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A New Theoretical Derivation of the Fine Structure Constant

Eckart Schönfeld∗ and Peter Wilde†
∗Physikalisch Technische Bundesanstalt (PTB) Braunschweig (retired), Kritzower Straße 4, 19412 Weberin, Germany.

†University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany. E-mail: Peter.Wilde@TU-Ilmenau.de

The present paper is devoted to a new derivation of the expression given already earlier
for the fine structure constant α. This expression is exactly the same as that what we
published several times since 1986. The equation 1/α= π4

√
2 mqm/m0 (m0 being the

rest mass of the electron and mqm the quantum-mechanical fraction of it) is precisely
confirmed. The new derivation is based on relations for the energy density in the inte-
rior of a macroscopically resting electron within the framework of our standing wave
model. This model is strongly supported by the present investigation. Two equations
for the energy density inside of an electron were set equal, one of them is taken from
classical electrodynamics, the other uses relations from quantum mechanics, special
relativity theory and four-dimensional space. As the final theoretical equation for the
fine structure constant is unchanged, the numerical value as published in 2008 is still
maintained: 1/α= 137.035 999 252.

1 Introduction

In the fine structure constant α= e2/~c the constants of the
electron charge e, Planck’s constant h and the light veloc-
ity c are flowing together. These fundamental constants play
a leading role in electrodynamics (ED), quantum mechanics
(QM) and special relativity theory (SRT). Pauli [1] has called
the explanation of the fine structure constant one of the most
important problems of modern atomic physics. Mac Gregor
1971 [2] discussed α as an universal scaling factor. Here we
present a new derivation for the fine structure constant ob-
tained by equalizing two expressions for the energy density of
the electromagnetic field inside the electron. One of these re-
lations is based on ED, the other one is based on QM and SRT.
In our opinion the new derivation is extraordinarily beautiful,
simple and elegant.

We have developed a model of a macroscopically resting
extended electron, called standing wave model. This model is
based on the assumption that there is an internal energy flux
along a closed curve of everywhere the same curvature. The
energy flux takes place with velocity of light and is located on
the surface of a sphere with radius rm. The curve is denoted as
spherical loop. It has an arc length 4πρm, where ρm = rm/

√
2

is its radius of curvature and it consists of four semi circles.
The internal motion produces the spin, magnetic moment and
the electromagnetic field of the electron. In a set of publica-
tions [3–5] the authors have reported about these subjects.

Moreover, a study of the internal energy transport allowed
us to derive a relation for the fine structure constant by in-
vestigating longitudinal and transversal standing waves inside
of the electron. Here a new explanation of the fine structure
constant is presented, also based on the standing wave model
of the macroscopically resting electron but following a way
which is essentially new.

We are convinced the new way of deriving α is of peculiar
interest in understanding the structure of elementary particles.

Therefore, we would like to open a discussion about our ideas
and procedures.

2 Energy density based on electrodynamics

From classical electrodynamics applied to our standing wave
model we were able to calculate the energy contributions of
the electromagnetic field to the self-energy of an electron in
the whole space. The energy flux is located on the surface of
a sphere with the radius [5]

rm =
~

√
2mqmc

, (1)

where mqm denotes the quantum-mechanical fraction of the
rest mass m0 of the electron. Quantities which have a sub-
script m are related to the surface or the interior of a sphere
with radius rm and a subscript qm shall indicate that the cor-
responding quantity is related to quantum mechanics. Inside
the sphere there are a transversal electric field with a field
strength Et

m, and a magnetic field with a field strength Hm.
The absolute values of both field strengths are equal inside
the sphere of radius rm [5]:

e
r2

m
= |Et

m|= |Hm|. (2)

These fields are supposed to be homogeneous inside, i.e.
the magnitudes of the field strenghts do not depend on the
position. The volume of the sphere is given by

Vm =
4
3
πr3

m. (3)

The energy densities of the electric and magnetic fields
can be taken from the field strength squares [6]:

uE =
1

8π
|Et

m|2 (4)

Eckart Schönfeld and Peter Wilde. A New Theoretical Derivation of the Fine Structure Constant 3
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uH =
1

8π
|Hm|2. (5)

The total energy density us of the electromagnetic field
inside the electron is

us = uE + uH =
2

8π
e2

r4
m
. (6)

By integration over the sphere and using eq. (1) as well as
the definition of the fine structure constant, the corresponding
field energy is obtained

Ws =
2

8π

∫ rm

0

∫ π
0

∫ 2π

0

e2

r4
m

r2 sinφ dθ dφ dr

=
2
3

e2

2rm
=

2
3
α
√

2
mqmc2.

(7)

The subscript s shall indicate that the corresponding quan-
tities are related to the standing wave model.

3 Energy density based on QM, SRT and four dimen-
sional space

We start from the three dimensional surface S qm = 2π2R3 of a
four dimensional sphere (cf Schmutzer 1958 [7]). Choosing
for the radius R= πrm there follows

S qm = 2π5r3
m. (8)

The zero point energy inside this sphere is given by

Wqm =
1
2
~ω0, (9)

where ω0 is the lowest possible, positive eigen frequency of
the corresponding basic harmonic oscillator. According to
the standing wave model this harmonic oscillator describes
the electron. From the de Broglie relation

E = ~ω0 = m0c2 (10)

there follows
Wqm =

1
2

m0c2, (11)

and the energy density can be obtained from (8) and (11)

uqm =
Wqm

S qm
=

m0c2

4π5r3
m
. (12)

4 Fine structure constant

A calculation of the values of us and uqm show that they are
very close to each other. This stimulated us to set

us = uqm. (13)

Indeed, using (1), (6) and (12), we obtain

us = uqm ⇔
e2

~c
=

1
√

2π4

m0

mqm
. (14)

Now, using the definition of the fine structure constant,
for the inverse of it there follows immediately

1
α
= π4

√
2

mqm

m0
, (15)

where m0 denotes the rest mass of the electron and mqm its
quantum-mechanical fraction. Just the same relation has been
found earlier in an other way [3–5]. There, we have shown
that both, m0 and mqm, are depending on α. Solving equation
(15) the latest theoretical value of the inverse fine structure
constant is [5]

1
α
= 137.035 999 252. (16)

This value has to be compared with the semi experimental
value 137.035 999 084(51) obtained by combining theory and
experiment of the anomalous magnetic moment of the elec-
tron [8], as well as with the value 137.035 999 074(44),which
is the latest CODATA value [9] from 2010. Furthermore, the
ratio m0/mqm is obtained to be

m0

mqm
= 1.005 263 277. (17)

If we replace (as an alternative) m0 in (11) by mqm and
simultaneously e2 in (6) by e2

i (ei is the intrinsic or bare charge
of the electron) then we have exactly the wonderful relation

~c
e2

i

= π4
√

2 = 137.757 257... (18)

The equations (15) and (18) are identical if

m0

mqm
=

e2

e2
i

. (19)

5 Discussion and conclusions

The numerical value of the fine-structure constant α was of-
ten denoted to be a mystery, a magic number and an enigma.
A lot of more or less obscure relations have been published
with the aim to understand the origin, theoretical background
and the numerical value of the fine structure constant, see for
example the comprehensive compilation of Kragh 2003 [10].
Why a derivation like the present one has not been carried
out earlier? Probably it was the lack of an accurate model of
an extended electron. No such model was available, see for
example Mac Gregor 1992 [11]. We are convinced that with-
out an understanding of the geometry and inner dynamics of
the electron, a consistent understanding of the fine structure
constant will not be possible. The simplicity of the present
explanation of the fine structure constant is really surprising.
Nevertheless, a more detailed discussion and interpretation
of the roots of the fine structure constant would be very de-
sirable. So far it concerns the history it should be remarked
that already König 1951 [12] found as a byproduct in a rather

4 Eckart Schönfeld and Peter Wilde. A New Theoretical Derivation of the Fine Structure Constant
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complicated argumentation the same expression for α as we
found here but without the factor mqm/m0. A difference be-
tween the theoretical and the experimental value of 0.53 %
might be the reason that his paper, entitled “An electromag-
netic wave picture of micro processes”, have found very little
attention.

We do not intend to give here a comprehensive discussion
of the many aspects which are coupled with the fine structure
constant. Several essays have been published devoted to to
different aspects (Bahcall and Schmidt 1967 [13] (variation
of α with time), Jehle 1972 [14] and 1977 [15] (flux quanti-
zation, loops, general discussion), Wilczek 2007 [16] (fun-
damental constants), Jordan 1939 [17] (cosmological con-
stancy), Peik et al 2004 [18] (temporal limit), Dehnen et al.
1961 [19] (independence on gravitation field), Srianand et
al. 2004 [20] (limits on time variation), Schönfeld 1996 [21]
(self-energy analysis, see also [3–5])). We would like to re-
mark and underline only two aspects of the present results:
one is the exponent four at π which is obviously connected to
the four dimensions of our world, the other is that the present
result supports strongly the independence of the fine structure
constant on time and space, i.e. expresses the cosmological
constancy of alpha which was studied by theory and experi-
ment in the last time. Naturally an experiment can give only
an upper limit of time or position variation, compare [17–20].
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Redshift Adjustment to the Distance Modulus

Yuri Heymann

3 rue Chandieu, 1202 Geneva, Switzerland
E-mail: y.heymann@yahoo.com

The distance modulus is derived from the logarithm of the ratio of observed fluxes of
astronomical objects. The observed fluxes need to be corrected for the redshift as the
ratio of observed to the emitted energy flux is proportional to the wavelength ratio of
the emitted to observed light according to Planck’s law for the energy of the photon. By
introducing this redshift adjustment to the distance modulus, we find out that the appar-
ent “acceleration” of the expansion of the Universe that was obtained from observations
of supernovae cancels out.

1 Introduction

In the present study a redshift adjustment to the distance mod-
ulus was introduced. The rationale is that the observed fluxes
of astronomical objects with respect to the emitting body are
being reduced by the effect of redshift. According to Planck’s
law, the energy of the photon is inversely proportional to the
wavelength of light; therefore, the ratio of observed to emitted
fluxes should be multiplied by the wavelength ratio of emitted
to observed light.

2 Model development

Below is shown the derivation of the redshift adjusted dis-
tance modulus.

Let us recall the derivation of the distance modulus. The
magnitude as defined by Pogson [1] is:

m = −2.5 log F + K, (1)

where m is the magnitude, F the flux or brightness of the light
source, and K a constant. The absolute magnitude is defined
as the apparent magnitude measured at 10 parsecs from the
source.

By definition, the brightness is a measure of the energy
flux from an astronomical object and depends on distance.
Therefore, a redshift correction to the flux is derived from
Planck’s law for the energy of the photon

E =
h · c
λ
, (2)

where E is the energy of the photon, h the Planck’s constant,
and λ the light wavelength.

The ratio of observed to emitted energy flux is derived
from eq. (2), leading to

Eobs

Eemit
=
λemit

λobs
=

1
1 + z

, (3)

where Eobs and Eemit are respectively the observed and emit-
ted energy fluxes, λobs and λemit are respectively the observed
and emitted light wavelengths, and z the redshift.

As light is emitted from a source, it is spread out uni-
formly over a sphere of area 4πd2. Excluding the redshift ef-
fect, the brightness – expressed in units of energy per time and
surface area – diminishes with a relationship proportional to
the inverse of square distance from the source of light. There-
fore, taking into account the redshift effect, the following re-
lationship is obtained for the brightness:

Fobs ∝
Lemit

d2 ·
Eobs

Eemit
, (4)

where Lemit is the emitted luminosity, and d the distance to
the source of light.

