 5 log d+ 2:5 log(1 + z); (15)

with d in parsec and log means the logarithm to base 10.
The expansion of the Universe adds up to the Euclidean

distance, and therefore the apparent magnitude of the source
of light is fainter than if no expansion was present.

2.5 Evolution of the galactic density assuming no new
galaxy formation

Assuming cosmological redshifts we have:

1 + z =
ao
a1
; (16)

where ao and a1 are respectively the present scale factor and
the scale factor at z.

From the conservation of mass the density is proportional
to the inverse of the cubic scale factor:

� / 1
a3 : (17)

Therefore, the model for the evolution of the density with
respect to the present density is the following:

�t = �o � (1 + z)3; (18)

where �t is the density in the past at redshift z and �o is the
present density.

3 Results

3.1 A flat density profile using Euclidean distances

Galactic density profiles have been derived for the two antag-
onistic scenarios respectively assuming that LTDs are addi-
tive, and with the propagation of light in an expanding space
(figure 2). Note that the galactic density profiles obtained
with cosmological redshifts and dopplerian redshifts are very
similar. The highest redshift galaxies observed for the survey
(z = 5.2) are very close to the Hubble sphere (which are at
13.65 Glyr) as calculated from cosmological redshifts with

m=0.19.

The theoretical evolution of the galactic density with re-
spect to the present density assuming no new formation of
galaxies (figure 3) was computed assuming cosmological red-
shifts with eq. (18). Note that the first point in the galactic
density profile is not representative of the average density as
the sample volume is very small; hence, the measure repre-
sents the density in the neighbouring galactic cluster of the
Milky Way (figure 2 and 3).
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Fig. 2: Galactic density profile derived from the equivalent spheri-
cal sampling, where Glyr are billion light years from today. LTDs
are obtained from redshift conversion with dopplerian redshifts. The
blank dots indicate densities based on LTDs. The solid dots indicate
densities obtained with Euclidean distances on the basis of dopple-
rian redshifts.

3.2 Estimation of 
 matter from galactic counts

The average galactic mass estimated from light deflection
[15] is 1:7 � 1011 M�. The Universe mean density is ob-
tained by multiplying this figure with the average galactic
count per cubic Glyr. Using dopplerian redshits the galac-
tic count density is 4:6 � 106 counts per cubic Glyr, leading
to a mean Universe density of 1:84 � 10�30 g=cm3. Using
a Hubble constant of 71 km=s=Mpc and recent estimates of
the gravitational constant of 6:67 � 10�8 cm3=g=sec2 [11],
the critical density is estimated at 9:47� 10�30 g=cm3 (from
�c = 3H2

8�G ). Therefore, the corresponding 
m equals to 0.19.
Note that smaller values of the Hubble constant would lead to
a higher 
m.

3.3 Estimation of the number of galaxies in the visible
Universe

Another challenge is to estimate the number of galaxies in
the visible Universe. Using the galactic density in the nearby
Universe from figure 2 expressed per cubic Glyr LTD, and
the volume of the sphere of radius 14 Gly LTD, the num-
ber of galaxies in the visible Universe is estimated at 175
billion. Gott et al. [6] estimated a number of galaxies in
the visible Universe at about 170 billion based on the Sloan
Digital Sky Survey luminosity function data using the Press-
Schechter theory. Both figures are consistent with each other;
however, the author believes that these figures need to be re-
viewed to account only for the Euclidean radius when com-
puting the volume of the visible Universe. As the galactic
density profile is flat, it is expected that the estimated number

Fig. 3: Galactic density profile derived from the equivalent spherical
sampling, where Gly are billion light years from today. LTDs are ob-
tained from redshift conversion with cosmological redshifts (omega
matter of 0.19).The solid dots indicate densities obtained with Eu-
clidean distances on the basis of cosmological redshifts. The blank
dots indicate the theoretical evolution of galaxies assuming that the
survey is incomplete (with no new galaxy formation).

of galaxies in the visible Universe is internally consistant with
the bulk amount of galaxies observed in the survey converted
to spherical values, i.e. multiplying the number of galaxies
in the survey (10046 galaxies) by the sphere to survey solid
angle ratio, which leads to 5.5 billion galaxies (see Table 1).

4 Discussion

A new approach is proposed in the present study to derive the
galactic density profile which is based on the conversion of
light travel distances to Euclidean distances. The method has
been tested by computing the galactic density profiles based
on the data from the zCosmos deep field survey.

In the scenario using LTDs with the sampling method, the
galactic count per cubic Glyr grows according to a steep slope
(figure 2), without accounting for the effect of the expansion
which should add up to this growth. There is no explanation
for such result - this scenario appears to be unrealistic. The
scenario using Euclidean distances, shows a flat profile for
the galactic counts per cubic Gyr (figure 3). However, there
is still a gap between the computed galactic density profile
and the theoretical evolution of galactic densities assuming
no new galaxy formation. Leaving aside model bias, this gap
may be interpreted as if galaxies grow in number over time.
Another hypothesis is that the galactic survey is incomplete
meaning that faint galaxies are left asside from the zCosmos
survey at large distances, which would account for the miss-
ing galaxies causing the gap in figure 3. The theoretical den-
sity obtained by conservation of mass is too large by a factor
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Table 1: Estimation of the number of galaxies in the visible Universe (radius 14 Glyr) using LTD distances and Euclidean distances.

Radius of the visible
Universe

Galactic density Estimated number of
galaxies

Using LTDs 14 Glyr 1:52�107 counts per
cubic Glyr

175 billion

Using Euclidean distances
with dopplerian redshifts

6.90 Glyr 4:60�106 counts per
cubic Glyr

6.3 billion

Galaxy count of the survey
converted to spherical values

5.5 billion

of order 200 at redshift 5.2. This discrepancy is unrealisti-
cally to large. Clearly more detailed work needs to be carried
out to investigate this gap.

By applying conservation of mass, as we approach the
singularity of the big bang, the Universe would have been so
dense that it is difficult to explain how gravity did not pre-
vent the early Universe from collapsing. A possibility is that
the Hubble constant was much higher in the past leading to a
higher critical density - cosmic inflation would still be neces-
sary to overcome this issue. From the present study, the galac-
tic density appears to be constant over time, which would
corroborate the steady state cosmology of [3, 7]. The other
condition being that the Hubble constant remains unchanged
over time.
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An Analysis of States in the Phase Space: Uncertainty, Entropy and Diffusion
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The paper aims to show the physical link between Fick’s laws and entropy increase in
an isolated diffusion system, initially inhomogeneous and out of the thermodynamic
equilibrium, within which transport of matter is allowed to occur. Both the concentra-
tion gradient law and the entropic terms characterizing the diffusion process are inferred
from the uncertainty equations of statistical quantum mechanics. The approach is very
general and holds for diffusion systems in solid, liquid and gas phases.

1 Introduction

Diffusion concerns the transport of matter activated by ther-
mal motion of atoms and molecules. Theoretical and ex-
perimental reviews on the mechanisms of mass transfer in
solid, liquid and gas phases are widely reported in litera-
ture, e.g. [1, 2]. The importance of diffusion is well recog-
nized in the kinetics of microstructural changes, nucleation
of new phases, phase transformations, homogeneization and
recrystallization of alloys and so on [3]; for instance electric
conduction includes phenomena closely related to the trans-
port mechanisms of ions and electrons.The theoretical back-
ground of the diffusion is based on an intuitive hypothesis:
the driving energy that governs the mass transfer is related
to the concentration gradient of molecules or atoms or ions
in a diffusion medium, which can be simply the vacuum or
a gas/liquid/solid phase. Such an assumption is so simple
and reasonable to skip a more profound consideration just
about the physical meaning of its general character. It is
sensible to expect that this generality, and that of the related
concentration gradient driving force itself, should be in fact
consequence of some general principle of nature. This con-
sideration recalls in effect the second law of thermodynam-
ics, as concerns in particular the probabilistic character of the
entropy. Consider an arbitrary number of particles “a” dif-
fusing within a medium “b”; whatever the former might be,
e.g. ions, atoms, molecules and so on, in the following they
will be shortly referred to as particles, whereas the system
formed by “a” and “b” will be referred to as diffusion sys-
tem. One expects that after a proper time range, the system
attains the most probable configuration, i.e. a uniform distri-
bution of “a” into “b” regardless of the particular initial con-
figuration assumed in general in a non-equilibrium state. So a
net mass flow was necessarily occurring before reaching this
limit situation, after which it is no longer allowed to occur.
The entropy seems to be the thermodynamic concept most
closely related to describe the transient and final configura-
tions. This means that: (i) the dimensionless entropy formula
−∑iwi log(wi), where the index i numbers the thermodynamic
states allowed to the diffusing particles, should be involved
since the beginning into the concentration gradient formula-
tion of any diffusion problem; (ii) this formula should reduce
to the simpler Boltzmann form − log(weq) when the equilib-

rium configuration is effectively attained; (iii) the mass flow
J is by consequence different from zero only during the time
step (i), whereas it reduces to zero at the asymptotic time step
(ii). Our knowledge on the diffusion process is thus based
on a phenomenological hypothesis, the concentration gradi-
ent law, and on a general principle of nature, the entropy.
It would be significant to regard both concepts as a natural
consequence of a unique and more general principle of na-
ture, without the need of phenomenological assumptions. Of
course a general approach to this problem cannot leave out
the quantum aspect of any problem inherent the dynamics of
particles on microscopic scale. Justifying from the quantum
point of view the concentration gradient driven diffusion law
would provide a sound physical basis to the general problem
of mass transport, whereas the continuity equation, if appli-
cable, would also appear itself as a corollary identified by
well-defined physical requirements about the diffusion sys-
tem. On the one side it is certainly significant to demonstrate
by means of a unique general principle the quantum origin of
the macroscopic equations describing how the configuration
of the diffusion system evolves as a function of time because
of the mass transfer. On the other side this task seems further
noteworthy if carried out within the same theoretical frame
that allows describing the quantum properties of matter. The
purpose of the present paper is to investigate the quantum ba-
sis hidden into the gradient law, i.e. to demonstrate that the
uncertainty is the basic quantum principle leading to the first
Fick law as a corollary. Moreover the theoretical model pro-
posed here also confirms through a simple and straightfor-
ward approach that the entropy of the diffusion system is the
other key concept underlying the mechanisms of mass trans-
port.

2 Classical background

For simplicity, let us regard the diffusion system as an isolated
thermodynamic system formed by an isotropic body of matter
and introduce the mass flow as follows:

J = cv, (2,1)

where c is the concentration or more in general the activity
of the diffusing particle and v its displacement velocity. Eq.
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2,1 is simply a definition. A further equation appears nec-
essary to introduce a physical hypothesis about the thermo-
dynamic force F that triggers the flow. Expressing this hy-
pothesis through the following equation, known as first Fick
law

J = −D∇c, c = c(x, t) (2,2)

and combining these equations, one finds indeed

v = − D
kBT
∇[kBT log(c/c0)], c0 = c0(t), (2,3)

where c0 is an arbitrary reference concentration not depen-
dent upon x but possibly dependent on time. The definition
of mobility β of the diffusing particle

v = βF (2,4)

entails therefore as a consequence at constant T

D = βkBT, F = −∇[kBT log(c/c0)]. (2,5)

One finds therefore through the definition of mobility both
the sought force, which reasonably results equal to the gradi-
ent of the potential energy µ = kBT log(c/c0), and the well
known Einstein equation linking β to D. The form of F pro-
vides a partial answer to the aforesaid point (iii): if c is equal
everywhere in the diffusion system, then it does not longer
depend upon x; so, defining c0 equal or proportional to this
uniform limit value of c, one finds F = 0 and thus v = 0 ev-
erywhere. This shows that F accounts for the net mass flow
in the diffusion system until c → c0. These preliminary con-
siderations highlight that the diffusion law can be effectively
related to a thermodynamic function, the chemical potential,
that describes the driving force allowing the transport of mat-
ter. Exploit now again the basic definition eq. 2,1 to evidence
how arbitrary changes of both c and v affect J. Consider then

δJ = vδc + δJ′, δJ′ = cδv (2,6)

in the time range δt during which δJ is allowed to occur. Note
that δc can be due: (i) to the change δm of m within the ref-
erence volume V defining c or (ii) to the change δV of V for
fixed m or (iii) to both reasons. In any case, defining the space
range δx = vxδt where the particles are allowed to diffuse
along the x-direction during δt, the x-component of eq. 2,6
reads δJx/δx = δc/δt + cδvx/δx. So, for infinitesimal changes
dc and dv of the process parameters and of the dynamical
variables dt and dx, the last equation reads∇·J = ∂c/∂t+c∇·v,
i.e. in general

∇ · J =
∂ (c + C)

∂t
, C =

t

∫
to

c′∇ · v′dt′, C = C(x, t) (2,7)

with the integral calculated between the fixed time to, e.g. the
beginning of the diffusion process, and the current time t. If
holds the condition ∇ · v = 0, then ∇ · J = ∂c/∂t describes

a particular diffusion process where the rate of concentration
change is equal to the gradient of related mass flow, which
necessarily means lack of sinks or sources of matter within
the volume element where is defined c. Since c∇ · v results
because of the term δJ′ additional to δJ, it appears that the
well known second Fick equation is a particular case of eq.
2,6 for δJ′ = 0. Actually δJ′ , 0 is due not only to a possi-
ble chemical reaction that involves the diffusing particle and
modifies the local concentration of the diffusion system but,
more in general, also to any local force field that attracts or
repels the diffusing particles and perturbs their motion. Note
indeed that δJ′ = caδt = F′Vδt yields

δJ′

δt
=

F′

V
= F′V ,

being in general F , F′. The force per unit volume F′V that
controls the perturbation term δJ′, appearing in eq. 2,6 as a
perturbation of J is particularly interesting for charged parti-
cles diffusing in an ionic medium where polarized impurities
are active. Note indeed that v · J has physical dimensions of
energy per unit volume; then v · δJ′ = (mδv2/2)V−1, i.e. the
effect of F′V is that of perturbing the kinetic energy of the
particle in the interaction volume V . It is usually acknowl-
edged that the time enters into the diffusion equation thanks
to the continuity condition that leads to the second Fick law.
Yet the mere definition of eq. 2,1 entails an interesting con-
clusion: regardless of the aforesaid effects related to δm that
possibly alter the plain diffusion process, the time evolution
of the system is actually consequence of the concentration
gradient law; although the Fick hypothesis does not contain
explicit reference to the time, this latter enters indeed into the
problem through v. The present considerations show there-
fore that the ancillary condition of continuity is not neces-
sary to infer the second Fick law; rather, simply taking into
account the finite range δt required to justify δJ, as nothing
changes instantaneously in nature, the continuity condition
appears to be itself a corollary of the definition of mass flow
and not an additional boundary condition. Otherwise stated,
even from a merely classical point of view the time coordi-
nate appears a necessary ingredient together with the space
displacement to account for the mass transfer in any diffu-
sion problem; consequently the position ∇ · v = 0 does not
represent a supplementary hypothesis “ad hoc” but simply
a possible chance allowed for δJ. This conceptual basis, to
be further implemented by quantum considerations reasons
in the next section, is characterized by three physical features
summarized as follows: (i) the definition of mass flow, eq.
2,1; (ii) the gradient concentration law; (iii) the necessity of
introducing diffusion driven displacement δr and time range
δt linked by δr = vδt, which also introduces the energy range
δε = (v · δJ)V corresponding to F · δr within the reference
volume V defining c.
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3 Preliminary quantum considerations

This section introduces the basic ideas to describe the diffu-
sion system according to the uncertainty relationships