Combining eq. (1), (3) and (4), we obtain

m = −2.5 log
(

Lemit

d2 · (1 + z)

)
+ K. (5)

And, because z is close to zero at 10 Parsec:

M = −2.5 log
(Lemit

100

)
+ K, (6)

where M is the absolute magnitude.
Hence, the redshift adjusted distance modulus, eq. (5) mi-

nus eq. (6) is:

m − M = −5 + 5 log d + 2.5 log(1 + z) (7)

with d in parsec, and log is the logarithm in base 10.

3 Discussion

In the present study the distance modulus was adjusted to take
into account the effect of redshifts on the observed fluxes of
astronomical objects. Evidence of an ”accelerating” Universe
expansion was established based on the observation of su-
pernovae [2]. This result was obtained by detecting a de-
viation from linearity on the distance modulus versus red-
shift plot in log scale for supernovae. In order to account
for the redshift adjustment, the adjusted distance modulus
m − M − 2.5log(1 + z) should be plotted againt redshifts for
the supernovae. A deviation of m − M of about +0.5 mag-
nitude was obtained at redshift 0.6. The redshift adjustment

6 Yuri Heymann. Redshift Adjustment to the Distance Modulus
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2.5log(1+z) is roughly equal to this deviation. By introducing
the redshift adjusted distance modulus eq. (7) this deviation
cancels out, and one may no longer conclude that the expan-
sion of the Universe is accelerating.
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This brief paper traces comments on the article [2]. This article, a preprint, has recently
received an attention, raising errors related to the timing process within the OPERA
Collaboration results in [1], that turns out to be a wrong route by which serious science
should not be accomplished. A peer-reviewed status should be previously considered to
assert that [2] claims a solution for the superluminal results in [1]. Within [2], it seems
there is an intrinsical misconception within its claimed solution, since an intrinsical
proper time reasoning leads to the assumption the OPERA collaboration interprets a
time variation as a proper time when correcting time intervals between a GPS frame
and the grounded baseline frame. Furthermore, the author of [2] seems to double radio
signals, doubling the alleged half of the truly observed time of flight, since the Lorentz
transformations do consider radio signals intrinsically by construction.

1 An intrinsical proper time reasoning? A misconcep-
tion from the OPERA collaboration, or from the au-
thor of [2]? What is actually observed, τclock/γ?

The author of the article [2]∗ used, ab initio, the designation:
from the perspective of the clock... Within the approach used
by the author, via special relativity, the GPS frame of refer-
ence must use two distinct but synchronized clocks to tag the
instants at A and B. The eq. (2) in [2] was, intrinsically, ob-
tained via the Lorentz transformations for the neutrino events
of departure from A and arrival to B, but this was not clearly
specified within [2], being the construction of the Eq. (2)
in [2] crudely accomplished under what would be being seen
from the perspective of the clock, in the author of [2] words:

• From the perspective of the clock the detector at B
moves towards location A at a speed v. And we find
that the foton will reach the detector when the sum
of the distances covered by the detector and the foton
equals the original separation...; [2].

This reasoning, ab initio, leads, as it very seems, to an in-
trinsical proper time reasoning under the perspective of what
was being seen, locally, by the satellite at its very location.
Let (xA, tA) and (xB, tB) be the spacetime events of departure
and arrival of the neutrino in the baseline reference frame K,
respectively. The time interval spent by the neutrino to ac-
complish the travel in the [2] GPS reference frame K′ is:

δt′ =
(
1 − v2/c2

)−1/2
[
(tB − tA) − v

c2 (xB − xA)
]
, (1)

in virtue of the canonical Lorentz transformation for time in
K′ as a function of the spacetime coordinates in K, where v
is the assumed boost of K′ in relation to K in the baseline

∗The comments we raise here are related to the first version of [2], v1,
uploaded to arXiv. Recently, the author uploaded an updated version, but
the misconceptions seem to persist. The root of the arguments within [2] to
obtain the alleged 64 ns seems to be flawed ab initio.

direction AB, c the speed of light in the empty space. With
δt = tB− tA, δx = xB− xA = S baseline, δx = vνδt, where vν is the
neutrino velocity along the AB direction, the eq. (1) reads:

δt′ =
(
1 − v2/c2

)−1/2
S baseline

(
1
vν
− v

c2

)
. (2)

With vν = c, γ =
√

1 − v2/c2, δt′ !
= τclock, as defined

in [2], the eq. (2) here becomes the eq. (2) in [2]:

τclock =
γS baseline

c + v
⇒ cτclock + vτclock = γS baseline. (3)

But:
• δt′ !

= τclock is not a proper time (it is a time interval
measured by distinct clocks at different spatial posi-
tions in K′); hence: why would the OPERA collabo-
ration correct δt′ !

= τclock via δt = δt′/γ, as claimed via
the eq. (5) in [2]?
• Such correction would be plausible if the events of de-

parture and arrival of the neutrino had the same spatial
coordinate x′A = x′B in the GPS K′ frame of reference,
but it is not the case.

Hence, as asserted before, the claimed solution supposes
an intrinsical proper time reasoning, but there is no reason for
this, since the δt′ is not a proper time. Thus, the claimed so-
lution turns out to be constructed on an erroneous correction.
The correction that should be done by the OPERA Collab-
oration, if the [2] GPS reference frame was to be taken in
consideration, would read:

δt =
(
1 − v2/c2

)−1/2
[(

t′B − t′A
)
+
v

c2

(
x′B − x′A

)]
, (4)

and this correction would read: δt = δt′/γ, with the γ =√
1 − v2/c2 defined in [2], if and only if : x′B − x′A = 0, but

it is not the case.
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Furthermore, I would like to assert that, related to the K′

reference frame, the frame taken by the author of [2] to ex-
plain the relevance of the GPS reference frame in terms of
special relativity: the radio signals turn out to be irrelevant
to be taken into consideration once the clocks within K′ are
synchronized, viz., the Lorentz transformations for events do
consider radio signals intrinsically under the synchronization
of clocks in a given reference frame. This said, the factor 2
the author uses to reach 64 ns seems misconcepted. Remem-
bering, the τclock is the time interval in K′, it is not a proper
time interval, and this time interval totally accounts for the
entire process of emission and detection of the neutrino at A
and B, respectively, departure and arrival, from which there
are not two corrections to be accomplished at the points A
and B related to radio signals. The radio signals related to the
events at A and B in the GPS reference frame in [2], K′, were
taken into consideration ab initio, in [2], since the clocks at A
and B in this reference frame tagging the events of departure
and arrival were previously synchronized by the very radio
signals the author of [2] refers at the end of his article, due
to the intrinsical use of the Lorentz transformations, ab ini-
tio, within the eq. (2) in [2], albeit the author of [2] had not
written down his eq. (2) in [2] under a Lorentzian reasoning.
Hence, once the Lorentz transformations provided the τclock,
the radio signals should not be considered twice.

I would like to furtherly comment the root of misconcep-
tions, by which the author of [2] seems to have carried his
reasonings to raise his arguments. Related to my previous
comments, as asseverated before (see footnote 1), these ones
are related to the first version of the mentioned article up-
loaded to arXiv. The author uploaded an updated version, but
the root of misconceptions persists within his primordial rea-
soning related to the Lorentz transformations. It very seems
the author had in mind that the time interval to be corrected
δt′ = τclock (here, we continue to consider the notations within
the first version of [2], since there are not substantial modifi-
cations throughout the updated version to avoid the criticisms
raised) was a proper interval. Constructing his arguments,
the author refers to what is observed in the satellite reference
frame. Suppose, following the author of [2] reasonings, the
satellite sends a radio signal to the event at A to see the de-
parture of the neutrino when this radio signal is sent back to
the satellite. Be t′ES A (E denotes emission, S denotes satellite,
and A denotes the location of the CERN at the instant, read in
the satellite local clock, the neutrino starts the travel to Gran
Sasso) the instant this signal is sent to reach the event of the
neutrino departure; t′RS A (R detotes reception) the instant the
signal comes back to the satellite, read in the satellite local
clock. These instants are related by:

t′RS A = t′ES A + 2d′S A(t′A)/c, (5)

where d′S A(t′A) is the distance between the satellite and the
CERN location at A, at the instant the signal (radio signal)
reaches A, viz., d′S A(t′A) is the distance between the satellite

and the CERN location at A at the instant t′A the neutrino is
sent to Gran Sasso in the satellite frame. Analogous reasoning
related to the neutrino arrival at Gran Sasso, at B, leads to:

t′RS B = t′ES B + 2d′S B(t′B)/c, (6)

where d′S B(t′B) is the distance between the satellite and the
Gran Sasso location at B, at the instant another signal previ-
ously sent by the satellite at instant t′ES B read in the satellite
local clock (another radio signal) reaches B, viz., d′S B(t′B) is
the distance between the satellite and the Gran Sasso location
at B at the instant t′B the neutrino arrives to Gran Sasso in the
satellite frame. The instants t′A and t′B are respectively given
by:

t′A =
t′ES A + t′RS A

2
, (7)

and:

t′B =
t′ES B + t′RS B

2
. (8)

From these relations, the proper time interval between the
instants the satellite sees the events of departure and arrival,
t′RS B − t′RS A, is given by:

t′RS B − t′RS A = t′B − t′A +
d′S B(t′B)

c
−

d′S A(t′A)
c
, (9)

therefore, since t′B − t′A = δt
′ = τclock, see my previous com-

ments:

τclock = t′RS B − t′RS A −
(

d′S B(t′B)
c

−
d′S A(t′A)

c

)
, (10)

from which: τclock does take into consideration the radio sig-
nals travelling, encapsulated within the time intervals within:

τsignals =
d′S B(t′B)

c
−

d′S A(t′A)
c
. (11)

The problem within the reasonings of the author of [2]
seems to be this author was thinking that τclock would be the
proper interval related to what was being seen by the satel-
lite, t′RS B − t′RS A. Hence, at the end of his article, this au-
thor applies a correction related to radio signals to account
for the time interval t′B − t′A, but this process was already done
when the author obtained δt′ = t′B − t′A, viz., as said before
within my previous comments, the Lorentz transformations
have got radio signals intrinsically, by construction, to deal
with events in spacetime. Thus, when the author of [2] ap-
plies the factor 2, this author seems to erroneously account
for radio signals twice, and the factor 2 seems misconcepted.
Even if the OPERA Collaboration had done the correction the
author of [2] refers to, such discrepancy would be 32 ns, but
not this value twice. The factor 2 seems to have not got logi-
cal explanation within the [2] reasoning, mostly being putted
a fortiori.
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2 Conclusions

Respectfully, the reasoning that led the author of [2] to the
factor 2 is not clear. I think this reasoning should be putted
under a fairly crystalline terms, as far as possible, in virtue
of the importance given to this article, in virtue of the impor-
tance given to the subject. Furthermore, what would be being
observed, δt′/γ (this gamma is the original one used by the
author of [2]), or this value twice? Why does not the author
of [2] provide spacetime diagrams showing the process re-
lated to the radio signals that doubles the alleged half of the
truly observed time of flight?

Concluding, it seems unlikely that the OPERA collabora-
tion has misinterpreted a GPS time interval within the terms
of [2].
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Spooky Action at a Distance or Action at a Spooky Distance?

Sebastiano Tosto
Italy. E-mail: stosto@inwind.it

The paper demonstrates that the non-locality and non-reality of the quantum world are
direct consequences of the concept of uncertainty. It is also shown that the analysis of
states in the phase space entails the operator formalism of wave mechanics. While being
well known that the uncertainty principle is a consequence of the commutation rules of
operators, the paper shows that the reverse path is also possible; i.e. the uncertainty
equations entails themselves the operators and wave equations of energy and momen-
tum. The same theoretical approach has been eventually extended to infer significant
results of the special relativity.

1 Introduction

Einstein never liked the weirdness and the conceptual limit
of the quantum mechanics due to its probabilistic character;
for instance, he disliked the incomplete knowledge about po-
sition and momentum of a particle, about all components of
angular momentum and so forth. Paradoxically, just his the-
ory of the specific heat and its explanation of the photoelec-
tric effect were the strongest support to the energy quanti-
zation early introduced by Plank to explain the black body
radiation. In fact to the quantum theory we owe not only
the ability to explain weird experimental data, e.g. the dual
wave/particle behavior of matter and the tunnel effect, but
also important discoveries like the laser, the transistor and
the superconductivity. Further experimental evidences recen-
tly obtained compelled however accepting besides its weird
character other aspects even more counterintuitive of quan-
tum behavior. Mostly important are in this respect the non-
localism and non-realism: according to the former, exchange
of information is allowed even between particles separated by
a superluminal distance; according to the latter, the experi-
mental measurements do not reveal preexisting properties of
particles but concur to define themselves the measured pro-
perties. The EPR gedanken experiment [1] tried to overcome
the conceptual incompleteness of quantum mechanics by hy-
pothesizing “hidden variables” in the wave function, i.e. va-
riables not accessible to experimental evidence but able to
improve our extent of knowledge and to overcome the diffi-
culty of a “spooky action at a distance” between correlated
couples of particles. Yet, several experiments were able to
exclude the existence of hidden variables while demonstra-
ting instead non-local effects [2, 3]. The theoretical apparatus
of quantum mechanics acknowledges the non-local behavior
of the quantum particles through the concept of entanglement
[4, 5]. This term was early introduced by Schrodinger [6] to
describe the possibility of correlating quantum systems even
though spatially separated; the most controversial point con-
cerns of course the difficulty arising from the requirements of
relativity. Even today the concept of entanglement has dif-
ferent interpretations: the most acknowledged point of view

is the quantum superposition of states, according which two
correlated particles share a single quantum state until a mea-
surement is carried out. The quantum mechanics is founded
on a set of mathematical rules, which however do not incor-
porate themselves since the beginning the non-locality and
non-reality in its fundamental conceptual structure, in order
to include and rationalize per se these effects. For this rea-
son the EPR paper appears legitimate from a rational point of
view, although in fact wrong from a physical point of view;
indeed a separate theoretical tool, the Bell inequality [7], was
necessary to evidence the inconsistency of the EPR attempt
[8, 9]: the predictions of local realism on which is based the
Bell inequality conflict with the results obtained in various
experiments, e.g. [10, 11, 12]. It is worth noticing that no the-
oretical foundation of the wave mechanics can be considered
really general without containing inherently the non-realism
and non-localism of the quantum world. It is therefore inte-
resting to examine in this respect the approach followed in
previous papers [13, 14], where results consistent with that of
wave mechanics have been inferred exploiting the following
equations only

ΔxΔpx = n~ = ΔεΔt. (1,1)

The second equality is consequence of the first one de-
fining formally Δt = Δx/vx andΔε = Δpxvx, wherevx is
the average velocity with which any particle travels through
Δx; the equalities share the common numbern of allowed
states. The equations (1,1) do not require any assumption
about the ranges, about the motion of the particle and even
about its wave/corpuscle nature; this latter will be inferred
as a corollary in section 6. The present paper aims to con-
tribute some ideas about how to regard the non-locality and
non-reality uniquely according to eqs. (1,1). For reasons that
will be clear below, it is useful to introduce shortly in section
2 the way of exploiting these equations to infer the quantum
angular momentum; the remarks at the end of this section,
which has a preliminary worth, are essential to discuss sub-
sequently the weirdness of the quantum world. Although the
angular momentum has been already introduced in [13], its
elucidation is so straightforward and elementary that it deser-
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ves being shortly sketched here; in doing so, indeed, it in-
troduces reference concepts that will be further developed in
the following sections 3 and 4 that concern the non-reality
and non-locality. Eventually, the connection between quan-
tum theory and special relativity is also sketched in sections 5
and 7; the link between eqs. (1,1) and the operator formalism
of wave mechanics is discussed in section 6.

2 The non-relativistic angular momentum

The non-relativistic quantization of the classical angular mo-
mentumM2 and of one of its componentsMw along an ar-
bitrary direction defined by the unit vectorw starts from the
classical scalarr × p ∙ w; herer is the radial distance of any
particle from the originO of an arbitrary reference systemR
andp its momentum. For instance, this could be the case of
an electron in the field of a nucleus centered inO. As intro-
duced in [15], the positions

r → Δr p → Δp (2,1)

enable the numberl of quantum states to be calculated as
a function of the rangesΔr and Δp of all local distances
and momenta physically allowed to the particle. These ran-
ges only, and not the random local valuesr andp themsel-
ves, are considered in the following. The first step yields
Mw = (Δr × Δp) ∙ w = (w × Δr ) ∙ Δp and soMw = ΔI ∙ Δp,
whereΔI = w × Δr . If Δp andΔI are orthogonal, thenMw =

0; else, writingΔI ∙ Δp as (Δp ∙ ΔI/ΔI )ΔI with ΔI = |ΔI |,
the component±ΔpI = Δp ∙ ΔI/ΔI of Δp alongΔI yields
Mw = ±ΔIΔpI . In turn this latter equation yields according to
eqs. (1,1)Mw = ±l~, beingl the usual notation for the number
of states of the angular momentum;l is positive integer inclu-
ding zero. As expected,Mw is not a single valued function be-
cause of the uncertainties initially postulated forr andp. One
component ofM only, e.g. along thez-axis, is knowable; re-
peating the same approach for they andx components would
trivially mean changingw. Just this conclusion suggests that
the average values< M2

x >, < M2
y > and< M2

z > should
be equal; so the quantity of physical interest to describe the
properties of quantum angular momentum isl, as a function
of which M2 is indeed inferred as well. Let us calculate these
average components over the possible states summing (l~)2

from −L to +L, whereL is an arbitrary maximum value ofl.
Being by definition< M2

i >=
∑li=L

li=−L (~l)2/(2L + 1), one finds

M2 =
∑3

i=1 < M2
i >= L(L + 1)~2. Note that the mere physi-

cal definition of angular momentum is enough to find quan-
tum results completely analogous to that of wave mechanics;
any local detail of motion, like that of electron “orbit” around
the nucleus, is utterly unnecessary. The quantization of the
classical values appears merely introducing the delocalisation
ranges into the definition of angular momentum and then ex-
ploiting eqs. (1,1). The reason of it is evident: after the steps
(2,1), the unique information available comes from the uncer-
tainty ranges of coordinates and momentum, rather than from

the local values of these latter; then the quantities thereafter
calculated concern the number of allowed states only, which
have in fact the same physical meaning of the quantum num-
ber defined by the solution of the pertinent wave equation.
An analogous approach shows that the non-relativistic hydro-
genlike energy levels depend on a further integern because
of the radial uncertainty equationΔpρΔρ = n~ of an electron
from the nucleus [13]; again, even without specifying any lo-
cal detail of motion, the numbers of statesl andn related to
the angular and radial uncertainties of the electron in the field
of nucleus correspond to the respective quantum numbers that
characterize the energy levels. This preliminary introduction
on how to exploit eqs. (1,1) was included in the present pa-
per to emphasize several points useful in the following, i.e.:
(i) the replacements (2,1) that allow to exploit eqs. (1,1) are
enough to plug the classical physical definitionr ×p of angu-
lar momentum into the quantum world; (ii) no hypothesis is
necessary about the geometrical properties of motion of the
particle nor about its wave/matter nature to infer the quantum
result; (iii) trivial algebraic manipulations replace the solu-
tion of the pertinent wave equation; (iv) the information in-
ferred through eqs. (1,1) only is fully consistent with that of
the wave mechanics; (v) the local momentum and distance
between the particles concerned in the “orbiting” system do
not play any role in determiningl; (vi) as found elsewhere,
[15, 17], the number of allowed states plays actually the role
of the quantum numbers of the operator formalism of wave
mechanics; (vii) the amount of information accessible for the
angular momentum is not complete like that expected in the
classical physics; (viii) eqs. (1,1) rule out “a priori” any pos-
sibility of “hidden variables” that could in principle enhance
our knowledge aboutMw and M2 in order to obtain a more
complete description of the orbiting quantum system.

It is worth mentioning that the validity of the point (i) has
been checked and extended in the papers [13, 14] also to more
complex quantum systems like many electron atoms/ions and
diatomic molecules. The fact that eqs. (1,1) efficiently re-
place the standard approach of wave mechanics has central
interest for the topics introduced in following sections, espe-
cially as concerns the very important point (viii). In principle
one could not exclude that the wave function, from which is
extracted all physical information allowed about the quantum
systems, could actually contain hidden variables; indeed this
chance, reasonably suspected in the famous EPR paper, has
been excluded later thanks to a separate theoretical tool only,
the Bell inequality. In the present approach, instead, the quan-
tization of angular momentum is more “transparent” in that it
explicitly displays variables and steps that lead to the quan-
tum result; in other words, the present approach excludes any
possibility of hidden variables because it works with actual
quantities inherent the mere definition of angular momentum
only. In conclusion the present section aimed mostly to en-
sure that sensible results are obtained regarding the uncer-
tainty as a fundamental principle of nature itself, rather than
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as a by-product of the operator formalism of wave mecha-
nics. It is necessary however to better understand eqs. (1,1).
To ascertain “a posteriori” that these equations work well has
no heuristic worth. Therefore, after having checked their va-
lidity, the remainder of the paper starts from a step behind
them, i.e. to highlight the more profound physical basis roo-
ted in the concept of space-time uncertainty.