∆x∆px = n~ = ∆t∆ε, (3,1)

where n is an arbitrary number of quantum states allowed to
any particle moving in the space range ∆x with conjugate mo-
mentum falling in the momentum range ∆px; the ranges are
taken positive by definition. As already shown in [4], the
second equality is obtained from the first one defining for-
mally ∆t = ∆x/vx and ∆ε = ∆pxvx linked by the same n; vx

is the velocity with which the particle travels within ∆x. No
hypothesis is required about the ranges that quantify the con-
cepts of space and time uncertainty. Their sizes, in principle
arbitrary, can vary from zero to infinity; moreover nothing
is known about their analytical form, e.g. any local func-
tional relationship like px = px(x) within ∆x is physically
meaningless because both px and x are assumed random, un-
known and unpredictable. Yet, despite such an agnostic point
of view, relevant features of the ranges are apparent. First,
vx must be upper bounded. Consider a free particle in finite
sized ∆x and ∆px with n finite as well: if vx → ∞ then ∆t → 0
would require ∆ε → ∞ , which in turn would allow in prin-
ciple an infinite energy ε; but this is impossible once having
merged both uncertainties via a unique n, as ε → ∞ is in-
consistent with any px falling within the finite range ∆px and
thus necessarily finite itself. Hence the simple fact of having
regarded together space and time uncertainties, i.e. admitting
that both dynamical variable concur to describe any physical
system, requires vx ≤ vmax

x ; eqs. 3,1 entail as a corollary the
well acknowledged existence of an upper limit for the prop-
agation rate of any signal. Moreover put ∆x = x − xo and
consider that the coordinate xo, whatever it might be, is de-
fined in an appropriate reference system that defines position
and size of ∆x and vx as well; yet, being xo indeterminate
and indeterminable, the present approach based on ∆x only
does not specify in fact any particular reference system. The
same holds for course also for the other ranges of eqs. 3,1,
in particular for the time frame. Also, in lack of constrains or
hypotheses the reference system could be in principle Carte-
sian or curvilinear or inertial or non-inertial or anything else.
This means that any physical problem discarding “a priori”
the local dynamical variables and exploiting eqs. 3,1 only,
i.e. replacing

x→ ∆x, px → ∆px, t → ∆t (3,2)

holds by definition in any space-time reference system R.
Hence eqs. 3,1 entail that all reference systems are indistin-
guishable and thus equivalent in describing the properties of
quantum particles. If so, it eventually follows that the upper
value allowed to vx, whatever it might be, must be invariant in
any R. Indeed vx is defined by its own reference system; being

the former arbitrary, the latter is arbitrary as well. Consider
instead a well specified value of vx, e.g. just its maximum
value vmax

x ; this latter must be uniquely defined in R and in
any other R′ otherwise R and R′ could be identified depending
on their own vmax

x , e.g. because of a greater velocity allowed
in either of them, thus contradicting their indistinguishability.
It appears therefore that equivalence of all reference systems
and invariance of vmax

x are strictly linked. The time coordi-
nate, previously introduced to account for the finite rate with
which occurs the mass flow change δJ, still appears here as
a consequence of the finite velocity vx with which any parti-
cle moves within ∆x and entails a finite time range to change
the configuration of the diffusion system. Yet now ∆t takes a
more general physical meaning, as it appears from the pre-
vious considerations and it will be shown in the next sec-
tions. The uncertainty inherent eqs. 3,1 requires innately a
time range for particles delocalized in ∆x, i.e.: any physical
process characterized by an energy spread ∆ε requires a time
range ∆t during which is to be expected a momentum change
falling within ∆px too. Previous papers [5, 6] have shown
that this way of regarding eqs. 3,1 is enough to calculate the
energy levels of hydrogenlike and many electron atoms/ions
and diatomic molecules without solving any wave equation;
then is attracting the idea that even the diffusion model can be
formulated in terms of particles randomly spreading within
their own delocalization space ranges conceptually arbitrary,
unknown and unknowable themselves. As in the quoted pa-
pers, the statistical formulation of the quantum uncertainty
is the only assumption necessary also in the context of the
present problem. Suppose of having N particles in NV ele-
mentary volumes ∆x3 of diffusion medium at a fixed time of
the diffusion process. Regardless of the equilibrium or non-
equilibrium situation at the given time, let

Wcl =

(
N
NV

)
, N = N(t), NV = NV (t), V = ∆x3 (3,3)

be the number of ways to distribute N classical particles in
NV available sites of the diffusion medium. From a quantum
point of view the combinatorial calculus still holds in princi-
ple also in the case of identical particles, as it is done in the
Fermi-Dirac and Bose-Einstein statistics; one must simply re-
place Wcl with the pertinent expressions of numbers of states
taking into account the indistinguishability of identical parti-
cles. Note in this respect the characteristic way of working of
eqs. 3,1: once accepting the replacements 3,2, the physical
interest about the system moves from the constituent parti-
cles to their phase space. On the one side just this feature
of eqs. 3,1 entails the corollary of quantum indistinguisha-
bility of identical particles when considering uniquely ranges
of dynamical variables where any particle could be found,
rather than the actual dynamical variables of the particle it-
self; indeed this latter is never specified “a priori”. On the
other side this explains the general worth of the eqs. 3,1 re-
gardless of the specific system concerned: the present model
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holds in principle for diffusion processes in solid or liquid or
gas phase, since no hypothesis is formulated about N and NV

of WFD or WBE . Further information on the process, e.g. the
role of lattice defects on the effectiveness of mass transport,
are to be introduced “a posteriori” through specific values
of the coefficient D only, see eq. 2,2, whose quantum root
will be indeed highlighted in the next section. It is impor-
tant however that regardless of the kind of diffusion system,
the computation of the number of allowed states accessible
to the particles requires calculating the ways of distributing
N objects into NV volume elements of sizes ∆x3

1≤i≤NV
; this is

possible even in the present approach because the combinato-
rial computation of allowed states does not require knowing
where exactly are located these volumes in the diffusion sys-
tem, which indeed would be prevented by eqs. 3,1. Just this
computation yields the corresponding entropy of the diffu-
sion system. At the very beginning of the diffusion process
one can imagine an isolated ordered system S 0 where all par-
ticles are confined in some arbitrary volume of the system; as
the particles are allowed to walkover randomly to occupy a
greater volume, the number of allowed thermodynamic states
progressively increases as a function of time. For t → ∞
the system reaches an asymptotic state S∞ to which corre-
sponds a net mass flow J = 0. The driving force of the dif-
fusion process is thus certainly correlated to the tendency of
the system towards its state of thermodynamic equilibrium
and maximum entropy. Thus eqs. 3,3 simply tell that in non-
equilibrium conditions the system S (t) at the time t is such
that S 0 ≤ S (t) < S∞, until the distribution of particles cor-
responds to the maximum number of quantum states inherent
S∞ , 0; correspondingly J , 0 describes net mass flow in
the system tending the maximum entropy, until when J → 0.
The next section aims to show that this intuitive picture of
diffusion process will be inferred together with the concen-
tration gradient law through eqs. 3,1 only, without need of
any phenomenological hint.

4 Diffusion quantum model

By definition the uncertainty ranges of eqs. 3,1 include any
position and momentum of the particles during the diffusion
process, despite both dynamical variables are expected to cha-
nge as a function of time by effect of an appropriate driv-
ing force F. In principle one could think ∆x and ∆px large
enough to include any possible change of x and px from the
initial stage of the diffusion process to the final state of ther-
modynamic equilibrium; indeed the eqs. 3,1 admit possible
interactions of these particles with the surrounding medium
along the diffusion path δ∆x = vxδt from δt = 0 to δt → ∞,
e.g. by elastic and anelastic collisions, through an appropriate
size of the energy range ∆ε. Owing to the complete arbitrari-
ness of the ranges, however, this approach although sensible
does not appear far reaching to get relevant information about
the process. Yet it is also possible, and more heuristic, to re-

quire that ∆x and ∆px are allowed to change themselves as a
function of time without contradicting their arbitrariness and
without requiring any information on the local values x and
px; in effect eqs. 3,1 can be differentiated with respect to
t and x whatever the current time and space coordinates of
particles might be. Consider thus δ∆x and δ∆px, rather than
δx and δpx, regardless of whether the displacement of mat-
ter from two different points of the diffusing medium occurs
with or without net mass flow; δ∆x describes the change of
delocalization range to which is related the assumed change
of momentum δ∆px by effect of F. The force is here easily
justified by eqs. 3,1 themselves, regardless of other specific
motivations: ∆ẋ defining δ∆x = ∆ẋδt requires ∆ṗx, which
therefore affects the range of values allowed to any px; in
turn the change of px, allowed to occur and thus in fact oc-
curring, entails Fx = m∂vx/∂t. Since it is possible to write
δ∆px = (∂∆px/∂t)δt, then

∂∆px

∂t
= −n~∆x−2vx = Fx = m

∂vx

∂t
, vx =

∂∆x
∂t

. (4,1)

Note that here vx is not the diffusion velocity of the parti-
cle but the rate with which changes ∆x, so Fx is defined in the
phase space of the particle. Yet this information is enough as
concerns the diffusion problem: by effect of Fx the particle is
allowed to move faster, being however still delocalized within
the larger range ∆x′ = ∆x + δ∆x. This is why the momentum
of the particle is allowed to change along with δ∆x. The no-
tation of velocity is unique to emphasize that vx of eq. 4,1
and vx of the particle defining eqs. 3,1 are both arbitrary and
thus assumed coincident. On the one side this representation
is consistent with well known ideas of the diffusion process,
e.g. particle jumps through different sites in a crystal lattice
or particle collisions randomly occurring in gas phase; on the
other side it suggests that the local concentration change is
described by a constant amount of mass m allowed to move
slower or faster in a decreasing or increasing phase space de-
localization range depending on the sign of the velocity com-
ponent vx. In this way the force component Fx introduced via
the deformation of the momentum range is conceptually con-
sistent with that of eq. 2,5: to the momentum change rate that
defines the classical force corresponds now, from the point of
view of eqs. 3,1, the existence of a force field ∆ṗx necessary
to account for any possible ṗx during the diffusion process.
Let us differentiate now eqs. 3,1 with respect to x to link the
change of size of the delocalization range δ∆x and that of the
momentum range δ∆px when the particle displaces by δx; this
yields

∂∆px

∂x
= −n~∆x−2 ∂∆x

∂x
. (4,2)

Eqs. 4,1 and 4,2 describe the dynamics of the diffusing
particle as a function of time in agreement with eqs. 3,1.
The classical eqs. 2,6 and 2,7 have introduced v as macro-
scopic average velocity describing the net mass flow due to
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the displacement rate of the particle; now the quantum ap-
proach shows how the uncertainty compels regarding a ran-
dom mass flow in the phase space of the particle: the deter-
ministic force of eq. 2,5, exactly defined at any point of the
diffusion system, is now replaced by the random force of eq.
4,1 controlled by arbitrary values of n and ∆x. Let us show
now that this agnostic point of view, far from being elusive of
the problem, is actually source of relevant physical informa-
tion. The fact that the diffusion is allowed in a given volume
V = (n~)3∆p−3

x suggests exploiting an approach conceptu-
ally identical but formally different from that introduced in
section 2. If the motion of the particle is random, the ori-
entation of its momentum p is defined in general within a
sphere of radius |∆p| whose volume is thus ∝ ∆p3

x once tak-
ing ∆px ≡ |∆p|; since the medium is isotropic and the uncer-
tainty ranges are arbitrary and unknown, there is no necessity
to introduce explicitly separate ranges ∆px, ∆py and ∆pz. So,
instead of starting from ∂∆px/∂x, it is more convenient con-
sidering a′′′∆p2

x∂∆px/∂x, where a′′′ is a proper proportion-
ality factor; indeed ~−3∆p2

xd∆px is proportional to the num-
ber of particles whose momentum was initially included in a
sphere of radius ∆px and takes after the time range δt values
falling in the section of sphere between ∆px and ∆px + d∆px.
So introducing the quantity a′′∂∆p3

x/∂x means considering a
volume element in the momentum space of the particle, which
yields in turn with the help of the eq. 3,1 a′∂∆x−3/∂x; here a′′

and a′ are trivial numerical factors. In conclusion, although
starting from a 1D equation, we have introduced a volume el-
ement V = ∆x3 that represents an elementary volume of the
diffusion medium where is located a given amount of diffus-
ing mass m corresponding to the concentration c. This defines
the equation

− a′

V2

∂V
∂x

=
a′

V
∂ log(Vo/V)

∂x
, (4,3)

V = V(x, t), Vo = Vo(t),

where the arbitrary constant Vo is a reference volume by def-
inition not dependent on x but possibly dependent on t. Con-
sider first the left hand side of this identity, which reads

− a′

V2

∂V
∂x

= −a′m
V2

∂c−1

∂x
=

a′m
c2V2

∂c
∂x

=
a′

m
∂c
∂x
,

c =
m
V
, c = c(x, t),

where c has here the same physical meaning introduced in
the early eq. 2,1, although the equation concerns now the
phase space rather than a selected volume of matter. This re-
sult regards m as a constant with respect to x, i.e. c depends
on x through the volume ∆x3 around m only. This point of
view, extended to various volumes ∆x3

i in which the diffusion
medium can be ideally divided, entails that the deformation
extents (∆xi + δ∆xi)3 change as a function of x in order that
the respective δci represent by consequence these changes;

this holds when a total amount of matter
∑

imi is simply re-
distributed along x, thus changing the reference volumes that
physically define the respective ci only, or when

∑
imi is sub-

jected to change itself because of sinks or sources of matter
in the diffusion medium; this is why the time has been ex-
plicitly introduced in eqs. 3,3. The right hand side of the
first eq. 4,3 depends certainly upon time through Vo; the
same holds therefore for the left hand side, i.e. a′ = a′(t).
Moreover a′ depends in general on x as well; indeed it ac-
counts for how ∂∆x−3/∂x changes in general as a function of
x, so a′ = a′(x, t) . Eventually a′ must be consistent with
the idea of a mass m crossing the momentum space surface
proportional to ∆p2

x during the time range δt, i.e. the physical
dimensions of a′ must be mp2t = ml2t−1 like that of ~; this
point will be better emphasized in section 5. Specifying thus
purposely the proportionality factor a′ in order that also the
right hand side of eq. 4,3 depends on c, one finds

Jx = −D
∂c
∂x
, a′ = −Dm, D = D(x, t). (4,4)

The physical dimensions of D are therefore l2t−1. This
result represents the first task of the present paper: to infer the
concentration gradient law governing any diffusion process
as a consequence of the fundamental eq. 3,1, thus showing
the quantum origin of the first Fick law. To proceed further,
consider now the right hand side of eq. 4,3 rewritten with the
help of the second eq. 4,4 as

Jx = −Dco f
∂ log( f )
∂x

, f =
c
co
, co =

m
Vo
, co = co(t).

The first expression calculated in an arbitrary point x = xa

defines f = fa through the local concentration ca and reads,
with obvious meaning of symbols,

Ja = −Daco fa
∂ log( f )
∂x

∣∣∣∣∣
fa

= −Da
∂c
∂x

∣∣∣∣∣
x=xa

, (4,5)

fa =
ca

co
, Da = D(xa, t).

Let us expand in series the function log( f ) around xa

log( f ) = log( fa)+

+
∂ log( f )
∂x

∣∣∣∣∣
fa

(x − xa) +
1
2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

(x − xa)2 + . . .

and calculate this expression in another point xb, arbitrary as
well; this yields

∂ log( f )
∂x

∣∣∣∣∣
fa

=
log( fb) − log( fa)

xb − xa
− 1

2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

(xb−xa)− . . . ,

fb =
cb

co
.
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Replacing in eq. 4,5 and putting Jo = −Daco/(xb − xa)
one finds

Ja

Jo
= − fa log( fa)+

+

 fa log( fb) − fa(xb − xa)2

2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

+ · · ·
 .

(4,7)

Rewrite now co not yet defined as co = (cb − ca)/γ, being
γ a dimensionless proportionality factor; this position entails

Jo = −Da

γ

cb − ca

xb − xa
, (4,8)

fa = γ
ca

cb − ca
, fb = γ

cb

cb − ca
, γ = γ(t).

The last position agrees with the dependence of co upon
time through Vo. In this way Jo agrees conceptually with Ja

and thus with the definition of concentration gradient driven
mass flow yet with a different diffusion coefficient Do =

γ−1Da; it reduces indeed to the usual differential form Jo =

−Do∂c/∂x in the limit xb → xa that necessarily entails cb →
ca. One would expect that in this limit Jo → Ja, which should
require γ → 1; however the fact that in general γ , 1, as
it is shown below, suggests that Jo is physically consistent
with but numerically different from Ja. Before concerning
this point, note that the second and third eqs. 4,8 require
fb = γ + fa; so eq. 4,7 reads

Ja

Jo
= − fa log( fa) +

 fa log ( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

 ,

d2
ab = fa

(xb − xa)2

2
, (4,9)

having neglected for simplicity the higher order terms of se-
ries development of log( f ). The time function γ is therefore a
parameter controlling the evolution of the ratio Ja/Jo, which
results to be also a function of xa − xb and ca − cb via fa. To
explain this result, let xb be the coordinate of a particle at the
beginning of the diffusion process and xa that of the particle
at a later time, while cb and ca are the respective concentra-
tions. In general fa , fb for xa , xb since ca , cb. Consider
however in this respect the particular limit condition cb → ca

to be expected in two relevant cases: (i) at the very beginning
of the diffusion process, when the particle has traveled an in-
finitesimal path so that xa is very close to its initial position
xb; (ii) at the end of the diffusion process, when the particle
has traveled a finite path with xa arbitrarily far from xb but the
concentration is uniform throughout the diffusion system. In
both cases it is convenient to define γ → 0 in order that the
undetermined form γ/(cb − ca) → 0/0 does not necessarily
cause divergent values of fa and fb. If cb → ca simply be-
cause xb → xa, case (i), elementary manipulations of eq. 4,9

show that both sides tend to γ provided that γ/ fa → 0; in ef-
fect this is verified because by definition γ/ fa = (cb − ca)/ca,
see eq. 4,8. The result is thus

lim
cb→ca
xb→xa

Ja

Jo
= γ, t → 0, γ → 0. (4,10)

This simply means that at t = 0 there is no net flow of
matter as Ja = 0. This is reasonable, because after a very
short path the particle has high probability to return to its ini-
tial position. The second chance for cb → ca even though
xa , xb yields, putting again γ → 0,

lim
cb→ca
xb,xa

Ja

Jeq
o

=
Da

Jeq
o

∂c
∂x

∣∣∣∣∣
x=xa

= γ − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
f eq

, (4,11)

t → ∞, γ → 0.