3 Non-realism and non-localism of eqs. (1,1)

Let us introduce a reference systemR to define the ranges of
eqs. (1,1). In the simplest 1D case,R is represented by an ar-
bitrary axis where are defined two coordinatesxo andxt with
respect to an arbitrary originO: the former describes the po-
sition of the rangeΔx = xt − xo with respect toO, the latter
describes its size. The postulated arbitrariness of size makes
Δx consistent with the local coordinatexo in the limit case
xt → xo and with any other coordinate if is also allowed the
limit sizeΔx→ ∞. If neither boundary coordinate is time de-
pendent, then the section 2 and the papers [15, 16] show that
this is all we need to know to define an observable physical
property of the concerned quantum system: indeed, with the
help of an analogous reasoning for the momentum range, this
approach is enough to find the number of allowed states i.e.
the quantum numbers that define the eigenvalues of the obser-
vable. If insteadxo andxt are in general time dependent, then
Δx expands or shrinks as a function of time, while possibly
shifting with respect toO too, depending on how are mutu-
ally related the displacements ofxo andxt. Actually the paper
[15] shows that such a detailed information about how both
of them displace with respect toO is physically redundant; all
we need to know is the resultingΔẋ only. If Δx is an empty
range, the chance of displacement in principle possible forxo

andxt entails the presence of a force field withinΔx; in the
absence of a particle delocalized in it, however, this conclu-
sion has a self-contained worth only that concerns a property
of the the range itself inR. Instead consequences of physical
interest are expected when a free particle is possibly therein
delocalized; first of all because this presence requires itself
highlighting the physical meaning ofxo andxt to justify why
these boundary coordinates, although remaining in principle
completely arbitrary, can in fact include all values of dyna-
mical variables allowed to the particle. Assume for instance
two infinite potential barriers atxo and xt: if the size of the
delocalization range changes fromΔx1 toΔx2 during the time
rangeΔt = t2 − t1, it means that necessarily the properties of
the particle are affected duringΔt as well; at the timet1 the
particle was constrained bouncing withinΔx1 with average
frequencyν1 = vxΔx−1

1 , at the timet2 with average frequency
ν2 = v′xΔx−1

2 . The average displacement velocityvx of the
particle has been regarded different at the timest1 andt2 for
sake of generality; however this fact is not essential, since
Δx2 , Δx1 is enough to ensureν2 , ν1. Hence the defor-
mation ofΔx as a function of time entails changing average

displacement velocity, bouncing frequency of the particle and
thus its momentum as well. To draw such a conclusion two
essential elements have implemented the initial definition of
delocalization range: the presence of a particle and the size
change ofΔx. Since however no assumption has been made
about times and range sizes, nor aboutvx andv′x, these proper-
ties do not define themselves any state allowed to the particle;
nothing about arbitrary range sizes, frequencies and veloci-
ties can be related to an integer number. Despite the intuitive
fact that the particle dynamics has changed,n still appears
unexplainable. This conclusion is important because, for the
reasons introduced in section 2, justn entails the chance of
measuring a physical observable of the particle. Overcoming
this indeterminacy requires thus a further condition or cons-
traint onν1 andν2, e.g. on the change of energy or momen-
tum of the particle during the aforesaid time range. In effect,
this condition is a crucial step to allow the transition from
an unphysical “virtual” state towards an observable state: if
for instance to definen concur the values of momentum or
energy related toν1 andν2, then the sought number of sta-
tes should correspondingly represent just the allowed eigen-
values of momentum or energy of the particle. The fact that
a unique range is inadequate to definen, justifies reasonably
the idea of introducing a further range ancillary toΔx able
to represent inR the values of a second dynamical variable.
Apart from this intuitive conclusion, it is necessary to explain
why two arbitrary ranges of allowed dynamical variables are
necessary to define the sought observable state of the particle.
A reasonable idea is to examine the concept itself of measu-
rement process. It is known that this concept is replaced in
quantum mechanics by that of interaction, whose effect is to
perturb the early state of the particle under test. The dyna-
mical variables of the unperturbed free particle inR represent
the initial boundary condition as a function of which is deter-
mined the effect of the interaction between particle and ob-
server. Let the intensity of the local perturbation, whatever it
might be, depend in general on the current local position and
momentum of the particle; then the observer records an out-
come somehow related to the boundary condition describing
the particle before the measurement process. Since however
the initial dynamical variables were unknown, they remain
unpredictable and unknown after the measurement process as
well; any correlation between initial and final state of the par-
ticle is impossible, simply because the former is in fact un-
defined. Renouncing “a priori” to know the local values of
conjugate dynamical variables compels thus introducing ran-
ges of their allowed values. Despite the lack of information
about the sought correlation and kind of interaction, let us
show that even so the concept of measurement allows defi-
ning the number of states, which in fact makes actual the pro-
perties of the particles. Regard to this purpose the aforesaid
xo andxt respectively as coordinates of the particle before and
after the measurement process; in agreement with eqs. (1,1),
both are random, unknown and unpredictable, whereas du-
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ring the interaction even intermediate values are expected to
fall between these extremal boundaries. Considerations ana-
logous toxt− xo hold also for the conjugate momentum range
pt − po, whose boundary valuespo and pt are related to the
momentum of the particle before and after the measurement
process. Howeverxt − xo andpt − po, although fulfilling the
requirements of both measurement process and eqs. (1,1),
cannot be directly related themselves toΔx andΔpx; the for-
mer are indeed uncorrelated and thus still unable to justifyn,
the central aim of the present discussion. Let us introduce
thus the probabilitiesΠx andΠpx that the values of both dy-
namical variables change during the measurement process in
such a way that

xt − xo→ measurement→ Δx

pt − po→ measurement→ Δpx

where the usual notationsΔx andΔpx refer to ranges compli-
ant with eqs. (1,1). This suggests writing

Πx = Δx/(Δx+ Δx′), Πpx = Δpx/(Δpx + Δp′x), (3,1)

whereΔx′ andΔp′x are ancillary ranges consistent with the
conditionsΠx → 0 for Δx → 0 andΠx → 1 for Δx → ∞;
analogous considerations hold of course for the momentum
probability too. By definition thereforeΔx′ > 0 andΔp′x > 0,
in agreement with the idea that all ranges in the present model
are positive. The physical meaning ofΔx′ andΔp′x appears
noting that initially, i.e. before definingn, space delocaliza-
tion and momentum ranges are unrelated. Let us regard then
Δx+Δx′ = xt− xo andΔpx+Δp′x = pt− po as the unperturbed
early ranges, whose respective final sizes are justΔx andΔpx

of eqs. (1,1). So eqs. (3,1) concern the probability that the
particle is eventually inΔx resulting after the measurement
driven perturbation of the earlyΔx + Δx′, whereas an analo-
gous explanation holds of course forΠpx as well. The total
probabilityΠn = ΠxΠpx for space delocalization and momen-
tum ranges fulfilling eqs. (1,1) is thus

Πn = ΔxΔpx/(ΔxΔpx + ΔxΔp′x + ΔpxΔx′ + Δp′xΔx′). (3,2)

In eq. (3,2)Πn is expressed as a function ofΔx andΔpx

that will bring us to eqs. (1,1) although starting from initial
larger ranges still unrelated, whence the notation. First of all
note that eq. (3,2) requires (Δx/

√
Πn)(Δpx/

√
Πn) > Δx′Δp′x.

Since all ranges appearing in this inequality are arbitrary, the
left hand side can be shortly written asδxδpx whatever the
specific values ofΠx , 0 andΠpx , 0 might be; these last po-
sitions are straightforward consequences of the previous con-
siderations. Second, also note that the probability of quantum
interest is the square root

√
Πn =

√
ΠxΠpx of that defined

classically as ratio between favorable and total chances; this
point will be further concerned in section 6. Third, by defini-
tion the product of ranges at right hand side of the inequality

cannot be made equal to zero; this would contradict the con-
cept of uncertainty, which must hold for any ranges of any
size not simultaneously vanishing. Soδxδpx > 0 requires the
existence of a valueconst′ > 0 such that

δxδpx > const′ ⇒ δεδt > const′. (3,3)

The second equation is obtained from the first likewise
as in eqs. (1,1). This is in effect the uncertainty principle
with the value ofconst′ of the order of the Plank constant;
this inequality is then direct consequence of the probabilistic
definition of eqs. (3,1) and supports the idea that the pertur-
bation induced by the measurement process shrinks the initial
uncorrelated rangesΔx + Δx′ andΔpx + Δp′x to the correla-
ted onesΔx andΔpx of eqs. (1,1). The fact that eqs. (3,3)
concern by definition observable states ensures that effecti-
vely

√
Πn , 0. Eventually, together with eq. (3,2) must in

principle exist also the probability

Π′n = 1− Πn. (3,4)

Note that eq. (3,2) admits in principleΔx′ << Δx and
Δx′ >> Δx, together with analogous features ofΔp′x; so both
limit probabilities can tend to 0 or to 1. Thus it is possible
to regard eq. (3,2) as the effective chance of getting an ei-
genvalue from the measurement process and eq. (3,4) as that
of not getting any eigenvalue. Both account for well known
outcomes of wave mechanics, e.g.: (i) eq. (3,4) accounts for
eigenvalues that actually do not exist, see for instance the pre-
vious conclusions about thex andy components of angular
momentum once having determinedMz; (ii) when a quan-
tum states is described by a superposition of several eigen-
functions, several eigenvalues exist whose respective actual
occurrence is probabilistic, and so on. These chances must
be inferred case by case when exploiting eqs. (1,1) through
specific reasonings like that of section 2. The physical me-
aning of

√
Πn will also be shortly discussed in the next sec-

tion 6; so eqs. (3,2) and (3,4) do not deserve further com-
ments here. Now instead let us pose a question before pro-
ceeding on: why just shrinking and not expanding further the
initial unrelated ranges? Apart from ther fact that the ranges
are by definition all positive, the second chance would mean
Δx + Δx′ andΔpx + Δp′x defined by negativeΔx′ andΔp′x,
which in turn would exclude the possibility of defining the
probabilitiesΠx andΠpx themselves. Besides this inconsis-
tency, a plain consideration further clarifies the question. The
measurement process tries to determine a physical property.
Expanding the early unrelated ranges would mean decreasing
our degree of knowledge about the particle, whose dynami-
cal variables would oscillate within wider ranges of possible
values; if so, the concept of measurement would be itself an
oxymoron. Shrinking the early ranges, instead, is the best
compromise offered by the nature to us during what we call
“measurement process”: while being forbidden the exact lo-
cal values of the classical physics we must content ourselves,

14 Sebastiano Tosto. Spooky Action at a Distance or Action at a Spooky Distance?



January, 2012 PROGRESS IN PHYSICS Volume 1

at least, of reduced ranges of values for conjugate dynami-
cal variables to which correspond however numbers of states.
We must accept therefore the probabilities of eqs. (3,1) as the
best we can get from a measurement process; this is what tells
us the Heisenberg inequality just obtained from our probabi-
listic knowledge of the reality around us. To proceed further
exploit again the arbitrariness of all ranges so far introduced
in order to rewrite eq. (3,2) in various possible ways. In the
first wayΠ = ΔxΔpx/(Δx′′Δp′′x ), beingΔx′′Δp′′x ≥ ΔxΔpx

the sum of all addends at denominator. This suggests that
ΔxΔpx = αconst, whereconstis a constant andα a parame-
ter to be defined consistently with the actual product of the
resulting uncertainties. Indeed this position allows writing in
general