Note that γ can fulfill both conditions if its form is, for
instance, like t/(t2 + to). Also note that in fact the behavior
of γ can be consistent with any cb − ca, i.e. whatever this
limit might be depending on the kind of diffusion system;
being γ defined here by its limit condition only, one could
hypothesize any stronger/weaker time dependence, e.g. like
tk/(tk+1 + to), with k ensuring a finite value of γ(cb − ca)−1 no
matter how rapidly ca → cb case by case. Put therefore by
definition

lim
ca→cb

γ/(cb − ca) = γab, γab , 0. (4,12)

The left hand side of eq. 4,11 has now the form

(xb − xa)γ(cb − ca)−1(∂c/∂x)x=xa .

The right hand side vanishes for γ → 0 if ca = cb =

const everywhere in the diffusion system because f is now
a constant defined by the limit fa → f eq, whence the no-
tation Jeq

o . Hence xa , xb and γ such that γab remains fi-
nite require ∂c/∂x vanishing at xa. As expected, the situa-
tion of uniform concentration entails on microscopic scale the
asymptotic condition of thermodynamic equilibrium without
net mass transfer. Hence the maximum chance of displace-
ment is expected at times intermediate between 0 and infinity.
If ca is the same everywhere because xa is arbitrary, then actu-
ally neither side of eq. 4,11 depends on x; so must hold also
on a macroscopic statistical scale the conclusion that a uni-
form distribution of particles in the diffusion system makes
the ratio Ja/Jeq

o of eq. 4,9 inconsistent with a net flow of par-
ticles. In fact this requires verifying that also the sum of all
terms of eq. 4,9 over the indexes a and b fulfills the condition

∑

b,a

lim
cb→ca
xb,xa

Ja

Jeq
o

= 0, t = ∞, (4,13)

whereas in general, since fa never diverges,
∑

b,a

Ja

Jo
, 0, t > 0. (4,14)
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Actually the sums are extended to all paths of particles
from the respective starting points xb to their end points xa,
which also means summing over all elementary volumes Va =

∆x3
a and Vb = ∆x3

b of the diffusing medium in which the par-
ticles are found with corresponding concentrations ca and cb;
since both coordinates are arbitrary, this picture represents in
fact any path between any points in the diffusion system. Be-
fore demonstrating eq. 4,13, note that the sum has conceptual
meaning because in fact it does not require computing any-
thing; it is introduced in principle because neither xa nor xb

are known but are merely referred to their own Va and Vb

only, wherever their position in the diffusion system might
be. Also note that the ratio Ja/Jo entails two harmonized but
different definitions of mass flow: at numerator appears a lo-
cal term, characterized by a concentration difference between
two coordinates infinitely close each other, at denominator
a macroscopic term characterized by coordinates arbitrarily
apart. The flow described by Ja is thus a net flow of matter
only controlled by Da, since by definition an effective con-
centration gradient corresponds to it. The fact that the sum of
ratios is finite in eq. 4,14 and equal to 0 in eq. 4,13 suggests
that Jo must concern a macroscopic diffusion term controlled
by Do = Daγ

−1, describing total displacement of matter that
consists in principle of both vanishing and non-vanishing net
mass flows because Jo , 0 even though Ja = 0; both flows
are in fact allowed to occur in a macroscopic volume of diffu-
sion system, so that neither of them can be excluded. Hence
the ratio Ja/Jo in eq. 2,3 represents a sort of “displacement
efficiency” corresponding to the thermodynamic force Fx of
eq. 4,1, i.e. the chance that the random motion of particles
produces an effective flow of matter between two arbitrary
volumes within the diffusion system. Eq. 4,13 is then eas-
ily justified noting that Jeq

o changes sign by exchanging xa

and xb if ca = cb, whereas Ja does not for the simple rea-
son that its definition has nothing to do with xb. In effect just
the presence of a concentration gradient makes the environ-
ment around the coordinates xa and xb physically different;
if the coordinates belong to different volumes Va and Vb that
define the respective non-equilibrium concentrations, the dis-
placement of a particle between two points out of the equi-
librium is distinguishable from that obtained keeping fixed ca

and cb with reversed path. Instead the sums
∑
a,b

and
∑
b,a

at the

equilibrium must be in principle identical, because a uniform
distribution of particles within the diffusion system makes in-
distinguishable starting points and end points; if the diffusion
system is perfectly homogeneous, then all volumes Vi = ∆x3

i
where c , 0 are identical. This is consequence of having de-
fined c as due to a unique value of m into different volumes
of phase space that define Va and Vb of the diffusing medium.
Thus the only chance for a sum to coincide with its own value
of opposite sign is that the sum is null. Eq. 4,13 is in fact pos-
sible from a mathematical point of view because

∂2 log( f )/∂x2 = − f −2(∂ f /∂x)2 + f −1∂2 f /∂x2, (4,15)

i.e. the former addend is certainly negative whereas the sec-
ond can take in principle both signs; hence in principle the
sum of terms at right hand side of eq. 4,11 can vanish for
an appropriate value of fa = fb = f eq. Let us return now to
eq. 4,9 and note with the help of eq. 4,8 that for fa = 0, i.e.
ca = 0, the ratio Ja/Jo is identically null in agreement with
its probabilistic meaning. Then, since each coordinate xa be-
longs to its own volume Va that defines ca, summing over all
the possible indexes a means summing over states really ac-
cessible to the particles; empty volumes Va with ca = 0 do not
contribute to the sum. It is clear therefore that each fa repre-
sents a possible state allowed for the diffusion system: the
values fa, fa′ , fa′′ , ... in various points labeled by a, a′, a′′, ...
quantify the ways of distributing the total mass M into various
elementary volumes reached by the diffusing species during
the diffusion process. Summing both sides of eq. 4,9 over
the indexes a and b as done before, means therefore estimat-
ing the total probability of mass transport within the diffusion
system; then let us introduce, even without carrying out any
explicit calculation,

∑

a,b

Ja

Jo
= −

∑

a,b

fa log( fa)+

+
∑

a,b

 fa log( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

.
(4,16)

Summing over all probabilities of diffusion paths, one
finds the resulting configuration change of the diffusion sys-
tem at any time. A few remarks are enough to guess what to
expect from this equation. At t → 0 one finds a sum of terms
fa log(1 + γ/ fa), which for γ → 0 tend to γ, plus terms that
contain the factor dab; since in this limit xa − xb → 0, neither
of them contributes to the sum. At t > 0 both addends con-
tribute to the sum. At the equilibrium asymptotic time where
again γ = 0 the sum vanishes according to eq. 4,15 because
fa → f eq everywhere; this result agrees with the statistical
limit

∑
a,b

Ja/Jo = 0 previously inferred, which actually is the

macroscopic result revealed by the experience. The first ad-
dend at right hand side is clearly an entropic term, whereas
fa defined in eq. 4,5 must have the probabilistic significance
of thermodynamic state related to the current configuration
of the diffusion system. In effect it is possible to define the
limit value f eq such that

∑
a,b

( f eq) = 1 whatever the number of

terms of the sum might be; indeed according to eq. 4,12 the
finite limit γab for cb → ca and γ → 0 has been defined finite
but not specified; the value of γab can be therefore taken as
that fulfilling the required property of f eq. If so the first sum
of eq. 4,16 is such that when the system evolves towards the
equilibrium then

−
∑

a,b

fa log( fa)→ −
∑

a,b

log( f eq).

The possibility of relating fa to the thermodynamic prob-
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ability of states allowed to the diffusing particles defines the
physical meaning of the time parameter γ: depending on the
value of this latter the totality of possible values of xa and xb,
whatever they might be, corresponds to a possible arrange-
ment of diffusing particles at the current time starting from
an arbitrary initial configuration in the diffusing medium. Ac-
cording to eq. 4,10 it appears that γ = 0 at t = 0 defines the
initial configuration. So, through the totality of possible paths
from any xb to any xa, the parameter γ > 0 provides an in-
dication of the order→disorder evolution of the configuration
of the diffusion system as a function of time. Rewrite now eq.
4,16 as follows

∑

a,b

Ja

Jo
=

S t

kB
− S o

kB
, (4,17)

where
S t

kB
= −

∑

a,b

fa log( fa), (4,18)

S o

kB
= −

∑

a,b

 fa log( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

.

The ratio Ja/Jo has been previously identified as the lo-
cal chance of net mass flow between two arbitrary points of
the diffusion system; the sum at left hand side is therefore
the flow efficiency throughout the whole diffusion system, i.e.
Πnet f low =

∑
a,b

Ja/Jo. It is possible therefore to introduce the

total chance of mass transfer, Πtr, with and without net mass
flow such that of course Πtr = Πnet f low + Πnonet f low with ob-
vious notation. This kind of definition is suggested by the
possibility of normalizing Πtr to 1. Hence comparing with
eqs. 4,17 and 4,18 one infers

Πtr =
S t

kB
, Πnonet f low =

S o

kB
.

Of course S t, the most general statistical definition of en-
tropy, is also the most general way to describe the configu-
ration of N diffusing particles in the NV volumes available in
the diffusion system, regardless of whether or not the con-
figuration entails a net displacement of matter; instead S o,
which does not refer to net transfer of atoms, counts simply
the number of ways to arrange any prefixed distribution of
particles and thus the thermodynamic probability of any con-
figuration. Hence the entropic terms concern two different
kinds of diffusion mechanisms allowed to occur as a function
of time. In effect the possibility that xb → xa is not excluded
in the present model even at times t1, t2,..; it would be enough
to define γ for instance as t(t−t1)(t−t2)/(t + to)4 in agreement
with the previous considerations at t → 0 and t → ∞ and at
any time where xb → xa entails cb → ca too. Further consid-
erations are possible about the results hitherto obtained.

5 Discussion

The eqs. 3,1 only have been exploited to highlight the link
between concentration gradient law and entropy of diffusion
system through elementary considerations. Both concepts
have been extracted through elementary algebraic manipula-
tions of the left and right hand sides of the unique eq. 4,3. No
hypotheses “ad hoc” have been introduced about the physical
features of the diffusion system and its driving mechanisms,
leading for instance to Markovian jumps or not, interstitial
or defect activated jumps, collisions in gas phase and so on.
This is due to the general worth of eqs. 3,1 regardless of
the specific system concerned: the present conclusions hold
in principle for diffusion processes in solid or liquid or gas
phase.

Regarding the statistical formulation of the uncertainty as
fundamental principle of nature, the diffusion particles re-
sult randomly delocalized within elementary volumes V =

∆x3 into which can be ideally subdivided the whole system,
whose size is however inessential to infer the entropic terms
− f log f ; these volumes control the concentrations c, which
in turn define the thermodynamic states allowed to the diffus-
ing particles in relation to their occupation probability. No as-
sumption was made about the coordinates of the points xa and
xb falling within the respective elementary volumes, whose
number, size and position indeed have been never specified in
section 4. In fact such a kind of local information is irrelevant
to calculate the entropy; it is enough to compute how N parti-
cles can be distributed in NV volume elements, regardless of
how many and where these latter might actually be in the dif-
fusion medium. For this reason the model describes the time
evolution of the whole system even without knowing in detail
how is progressively modified the configuration of particles
and volumes as a function of time. Actually eqs. 4,17 ad-
mit also empty elementary volumes that however do not con-
tribute to the total entropy of the system, in fact determined
by the distribution of particles only. So S o in eq. 4,17 cor-
responds in general to the ways of distributing particles into
available microstates described by ∆x3, possibly taking into
account the indistinguishability of identical particles, through
a dynamical pattern of particles exchanging their occupation
volumes even without net mass flow. In effect, also this kind
of information does not require a detailed knowledge on the
local motion of particles. Nothing is known about this motion
within their own ∆x3, because it would require some sort of
local information about x and px. Being impossible to estab-
lish if within this arbitrary volume the motion is for instance
Markovian or not, one must admit that both chances are in
fact allowed; this also justifies why the diffusing species is
involved in mass transfer process with and without net dis-
placement of particles.

This conclusion does not conflict with the fact that Jx en-
tails explicitly an effective concentration gradient; eq. 4,4 is
simply the differential formulation of a physical law related
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to the driving force that triggers the displacement, see eqs.
4,1 and 2,3 and 2,5 as well. The quantum approach behind
this step accounts for the physical basis of eq. 2,2, whereas
the definition 2,1 has now the rank of a corollary of eq. 4,4
rather than a mere definition: now the physical dimensions of
eq. 2,1 are required by quantum motivations, rather than be-
ing suggested by a reasonable assumption. Indeed the avail-
able information about the diffusion system is inferred in the
typical way of quantum mechanics, i.e. without requiring an
exact local knowledge about position and momentum of the
particles, as follows:

(i) from a macroscopic point of view, through Jo of eq.
4,8 and the entropic terms of eq. 4,17;

(ii) through the probabilistic meaning of the ratio Ja/Jo,
which indeed represents the probability of effective mass
transport as concerns the chances of Marcovian or non-
Marcovian displacements.

Non-trivial consequence of these constrains about our de-
gree of information is the heuristic achievement resulting
from the quantum approach with respect to that provided by
the classical physics where, from the point of view of the con-
tinuity equation, the general character of both Fick’s laws is
merely due to the lack of sinks/sources perturbing the dif-
fusion process. This fact appeared already in the classical
section 2 when it was found that in general F , F′, i.e. the
driving force controlling the mass transport is in principle dif-
ferent from that due to local perturbations; the former was
uniquely inferred from general hypotheses, eqs. 2,1 and 2,2,
the latter remained instead unspecified and does so still now.
This is not incompleteness of the present model, but rather
the statement that the local perturbations must be purposely
specified case by case depending on the physical features of
the diffusion system. The worth of any theoretical approach
depends on its ability to be generalized beyond the specific
problem for which it was formerly conceived. In the case
of diffusion the generalization is evident: several important
physical laws are expressed through the gradient of a well
defined function.

One example is the Fourier equation, JQ = K∇T , where
K is the heat conductivity and JQ the heat flow; also the
Ohm law, I = R−1∇V , exhibits a similar form involving the
electrical resistance R and the electric potential V to describe
the displacement of charges per unit time. Although a com-
mon gradient law describes in the former case the transport of
heat and in the latter that of electrons, both equations involve
forms of kinetic energy, respectively due to the oscillation
frequency of atoms/ions/molecules within the heat diffusion
thermodynamic system and to the velocity of electrons prop-
agating within a conductor. The entropic aspects in these sys-
tems are clear. In the former case they were already evidenced
by the crucial Boltzmann intuition, although in lack of any
quantum reference; it is not surprising that indeed the statis-
tical definition of entropy inferred here goes back to the early
times when the thermodynamics was essentially the science

of heat exchanges. The entropy difference in the absence and
presence of an electric field is also evident in the latter case:
without electric field the motion of the electrons is random, in
the k space it is represented by a sphere; the presence of the
field instead orients the motion of the electrons along a prefer-
ential direction. The applied field triggers thus a more ordered
motion of electrons, which suggests in turn a loss of total en-
tropy. The analogy with the case discussed in section 4 is
clear, although the respective entropy changes have opposite
sign. This is not surprising: in an isolated system the entropy
always increases, in a system interacting with an external field
this is not necessarily true. In all cases however the gradient-
like laws, mass diffusion, heat diffusion and Ohm law, are
similarly consistent with entropic terms describing the actual
numbers of accessible states during the displacement of mat-
ter or energy. Another consequence of the generality of the
present model concerns the driving force of the diffusion pro-
cess. In section 2, eq. 2,5 was inferred from eqs. 2,1 and 2,2,
the only equations available. Of course the same can be done
identically here, though on a more profound quantum basis.
Yet the approach carried out in section 4 allowed inferring eq.
4,1, which introduces the concept of force directly as a conse-
quence of eqs. 3,1 and deserves thus further considerations.

First of all, the quantum nature of the mass flow can be
evidenced replacing vx of eq. 4,1 into the x-component of eq
2,1, which yields thanks to eq. 2,5

Jx =
kBT
n~

∆x2c
∂ log(c/co)

∂x
. (5,1)

So, simply identifying Fx of eq. 2,5 with that of eq. 4,1
appear again terms of Jx having the form c∂ log(c)/∂x, which
can be handled in a completely analogous way as in section 4
to infer entropic terms like c log(c/co) of eq. 4,5. Moreover
Jx → 0 for n → ∞ agrees with eq. 4,16; an increase of en-
tropy due to the increase of states accessible to the diffusion
system corresponds to the reaching of asymptotic equilibrium
where the net mass flow vanishes. As expected, the result
obtained via the time coordinate defining vx agrees with that
previously obtained through the space coordinate only. Yet
it is worth remarking that the combined information of the
first eq. 4,18 plus eq. 5,1 regards this time behavior of any
isolated diffusion system as a spontaneous evolution process:
indeed t → ∞ requires Jx → 0 that in turn requires a max-
imum number of allowed states n → ∞. Two fundamental
statements of thermodynamics appear here as corollaries of
eqs. 3,1: the statistical formula of entropy and the entropy
increase in an isolated system.

Let us exploit eq. 5,1 noting that kBT/n~ has physical
dimensions of time. So compute this equation at the time τ
where the total diffusion spread lies within an average value
of ∆x2 computed starting from ∆x2 → 0 at t = 0 up to the
value ∆x2 = ∆x2

τ at the time τ; this means assigning to ∆x2

the particular mean value ∆x2 = ∆x2
τ/2 averaged between
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zero and ∆x2
τ. Comparing with eq. 4,4, one finds immediately

the known Einstein’s one-dimensional result

D =
1
2

∆x2
τ

τ
.

6 Heuristic aspects of the quantum uncertainty

The present section, based on wide-ranging considerations
about vx, extends somewhat the preliminary remarks intro-
duced in section 3 and has prospective worth. The aim is to
emphasize that Fx of eq. 4,1 has actually a physical mean-
ing much more general and contains much more information
than the mere eq. 2,5. The byproduct of eqs. 3,1 proposed
here is so short, straightforward and relevant to deserve being
sketched although, strictly speaking, beyond the mere pur-
poses of the present model; accordingly, however, the results
hitherto inferred appear as a particular kind of selected phys-
ical information extracted from a broader context able to link
topics apparently dissimilar.

Key tools of the following considerations are the replace-
ments 3,2 that compel changing the way to formulate any
physical property P from the usual form P(x, px, t) to
P(∆x,∆px,∆t) and thus to P(∆x, n,∆ε). In effect the paper [4]
has shown that the number n of states coincides with the quan-
tum number appearing in the eigenvalues of the harmonic os-
cillator, while the papers [5, 6] show that this is true in gen-
eral; e.g. the number l of states calculated for the angular
momentum coincides with the orbital quantum number. The
first remark concerns the two ways of expressing Fx in eqs.
4,1:

(i) Fx follows from the definition of momentum itself,
∆ ṗx = mv̇x, and involves directly the mass m, previously in-
troduced with mere reference to the concentration of diffusion
particles and now regarded in general as the mass of any par-
ticle accelerated in ∆x;

(ii) Fx = −n~∆x−2vx does not involve directly any mass
but the deformation rate, ∆ẋ = vx, of ∆x only.

Why in (ii) the mere time deformation of ∆x in the phase
space surrogates the presence of an accelerated mass? The
answer rests on the same considerations already introduced
in section 4: if a growing/shrinking range is accessible to a
particle, then this latter can move faster/slower while being
still therein delocalized; the fact that the particle can accel-
erate/decelerate simply reaffirms once more that nothing in
known about how any dynamical variables change within the
respective delocalization ranges.

However, in lack of constraining hypotheses, there is no
reason to exclude that this idea holds regardless of whether
the range sizes are stationary or not. Otherwise stated: slow
motion in a short range or faster motion in a larger range are
two indistinguishable chances, both allowed to occur for a
particle by the lack of local information inherent the eqs. 3,1
and in fact both occurring. This rationalizes why just the un-
certainty of x, px, ε and t links the deformation rate of time

dependent range sizes of the phase space to the acceleration
of any particle, possible and thus actual. The size and posi-
tion of any range require a reference system to be defined in
principle, although never quantifiable.

Consider for instance ∆x = xt − xo and ∆px = pt − po: the
coordinate xo, whatever it might be, is defined with respect
to the origin O of an arbitrary reference system R, while the
same also holds for the momentum po of the range ∆px con-
jugate to ∆x. So a free particle is described in R by its own
∆x and ∆px; indeed eqs. 4,1 have been inferred in R keeping
constant xo and regarding xt as a time function. Yet, if nei-
ther of these boundaries is specifiable, one could also think
xt fixed and xo time function. The difference is apparent: the
displacement of xo means that now ∆x deforms while contex-
tually moving in R, as O displaces at rate −∂xo/∂t with re-
spect to xt. Thus it is possible to introduce another reference
system Ro solidal with xo such that a particle accelerated in R
is at rest in Ro, which moves with the same acceleration in R.
Clearly still acts on the particle a force that justifies the accel-
eration of Ro in R, although however the particle is in fact at
rest in Ro.

The conclusion of this reasoning is well known: a parti-
cle at rest in an accelerated reference frame is subjected to
a force Fx indistinguishable from that due to the presence of
mass. Of course with large sized ∆x one can speak about
average force Fx, whereas in a small sized range Fx takes a
value better and better defined. This statement is nothing else
but the equivalence principle, here inferred as a corollary of
eqs. 3,1. After having introduced in eqs. 4,1 Fx = mv̇x, can
be inferred also the link between Fx and Newton’s law after
these preliminary remarks? Of course let us start again from
eqs. 4,1 with vx and v̇x defined in any R.

First of all, the fact that the mass in eq. 4,1 is unique and
that the equivalence principle has been obtained elaborating
independently both sides of mv̇x = Fx = −n~∆x−2vx shows
the identity of inertial and gravitational mass. Moreover just
the fact the unique mass m must somehow appear also in the
second equality compels putting vx = ζ′m via an appropriate
dimensional factor ζ′; hence Fx = −n~ζ′m∆x−2 with the ac-
celeration no longer appearing explicitly in this expression,
which rather has the form of an interaction force Fm,ζ′

x be-
tween m and another entity that can be nothing else but ζ′.

This result suggests a more interesting form of Fx putting
ζ′ = n

∑
kζkm′k, being ζk coefficients of the power series de-

velopment of ζ′ and m′ a further arbitrary mass that interacts
with m. The series truncated at the first order only yields ap-
proximately ζ′ ' nζm′, with ζ unique proportionality factor;
here n is inessential and does not play any role because, being
m′ arbitrary, m′n is another value arbitrary as well. In this way
one finds Fm,m′

x ≈ −~ζ(m/∆x)(m′/∆x) at the first order of ap-
proximation, i.e. an attractive force is originated between the
linear densities m/∆x and m′/∆x of masses by definition delo-
calized within ∆x. This sensible result appears better under-
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standable thinking to particle waves that propagate through
∆x rather than to point particles moving randomly within ∆x.

Moreover the proportionality factor ζ can be regarded as
a constant since the arbitrary masses m and m′ account for the
arbitrariness of vx. With the notation ζ = G/~ one recognizes
the approximate Newton law; the classical distance xm,m′ be-
tween local coordinates exactly known of particles is replaced
by any random distance falling within the uncertainty range
including them.

Obviously ∆x−2 shows that the functional dependence of
Fm,m′

x on all possible distances between the masses is like
x−2

m′m. This confirms that effectively the diffusion particles are
acted by the force Fx, whose physical meaning can be ex-
tended even to the gravitational interaction. Note however
that actually both signs are allowed for the velocity compo-
nent vx along x, which correspond to the signs of ∂∆x/∂t de-
pending on whether ∆x shrinks or expands as a function of
time.

In agreement with the idea of phase space-time deforma-
tion in the presence of mass, one would expect thus vx =

±ζ′m, i.e. even a negative value of m. This conclusion em-
phasizes nothing else but the existence of antimatter. After
this instance about how eqs. 3,1 can be purposely exploited,
let us proceed with another example short enough to be men-
tioned here, i.e. the Coulomb law. It is not a chance that
even this latter has a form similar to that of the Newton law,
with the charges playing the role of the masses. To empha-
size the reason of this similarity, let us introduce in eq. 4,1
the fine structure constant α = e2/~c. Eliminating ~ eq. 4,1
reads Fx = e′e/∆x2 = meax, where now me is the electron
mass and e′ = nvx(cα)−1e. This latter reads more expressively
e′ = ±n |vx| (cα)−1e. Again, the charges interact through their
linear densities e/∆x and e′/∆x for the reasons previously ex-
plained. Also the electron charges appear therefore because
of the phase space-time deformation in the presence of the
mass me. Once more is crucial the characteristic value of vx

of charged particles; for instance vx = 0 would describe a
neutral particle, whereas it also appears that a massless par-
ticle would be chargeless as well. A boundary condition of
the problem is that for an appropriate value n∗ of the integer
n one must find e′ = e, as nothing hinders indeed just such a
possibility. So e′ = ±(n/n∗)e; e.g. for a couple of electrons
one must take n = n∗ i.e. |vx| = cα, whose value seems there-
fore to be a combined constant of nature. It is reasonable
to assume n∗ = 3 since actually one should consider vx, vy
and vz for the respective components replacing the early Fx,
for simplicity the only one hitherto considered, whereas the
number n of states should be counted as n = nx +ny+nz. Take
the ground values nx = ny = nz = 1 and consider the three
chances vx , 0, vy , 0, vz , 0 and vx , 0, vy , 0 and vx , 0
only. This means considering the charges of particles result-
ing from n = 1, 2, 3 with n∗ = 3. As inferred before, n = n∗

holds for protons and electrons. Yet, in addition to e′ = ±e,
possible values of e′ result respectively to be e′ = ±e/3 or

e′ = ±(2/3)e as well, i.e. particles with fractional charges
should also exist in nature. But, being n arbitrary, what about
hypothetical charges described by n > n∗?

A full discussion on this question is clearly far beyond
the purpose of the present paper; further work is in progress
on this specific topic. As concerns the results hitherto intro-
duced, it is enough to conclude that the formal analogy be-
tween the Fourier law and the mass/charge transport laws is
due to their common quantum basis, discussed here with ref-
erence to the entropic aspects too, that goes back to the inti-
mate quantum nature of the entropy and Newton and
Coulomb forces themselves.

7 Conclusion

The quantum origin of the diffusion law has been described
with the help of eqs. 3,1 only. The assumption of uncertainty
that allowed to calculate the energy levels of many-electron
atoms and diatomic molecules, enables even the basic law
controlling the transport of matter to be inferred in a very sim-
ple way. It is also remarkable that elementary considerations
on eqs. 3,1 open the way to further results much more general
than the specific task to which they were initially addressed
in the present diffusion model. This emphasizes the heuris-
tic character of eqs. 3,1: the uncertainty, regarded itself as a
fundamental principle of nature rather than as mere corollary
of commutation rules of operators, appears a key tool to infer
a conceptual background unifying seemingly different physi-
cal phenomena. As concerns the present model, the level of
comprehension provided by the approach based on the phase
space-time uncertainty opens the way to more specific con-
siderations on the possible mechanisms of transport in solid,
liquid and gas phases.
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The unfolding revolution in observational astrophysics and cosmology has lead to nu-
merous puzzles: “supermassive” galactic central black holes, galactic “dark matter” ha-
los, relationships between these black hole “effective” masses and star dispersion speeds
in galactic bulges, flat spiral galaxy rotation curves, cosmic filaments, and the need for
“dark matter” and “dark energy” in fitting the Friedmann universe expansion equation
to the supernovae and CMB data. Herein is reported the discovery of a dynamical the-
ory for space which explains all these puzzles in terms of 3 constants; G, α - which
experimental data reveals to be the fine structure constant α ≈ 1/137, and δ which is
a small scale distance, perhaps a Planck length. It is suggested that the dynamics for
space arises as a derivative expansion of a deeper quantum foam phenomenon. This
discovery amounts to the emergence of a unification of space, gravity and the quantum.

1 Dynamical Space

The many mysteries of cosmology, such as supermassive
galactic black holes, cosmic filaments, “dark matter” galac-
tic haloes, flat spiral-galaxy rotation curves, “dark energy”
effects in expansion of the universe, and various unexplained
correlations between galactic black hole masses and star ve-
locities, all suggest that we have an incomplete account of
space and gravity. We report herein the discovery of such a
theory and its successful testing against the above phenom-
ena, and as well against laboratory and geophysical gravity
experiments. If space is, at a deep level, a quantum system,
with dynamics and structure, then we expect a derivative ex-
pansion would give a classical/long-wavelength account. In
the absence of that quantum theory we construct, phenomeno-
logically, such an account in terms of a velocity field [1]. In
the case of zero vorticity we obtain

∇·
(
∂v
∂t

+ (v·∇)v
)

+
α

8

(
(trD)2 − tr(D2)

)
+

+
δ2

8
∇2

(
(trD)2 − tr(D2)

)
+ ... = −4πGρ

∇ × v = 0, Di j =
∂vi

∂x j
(1)

where the major development reported herein is the discov-
ery of the significance of the new δ−term, with δ having the
dimensions of a length, and presumably is the length scale of
quantum foam processes. This term is shown to be critical in
explaining the galactic black hole and cosmic filament phe-
nomena. This δ is probably a Planck-like length, and points
to the existence of fundamental quantum processes. If δ = 0
(1) cannot explain these phenomena: δ must be non-zero, no
matter how small, and its value cannot be determined from
any data, so far. G is Newton’s constant, which now ap-
pears to describe the dissipative flow of quantum foam into

matter, and α is a dimensionless self-coupling constant, that
experiment reveals to be the fine structure constant, demon-
strating again that space is fundamentally a quantum process.
We briefly outline the derivation of (1). Relative to the non-
physical classical embedding space, with coordinates r, and
which an observer also uses to define the velocity field, the
Euler constituent acceleration of the quantum foam is

a =
∂v
∂t

+ (v · ∇)v (2)

and so, when α = 0 and δ = 0, (1) relates this acceleration
to the density of matter ρ, and which will lead to Newton’s
account of gravity. The matter acceleration is found by deter-
mining the trajectory of a quantum matter wavepacket. This
is most easily done using Fermat’s maximum proper-travel
time τ:

τ =

∫
dt

√
1 − v2

R(r0(t), t)
c2 (3)

where vR(ro(t), t) = vo(t) − v(ro(t), t), is the velocity of the
wave packet, at position r0(t), wrt the local space. This en-
sures that quantum waves propagating along neighbouring
paths are in phase, and so interfere constructively. This max-
imisation gives the quantum matter geodesic equation for
r0(t)

g =
∂v
∂t

+ (v · ∇)v + (∇ × v) × vR

− vR

1 − v2
R

c2

1
2

d
dt


v2

R

c2

 + ... (4)

with g ≡ dvo/dt. The 1st term in g is the Euler space accelera-
tion a, the 2nd term explains the Lense-Thirring effect, when
the vorticity is non-zero, and the last term explains the pre-
cession of orbits. In the limit of zero vorticity and neglecting
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relativistic effects (1) and (4) give

∇ · g = −4πGρ − 4πGρDM , ∇ × g = 0 (5)

where

ρDM ≡ α

32πG

(
(trD)2 − tr(D2)

)

+
δ2

32πG
∇2

(
(trD)2 − tr(D2)

)
+ .... (6)

This is Newtonian gravity, but with the extra dynamical
terms which has been used to define an effective “dark mat-
ter” density. This ρDM is not a real matter density, of any
form, but is the matter density needed within Newtonian grav-
ity to explain dynamical effects caused by the α and δ-terms
in (1). It is purely a space/quantum-foam self-interaction ef-
fect. Eqn.(3) for the elapsed proper time maybe written in
differential form as

dτ2=dt2− 1
c2 (dr(t)−v(r(t), t)dt)2=gµν(x)dxµdxν (7)

which introduces a curved spacetime metric gµν for which
the geodesics are the quantum matter trajectories when freely
propagating through the quantum foam. When α = 0 and δ =

0, and when ρ describes a sphere of matter of mass M, (1) has,
external to the sphere, a static solution v(r) = −√2GM/rr̂,
which results in Newton’s matter gravitational acceleration
g(r) = −GM/r2r̂. Substituting this v(r) expression in (7), and
making the change of time coordinate

t → t′ = t − 2
c

√
2GMr

c2 +
4GM

c3 tanh−1

√
2GM
c2r

, (8)

(7) becomes the standard Schwarzschild metric, and which is
the usual explanation for the galactic black hole phenomenon,
see [3–5], namely a very small radius but very massive con-
centration of matter. To the contrary we show here that the
observed galactic black holes are solutions of (1), even when
there is no matter present, ρ = 0. These solutions are quantum
foam solitons.

The above v(r) = −√2GM/rr̂ solution also explains why
the α− and δ−terms in (1) have gone unnoticed, namely that
for these solutions (trD)2 − tr(D2) = 0. It is for this rea-
son that the α− and δ−terms are now included, namely that
Newton’s inverse square law for gravity is preserved for so-
lar system situations, and from which Newton determined his
theory from Kepler’s analysis of Brahe’s planetary data. The
key point is that the solar system is too special to have re-
vealed the full complexity of the phenomenon of gravity.