Δx′′Δp′′x = α′′const, Δx′′′Δp′′′x = α′′′const (3,5)

and so forth, depending on the values of the range products
at left hand side. Let for instance beα′′′ ≤ α′′; eliminating
constfrom these equations one findsΔx′′′Δp′′′x /(Δx′′Δp′′x ) =
α′′′/α′′ i.e. the sought form ofΠn. A further possibility of re-
writing eq. (3,2) isΠn = ΔxΔpx/(4Δx§Δp§x) in the particular
case where all terms at denominator of eq. (3,2) are equal to
that here indicated with the unique notationΔx§Δp§x; there is
indeed no reason to discard also this chance, which must be
therefore included in our definition ofΠn. Eventually, another
consequence of the arbitrariness in definingΔx′ and thusΔx′′

andΔx′′′ of eqs. (3,5) must be taken into account:Δx′ could
have been even rewritten itself asΔx′ = Δx§ + Δx§§ + ∙ ∙ ∙,
with several addends again arbitrary; in this case the number
of addends at denominator of eq. (3,2) would have been any
integern rather than 4. All these requirements are easily in-
cluded in the definition ofΠn simply puttingα ≡ n, so that
eqs. (3,5) readΔx′′Δp′′x = n′′constand so forth withn ar-
bitrary integer; in other words,n corresponds to the arbitrary
number of possible subdivisions of the early ranges induced
by the measurement process. This result effectively leads to
both eqs. (1,1), which merely specify the value ofconstas
that of ~. Note eventually that dividing more and more the
initial intervalΔx′ into an increasing number of intervalsΔx§,
Δx§§, . . . means considering smaller and smaller sized ran-
ges, to which corresponds an increasing numbern; since a
smaller and smaller range actually tends to the limit of a local
coordinate better and better defined, one realizes thatn→ ∞
corresponds to the deterministic limit of the classical physics.
Once more, the same holds for the other ranges. Since eqs.
(1,1) are adequate to describe the existence of eigenvalues,
one concludes that the measurement process is in fact consis-
tent with the existence of experimental observables despite
the initial uncertainties of both dynamical variables. Note
that the reasoning above did not exploit any specific feature
of the momentum; in other words, instead of the momentum
range the reasoning could have identically exploited directly
the perturbation of the velocityvx of the particle under obser-
vation, i.e. a velocity range. The question about why we have

in fact introduced just the momentum is irrelevant, as it rests
merely on the particular choice of the physical dimension of
const; regarding this latter as a productconst§m, involving m
times another constant, one would still find eqs. (3,5) with the
form Δx′′Δp′′x = n′′const§m i.e. Δx′′Δv′′x = n′′const§. Two
further considerations are instead by far more relevant. The
first is that eqs. (1,1) compel regarding any observable as the
consequence of the measurement process itself, rather than as
intrinsic feature of matter; no pre-existing state, and thusn,
was indeed definable for the particle before the measurement.
The conclusion thatn characterizing the eigenvalues is conse-
quence of the measurement process, rules the realism out of
the quantum world. The second relevant feature of eqs.(1,1),
which clearly appears recalling the results of section 2, con-
cerns the localism. The particular example of the angular mo-
mentum has been introduced before any further consideration
of central interest for the purposes of the present paper just to
show that the local dynamical variables do not play any role
in determining the observable properties of reality around us,
as the experimental properties we measure are related to the
eigenvalues and thus to the number of allowed states only.
So the local values of dynamical variables become unphysi-
cal once accepting eqs. (1,1) to formulate quantum problems:
nothing measurable corresponds to the local values. Hence,
in lack of local information, the concept of distance is unphy-
sical itself in the quantum world. For instance, in [15] the
Newton and Coulomb forces between two interacting mas-
ses or charges have been inferred replacing the dependence
on their classical distancex−2

12 with the dependence onΔx−2:
according to eqs. (1,1), the space range includes all possible
local distances between the interacting particles whose coor-
dinates fall withinΔx. Regarded from this point of view, the
EPR paradox is unphysical itself: it is impossible to define a
superluminal distance conflicting with the exchange of infor-
mation about the spin orientation of two particles arbitrarily
apart each other. Whatever their distance might be, a rangeΔx
including both of them certainly exists because its size is by
definition arbitrary. Once regarding two particles withinΔx,
however, the concept of their local distance fails together with
that of the respective local coordinates; in principle nobody
knows or can measure how far they might actually be. For this
reason it would be appropriate to describe the EPR gedanke-
nexperiment as an action at a spooky distance, instead of a
spooky action at a distance. Moreover the concept of entan-
glement appears itself implicitly inherent the present appro-
ach, as even particles at superluminal distance must behave
consistently with their chance of being anywhere and thus of
exchanging information as if they would actually be at very
short distance. In this respect, just the quantum entanglement
is itself the best demonstration of the correctness of the pre-
sent point of view based exclusively on the eqs. (1,1), which
thus exclude “a priori” both realism and localism from the
quantum world; all this clearly appears in section 2. Also the
Aharonov-Bohm effect is immediately understandable in the
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frame of the present reasoning: an electrically charged par-
ticle is affected by an electro-magnetic field even when it is
confined in a region where both electric and magnetic fields
are zero. Actually it is hereand there just like a wave pro-
pagating through, and thus filling, all available delocalization
range. The previous considerations show indeed that regar-
ding a quantum particle hereor there is physically illusory;
assigning a specific location is an idea arbitrarily and incor-
rectly extrapolated from the classical physics to the quantum
world.

4 The Bell inequality

At this point, the exposition brings unavoidably into the mind
the Bell inequality. The non-locality and non-reality of the
results inferred from eqs. (1,1) suggest emphasizing the con-
nection between the considerations of section 3 and the Bell
inequality. To highlight this link let us rewrite the eqs. (1,1)
as

Δx
Δx1

Δpx

Δp1
= n,

Δt
Δt1

Δε

Δε1
= n, n ≥ 1, (4,1)

where the subscript “1” meansn = 1. In this way~ does no
longer appear explicitly in the expression of the number of
states. Eqs. (4,1) appear therefore as an appropriate star-
ting point to examine the relationship between eqs. (1,1)
and Bell inequality, which has indeed general character not
specifically related to the quantum theory. Considering for
sake of brevity the first equation only (the second is indeed
its straightforward consequence) and taking the logarithms of
both sides one finds

log

(
Δx
Δx1

)

+ log

(
Δpx

Δp1

)

≥ 0. (4,2)

This equation presents a formal analogy with the Bell-like
inequality, [9]

N(A, Bn) + N(B,Cn) ≥ N(A,Cn), (4,3)

where the subscript “n” stands for “not”. Its demonstration
is amazingly simple. Whatever the propertiesA, B and C
might represent, the inequalityN(A, Bn,C)+N(An, B,Cn) ≥ 0
expressing the sum of the respective numbers of occurrences/

non-occurrences possible forA, B andC is self-evident. Add
to both sides the sumN(A, Bn,Cn) + N(A, B,Cn) expressing
further numbers of occurrences/non-occurrences possible for
B andC and note that terms likeN(A, Bn,C) + N(A, Bn,Cn)
read actuallyN(A, Bn); the notation emphasizes a resulting
term no longer distinguished according to either propertyC,
i.e. the sum including both chances allowed forC with the
sameA andBn discriminates in fact the occurrences/non-oc-
currences ofA and B only. So one infers immediately the
inequality (4,3) that can be more expressively rewritten as

Nn(A, Bn) + (Nn(B,Cn) − Nn(A,Cn)) ≥ 0 (4,4)

with notationsNn for reasons that will be clear soon. Compa-
ring the inequalities (4,2) and (4,4) requires emphasizing first
of all what “not” stands for. In eqs. (3,1) the rangesΔx′ and
Δp′x additional toΔx andΔpx have been introduced to define
the probabilityΠx that after the measurement interaction the
particle delocalization is described byΔx and no longer by
Δx + Δx′, while an analogous idea holds also forΠpx; as we
have shown, just the probabilities that both initial ranges sh-
rink to new ranges fulfilling eqs. (1,1) entail the numbers of
statesn and thus the existence of the respective eigenvalues.
This suggests thatB andBn describe respectively the chances
of leaving the initial delocalization range unchanged or not
after the perturbation induced by the observer, whereasC and
Cn concern in an analogous way the momentum ranges of the
particle. As regardsA, it represents the existence of an eigen-
value of the particle; of courseAn means that delocalization
and momentum ranges of the particle remain unchanged and
so unrelated, thus not corresponding to any number of states.
The notationNn relates thus the inequality (4,4) to any possi-
ble eigenvalue. For instance: sincen requires that are verified
both favorable probabilities (3,1), it is reasonable to think that
the various probabilitiesPn corresponding to eq. (4,4) fulfill
also the condition

Pn(A, Bn)Pn(A,Cn) + Pn(An, B)Pn(An,C) = 1. (4,5)

In effect, it is possible to normalize eq. (4,4) be means
of an appropriate numerical factor in order to express the
various numbersNn of occurrences/non-occurrences through
their respective probabilitiesPn for one particle only. The
first addend of eq. (4,5) represents the probability of getting
an eigenvalue as a consequence of the measurement process,
the second does not; in fact this idea was already introduced
through the probabilitiesΠn andΠ′n of eqs. (3,2) and (3,4).
The sum of both chances that correspond to the Bell-like ine-
quality

Pn(A, Bn) + Pn(B,Cn) − Pn(A,Cn) ≥ 0

must be of course equal to 1 in eq. (4,5). Let us try now to
correlate term by term eqs. (4,2) and (4,4); the latter concerns
directly the numbers of occurrences/non-occurrences leading
to then-th number of states allowed for one particle. This
correlation yields

Δx = Δx1 exp(Nn(A, Bn)) ,

Δpx = Δp1 exp(Nn(B,Cn) − Nn(A,Cn)) .

To verify if these equations can be simultaneously fulfil-
led, let us multiply them side by side; recalling that by defi-
nition Δx1Δp1 = ~, one obtains

n = exp(Qn) ,

Qn = Nn(A, Bn) + Nn(B,Cn) − Nn(A,Cn) ≥ 0. (4,6)
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So the result is thatn must be equal just to the exponen-
tial of the numberQn of occurrences/non-occurrences of the
Bell-like inequality. It is clear however that in general the
first equation (4,6) is false. Even admitting the chance that it
is effectively verified for one among the possible numbers of
states, sayn§, by an appropriate valueQn§ , what about other
numbers of states like for instancen§ − 1 orn§ + 1? It is clear
that a hypothesis should be made on the respectiveQn§−1 and
Qn§+1. However the Bell-like inequality (4,3) does not pros-
pect itself any indication about such a hypothesis, which the-
refore would require an “ad hoc” assumption valid for all ar-
bitrary integersn progressively increasing from 1 by steps of
1 until to infinity. Note in this respect that the impossibility of
eqs. (1,1) to fulfil the Bell-like inequality is in fact due to the
quantization ofn; if this latter could take any non-quantized
value, then eq. (4,6) would be fulfilled in principle whatever
Qn might be. Hence is just the quantization of the eigenvalues
that makes itself non-real and non-local the quantum world.
In effect for n → ∞ the numbern approximates better and
better a continuous variable of the classical physics, whence
the realism and localism of the macroscopic classical world.

5 Uncertainty and special relativity

After having justified why the uncertainty ranges of position
and momentum entail non-locality and non-reality, remains
the concept of time and energy uncertainty to be better explai-
ned in the frame of such a conceptual context. Consider that
also the time measurement requires a macroscopic apparatus,
whose outcome is nothing else but the time of the observer.
The question arises: is the observer time coincident with that
of the particle? This question can be answered considering
first that during the measurement process eqs. (1,1) apply
to different reference systems, about which no hypothesis is
made. Suppose that eqs. (1,1) refer to the particle; we must
rewrite them asΔx′Δp′x = n′~ = Δε′Δt′ for the observer. Let
R andR′ be the respective reference systems; in both cases
the ranges are completely arbitrary by definition, as concerns
their sizes and analytical form. For instance it is not possi-

ble to establish ifΔx = xo + vxΔt or if Δx =

√
x2

o + (vxΔt)2

or anything else. The same holds also for the momentum
range and for the energy range. Moreovern andn′ are not as-
signed values, rather they are mere notations to indicate any
integer unspecified and unspecifiable. Son and n′ remain
indistinguishable despite any integer of either reference sys-
tem might turn into a different integer in the other reference
system. Hence the arbitrariness of the analytical form of the
ranges does not contradict the validity of eqs. (1,1) in dif-
ferent reference systems despite the chance of their possible
size changes; the uncertainty equations (1,1) hold identically
in Rand inR′, regardless of whether they refer to particle and
observer in the respective reference systems. So, whatever
the sizes ofΔx of the particle andΔx′ of the observer might
be, in principle eqs. (1,1) do not require that the time ranges

Δt andΔt′ coincide. Recall now that the time range was in-
troduced in section 1 to infer eqs. (1,1) through the positions
Δt = Δx/vx, which thus requires analogouslyΔt′ = Δx′/v′x,
and note that both signs are allowed for the velocity compo-
nentsvx and v′x defined inR and R′. This means that with
respect to the originO of R we expectΔx± vxΔt = 0 depen-
ding on whether the particle moves leftwards or rightwards.
A possible position to summarize into a unique equation these
chances regardless of either sign ofvx is Δx2 − v2xΔt2 = 0; to
this result corresponds of course an analogous expression in
R′, i.e.Δx′2 − v′x