However just inside a planet the α−term becomes
detectable, and it results in the earth’s matter acceleration g
being slightly larger than that predicted by Newtonian gravity,
and we obtain from (1)

∆g = gNG(d)−g(d) = −2παGρ(R)d + O(α2), d > 0 (9)

Fig. 1: The M(r) data for the Milky Way SgrA∗ black hole, show-
ing the flat regime, that mimics a point-like mass, and the rising
form beyond rs = 1.33pc, as predicted by (12), but where M0 and rs

parametrise a quantum foam soliton, and involves no actual matter.
The left-most data point is from the orbit of star S2 - using the Ghez
et al. [3] value M0 = 4.5 ± 0.4 × 106 solar masses. The other data is
from Camenzind [5], but which requires these remaining data points
to be scaled up by a factor of 2, presumably arising from a scaling
down used to bring this data into agreement with a smaller initial
value for M0.

down a bore hole at depth d. This involves only α as the
δ-term is insignificant near the surface. The Greenland Ice
Shelf bore hole data [6] and Nevada bore hole data [7], both
give α ≈ 1/137 to within observational errors, even though
the ice and rock densities ρ(R) differ by more than a factor of
2 [2]. So this result for α is robust, and shows that α is the fine
structure constant α = e2~/c, with α probably the more fun-
damental constant, and now showing up in the quantum foam
account for gravity. As well laboratory measurements of G,
modified Cavendish experiments, have always shown anoma-
lous and inconsistent results [10, 11], revealing a systematic
effect not in Newtonian gravity. Indeed the Long 1976 labo-
ratory experiment to measure G, reported the anomaly to have
magnitude δL = 0.0037 ± 0.0007 [8] (this δL is not related to
δ in (1)), which equals 0.5/(136 ± 26), showing that α can
be measured in laboratory gravity experiments, of the type
pioneered by Long.
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1.1 Black Holes and Filaments as Quantum Foam Soli-
tons

For the special case of a spherically symmetric flow, and in
the absence of matter ρ = 0, we set v(r, t) = r̂v(r). Then (1)
has exact static two-parameter, v0 and κ ≥ 1, solutions

v(r)2=v2
0(κ−1)

δ

r

(
1 − 1F1

[
−1

2
+
α

4
,−1

2
,− r2

δ2

])
+

+v2
0κ

(
4 − 2α

3

)
r2

δ2

Γ( 2−α
4 )

Γ(−α4 ) 1F1

[
1 +

α

4
,

5
2
,− r2

δ2

]
,

(10)

where 1F1 [a, b, w] is the confluent hypergeometric function.
Here v0 is a speed that sets the overall scale, and κ is a struc-
tural parameter for the black hole, and sets the relative sig-
nificance of the two terms in (11) and (12), and which is de-
termined by the history of the black hole: in-falling matter
increases κ, and values of both v0 and κ are affected by sur-
rounding matter if ρ , 0. In the limit r � δ

v(r)2 ≈ A
δ

r
+ B

(
δ

r

)α/2
. (11)

However v(r) → 0 as r → 0 when δ , 0, and so the
δ-term dynamics self-regulates the interior structure of the
black hole, which has a characteristic radius of O(δ). Inside
this radius the in-flow speed goes to zero, and so there is no
singularity. Hence there is a naturally occurring UV cutoff

mechanism. Eqn. (??) gives an asymptotic form for g(r),
which is parametrised by an “effective mass” M(r) within ra-
dius r: g(r) = GM(r)/r2. In terms of observable M(r) (11)
gives a two-parameter description

M(r) = M0 + M0

(
r
rs

)1−α/2
(12)

rs is the distance where M(rs) = 2M0. M(r) from the Milky
Way SgrA∗ black hole [3–5] is shown in Fig.1, and the best fit
gives rs = 1.33pc. This remarkable data comes from observa-
tions of orbits of stars close to SgrA∗, and in particular the star
S2, which has an elliptical orbit with a period of 15.2±0.11
years, and is the left-most data point in Fig.1. This dynamical
space solution exhibits an effective point-like mass accelera-
tion for r < rs, where M(r) is essentially constant, and for
r > rs an increasing M(r). At the outer-most data point the
presence of stars within the galactic core begin to become ap-
parent, with M(r) becoming larger than the form predicted in
(12). Note that if δ = 0, then the flat feature in M(r) is absent,
while if α = 0 the rise in M(r) is absent, and the flat feature
continues outwards. Intriguingly then the role of the δ−term
dynamics is critical to the effective point-like mass descrip-
tion of the inner region of the black hole, even though there is
no actual matter present. It is this region of M(r) that explains
the inner star elliptical orbits - with δ = 0 the α−term pro-
duces a “weak” black hole, but with g(r) ∼ 1/r1+α/2, which

does not produce the observed star orbits. Eqn. (12) is in
terms of observables. If we best-fit the data using an M(r)
directly from (10), by varying v0, κ and δ, we find that there
is no unique value of δ - v0 and κ rescale to compensate for
a deceasing δ, in the regime outside of the inner core to the
black hole, but δ cannot be set to zero. This is evidence of
the existence of a finite, but very small, structure to space,
suggestive of a Planck-like fundamental length.

This black hole also explains the so-called “dark matter”
halo. Asymptotically ρDM(r) is related to the matter-less M(r)
via

M(r) =

∫ r

0
4πr2ρDM(r)dr (13)

giving

ρDM(r) =
(1 − α/2)M0

4πr1−α/2
s r2+α/2

(14)

which decreases like r−γ with γ = 2 + α/2. The value of
the exponent γ has been determined by gravitational lensing
for numerous elliptical galaxies in the Sloan Lens ACS Sur-
vey [12], and all give the generic result that γ = 2. Higher
precision data may even permit the value of α to be deter-
mined. So the space dynamics completely determines ρDM in
terms of observables M0 and rs.

Unlike the point-mass parametrisation of black holes, the
above shows that the quantum foam black hole is an extended
entity, dominating the galaxy from the inner regions, to be-
yond the central bulge, and even beyond the spiral arms. In-
deed the ρDM(r) in (14) predicts flat rotation curves, with or-
bital speed given by

v2
orb(r) = GM0

( rs

r

)α/2 1
rs

(15)

but to which must be added the contribution form the matter
density. For the Milky Way, we get the black hole contri-
bution is vorb = 117km/s at the location of the solar system,
r = 8kpc, and determined by M0 and rs. That the black hole is
an extended structure explains various observed correlations,
such as that in [9] which reported a correlation between M0
and the stellar speed dispersion in the bulge.

Eqn. (1), but only when δ , 0, also has exact filament
solutions

v(r)2 = v2
0

r2

δ2 1F1

[
1 +

α

8
, 2,− r2

2δ2

]
(16)

where r is the distance perpendicular to the axis of the fil-
ament, and v(r) is the in-flow in that direction. In the limit
r � δ

v(r)2 ∼ 1/rα/4 giving g(r) ∼ 1/r1+α/4 (17)

producing a long range gravitational attraction. Such cosmic
filaments have been detected using weak gravitational lens-
ing combined with statistical tomographic techniques. Again
v(r) → 0 as r → 0 when δ , 0, and so the δ-term dynamics
self-regulates the interior structure of the filament, which has
a characteristic radius of O(δ).
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1.2 Expanding Universe

The dynamical 3-space theory (1) has a time dependent ex-
panding universe solution, in the absence of matter, of the
Hubble form v(r, t) = H(t)r with H(t) = 1/(1 + α/2)t, giv-
ing a scale factor a(t) = (t/t0)4/(4+α), predicting essentially
a uniform expansion rate. This results in a parameter-free
fit to the supernova redshift-magnitude data. In contrast the
Friedmann model for the universe has a static solution - no
expansion, unless there is matter/energy present. However to
best fit the supernova data fictitious “dark matter” and “dark
energy” must be introduced, resulting in the ΛCDM model.
The amounts ΩΛ = 0.73 and ΩDM + ΩM = 0.27 are eas-
ily determined by best fitting the ΛCDM model to the above
uniformly expanding result, without reference to the obser-
vational supernova data. But then the ΛCDM has a spurious
exponential expansion which becomes more pronounced in
the future.

2 Conclusions

The notion that space is a quantum foam system suggests
a long-wavelength classical derivative-expansion description,
and inspired by observed properties of space and gravity, such
an effective field theory has been determined. This goes be-
yond the Newtonian modeling in terms of an acceleration
field description - essentially the quantum foam is accelerat-
ing, but at a deeper level the acceleration is the Euler consti-
tutive acceleration in terms of a velocity field. This velocity
field has been detected experimentally, with the latest being
from spacecraft earth-flyby Doppler shift data [13]. The dy-
namics of space now accounts for data from laboratory exper-
iments through galactic black holes and filaments, to the ex-
pansion of the universe. We note that there is now no known
phenomenon requiring “dark energy” or “dark matter”. The
black hole and cosmic filament phenomena require the exis-
tence of both α - the fine structure constant, and δ which is
presumably a quantum foam characteristic Planck-like length
scale. Gravity is now explainable as a emergent phenomenon
of quantum foam dynamics, but only if we use as well a quan-
tum wave description of matter - gravitational attraction is a
quantum matter wave refraction effect, and also causes EM
wave refraction. Hence the evidence is that we are seeing the
unification of space, gravity and the quantum, pointing to a
revolution in physics, and in our understanding of reality.
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By solving a special coupling boundary value problem for vector Helmholtz equations
it is shown how the displacement boundary value problem in elasticity can be solved. It
is shown that the generalized displacement problem possesses at most one solution.

1 Statement of the Problem

By Di we denote a bounded domain in IR3 with boundary S
belonging to the class C2, and by De the unbounded domain
De := IR3 \ Di. We assume that the normal vector n on S is di-
rected into the exterior domain De. The physical meaning is
that Di is a fixed elastic solid with no volume forces present
and De represents a homogeneous isotropic linear solid which
is characterized by the density ρ= 1 (this is no loss of gener-
ality) and the Lamé parameters λ and µ. We consider time-
harmonic elastic waves with circular frequency ω and it will
be assumed that all Lamé constants and the frequency are pos-
itive. We assume that the elastic medium De is in welded con-
tact to the rigid inclusion Di, which means that we consider
displacement boundary conditions.

To formulate the elasticity problems we introduce the fol-
lowing function spaces. By C0,α(S ) and C0,α

T (S ) we denote
the spaces of Hölder continuous functions and Hölder contin-
uous tangential fields (0 < α < 1), respectively. The space
C0,α

D (S ) denotes the subspace of Hölder continuous tangen-
tial fields possessing Hölder continuous surface divergence
in the sense of the limit integral definition given by Müller
[1]. Defining the differential operator ∆∗ := ∆ +

λ+µ
µ

grad div ,
where ∆ is the Laplace operator and λ and µ are the Lamé
elastic constants with µ > 0 and λ + 2µ > 0. For a posi-
tive frequency ω the wavenumbers κp and κs are defined by
κp :=ω/

√
λ + 2µ and κs :=ω/

√
µ. Now, the time-harmonic

exterior displacement problem in elasticity can be formulated
as
Problem D: Find a vector field u ∈ C2(De)∩C(De) satisfying
the time-harmonic elasticity equation

∆∗u + κ2
s u = 0, in De, (1)

the welded contact boundary conditions

u = f , on S , (2)

and the Sommerfeld radiation condition

(x, grad u j(x))−iκ ju j(x) = o(
1
|x| ), for |x| → ∞, j = s, p, (3)

uniformly for all directions x := x/|x|, where

up :=
−1
κ2

p
grad div u and us :=

1
κ2

p
grad div u + u. (4)

Here f ∈ C0,α(S ) is a given vector field.
By (a, b) and [a, b] we denote the scalar product and vec-

tor product of the vectors a and b, respectively. The vector
fields us and up are known as the rotational and irrotational
parts of u, respectively. The rotational part corresponds to a
dilatational or compressional wave and the irrotational part
corresponds to a shearing wave. The wave numbers κs and κp

are known as the slownesses of the rotational and irrotational
waves, respectively.

That Problem D possesses at most one solution has al-
ready been discussed by Kupradze [2] and Ahner [3]. The ex-
istence of a solution has been shown by Hähner and Hsiao [4].

For any domain D ⊂ IR3 with boundary ∂D we introduce
the linear space of vector fields u : D→ IR3 by

F(D) := {u | u ∈ C2(D) ∩C(D), curl u, div u ∈ C(D) }.

From the integral representation theorem for solutions of the
time-harmonic elasticity equation, known as the Betti formu-
las [2], we see that the displacement field is analytic. There-
fore, by using (4) u can be split into u = up + us. Differenti-
ating both, up and us, we see that up is curl-free and that us

is divergence-free. Furthermore, u j is a solution of the vector
Helmholtz equation ∆u j + κ ju j = 0, in De, for j = s, p.

This motivates us to study the following slightly more
general coupling
Problem HD: Find two vector fields us, up ∈ F(De) satisfying
the vector Helmholtz equations

∆us + κ2
sus = 0, in De, κs , 0, =(κs) ≥ 0,

∆up + κ2
pup = 0, in De, κp , 0, =(κp) ≥ 0,

}
(5)

the coupling boundary conditions

[n, us] + [n, up] = c,
div us = γ,

[[curl up, n], n] = d,
(n, us) + (n, up) = δ, on S ,


(6)

and the radiation conditions

[curl u j, x̂] + x̂ div u j − iκ ju j = o(1/|x|), for |x| → ∞, (7)

and j = s, p, uniformly for all directions x̂ := x/|x|. Here c ∈
C0,α

D (S ) and d ∈ C0,α
T (S ) are given tangential fields and γ, δ ∈

C0,α(S ) are given functions.
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2 Uniqueness

By Problem HDS we denote the special case of Problem HD,
with

κ2
p =

ω2

λ + 2µ
and κ2

s =
ω2

µ
, (8)

and the right-hand sides

γ = 0 and d = 0.

Now we have the following equivalence
Theorem 3.1: 1) Let u be a solution of Problem D corre-
sponding to the boundary data f := nδ − [n, c]. Then

up :=
−1
κ2

p
grad div u and us :=

1
κ2

p
grad div u + u,

is a solution of Problem HDS.
2) Let up, us be a solution of Problem HDS corresponding to
the boundary data c := [n, f ], γ= 0, d = 0 and δ := (n, f ). Then
u := up + us is a solution of Problem D.
Proof: We will show only part 2). Let up, us be a solution of
Problem HDS corresponding to the boundary data c := [n, f ],
γ= 0, d = 0 and δ := (n, f ). Representing us via the represen-
tation theorem for solutions of the vector Helmholtz equa-
tion [6] it can be seen that div us is a solution of the scalar
Helmholtz equation ∆div us + κ2

sdiv us = 0 in De satisfying
the homogeneous Dirichlet boundary condition div u = 0 and
the Sommerfeld radiation condition. From the uniqueness
theorem for the exterior Dirichlet problem [5, 6] we obtain
div us = 0 in De.

Using the integral representation theorem for solutions of
the vector Helmholtz equation [6] it can be seen that curl up

solves the vector Helmholtz equation ∆curl up + κ2
pcurl up = 0

in De, fulfills the homogeneous electric boundary condition
[[curl up, n], n] = 0 and div curl up = 0, on S , and the radiation
condition (7). From the uniqueness theorem for the exterior
electric boundary value problem [6] we obtain curl up = 0 in
De.

That u := up + us is a solution of ∆∗u + κ2
s u = 0 in De,

follows by straightforward calculations. Since the cartesian
components of every solution of the vector Helmholtz equa-
tion satisfying the radiation condition (7) also satisfy the ra-
diation condition of Sommerfeld [6, see Corollary 4.14], we
obtain that u fulfills the radiation condition (3).

That u fulfills the boundary conditions (2) is easily seen
by

u = us + up = n(n, us + up) − [n, [n, us + up]]
= n(n, f ) − [n, [n, f ]] = f , on S .

From the uniqueness theorem for Problem D we obtain
the following uniqueness
Theorem 3.2: Problem HD possesses at most one solution if
for κp and κs the condition (8) holds.

Proof: Let up, us be a solution of the homogeneous Problem

HD. As in the proof of Theorem 3.1 we can see that u := us +

up is a solution of Problem D but now to the homogeneous
boundary condition. Therefore, by the uniqueness theorem
for the exterior displacement problem we derive u = 0 in De.

Now we have us = − up in De and there holds div up = 0
and curl us = 0 in De. From this we conclude

−κ2
j u j = ∆u j = grad div u j − curl curl u j = 0,

and therefore u j = 0 in De, for j = s, p. This means that Prob-
lem HD possesses at most one solution.
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In this brief paper, we solve the relativistic kinematics related to the intersection be-
tween a relativistic beam of particles (neutrinos, e.g.) and consecutive detectors. The
gravitational effects are neglected, but the effect of the Earth rotation is taken into con-
sideration under a simple approach in which we consider two instantaneous inertial
reference frames in relation to the fixed stars: an instantaneous inertial frame of refer-
ence having got the instantaneous velocity of rotation (about the Earth axis of rotation)
of the Cern at one side, the lab system of reference in which the beam propagates, and
another instantaneous inertial system of reference having got the instantaneous velocity
of rotation of the detectors at Gran Sasso at the other side, this latter being the system of
reference of the detectors. Einstein’s relativity theory provides a velocity of intersection
between the beam and the detectors greater than the velocity of light in the empty space
as derived in this paper, in virtue of the Earth rotation. We provide a simple calculation
for the discrepancy between a correct measure for the experiment and a measure arising
due to the effect derived in this paper.