2Δt′2 = 0. Hence it is possible to write

Δx′2 − v′x
2
Δt′2 = 0 = Δx2 − vx

2Δt2. (5,1)

Both vx andv′x are reminiscent of the respective reference
systems where they have been initially defined. Since no
constraint is required for these velocities, both arbitrary by
definition, the last equation allows replacingvx and v′x with
any other values of velocity still defined inRandR′; so

Δx′2−v′′x
2
Δt′2 = δs2

v′′,v′′′ = Δx2−v′′′x
2
Δt2 δs2

v′′,v′′′ , 0. (5,2)

Being unchanged the delocalization range sizes at right
hand side, the intervalδs2

v′′,v′′′ is no longer equal to zero once
having replacedvx

2 with v′′′x
2; yet this does not hinder that

this interval is still equal to the expression at left hand side
if v′x is replaced by another appropriate velocityv′′x also de-
fined in R′; thus remains unchanged the analytical form of
eqs. (5,1) and (5,2). In this way we have found a unique
intervalδs2

v′′,v′′′ common to both reference systemsR andR′.
Yet this result is not a property of an interval defined by un-
certainty ranges only, as it involves the presence of a particle
through its displacement velocity; however it is interesting
the fact thatδs2

v′,′v′′′ does not require specific values ofv′′x
2

andv′′′x
2, which are indeed arbitrary like the ranges themsel-

ves. In the paper [15], was identified a velocity invariant in
any reference system, calledvx

max, i.e. the maximum average
velocity with which any particle can displace in anyΔx. This
suggest the chance of expressing eqs. (5,2) just through this
velocity, which will be called from now onc. If in particular
we replacev′′x

2 andv′′′x
2 with c, then

Δx′c
2 − c2Δt′c

2
= δs2

c = Δxc
2 − c2Δtc

2 δsc , 0. (5,3)

This result contains new delocalization ranges that can be
chosen in order to generalize the previous result; this can be
certainly done in agreement with this appropriate choice of
the velocity, to which refers indeed the subscriptc. In general
eq. (5,3) holds forδsc not necessarily equal to zero and re-
presents a real step onwards with respect to eq. (5,2) because
of the peculiar property ofc, which is defined regardless of a
specific reference system. The only quantities that depend on
R areΔxc andΔtc that defineδsc regardless of the presence
itself of any kind of particle thanks to the universal character
of c. In conclusion, the present discussion allowed to find a
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relationship that describes the form of an interval invariant in
RandR′, thus in any other reference system. Since this result
has been obtained from eqs. (1,1), it is also compliant with
the requirements of non-locality and non-reality previously
introduced. The interval rule is a fundamental statement of
special relativity, for instance it allows to infer the Lorentz
transformations of space, time, momentum and energy [18].
However, apart from the formal analogy, the ranges introdu-
ced here have fully quantum physical meaning, i.e. they are
uncertainty ranges; instead the ranges of relativity have the
deterministic character of classical physics, i.e. they are de-
fined as a function of selected local coordinates in principle
exactly known. Therefore eq. (5,3) shows that even the re-
lativity can be made compliant with the requirements of the
quantum world provided that the local dynamical variables
be discarded as done here and the macroscopic determinis-
tic ranges take the physical meaning of uncertainty ranges.
This crucial step, although abstractly simple, is certainly non-
trivial as concerns the different way of regarding the concep-
tual basis of relativity. The next considerations concern just
the consequences of this conclusion. From eq. (5,3) and ac-
cording to eqs. (1,1) one infers, omitting for simplicity the
subscriptsc andx from now on but still intending thatv is a
component of average velocity along an arbitrary axis,

c2Δt′2

c2Δt2
=

(v/c)2 − 1

(v′/c)2 − 1
, v = Δx/Δt, v′ = Δx′/Δt′.

(5,4)
Putting in this equationc→ ∞, i.e. in the non-relativistic

limit, Δt′ → Δt; as expected, without a finite light speed one
finds the absolute time of Newton. Suppose nowR andR′

displacing each other at constant rateV such that in either of
them, say inR, the particle is at rest. In the particular case
v = 0, therefore,v′ is just the rateV with which R displaces
with respect toR′; of course it is also identically possible
to put v′ = 0, in which casev = −V. Since we have two
equivalent ways to regardv andv′, let us exploit for instance
the first chance to find the transformation properties of the
time range and the second chance for the space range; in the
latter case it is convenient to put in eq. (5,3)δsc = 0 to infer
directlycΔtc = Δxc andcΔt′c = Δx′c. One finds then

Δt′ = Δt
(
1− (V/c)2

)−1/2
, Δx′c = Δxc

(
1− (V/c)2

)1/2
.

(5,5)
Actually the subscriptc could have been omitted in the

second equation; being arbitrary both time ranges of eq. (5,3),
it holds in fact for anyΔx andΔx′. The relevant remark is
however that to time dilation corresponds length contraction
in the primed reference system. It is also immediate to find
the expressions of momentum and energy of a free particle.
Let us consider first the following equalities obtained from
eqs. (1,1) in the particular casen = 1

Δp(v)Δx(v) = Δt(v)Δε(v) = Δt(c)Δε(c) = ~,

Δt(c) = Δtmin, Δε(c) = Δεmax.

The superscripts emphasize the values taken by the velo-
city v in the various cases; the subscripts emphasize that when
v = c the traveling time is minimum whereasΔε is maximum,
both consistently with~ and with the arbitraryΔp(v) andΔx(v)

describing a slower massive particle. These positions are im-
portant as they compel specifying how, in a given reference
system,Δp(v) andΔε(v) scale with respect toΔp(c) andΔε(c)

when v < c. SinceΔε(c) = cp(c)
2 − cp(c)

1 , thenε(c) = cp(c)

by definition; hereε(c) and p(c) are random local values of
energy and momentum within their own uncertainty ranges.
For a slower massive particleΔt(v) andΔε(v) scale likec/v and
v/c with respect toΔt(c) andε(c); hence, according to the for-
mer equality,ε(v) = ε(c)v/c requiresp(v) scaling with respect
to p(c) like cp(v) = ε(c)v/c, i.e. p(v) = ε(c)v/c2. Being p(v)

andε(c) random local quantities within the respective ranges,
the functional relationship between any possible value of mo-
mentum and energy must be

p = εv/c2. (5,6)

Momentum and energy of a free particle are constants
both in classical physics and in special relativity. However
eq. (5,6) is here a quantum result, which therefore must be
accordingly handled. Let us admit that during a short time
rangeδt even the energy of a free particle is allowed to fluc-
tuate randomly byδε. Eq. (5,6) is thus exploited to calculate
the link betweenδε and related values ofδp andδv during
the time transient where the fluctuation allows the particle
moving in altered way. Differentiating eq. (5,6) one finds
δε = c2δp/v−p(c/v)2δv: once having fixedp andv, this result
defines the functional dependence ofδε upon arbitraryδp and
δv = v2 − v1 defined by two arbitrary valuesv1 andv1. Sum-
mingδε and eq. (5,6) one findsε+ δε = c2(p+ δp)/v− εδv/v.
Note now that in generalδpδx = n~ reads identically (δp)2 =

n~δp/δx, whereas in an analogous way (δε)2 = n~δε/δt. Re-
gard in this way just the new rangesε + δε andp + δp; put-
ting δx = vδt and replacing in the last expression to calculate
δ(ε + δε)/δt, one finds

(n~)−1(Δε)2 = (n~)−1(Δpc)2 − εδω, (5,7)

Δε = ε + δε, Δp = p+ δp.

The last addend results becausev/δx has physical dimen-
sions of a frequencyω, so thatδv/δx = ω2 − ω1. Since
n~ωδε = δ(εn~ω) − εδ(n~ω), replacing this identity in the
last equation one finds (Δε)2 = (Δpc)2 + n~ωδε − δ(εn~ω).
Let us specify this result via the position

n~ω = δε (5,8)

which yields also (Δε)2−(Δpc)2 = (δε)2−δ(εδε). At left hand
side appear terms containing the rangesε+δε andp+δp only,
at right hand side the rangesδε andδponly; so it is reasonable
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to expect that the last equation splits into two equations linked
by a constant energyεo

(Δε)2 − (Δpc)2 = ε2
o = (δε)2 − δ(εδε).

Indeedεo agrees with both of them just because it does
not depend upon neither of them. Trivial manipulations show
that the first equation yields

p = ±
εov/c2

√
r2
ε − r2

p(v/c)2
, ε = ±

εo
√

r2
ε − r2

p(v/c)2
, (5,9)

r p = 1+
δp
p
, rε = 1+

δε

ε
.

As expected, eq. (5,6) results fulfilled even during the
transient. The value of the constantεo is immediately found
through the following boundary condition consequence of eq.
(5,6)

lim
v→0

p
v
=
εrest

c2
= m. (5,10)

Thenε2
o = ε2

rest. Eqs. (5,9) hold during the time transient
allowingδε; before and after that transient one must putδε =
0 andδp = 0 which yields the “standard” Einstein momentum
and energy of the particle, which are of course

ε2
Ein = c2p2

Ein + ε
2
rest, εrest = mc2, (5,11)

pEin = ±
mv

√
1− (v/c)2

, εEin = ±
mc2

√
1− (v/c)2

.

It is easy now to calculate the energy and momentum gaps
ε− εEin andp− pEin during the time transientδt as a function
of δp/p andδε/ε as follows

mv
√

r2
ε − r2

p(v/c)2
−

mv
√

1− (v/c)2
=
~

δl
, (5,12)

mc2

√
r2
ε − r2

p(v/c)2
−

mc2

√
1− (v/c)2

=
~

δt
.

These equations, which are nothing else but the uncer-
tainty equations of the fluctuation gaps, will be commented
and exploited in section 7. The chance of obtaining the eqs.
(5,6), (5,10) and (5,11) could be reasonably expected; in the
paper [15] it was shown that eqs. (1,1) only are enough to
infer the following corollaries: (i) equivalence of all inertial
reference systems in describing the physical laws, (ii) exis-
tence of a maximum average displacement rate allowed for
any particle in its delocalization range and (iii) invariance in
all reference systems of such a maximum velocity. These co-
rollaries are in fact the basic statements of special relativity.
Five further remarks are crucial in this respect: (i) the mass
m is not introduced here as the familiar concept of everyday
common experience, rather the mass is inferred itself as a

consequence of the uncertainty; (ii) the analytical expressions
of energy and momentum have been obtained without need of
any hypothesis additional to eqs. (1,1); (iii) the most repre-
sentative formulas of special relativity are here obtained as
straightforward consequences of the quantum uncertainty th-
rough trivial algebraic manipulations of eqs. (1,1) only; (iv)
eqs. (5,11) are typical expressions of particle behaviour of
matter, eq. (5,8) involves instead the wave behavior of matter
too, because the frequencyω is a typical property of waves;
unifying both properties into a unique equation leads to the
well known relativistic formulas; (v) uncertainty ranges only
appear in formulas coincident with that, well known, of the
special relativity.