1 Definitions and Assumptions

Consider a position vector for CERN in relation to the cen-
ter of the Earth, vector ~C, and a position vector for the Gran
Sasso receptors in relation to the center of the earth, vector
~G. Consider the angular velocity vector of the Earth along its
axis of rotation, vector ~ω. The velocity of rotation of ~C in
relation to Earth’s axis is given by ~vC = ~ω × ~C. Analogously,
the velocity of rotation of ~G in relation to Earth’s axis is given
by ~vG = ~ω× ~G. Consider a baseline LCG connecting ~C and ~G
along the vector ~G − ~C; CERN’s and Gran Sasso’s latitudes
(lN

S ), λC and λG, respectively, and CERN’s and Gran Sasso’s
longitudes (← WE →), αC and αG, respectively.

Since the effect related to the velocity of the neutrinos de-
pends on its own velocity at the completion of the calculation
and on the rotation of the Earth, viz., such effect does not
depend on the specific values of the lateral velocity (to be de-
fined below) of the receptors, as we will see, we may consider
some geometric assumptions to simplify the geometry related
to the baseline path ~G − ~C along LCG through the Earth.

Firstly, we will consider ~C and ~G having got the same
latitude λ∗:

λC = λG = λ. (1)

These latitudes would be important if the effect to be de-
rived here was related to specific values of latitude, its fluc-
tuations, systematic and/or statistical errors related to it etc.,
related to the six standard deviations that characterizes the
claim related to the experiment. But that is not the case.
Now, consider the plane Π, orthogonal to ~ω, that cross the
Earth through the hypothetically common latitude contain-
ing the points ~C and ~G. Trace two lines pertaining to Π:

∗The latitudes of CERN and Gran Sasso are, respectively:
46deg14min3sec(N) and 42deg28min12sec(N). The longitudes of CERN
and Gran Sasso are, respectively: 6deg3min19sec(E) and 13deg33min0sec(E).

the line LCA, from the point ~C to Earth’s rotation axis, and
the line LGA, from the point ~G to Earth’s rotation axis. LCA

and LGA cross the rotation axis at the point ~A. Also, trace
the mediatriz line LMA, from the point ~A to the point ~M =

(1/2)
(
~G + ~C

)
, equally dividingLCG. The angle betweenLCA

and LMA equals the angle between LMA and LGA, being this
angle given by:

α =
1
2

(αG − αC) . (2)

Upon the previous remarks regarding the geometric sim-
plifications, the same remarks hold for the radius of the Earth,
i.e., we will consider the Earth as a sphere. Thus, the follow-
ing relation holds:

∣∣∣∣ ~C
∣∣∣∣ =

∣∣∣∣ ~G
∣∣∣∣ = RE =

R
cos λ

, (3)

where RE is the radius of the Earth, its averaged value RE =

6.37 × 106m, and R =
∣∣∣∣ ~C − ~A

∣∣∣∣ =
∣∣∣∣ ~G − ~A

∣∣∣∣.

2 Defining two Instantaneous Inertial Reference Frames

The relativistic kinematics will run in the plane Π previously
defined. The line LCG will define an axis: Ox, with the origin
O at the point ~C, being the unitary vector of the axis Ox, êx,
given by:

êx =
~G − ~C∣∣∣∣ ~G − ~C

∣∣∣∣
. (4)

Now, define the Oz axis contained in the Π plane such that
its unitary vector, êz, is given by:

êz = −êx × ~ω∣∣∣~ω
∣∣∣ . (5)
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The axis Oy is trivially obtained with its unitary vector
being given by:

êy = êz × êx. (6)

Now, we define the system at the Gran Sasso’s detectors,
Õx̃ỹz̃, such that its origin Õ is at the point ~G, being the unitary
vector of the axis Õx̃, the same êx ≡ êx̃. The axis Õz̃ is parallel
to Oz, with the same unitary vector êz ≡ êz̃, with analogous
reasoning to obtain the axis Õỹ and its unitary vector êỹ ≡ êy.
In other words, Õx̃ỹz̃ is the parallel pure translation of Oxyz
from ~C (CERN) to ~G (Gran Sasso).

To define the two instantaneous inertial reference frames
to accomplish, simply, the effect of the Earth rotation, we,
firstly, write down the rotation velocities of the points ~C and
~G about Earth’s rotation axis, i.e., we write down the rotation
velocities of (CERN) and (Gran Sasso) about Earth’s axis.
For CERN, the rotation velocity ~vC reads:

~vC = ~ω × ~C = ωRêφ = ωR (cosα êx − sinα êz) , (7)

where the auxiliar unitary vector has been the azimutal φ-
versor of the spherical coordinates, the spherical coordinates
with origin at the center of the Earth with its equatorial dex-
trogyre plane Ξ such that ~ω · ~ξ = ~0 ∀ ~ξ ∈ Ξ. For Gran Sasso,
the rotation velocity ~vG reads:

~vG = ~ω × ~G = ωRêφ̃ = ωR (cosαêx̃ + sinα êz̃) , (8)

where êφ̃ is the azimutal φ-versor previously defined, but now
at Gran Sasso.

We see via the eqs. (7) and (8) that both the frames of
reference, Oxyz and Õx̃ỹz̃, are instantaneously under a null
relative translation through the common axis Ox ≡ Õx̃, and
under a reverse translation through their respective parallel
axes Oz ‖ Õz̃. We will inertially consider this quite instan-
taneous∗ effect of the reverse translation (Newton’s first law
will hold, we will instantaneously neglect the gravitational
field through the neutrino travel to Gran Sasso, as well as the
weak characteristic for neutrino interactions with matter) via
the following approach:
• We will consider a system of reference OC xCyCzC that

exactly coincides with Oxyz at the instant tC = 0, but
with the following constant velocity of translation in re-
lation to the fixed stars: ~vε = ωR cosα êxC−ωR sinα êzC

= ωR cosα êx − ωR sinα êz = ~vC , such that the neu-
trino travel will be in this inertial referential. The sub-
script ε is to asseverate this referential is being con-
sidered for the neutrino travel during the entire pro-
cess (emission→detection), but with ε ≈ 0 in the sense
given in the previous footnote [ε ≡ δtν/T << 1]. Con-
sidered this, we will drop the subscript C in OC xCyCzC ,
for the sake of economy of notation, and rename it sim-
ply as Oxyz, although this latter is not the original one;

∗The time spent by a neutrino beam to accomplish the race from ~C to
~G, δtν, obey δtν/T << 1, where T is the period of Earths’s rotation about its
axis, thus quite instantaneous in relation to the Earth daily kinematics.

• We will consider a system of reference OG xGyGzG that
exactly coincides with Õx̃ỹz̃ at the instant tG = tC = 0†,
but with the following velocity of translation in relation
to the fixed stars: ~uε = ωR cosα êxG + ωR sinα êzG =

ωR cosα êx̃ + ωR sinα êz̃ = ~vG. Considered this, we
will drop the subscript G in OG xGyGzG, for the sake of
economy of notation, and rename it simply as Õx̃ỹz̃,
although this latter is not the original one;

• We will consider a system of reference travelling with
the beam of neutrinos, but this will be explained in the
next section.

3 From CERN to the Flux through the Gran Sasso De-
tectors

From now on, we model the lattice (strips, emulsion, cinti-
lators etc) distribution through the Grand Sassos’ detectors
from the perspective of an Oxyz‡ observer with the following
characteristics:

• The average proper (no Lorentz contraction in Õx̃ỹz̃)
displacement of detectors along Õx̃ is dÕx̃;

• The average proper (no Lorentz contraction in Õx̃ỹz̃)
displacement of detectors along −Õỹ is dÕỹ;

• The average proper (no Lorentz contraction in Õx̃ỹz̃)
displacement of detectors along −Õz̃ is dÕz̃;

• The detectors in Oxyz will be abstracted to a tridimen-
sional d0x × d0y × d0z othogonally spaced lattice falling
upward [see the eqs. (7) and (8)] at the velocity ~vG −
~vC = 2ωR sinα êz, being the basis vectors of these sites
given by {~d0x = d0xêx, ~d0y = −d0yêy, ~d0z = −d0zêz},
where {êx, êy, êz} is the canonical spacelike 3D euclid-
ian orthonormal basis of Oxyz.

• We will neglect relativistic (Einstein’s) effects related
to the movement of the lattice of detectors, the move-
ment of Õx̃ỹz̃ in Oxyz, as previously stated, but such
effects will become important in the referential of the
neutrino beam (to be defined below).

Now, we define the neutrino frame of reference O′x′y′z′

in the canonical configuration with the frame of reference
Oxyz, i.e., coincident origins at t = t′ = 0 keeping the space-
like parallelism of the axes x ≡ x′, y ≡ y′ and z ≡ z′ and

†The relativistic effects between the systems of reference at CERN and
at Gran Sasso related to time synchronization is being neglected due to the
order of magnitude related to the velocities due to the Earth rotation and due
to the magnitude of the gravitational field as previously stated. Furthermore,
we are undressing these effects between these systems at ~C and ~G to assever-
ate the relevant relativistic effects that will lead to the neutrino velocity will
raise in virtue of relativistic motion in relation to the detectors in Gran Sasso,
as we will see.

‡From now on, we are working with the inertial frames (in relation to the
fixed stars) defined above, viz., from now on: Oxyzt means OC xCyCzC tC (see
the two final paragraphs of the previous section); Õx̃ỹz̃t̃ means OG xGyGzG
(see the two final paragraphs of the previous section).
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boosted with velocity vνêx in relation to the Oxyz frame. Con-
sider a neutrino beam entering the block of detectors in Gran
Sasso in the Oxyz frame of reference. The beam passes a
lattice of detectors stated above, being these detectors rain-
ing upward with velocity ~vG − ~vC = 2ωR sinαêz through the
beam in the Oxyz frame of reference. A horizontal neutrino
beam, along Ox, may contact a horizontal [vertical means
along Oz, upward means in the êz direction, and horizontal
means parallel to the xy plane] lattice of detectors parallelly
raining upward in virtue of the Earth rotation as discussed
before (raining upward with velocity ~vG −~vC = 2ωR sinαêz).
Once an interaction occurs between the horizontal beam and
consecutively located detectors in this horizontal lattice, this
interaction is simultaneous in the Oxyz (rigorously Oxyzt, but
the context is clear here) world, implying non-simultaneity
for these raindrops of detectors in the O′x′y′z′ world. The
distribution of these raindrops of detectors must have, instan-
taneously at t′ in 0′x′y′z′ world, the following characteristics:

• The displacement between two consecutive raindrops
of detectors correlated to the respective simultaneous
ones in Oxyz, these latter displaced by the proper dis-
tance xi+1 − xi = d0x along Ox and belonging to the
falling upward xy plane of detectors in Oxyz, is given
by:

x′i+1(t′) − x′i (t
′) = γ−1 (xi+1 − xi)

= γ−1d0x, (9)

being γ = 1/
√

1 − v2
ν/c2, c the speed of light in the

empty space, vν the speed of the neutrino, whose ve-
locity is along the êx direction in the Oxyz world (the
beam of neutrinos is at rest in its referential O′x′y′z′, as
previously seem).

• The displacement between two consecutive raindrops
of detectors correlated to the respective simultaneous
ones in Oxyz, these latter displaced by the proper dis-
tance zi− zi+1 = 0 along Oz and belonging to the falling
upward xy plane of raining detectors in Oxyz, is given
by:

z′i+i(t
′) − z′i(t

′) = 2
vνd0x

c2 ωR sinα. (10)

• The vertical distance between consecutive (consecutive
but inclined in the O′z′y′z′ world; the parallel to xy
planes of detectors parallelly raining upward in Oxyz
become inclined in O′x′y′z′) raining planes of detectors
Π′i and Π′i+1, ∀ i, remains the same d0z distance, the dis-
tance between consecutive parallelly raining planes of
detectors. The raining upward planes turn out to be in-
clined in relation to the x′y′ plane of the neutrino world
O′x′y′z′ by the angle:

θ = π − arctan
(
2
γvν

c2 ωR sinα
)
. (11)

Indeed, let’s derive these facts. Firstly, instantaneously
at t in Oxyz, two consecutive raindrops∗ Ox along, are time
delayed in O′x′y′z′ × {t′} world by the amount:

t′i+1 − t′i = γ
(
t − vν

c2 xi+1

)
− γ

(
t − vν

c2 xi

)

= −γ vν
c2 (xi+1 − xi) = −γ vν

c2 d0x, (12)

in virtue of the Lorentz transformations (x, t)→ (x′, t′). Here,
we see a detection that occurs at the position xi+1 pertain-
ing to the horizontal lattice of detectors in Gran Sasso, at the
plane x̃ỹ within the block of detectors in Gran Sasso, hence
more internal, (remember x̃ỹ ‖ xy), must occur earlier than
the detection at the position xi in the frame of reference of
the beam of neutrinos, and the i-raindrop is late in relation to
the (i + 1)-raindrop. Hence, backwarding the t′i clocks down
to the the t′i+1 instant (backwarding the movie, maybe bet-
ter: backwarding the neutrino’s opera), i.e., comparing the
non-simultaneous events in the beam of neutrinos frame, the
event i + 1 ocurring when the i + 1-raindrop crosses the beam
of neutrinos and the event i when the i-raindrop crosses the
beam of neutrinos (remember these events are simultaneous
in Oxyz) previously to infer the instantaneous (at t′i+1) position
of the i-raindrop when the i + 1 raindrop crosses the beam of
neutrinos at the instant t′i+1 < t′i in the O′x′y′z′t′ frame, the
i-raindrop must move the amounts (backwarding the movie
from the instant t′i at which the i-raindrop crosses the beam
of neutrinos in the O′x′y′z′t′ world to the non-simultaneous
instant t′i+1 < t′i at which the i + 1-raindrop crosses the beam
of neutrinos in the O′x′y′z′t′ world): δz′ downward and δx′

to the right, being these amounts given by:

δz′ =

(
2ωR sinα

γ

)
×

(
−γ vν

c2 d0x

)
= −2ωd0xvνR sinα

c2 ;

δx′ = (−vν) ×
(
−γ vν

c2 d0x

)
=
v2
νγd0x

c2 , (13)

since (−vνêx′ + (2ωR sinα/γ)êz′ ) is the velocity of raindrops
in 0′x′y′z′, obtained from the Lorentz transformations L

(
~u
)

for the 3-velocities of the Gran Sasso lattice block of sensors,
the raining raindrops lattice of sensors, from the Oxyz to the
beam of neutrinos frame O′x′y′z′ :

(0, 0, 2ωR sinα)|Oxyz
L(~u)−→ (−vν, 0, 2ωR sinα/γ)|O′x′y′z′ . (14)

But, at t, the i-raindrop and the (i + 1)-raindrop have got
the same z coordinate, since they are in a xy plane, and, since
the z→ z′ Lorentz map is identity, these raindrops must have
the same z′ coordinate at their respective transformed instants

∗From now on, we will call raindrops the detectors in the lattice of detec-
tors within the block of detectors at Gran Sasso. Thus, raindrops ≡ detectors
within the lattice of detectors defined at the beginning of this section; 1 rain-
drop ≡ 1 detector within the lattice of detectors within the block of detectors
at Gran Sasso.
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(of course, since at each of these transformed instants, dif-
ferent instants in O′x′y′z′ in virtue of the non-simultaneity in
this frame, the z′ coordinate will read the same, since these
reaindrops will cross the beam and the beam has the same
coordinate z′ in its own frame of reference, viz., the beam is
parallel to O′x′). Hence, backwarding t′i clocks down to the
the t′i+1 instant, one concludes that the δz′ in the eq. (13) is
the instantaneous, at same t′, height shift between consecutive
raindrops that simultaneously cross the beam of neutrinos in
Oxyz. The x → x′ Lorentz map is not identity, implying one
must calculate the x′i+1 − x′i shift at the Oxyz instantaneous t:

x′i+1(t) − x′i (t) = γ (xi+1 − vνt) − γ (xi − vνt) = γ (xi+1 − xi)

= γd0x. (15)

This shift is related to different instants, t′i , t′i+1, in the beam of
neutrinos frame. Thus, backwarding t′i clocks down to the the
t′i+1 instant (backwarding the movie to observe the earlier t′i+1
instantaneous), this amount given by the eq. (15) is reduced
by the amount δx′ given by eq. (13):

x′i+1(t′) − x′i (t
′) = γd0x − γd0x

v2
ν

c2 = γd0x

(
1 − v

2
ν

c2

)

= γ−1d0x. (16)

The first eq. (13) gives the eq. (10), since eq. (13) gives the
z′ position of the i-raindrop at the previous instant t′i+1 before
the i-raindrop crosses the beam of neutrinos in the O′x′y′z′,
therefore:

z′i
(
t′i+1

)
= z′ν −

2ωd0xvνR sinα
c2 , (17)

where z′ν is a constant z′ coordinate of the beam of neutrinos
in its own frame; and, since the z′ position of the (i + 1)-
raindrop at the t′i+1 instant is z′ν (due to the very fact the (i+1)-
raindrop crosses the beam at the instant t′i+1 in the O′x′y′z′

world), one has z′i+1

(
t′i+1

)
= z′ν, from which, with the eq. (17),

one has got:

z′i+1

(
t′i+1

)
− z′i

(
t′i+1

)
= 2

vνd0x

c2 ωR sinα, (18)

reaching the eq. (10). The non-instantaneous displacement
(non-instantaneous in O′x′y′z′) given by eq. (15) is the dis-
tance between two sucessive non-instantaneous interactions
with the beam, raindrops marks assigned upon the beam in
O′x′y′z′. This fact is easy to understand, as these instanta-
neously assigned marks (instantaneous in Oxyz) would be-
come splayed in O′x′y′z′, since the beam turns out to be con-
tracted in Oxyz due to Lorentz contraction. Also, one shall
infer that eq. (16) gives the t′ instantaneous displacement
of falling upward raindrops along O′x′. The reason why the
distance between consecutive raindrops marks γd0x are big-
ger than the contracted distance γ−1d0x of the two consecu-
tive falling raindrops is explained by the non-simultaneity be-
tween these raindrops when touching the proper beam in the

0′x′y′z′ world, straightforwardly seem by the inclination (the
horizontal planes of raindrops in Oxyz inclines in O′x′y′z′)
between the raindrop plane containing these two consecu-
tives raindrops in O′x′y′z′ and the proper plane Π

′
ν ‖ x′y′

containing the neutrinos beam in O′x′y′z′; i.e., when the first
sensor raindrop crosses the beam, assigning the first interac-
tion, the second travels an amount δx′ to the left given by the
second eq. (13) before crossing the beam, assigning the sec-
ond interaction. A xy instantaneous falling upward plane of
sensors within the block of sensors at Gran Sasso containing
raindrops in Oxyz world becomes an inclined instantaneous
falling upward plane in O′x′y′z′ world, being the inclination,
eq. (11), easily derived from eqs. (16) and (18):

tan (π − θ) =
δz′(t′)

x′i+1(t′) − x′i (t
′)

= 2
γvν

c2 ωR sinα, (19)

giving the eq. (11).