Note in this respect that the Einstein deterministic appro-
ach excludes the random fluctuation of velocity, energy and
momentum, which is a typical quantum phenomenon; here
instead the well known eqs. (5,11) are particular cases only
of the more general eqs. (5,9) taking into account the pos-
sibility of fluctuations, in agreement with the fact that here
the Einstein intervals here are actually quantum uncertainty
ranges. Just this last statement opens the way to further con-
siderations, carried out in section 7. Before exploiting the
results of the present section, however, the next section 6 will
concern a further topic previously introduced: the possibility
of defining uncertainty sub-ranges included in larger ranges.
The aim is to clarify the physical meaning of such a further
way to regard the quantum uncertainty.

6 Uncertainty and operator formalism of wave mecha-
nics

It is well known that the uncertainty principle is a conse-
quence of the operator formalism of wave mechanics. This
section aims to emphasize that the reverse path is also pos-
sible: here we show how to infer the momentum and energy
wave equations starting from eqs. (1,1). This result is non-
trivial: it emphasizes that the fundamental basis of the present
theoretical approach leads also to the early wave equations
from which has been developed the modern formulation of
quantum mechanics. The uncertainty inherentΔx does not
prevent to define in principle the probabilityΠ = Π(x, t) that
the particle be in an arbitrary sub-rangeδx inside the total
range

δx
Δx

= Π, δx = x− xo, δx ≤ Δx, (6,1)

provided that hold forδx the same uncertainty features ofΔx;
so no hypothesis is made aboutδx. Moreoverx and xo are
both arbitrary and unknown likewise that ofΔx; there is no
chance of defining width or location ofδx within Δx or dis-
tinguishingδx with respect to any other possible sub-range.
In generalΠ is expected to depend on space coordinate and
time; yet we consider first the explicit dependence ofΠ on x
only, i.e. t is regarded as fixed parameter in correspondence
to which are examined the properties ofΠ as a function of
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x. Regard the width ofδx variable, withx current coordinate
andxo constant. The couples of coordinates definingΔx and
Δpx are instead considered fixed. Eqs. (6,1) yield

1
Δx

=
∂Π

∂x
, Π = Π(x, t). (6,2)

Let Π and 1− Π be the chances for the particle to be or
not withinδx and ben+ andn− the arbitrary numbers of states
consistent with the respective probabilities. Putting

δxΔp = n+~, (Δx− δx)Δp = n−~, n+ + n− = n, (6,3)

thenn+/n+ n−/n = 1; also, eq. (6,3) yields the identity

(1− Π)ΠΔp2 = n−n+~
2

(
∂Π

∂x

)2

. (6,4)

Puttingn+n− = n′ + n′′, wheren′ andn′′ are further arbi-
trary integers, eq. (6,4) splits as follows

ΠΔp2 = n′~2

(
∂Π

∂x

)2

, (6,5a)

Π2Δp2 = −n′′~2

(
∂Π

∂x

)2

. (6,5b)

Sincen+ and n− are by definition positive, at least one
amongn′ and n′′ or even both must be positive. Consider
separately the possible signs ofn′ andn′′.

Case (i)n′ > 0 andn′′ < 0. Eqs. (6,5) read alsoδxΔp =

(n′/n)~ andδx2Δp2 = |n′′| ~2 because of eqs. (6,1) and (6,2).
Moreover multiplying both sides of the latter by|n′′| and both
sides of the former byn§n/n′, with n§ arbitrary integer, one
finds

δx′′Δp = n′′~, δx§Δp = n§~,

whereδx′′ =
√
|n′′|δx andδx§ = (n§n/n′)δx. Also, (n′/n)2 =

|n′′| andΠ = |n′′| /n′. These results are mutually consistent
for any integers at right hand sides, because are arbitrary not
only n′ andn′′ but alsoδx; indeed the new uncertainty equa-
tions have an analogous form and physical meaning. Hence
eqs. (6,5) do not exclude each other and are both accepta-
ble; yet they are both formally analogous also to the initial
eq. (1,1), the only difference being the size of their space un-
certainty ranges only. In conclusion, being the sizes arbitrary
by definition, this combination of signs ofn′ andn′′ does not
entails anything new with respect to eq. (1,1), and thus has
no physical interest.

Case (ii)n′ < 0 andn′′ > 0. The right hand sides of both
eqs. (6,5) have negative sign, so neither of them can have
the same physical meaning of the initial eq. (1,1); they read
Π = − |n′| /n2 andΠ2 = −n′′/n2 because of eq. (6,2). Yet the
resultΠ = n′′/ |n′| = − |n′| /n2 is clearly absurd, so also this
combination of signs has no physical interest.

Case (iii)n′ > 0 andn′′ > 0. Eqs. (6,5) are now phy-
sically different, because their ratio would entailΠ negative.

Thus these equations cannot be combined together, because
of their different ways to describe the particle delocalized in
Δx; they must be considered separately. Eq. (6,5a) is concep-
tually analogous to eq. (1,1); eq. (6,5b) excludes eq. (6,2) and
admits the solutionΠ = A′ exp(±i(x − xo)Δp/~

√
n′′), being

A′ the integration constant. RewritingΠ = Aexp(±iϕδx/Δx)
with ϕ = n/

√
n′′, the probabilityΠ inferred here significantly

differs fromΠ of eq. (6,5a) despite the same notation; the for-
mer is indeed a complex function, the latter coincides instead
with eq. (6,1). Both are however definable in principle.Thus
eq. (6,5b) still retains the essential concept of delocalization
within an arbitrary uncertainty range, yet without concerning
itself the ability of regarding the particle as a corpuscle in any
specific point ofΔx.

The following discussion concerns the case (iii). To ac-
cept both eqs. (6,5) together, we must acknowledge their dif-
ferent form, i.e. their different way to describe the particle
delocalization insideΔx. This dual outcome reveals however
the inadequacy of regarding the particle as mere corpuscle
delocalized somewhere in its uncertainty range, as required
by eqs. (1,1). Despite the particle must be anyway randomly
moving inΔx, eq. (6,5b) is incompatible with the corpuscle-
like behaviour of eq. (6,5a). A further difficulty to regard to-
gether eqs. (6,5a) and (6,5b) is thatΠ defined by this latter is
not real, as insteadΠ∗Π = |const|2 does. Yet just this property
suggests a possible way out from this difficulty, i.e. supposing
that eq. (6,5b) requires a wave-like propagation of the parti-
cle: soΠ∗Π could stand for particle wave amplitude whereas
A′, in fact regarded here asA0A(t) without contradicting any
previous step, could define frequency and phase of the par-
ticle wave. This idea is confirmed rewriting the exponential
xΔp of Π astΔε dividing and multiplying by an arbitrary ve-
locity v in order that±ixΔp/~

√
n′′ turns into±itΔε/~

√
n′′.

SoA(t) results defined just by this requirement, i.e.

Π = A0 exp[±i(cx(x− xo)Δp+ ct(t − to)Δε)/~
√

n′′], (6,6)

beingcx andct arbitrary coefficients of the linear combination
expressing the most general way to unify the space and time
functions. Calculate∂2Π/∂x2 = −(cxΔp)2Π to extract the
real quantitycxΔp from Π, and then by analogy∂2Π/∂t2 =

−(ctΔε)2Π too; eliminatingΠ between these equations and
noting that by dimensional reasons (cxΔp/ctΔε)2 = v−2, the
result∂2Π/∂x2 − v−2∂2Π/∂t2 = 0 confirms, whateverv might
be, the wave-like character of particle delocalization provi-
ded by eq. (6,5b). A similar wave equation could not be
inferred from eq. (6,5a), according which the physical pro-
perties of the particle are related directly to the probabilityΠ

of eq. (6,1); instead, owing to the complex form ofΠ resul-
ting from eq. (6,5b), the physical properties of the wave are
related toΠ∗Π. It is possible to eliminate this discrepancy
introducing the complex function

√
Π in place ofΠ and re-

writing eq. (6,5b) as a function of the former instead of the
latter; this idea agrees with that already exploited to find eqs.
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(3,3). Dividing both sides byΠ, eq. (6,5b) reads


±~

∂
√
Π

∂x




2

= −
(
p§
√
Π
)2
, p§ = ±

Δp

2
√

n′′
. (6,7)

The notation emphasizes thatp§ does not depend onx
and is not a range; being defined as solution of the differen-
tial equation (6,7) only, its value is not longer related toΔp,
i.e. it is an eigenvalue of

√
Π. This is possible becausen′′ is

arbitrary likeΔp, which allows that the ratioΔp/2
√

n′′ beha-
ves as a well determined quantity specified just byp§, whose
value and signs correspond to either component of momen-
tum along thex-axis where are defined positiveδx andΔx.
Thus eq. (6,7) reads

±
~

i
∂
√
Π

∂x
= p§

√
Π,

√
Π =

√
A

√
exp(±iϕδx/Δx). (6,8)

So
√
Π
√
Π∗ expresses the probability to find the particle

so-mewhere inΔx. Write thus

√
Π
√
Π∗ = ±

~

ip§

√
Π∗∂
√
Π

∂x
.

The right hand side is real and yields
√
Π
√
Π∗ = δx0/Δx

= A0, beingδx0 = A0~ϕ/2p§. As a proper value ofA0 cer-
tainly exists such thatδx0 ≤ Δx, then

√
Π
√
Π∗ agrees with a

concept of probability similar to that of the initial definition
δx/Δx of eq. (6,1); yet this latter is replaced in the last equa-
tion by a constant value, which entails thus equal probability
to find the particle in any sub-rangeδx0 regardless of its size
and position withinΔx. The physical meaning of this result
is emphasized integrating both sides of eq. (6,8) with respect
to x in the sub-rangeδx0 = x02 − x01, which yields

p§ = ±




x02∫

x01

√
Π
√
Π∗dx




−1 x02∫

x01

(√
Π∗
~

i
∂

∂x

√
Π

)

dx. (6,9)

The average value of momentum is thus equal to the
eigenvalue expected for the steady motion of a free particle
(Ehre-nfest’s theorem), which suggests regardingδx0/Δx as
average probability that the particle is in the sub-rangeδx0.
It is clearly convenient therefore to defineA0 in order that
δx0 = Δx through ∫

√
Π
√
Π∗dx = 1, i.e. the momentum

eigenvalue concerns the certainty that the particle is really
delocalized in the total rangeΔx. Being this latter arbitrary,
it allows considering in general the particle from−∞ to ∞.
The physical information provided by eq. (6,5b) is thus re-
ally different from that of eq. (6,5a), although being unques-
tionable the consistency of eqs. (6,8) and (6,9) with the ini-
tial eq. (6,1) despite their different formulation: both come
indeed from the same uncertainty equations (1,1). So it is
not surprising that the uncertainty is still inherent

√
Π and

consistent with the eigenvaluep§. It is evident at this point

that the results hitherto inferred concern just the basic ideas
through which has been formulated the early quantum me-
chanics; it is enough to regard in general the wave functions
in analogous way, e.g. as it is shown below for the energy
eigenfunction. So, writeψ = const

√
Π andψ∗ = const

√
Π∗

to define the probability density of the particle within the vo-
lumeΔxΔyΔz; this is just the volume to normalizeψψ∗. Being
the uncertainty ranges arbitrary, this probability density con-
cerns actually the whole space allowed to the particle. The
normalization constant is inessential for the purposes of the
present paper and not explicitly concerned hereafter. The re-
sult of interest is that, after having introduced the probability
Π of eq. (1,1), one finds two distinct equations concurrently
inferred from the respective eqs. (6,5)

Δp§Δx§ = n§~, (6,10a)

~

i
∂
√
Π

∂x
= ±p§

√
Π. (6,10b)