4 Faster than Light Effects in Gran Sasso

To understand the effect, first, consider two sensors, say i-
raindrop and (i + 1)-raindrop. If these sensors are constructed
to tag the instants, ti+1 and ti, at which two events are regis-
tered at their exact locations and a team of physicists obtains
the time variation interval by ti+1 − ti, being xi+1 − xi the dis-
tance between these sensors, one would have:

δx
δt

=
xi+1 − xi

ti+1 − ti
= ∞, (20)

for simultaneous events (ti = ti+1), if one expects a signal is
travelling between the sensors. Furthermore, if one expects
a privileged direction along which the signal should travel
from the i-raindrop (first) to the (i + 1) raindrop (later), if the
(i + 1)-raindrop registered a signal before the i-raindrop, vi-
olating the expected sequential direction of detections, one
would say the signal would have been registered from the
future to the past direction. In the previous section the in-
stantaneous events in the Oxyz became non-instantaneous in
the beam frame of reference, and the internal register within
the Gran Sasso block along the direction Ox ≡ Õx̃, at the
position xi+1 registered the interaction with the beam at the
same instant the internal register at the position xi registered,
since these events were hypothetically simultaneous in Oxyz,
in virtue of the Earth rotation. From the point of view of the
neutrino beam, these registers occurred in the order: x′i+i be-
fore, xi later, due to the inclination of the raindrops planes in
virtue of the Earth rotation. We are forced to conclude the
rotation of the Earth may provide a kinematics of intersec-
tion between beams and sequential sensors that may led to the
conclusion the sensors are registering time intervals related to
quasi-simultaneous events that are cintilated by different par-
ticles at different positions almost at the same time, leading
to an errouneous conclusion that the signal would have trav-
elled between the sensors generating the time tag data. E.g.,
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suppose two ideal clocks, perfect ones, gedanken ones, that
register the instants: ti at which a beam of neutrinos enters
the block of raindrop sensors in Gran Sasso and to at which
this beam of neutrinos emerges from the block. Let dB be the
lenght travelled through the block. One team of physicists
will measure the velocity of the beam by dB/ (to − ti) with no
use of data from the sensors within the block. Another team
will perform the calculation from the data obtained from a
sequence of sensors (raindrops) located Ox along. This sec-
ond team may obtain registers at diferent positions xi+1 and
xi related to the lateral intersection between these sensors and
the beam entirely into the block of sensors but with the beam
travel not entirely accomplished through the block. The data
of this second team would be mistaken, since the registers at
the different locations xi+1 and xi would not have been made
by the same neutrino, implying the clocks at xi+1 and xi would
be registering two quasi-simultaneous events not related to a
same neutrino, concluding erroneously that the time variation
between these events was so small that the particle that gener-
ated these events would be travessing with a velocity greater
than c.

Einstein’s theory of relativity does not avoid velocities
greater than the light in the empty space, but avoids an unique
particle propagating with velocity greater than the velocity
of light in the empty space. To infer that a velocity greater
than c may arise from the discussion through this brief arti-
cle, consider the velocity two different raindrops interact with
the beam of neutrinos in the beam O′x′y′z′ frame of refer-
ence. These events are non-simultaneous in the beam frame
as previously discussed, but the beam crosses two sucessive
interactions with a propagation that is faster than c, since the
distance between two sucessive interactions along the beam
in the beam frame of reference is given by the eq. (15), γd0x,
being the time spent given by the eq. (12), (γvνd0x) /c2. Thus,
the 2-propagationV′

(i+1)→(i) (the number 2 to denote two bod-
ies are related to a single propagation velocity):

V′
(i+1)→(i) =

c
vν

c⇒V′
(i+1)→(i) > c. (21)

As asseverated this is not a propagation of a single parti-
cle, but a ratio between the covered distance along the beam
in the beam frame and the time interval spent to interact, non-
simultaneously, with two sequential but distinct sensors (rain-
drops xi+1 and xi). Of course, if vν → 0, these distinct interac-
tions will tend to become simultaneous, leading to the result
discussed at the beginning of this section (eq. 20). It follows
that is not difficult to conclude that the time elapsed between
two distinct sensors must be related to just an unique particle
if one is intended to use their time tags for velocity computa-
tions.

5 The Consequence of the Effect

A simple calculation provides the discrepancy obtained by the
set of CNGS detections intended to obtain the correct veloc-

ity of the neutrino particle announced few days ago. Let vc

be the correct value for the neutrino’s velocity, δS 1, the dis-
tance between the CERN and the point at which the neutrino
enters the block of detectors at Gran Sasso, δS 2 the lenght
of the block of detectors to be internally covered by the neu-
trino at Gran Sasso, δt1 the elapsed time spent by the neutrino
to cover δS 1, δt2 the elapsed time spent by the neutrino to
cover δS 2, δt f a fake elapsed time due to the effect previously
discussed, and v f a fake velocity that would arise from an
erroneous measure for the elapsed time through δS 2. Hence:

vc =
δS 1 + δS 2

δt1 + δt2
, (22)

v f =
δS 1 + δS 2

δt1 + δt f
. (23)

A simple calculation gives:

v f

vc
= 1 +

δt2 − δt f

δt1 + δt f
⇒ v f − vc

vc
=
δt2 − δt f

δt1 + δt f
. (24)

One should not write v f = δS 2/δt f , since, as previously
discussed, δt f is not related to a propagation of a particle,
but to the time elapsed between two detectors in the same xy
plane in the Oxyz frame of reference. If a sequence of cin-
tilations within the block of detectors are generated by dif-
ferent neutrinos due to the effect previously discussed, and
this sequence is interpreted as a path traced by a single neu-
trino, the measure of the distance covered within the block of
detectors at Gran Sasso would encapsulate an error for each
estimated path having got the effect encrusted within it. This
distance, an erroneous one, is δS 2, although this distance may
be defined as a correct one for purposes of comparison with
a case in which (hypothetically) a neutrino travelled this dis-
tance with the correct velocity vc. Obviously, the δt f would
not be related to the time spent to cover this distance, since,
in a case in which the effect, as previously explained, was
generated due to simultaneous time tagging at two different
sensors (raindrops) due to two different neutrinos in the Oxyz
reference frame, one would have δt f = 0 for a continuous lat-
erally traced path in virtue of the Earth rotation, from which
δS 2 , 0. δS 2 would arise, under the effect discussed in this
paper, from a path misinterpretation. But, once one defines
δS 2 as the distance to be covered in a comparison case with a
neutrino used to cover it with the correct velocity vc:

δt2 =
δS 2

vc
, (25)

turns out to be the correct elapsed time. From the eq. (24),
one reaches:

v f

(
δt1 + δt f

)
− vcδt1 = vcδt2. (26)

If the computation is done taken into consideration the
erroneous elapsed time δt f , being this δt f = 0 in a case of
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simultaneity due to the effect previously discussed, the eq.
(26) reads:

v f δt1 − vcδt1 = vcδt2, (27)

and the effect turns out to increase the fake velocity in relation
to the correct velocity in a manner in which the neutrino with
the fake velocity would be winning the race by an amount of
distance given by δS 2 = vcδt2, accomplished the path δS 1,
from the eq. (27). Hence, eq. (24) turns out to read:

v f − vc

vc
=
δt2
δt1

=
δS 2

vc

vc

δS 1
=
δS 2

δS 1
. (28)

With the values [1]:

v f − vc

vc
=

[
2.48 ± 0.28 (stat.) ± 0.30 (sys.)

] × 10−5, (29)

and:
δS 1 = 733 × 103m, (30)

we reach for the discrepancy between the covered distances:

δS 2 =
[
18.2 ± 2.05 (stat.) ± 2.20 (sys.)

]
m. (31)

6 Conclusion

We conclude the relativistic effect discussed here in virtue
of the Earth rotation may lead to a misinterpretation of the
elapsed time within the block of detectors at Gran Sasso.
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Open Letter by the Editor-in-Chief: Declaration of Academic Freedom (Scientific Human Rights)
The Portuguese Translation∗

Declaração de Liberdade Acadêmica
(Direitos Humanos Cientı́ficos)

Artigo 1: Preâmbulo

O inı́cio do século XXI reflete, mais do que em qualquer ou-
tra época na história da Humanidade, a profundidade e a sig-
nificância do papel da Ciência e da tecnologia nas relações
humanas.

A natureza poderosamente pervasiva da Ciência e da tec-
nologia modernas tem levado a uma percepção corriqueira de
que descobertas-chave somente podem ser feitas, ou princi-
palmente, por intermédio de grandes grupos de pesquisa sob
tutela corporativa ou governamental com acesso à instrumen-
tação de alto custo e a vasto suporte pessoal.

Todavia, a percepção corriqueira é mı́tica, esconde a ver-
dadeira natureza de como as descobertas cientı́ficas são real-
mente feitas. Enormes e caros projetos tecnológicos, comple-
xos ou não, não são senão o resultado da aplicação das pro-
fundas percepções de pequenos grupos de pesquisadores de-
dicados ou cientistas solitários, frequentemente trabalhando
isolados. Um cientista trabalhando sozinho está e estará, tanto
agora quanto no futuro, assim como ocorrera no passado, apto
a fazer uma descoberta que pode influenciar substancialmente
o destino da humanidade e mudar a face de todo o planeta so-
bre o qual nós tão insignificantemente residimos.

Descobertas revolucionárias são geralmente feitas por in-
divı́duos trabalhando em posições subordinadas dentro de
agências governamentais, em instituições de ensino e pes-
quisa, ou em empresas comerciais. Consequentemente, o
pesquisador, com frequencia, está vinculado ou limitado por
diretores de instituições e corporações que, trabalhando em
uma prioridade diferente, visam controlar e aplicar perquisa e
descoberta cientı́ficas para benefı́cio pessoal, organizacional,
ou engrandecimento pessoal.

O registro histórico de descobertas cientı́ficas está repleto
de instâncias de supressão e ridicularização por parte do po-
der estabelecido, já há muito se tendo revelado e reivindicado
pela inexorável marcha de necessidade prática e iluminação
intelectual. Também assim se tem corrompido e sujado o re-
gistro histórico por plágio e deliberada perversão de fatos,
perpetrados pelos inescrupulosos, motivados por inveja e ava-
reza. Assim também o é hoje em dia.

O objetivo desta declaração é manter e incentivar a dou-
trina fundamental de que a pesquisa cientı́fica deve estar livre

∗Original text published in English: Progress in Physics, 2006, v. 1, 57–
60. Online — http://www.ptep-online.com/

Versão original em Lı́ngua Inglesa por Dmitri Rabounski, editor-chefe
do periódico Progress in Physics. E-mail: rabounski@ptep-online.com.

Traduzido para a Lı́ngua Portuguesa por Armando V. D. B. Assis.
E-mail: armando.assis@pgfsc.ufsc.br.

de latentes e abertas influências repressivas advindas de dire-
tivas burocráticas, polı́ticas, religiosas e pecuniárias, e de que
a criação cientı́fica é um direito humano, não menos do que
outros de tais direitos e árduas esperanças que se propuserem
em tratados e leis internacionais.

Todos os cientistas que a apoiam devem ser fiéis a esta
Declaração, como uma indicação de solidariedade para com
a comunidade cientı́fica internacional interessada, e para con-
ceder o Direito dos cidadãos do mundo à livre criação ci-
entı́fica de acordo com suas habilidades e disposição indivi-
duais, para o avanço cientı́fico, por sua extrema habilidade
como cidadãos decentes em um mundo indecente, [para] o
benefı́cio da Humanidade.

Artigo 2: Quem é um cientista
Um cientista é qualquer pessoa que faz Ciência. Qualquer
pessoa que colabora com um cientista no desenvolvimento
e proposição de idéias e dados em pesquisa ou aplicação é
também um cientista. A posse de uma qualificação formal
não é um pré-requisito para que uma pessoa seja um cientista.

Artigo 3: Onde a Ciência é produzida
A pesquisa cientı́fica pode ser desenvolvida em qualquer lu-
gar, por exemplo, em um lugar de trabalho, durante um curso
formal de educação, durante um programa acadêmico patro-
cinado, em grupos, ou, de modo independente, por indivı́duos
em suas casas.

Artigo 4: Liberdade de escolha do tema de pesquisa
Muitos cientistas que trabalham por graus de pesquisa mais
avançados ou em outros programas de pesquisa em institui-
ções acadêmicas tais como universidades e centros de estu-
dos avançados são privados de trabalhar em um tema de pes-
quisa de sua própria escolha por acadêmicos seniores e/ou
funcionários administrativos, não por falta de instrumentos de
apoio, mas, em vez disso, por causa de hierarquia acadêmica
e/ou pelo que outros funcionários não aprovam a linha de pen-
samento em virtude de seu potencial conflito com dogma es-
tabelecido, teorias favorecidas, ou financiamento de projetos
outros que possam ser desacreditados pela pesquisa proposta.
A autoridade da maioria ortodoxa é muito frequentemente in-
vocada para percalçar um projeto de pesquisa tal que a au-
toridade e seus pressupostos não sejam incomodados. Essa
prática comum é uma obstrução deliberada ao livre pensa-
mento cientı́fico, não sendo cientı́fica ao extremo, e crimi-
nosa. Ela não pode ser tolerada.
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Um cientista trabalhando para qualquer instituição acadê-
mica, autoridade ou agência, deve ser completamente livre
para escolher um tema de pesquisa, limitado apenas pela dis-
ponibilidade de recursos materiais e aptidões intelectuais ap-
tas a serem oferecidas pela instituição educacional, agência
ou autoridade. Se um cientista procede com a pesquisa sendo
membro de um grupo colaborativo, os diretores de pesquisa
e os lı́deres de equipe devem estar limitados ao contexto de
colsultores e conselheiros em relação ao que fora escolhido
por um cientista do grupo como sendo um tema de pesquisa
relevante.

Artigo 5: Liberdade de escolha de métodos de pesquisa

Frequentemente, tem-se o caso de se exercer pressão sobre
um cientista por parte de funcionários administrativos ou aca-
dêmicos seniores em relação a um programa de pesquisa con-
duzido dentro de um ambiente acadêmico, de se forçar um
cientista a adotar métodos de pesquisa alheios aos que o ci-
entista escolheu, por nenhuma razão outra senão preferência
pessoal, viés, polı́tica institucional, mando editorial, ou au-
toridade coletiva. Essa prática, a qual está muito espalhada,
é uma negação deliberada de liberdade de pensamento e não
pode ser permitida.

Um cientista não comercial ou acadêmico tem o direito
de desenvolver um tema de pesquisa em qualquer caminho
razoável e por quaisquer meios que considere ser os mais efe-
tivos. A decisão final sobre como a pesquisa será conduzida
deve ser feita pelo próprio cientista.

Caso um cientista não comercial ou acadêmico trabalhe
como membro de uma equipe colaborativa não comercial ou
acadêmica de cientistas, os lı́deres de projeto e diretores de
pesquisa deverão ter apenas direitos de conselheiros e con-
sultores, não devendo, todavia, influenciar, mitigar ou limitar
os métodos de pesquisa ou tema de pesquisa de um cientista
dentro do grupo.

Artigo 6: Liberdade de participação e colaboração em
pesquisa

Há um elemento significativo de rivalidade institucional na
prática de Ciência moderna, concomitante com elementos de
inveja pessoal e preservação de reputação a todo custo, inde-
pendente das realidades cientı́ficas. Isso tem, com frequen-
cia, levado os cientistas a não convidar colegas competentes
de instituições rivais ou outros sem afiliação acadêmica. Essa
prática também é uma obstrução deliberada ao progresso da
Ciência.

Caso um cientista não comercial ou acadêmico requeira a
colaboração de outrem e este estiver de acordo em oferecê-la,
aquele cientista terá a liberdade de convidar este outro para
que lhe preste essa ou qualquer outra ajuda, supondo-se que
a assistência requerida esteja sob um contexto pressuposto de
pesquisa associada. Se tal colaboração estiver fora desse es-
copo pressuposto, o cientista ainda terá a liberdade de esco-

lher o outro para sua discrição, livre de qualquer interferência
de quem quer que seja.

Artigo 7: Liberdade de discordar em discussão cientı́fica
Em consequencia de ciúmes furtivos e interesse adquirido,
a Ciência moderna repudia discussões abertas e premedita-
damente bane aqueles cientistas que questionam as visões
ortodoxas. Muito frequentemente, cientistas de habilidade
extraordinária, que apontam deficiências em teorias vigen-
tes ou em interpretação de dados, são rotulados de crack-
pots (excêntricos tolos), de modo às suas interpretações se-
rem convenientemente ignoradas. Eles são particular e pri-
vadamente ridicularizados e são barrados dos congressos ci-
entı́ficos, seminários e colóquios de modo às suas idéias não
encontrarem audiência. Falsificação deliberada de dados e
má representação de teoria são ferramentas frequentes e atu-
ais dos inescrupulosos na supressão de fatos, tanto técnicos
quanto históricos. Comitês internacionais de meliantes ci-
entı́ficos têm sido formados e esses conselhos abrigam e di-
rigem convenções internacionais nas quais apenas os seus
acólitos são permitidos a apresentar artigos, independente da
qualidade de conteúdo. Esses conselhos angariam grades so-
mas de dinheiro público para financiar seus projetos patroci-
nados, por intermédio de engano e mentira. Qualquer objeção
às suas propostas, ainda que objetadas sobre bases cientı́ficas,
é silenciada por quaisquer meios disponı́veis, de modo que o
dinheiro continue fluindo para dentro de suas contas de pro-
jeto, e que os garanta empregos bem pagos. Cientistas que se
opõem a essa praxe têm sido exonerados a pedido daqueles;
outros têm sido impedidos de ocupar posições acadêmicas
por uma rede de cúmplices corruptos. Em outras situações,
alguns têm sido expulsos de suas candidaturas a programas
de educação superior tal como doutoramento, por expressar
idéias que minam uma teoria da moda, a despeito do arraigo
temporal que uma teoria ortodoxa todavia possa ter. O fato
fundamental de que nenhuma teoria cientı́fica é definitiva e
inviolável, estando portanto aberta à discussão e à reexami-
nação, é completamente ignorado. O fato de que um fenôme-
no pode ter um número de explicações plausı́veis é também
ignorado, e maliciosamente põem em descrédito qualquer
explicação que não esteja de acordo com a opinião ortodoxa,
recorrendo, sem arguir exceções, ao uso de argumentos não
cientı́ficos para justificar suas opiniões tendenciosas.

Todos os cientistas devem ser livres para discutir sua pes-
quisa e a pesquisa de outrem sem medo de que sejam pública
ou privadamente ridicularizados sem fundamento, de que se-
jam acusados, depreciados, impugnados ou postos em descré-
dito de qualquer outra forma por alegações não consubstanci-
adas. Nenhum cientista deve ser posto em uma posição pela
qual seu sustento ou reputação estejam sob risco em conse-
quencia de expressão de uma opinião cientı́fica. A liberdade
de expressão cientı́fica deve ser suprema. O uso de autoridade
na refutação de um argumento cientı́fico não é cientı́fico e não
deve ser usada para amordaçar, suprimir, intimidar, ostraci-

L2 Declaração de Liberdade Acadêmica: Direitos Humanos Cientı́ficos



October, 2011 PROGRESS IN PHYSICS Volume 4

zar, ou, por qualquer forma coercitiva, barrar um cientista.
A supressão deliberada de fatos cientı́ficos ou argumentos,
seja por ato ou omissão, e a manipulação deliberada de da-
dos para sustentar um argumento ou para por em descrédito
uma visão oposta é fraude cientı́fica, perfazendo um crime ci-
entı́fico. Princı́pios de evidência devem guiar toda discussão
cientı́fica, seja tal evidência fı́sica, teórica ou também uma
combinação.

Artigo 8: Liberdade para publicar resultados cientı́ficos
Uma censura deplorável de artigos cientı́ficos tem agora se
tornado a prática padrão dos conselhos editoriais dos maiores
jornais e arquivos eletrônicos, e de seus bandos de alegados
árbitros especialistas. Os árbitros são em sua maior parte pro-
tegidos pelo anonimato de modo que um autor não tem como
verificar suas alegadas especialidades. Artigos são atual e
rotineiramente rejeitados caso o autor não concorde com ou
contradiga uma teoria preferida ou a corrente ortodoxa prin-
cipal. Muitos artigos são agora automaticamente rejeitados
em virtude do aparecimento na lista de artigos de autor de um
cientista em particular que não tenha encontrado favor entre
os editores, entre os árbitros, ou entre outros censores especi-
alistas, sem qualquer consideração que seja feita ao conteúdo
do artigo. Existe uma listagem negra de cientistas dissidentes
e esta lista é comunicada aos e entre os participantes de con-
selhos editoriais. Tudo isso contribui para o aumento da não
isenção, da tendenciosidade, e para a punı́vel supressão de
livre pensamento, devendo ser condenado pela comunidade
cientı́fica internacional.

Todos os cientistas devem ter o direito de apresentar seus
resultados de pesquisa cientı́fica, no todo ou em parte, em
conferências cientı́ficas relevantes, de publicar os mesmos em
jornais cientı́ficos impressos, em arquivos eletrônicos, e em
qualquer outro meio. Nenhum cientista deve ter seus arti-
gos ou relatórios rejeitados quando submetidos à publicação
em jornais cientı́ficos, em arquivos eletrônicos, ou em outro
meio, simplesmente por que seu trabalho questiona a opinião
majoritária corrente, por que conflita com as visões de um
conselho editorial, pelo que mine as bases de outra corrente
ou projetos de pesquisa planejados por outros cientistas, por
estar em conflito com qualquer dogma polı́tico, credo religi-
oso, ou opinião pessoal de outrem; e nenhum cientista deve
ser inserto em listagem negra ou por outra forma censurado,
impedido, por quem quer que seja, de publicar. Nenhum ci-
entista deve bloquear, modificar, ou de outra forma interferir
na publicação de um trabalho de cientista sob promessa de
presentes ou qualquer forma de suborno.

Artigo 9: Coautoria de artigos cientı́ficos
É um segredo alardeado em cı́rculos cientı́ficos, que mui-
tos coautores de artigos de pesquisa têm, de fato, pouca ou
nenhuma relação com as pesquisas ali relatadas. Muitos su-
pervisores de estudantes graduados, por exemplo, não são
contrários à colocação de seus nomes em artigos escritos por

aquelas pessoas que apenas nominalmente trabalham sob suas
supervisões. Em muitos de tais casos, a pessoa que de fato es-
creve o artigo tem um intelecto superior ao do supervisor no-
minal. Em outras situações, novamente pelos propósitos de
notoriedade, reputação, dinheiro, prestı́gio, e os similares, as
pessoas não participantes são incluı́das no artigo como coau-
toras. Os autores de fato de tais artigos podem apenas objetar
sob risco de serem subsequentemente penalizados de alguma
forma, ou mesmo de serem expulsos de suas candidaturas a
graduações de pesquisa mais elevadas ou de suas equipes de
pesquisa, conforme o caso. Muitas têm de fato sido expulsas
sob tais circunstâncias. Essa prática horrorosa não pode ser
tolerada. Apenas aquelas pessoas responsáveis pela pesquisa
deveriam ter autoria oficialmente reconhecida.

Nenhum cientista deve convidar outra pessoa para ser in-
cluı́da e nenhum cientista deve permitir que seu nome seja
incluso como coautor de um artigo cientı́fico caso não tenha
contribuı́do significativamente para a pesquisa que se relata
no artigo. Nenhum cientista deve permitir que ele mesmo ou
ela mesma seja coagido por qualquer representante de uma
instituição acadêmica, corporação, agência governamental,
ou qualquer outra pessoa, a incluir seu nome como coautor
em relação à pesquisa para qual não tenha significativamente
contribuı́do, e nenhum cientista deve permitir que seu nome
seja usado como coautor à guisa de presentes ou quaisquer
subornos. Nenhuma pessoa deve induzir ou tentar induzir um
cientista, por qualquer forma, a um caminho que permita que
o nome do cientista seja incluı́do como coautor de um artigo
cientı́fico relacionado a assuntos para os quais não tenha sig-
nificativamente contribuı́do.

Artigo 10: Independência de afiliação

Muitos cientistas estão agora empregados sob contratos de
curto perı́odo. Com o término do contrato de emprego, tam-
bém termina a afiliação acadêmica. É frequente a polı́tica
de conselhos editoriais em que pessoas sem uma afiliação
acadêmica ou comercial não publiquem. Na ausência de afi-
liação, muitos recursos não estão disponı́veis ao cientista, e
as oportunidades de apresentar palestras e artigos em con-
ferências são reduzidas. Essa é uma prática viciosa que deve
ser parada. Ciência não reconhece filiação.

Nenhum cientista deve ser impedido de apresentar arti-
gos em conferências, colóquios ou seminários, de publicar em
qualquer meio, de acessar bibliotecas acadêmicas ou publica-
ções cientı́ficas, de participar de encontros cientı́ficos, ou de
dar conferências, por necessitar de afiliação a uma instituição
acadêmica, instituto cientı́fico, laboratório governamental ou
comercial, ou de qualquer outra organização.

Artigo 11: Acesso aberto à informação cientı́fica

Muitos livros especializados sobre assuntos cientı́ficos e mui-
tos jornais cientı́ficos rendem pouco ou nenhum lucro, de
modo que editores comerciais não estão dispostos a publicá-
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los sem uma contribuição em dinheiro de instituições acadê-
micas, agências governamentais, fundações filantrópicas, e
correlatos. Sob tais circunstâncias, editores comerciais deve-
riam permitir acesso livre a versões eletrônicas das publica-
ções, e esforçar-se por manter o custo dos materiais impressos
num mı́nimo.

Todos os cientistas deverão se esforçar para assegurar que
seus artigos de pesquisa estejam disponı́veis à comunidade ci-
entı́fica internacional de modo gratuito, ou alternativemante,
se tal não puder ser evitado, a um mı́nimo custo. Todos os
cientistas deverão tomar medidas ativas para fazer com que
seus livros técnicos estejam disponı́veis ao custo mais baixo
possı́vel de modo a poder estar a informação disponı́vel à
mais ampla comunidade cientı́fica internacional.

Artigo 12: Responsabilidade ética de cientistas

A História testifica que descobertas cientı́ficas são usadas
tanto para fins bénéficos quanto malévolos, para o benefı́cio
de alguns e para a destruição de outros. Dado que o pro-
gresso da Ciência e da tecnologia não pode parar, meios para
que se contivesse a aplicação malévola deveriam ser estabe-
lecidos. Apenas um governo democraticamente eleito, laico,
com liberdade racial e não tendencioso, pode salvaguardar a
civilização. Apenas governos, tribunais e comitês democrati-
camente eleitos podem salvaguardar o direito de livre criação
cientı́fica. Hoje em dia, vários estados não democráticos e re-
gimes totalitários conduzem pesquisa ativa em fı́sica nuclear,
quı́mica, virologia, engenharia genética etc, com propósito
de produzir armas nucleares, quı́micas e biológicas. Nenhum
cientista deveria ter interesse em colaborar com estados não
democráticos ou regimes totalitários. Qualquer cientista coa-
gido a trabalhar no desenvolvimento de armas para tais es-
tados deveria encontrar meios de diminuir o progresso de
programas de pesquisa e de reduzir a produção cientı́fica de
forma que a civilização e a democracia possam finalmente
prevalecer.

Todos os cientistas adquirem uma responsabilidade moral
por suas criações cientı́ficas e descobertas. Nenhum cientista
deve voluntariamente se engajar no desenho ou construção de
armas de qualquer tipo, para o que quer que seja, para esta-
dos não democráticos ou regimes totalitários ou permitir que
suas habilidades cientı́ficas e conhecimentos sejam aplicados
no desenvolvimento do que quer que seja prejudicial à Hu-
manidade. Um cientista deve viver pelo dito de que todo go-
verno não democrático e toda violação de direitos humanos
são crime.

22 de novembro de 2005 / Traduzido em 17 de maio de 2011
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Scientists Deduced the Existence of Particles with Faster-than-Light Speeds
Recently Discovered by CERN

Ion P̆atraşcu
“Fraţii Buzeşti” National College, Craiova, Romania

E-mail: patrascuion@yahoo.com

In this paper we present a short survey on Smarandache Hypothesis that there is no
speed barrier in the universe and one can construct arbitrary speeds, hypothesis which
has been partially confirmed by the recent CERN results of OPERA team led by Antonio
Ereditato that experimentally found that neutrino particles travel faster thanc.

Physicists at CERN have recently experimentally discove-
red particles traveling faster than light: the neutrinos! The
OPERA experiment, which sent sprays of neutrinos from
CERN, Geneva, Switzerland, to INFN Gran Sasso Labora-
tory, Italy, found that neutrinos traveled underground 730 km
faster than light could do. Dr. Antonio Ereditato of Univer-
sity of Bern, leader of the OPERA scientist team, made the
results public and invited scientists all over the world to dis-
cuss these astonishing results.

There are mediums where the light travels slower than
some particles, for example in water and oil, but not in the
vacuum. There also exist superluminal phenomena like wave
phase velocity and wave group velocity, but in these cases no
information or energy travels faster than the light. Similarly
are the X-waves whose superluminal velocity of the peak is
a transitory phenomenon, but their wavefronts move with the
speedc [1].

In the breaking News on September 22, 2011, in the Live
Science.com, it is said that proven true, the laws of physics
have to be re-written [2].

Professor Florentin Smarandache from the University of
New Mexico, United States, has deduced the existence of
particles moving faster-than-light in a published paper cal-
led “There Is No Speed Barrier in the Universe” in 1998 [3],
as an extension of a 1972 manuscript [4] that he also presen-
ted in 1993 at the conferenceParadoxism in Literature and
Scienceheld in the Universidad de Blumenau, Brazil. His pa-
per is based on the Einstein-Podolsky-Rosen Paradox [5], a
Bohm’s paper [6], and Bell’s Inequalities [7]. For this goal
known asSmarandache Hypothesis, and for his neutrosophic
logic, set, and probability (which are the most general and
powerful logic, and, respectively, set and probability theories
today), Prof. Smarandache awarded the Telesio-Galilei Aca-
demy Gold Medal in 2010. Smarandache Hypothesis is also
included in the Weinstein’sEncyclopedia of Physics[8]. It is
is enounced as follows:

• Suppose a certain physical process produces a pair of
entangled particles A and B (having opposite or com-
plementary characteristics), which fly off into space in
the opposite direction and, when they are billions of

miles apart, one measures particle A; because B is the
opposite, the act of measuring A instantaneously tells
B what to be; therefore those instructions would so-
mehow have to traveled between A and B faster than
the speed of light; hence, one can extend the Einstein-
Podolsky-Rosen paradox and Bell’s inequalities and as-
sert that the light speed is not a speed barrier in the uni-
verse;

• Even more, one can construct any speed, even greater
than the speed of light,c, by measuring particle A at
various time intervals;

• Also, the information from particles A and B is trans-
mitted instantaneously (thus, there is no speed barrier
in the universe).

Although superluminal phenomena are in contradiction
with Einstein’s theory of Special Relativity (1905) that pre-
vents energy, information and (real) mass from traveling fas-
ter than light, Smarandache (1972) considered that superlu-
minal phenomena do not violate Causality Principle, neither
produce time traveling, nor necessitating infinite energy for
particles traveling at speeds greater than the speed of light.

Submitted on September 26, 2011/ Accepted on October 03, 2011
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