Two comments about eqs. (6,10):
(i) eq. (6,10a) is conceptually equal to the initial eq. (1,1),

from which it trivially differs because of the size of the un-
certainty ranges and related number of states; (ii) eq. (6,10b)
defines a differential equation that calculates an eigenvalue of
momentum through the probability that the particle be in a
given point of its allowed rangeΔx§.
Eq. (6,10a) does not consider explicitly the particle, but only
its delocalization insideΔx§ and thus its phase space; the
same holds also for the momentum, whence the positions
(2,1) and the indistinguishability of identical particles whose
specific properties are disregarded “a priori”. The unique
information available concerns indeed the number of states
n§ consistent withΔx§ and Δp§ for any delocalized parti-
cle; nothing requires considering the local dynamical varia-
bles themselves. The point of view of eq. (6,10b) is dif-
ferent: it considers explicitly the sub-rangeδx through

√
Π

and thus, even without any hypothesis about size and posi-
tion of δx within Δx§, concerns directly the particle itself th-
rough its properties

√
Π
√
Π∗ andp§; both these latter are ex-

plicitly calculated solving the differential equation. Yet the
common derivation of both eqs. (6,10) from the initial eq.
(1,1) shows that actually the respective ways to describe the
particle must be consistent and conceptually equivalent, as in
effect it has been verified in section 2. This coincidence evi-
dences the conceptual link between properties of the particles
and phase space; it also clarifies why the quantum eigenva-
lues do not depend on the current values of the dynamical
variables of the particles, even though calculated solving the
differential equation (6,10b). InitiallyΠ was introduced in eq.
(6,1) as mere function of uncertainty ranges and sub-ranges
of the phase space; thereafter, however, it has taken through
the steps from eqs. (6,2) to (6,10) the physical meaning of
wave function

√
Π of the particle defining the momentum ei-

genvaluep§, which involves the mass of the particle. Eq.
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(6,10b) introduces the operator formalism of wave mecha-
nics. The approach starting directly from eqs. (1,1) has the-
refore more general character than the latter, which starts just
postulating eq. (6,10b) here found instead as a corollary: the
basic reason is that eq. (6,10a) contains less information than
eq. (6,10b). These equations can be now regarded together
once having acknowledged the kind of information inferred
from eqs. (1,1). On the one side eqs. (6,10) introduce the
wave/corpuscle dual nature of particles: eq. (6,10a) admits
that the particle is somewhere inΔx, even though renoun-
cing to know exactly where because of the delocalization;
eq. (6,10b) instead regards the particle as a wave propagating
within Δx thus still delocalized but excluding in principle the
unknown position of a material corpuscle. On the other side
eqs. (6,10) confirm that properties of particles and properties
of phase space must not be regarded separately, rather they
are intrinsically correlated: just for this reason the results of
section 2 show that the numbers of quantum states (proper-
ties of the phase space) coincide with the quantum numbers
that define the eigenvalues (properties of the wave function of
the particle). Further properties of

√
Π = ψ could be easily

found, e.g. the concept of parity or the fact that the arbitra-
riness of the coefficientscx andct previously introduced in
the early expressionΠ = A0 exp[±i(cxxΔp + cttΔε)/~

√
n′′]

allows to write the more general form for this equation

Π =
∑

j

A0 j exp[±i(cx jxΔpj + ct j tΔε j)/~
√

n′′ j ].

All these assertions are well known since the early birth
of the quantum theory and do not need further consideration
here for sake of brevity; their evolution brings the theory up
to today’s formulation. It is more interesting to examine the
same problem considering the time instead of the space co-
ordinate. The steps to find the energy operator are concep-
tually identical to those so far reported; yet one regards the
probability for the particle to be inδx at the timet, i.e. Π

is defined as ratio between the time rangeδt = t − to spent
within a fixedδx and the total time rangeΔt = t2 − t1 spent
elsewhere withinΔx. Let us write thenΠ = δt/Δt at fixed
coordinatex; eqs. (6,2) and (6,4) read nowΔt−1 = ∂Π/∂t
and (1− Π)ΠΔε2 = n−n+~2(∂Π/∂t)2. Replacing position and
momentum with time and energy in eq. (6,2), eqs. (6,7) read


±~

∂
√
Π

∂t




2

= −
(
ε§
√
Π
)2
, ε§ = ±

Δε

2
√

n′′
. (6,11)

The second eq. (6,8) reads now
√

A
√

exp(±iϕδt/Δt),
which however is disregarded here because it appears
included in eq. (6,6); the first eq. (6,8) becomes

−
~

i
∂
√
Π

∂t
= ±ε§

√
Π. (6,12)

With the upper sign at right hand side of eq. (6,12), the
classical Hamiltonian written with the help of eq. (6,8) is con-
sistent with the resultε§ = p§2/2m in the particular case of a

free particle having massmand momentump§. Yet the lower
sign, also allowed as a consequence of eq. (6,11), shows the
possibility of states with negative energy as well. The couple
of equations (6,10) turns into

Δt§Δε§ = n§~, (6,13a)

−
~

i
∂
√
Π

∂t
= ±ε§

√
Π. (6,13b)

For this couple of equations hold the same considerati-
ons carried out for the corresponding eqs. (6,10). This sec-
tion has shown that the operator formalism of wave mecha-
nics is consequence itself of the concept of uncertainty. On
the one side this result explains why the properties of quan-
tum particles can be obtained as shown in section 2 even
without solving any wave equation. On the other side it ap-
pears clearly that both chances of describing the quantum
world are nothing else but mirror consequences of the dual
wave/corpuscle behavior of particles. All considerations so
far carried out do not require knowing anything about the con-
cerned uncertainty ranges.

7 Heuristic aspects of quantum special relativity

Let us introduce now some comments about eqs. (5,9) and
(5,11) before exploiting eqs. (5,12). The momentum and
energy equations during the quantum fluctuation transient re-
written identically as follows

p(t) = ±
mve f f/r p

√
1− (ve f f/c)2

, ε(t) = ±
mc2/rε

√
1− (ve f f/c)2

, (7,1)

ve f f = rpv/rε, r p = r p(t), rε = rε(t),

evidence that the Einstein quantities of eqs. (5,11) turn into
new constant expressions calculated with an effective velo-
city and multiplied by the respective functions of time; the
previous velocityv does not longer appear explicitly into the
equations. Ifve f f is regarded as a constant, thenv turns into
a time variable without contradicting the Einstein equations,
whose deterministic character does not admit any fluctuation
and requires a steady value ofv; the fluctuation has been ins-
tead introduced by admitting the quantum meaning ofδε, δp
and δv. The notation of eqs. (7,1) emphasizes that energy
and momentum are functions of time during the transient; re-
gardingrε and r p like time variables is reasonable, because
according to eqs. (5,9)δε andδp are related torε andr p du-
ring the fluctuation. The physical meaning ofrε andr p is that
of describing the cycle of values of energy and momentum,
whereasr p/rε controls the range of transient values allowed
for the velocity. To be more specific, any energy fluctuation
is characterized by an initial timetin whereε(tin) = εEin that
successively increases toε(t) > εEin at t > tin and then de-
creases down to the initial valueεEin at the timetend. Note
now that during the fluctuation transient must hold the ine-
quality r p < rε; otherwise, beingv arbitrary e.g. very close
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to c, the chancer p > rε could entailε(t) imaginary although
being realεEin. This would actually mean that the fluctuation
is not allowed to occur. Thanks to the former inequality, ins-
tead,v can increase in principle even beyondc while still kee-
ping ve f f < c; this can happen during the time range between
tin andtend without divergent or imaginary quantities because
under square root of the transient formulas appearsve f f only.
This point is easily verified noting thatε(t)/p(t) = c2/v, as
already emphasized in section 5. Thus it must be also true
thatε(t)2 = c2p(t)2 + (mc2)2 likewise eq. (5,11). Trivial ma-
nipulations yield (v/c)2 = (r2

ε − 1)/(r2
p − 1); so if rε > r p then

is even allowed a valuev∗ > c without contradicting neither
eqs. (5,5) nor (5,11) that describe a steady behavior of the
particle. According to eqs. (5,7),r p < rε requires

δε(t)/δp(t) > εEin/pEin. (7,2)

From an intuitive point of view, the transient proceeds for
an observer in the lab frame according to the following steps:
(i) rp = rε = 1 at t = tin, i.e. hold eqs. (5,11) with a value
of ve f f = v < c uniquely fixed by the initial motion of the
particle; (ii) whenr p andrε start changing att > tin, the value
of ve f f is still constrained byve f f < c but nowv > ve f f ac-
cording to the inequality (7,2); (iii) at a later timet∗ < tend it
could even happen thatv∗ > c, although still beingve f f < c;
(iv) subsequentlyr p andrε tend again to 1 when the fluctua-
tion cycle ends att → tend while p(t)→ pEin andε(t)→ εEin,
i.e. v → ve f f < c. Thanks to the concept of quantum fluctua-
tion, therefore, the increase of velocityv∗ > c in the step (iii)
does not involve directly the value ofv appearing in the steady
formulas ofεEin andpEin, as indeed it results in eqs. (5,12); so
the superluminal step (iii) is in principle possible. However,
what about the chance of detecting it experimentally? Cer-
tainly the answer is not found via eqs. (7,1), which describe
local quantities at the random and unspecified timet; on the
other hand, since the particle travels,t is related to a corres-
pondingx, random and unspecified as well. Throughout this
paper it has been emphasized that information of physical in-
terest is obtainable through uncertainty ranges only; thus the
considerations just carried out, based on time and space local
coordinates, have worth only to guess and assess the possible
behavior of the particle at anytin ≤ t ≤ tend and better unders-
tand the physical results inferred by consequence. Coherently
with the approach so far followed, we discard once again the
local dynamical variables and pay attention to the respective
uncertainty ranges only. Exploit thus eqs. (5,12) to get infor-
mation comparable with the experience, puttingδt = tend− tin
andδl equal to the distance across which is measured the ve-
locity. In this way we can calculate anaverage velocity δl/δt
whose value depends upon how the experiment is carried out.
If δt is shorter than the timeτ for the particle to travel the
distanceδl, then the superluminal effect it is not detectable,
because the fluctuation starts and ends while the particle is
still traveling within δl; this means that the fluctuation is an
event entirely occurring within a space delocalization range.

Yet nothing is known about what happens within this uncer-
tainty range. In this case, when considering the average velo-
city of the particle, we can only acknowledge that this latter
is anyway smaller thanc, whereas any information about any
possible event allowed to occur withinδl remains in fact unac-
cessible; moreover eqs. (5,12) do not have themselves phy-
sical meaning, as they attempt to get physical insight within
an uncertainty range. If howeverδt is longer thanτ, then the
superluminal effect is at least in principle detectable without
contradicting the previous reasoning, because now the fluctu-
ation extends throughout all the rangeδl and beyond; it is no
longer a local event hidden by the uncertainty. So if the ave-
rage velocity is measured in these experimental conditions,
i.e. withδl sufficiently short orδt sufficiently long, the super-
luminal effect is in principle detectable. Note in this respect
that a small value ofm in the second eq. (5,12) corresponds
to a longer time at right hand side, so the inequality (7,2) is
more easily fulfilled for a particle not too heavy than for a he-
avy particle; indeed the former typically travels with values of
v closer toc than the latter for energy reasons and also entails
a longerδt, so it could effectively overcome the superluminal
transition threshold fulfilling more likely the conditionδt > τ.
Once fulfilling these conditions, a light particle appears trave-
ling the space rangeδl = v∗δt at speedv∗ > c in the laboratory
reference system even during a moderate energy fluctuation
and without violating any principle of quantum special rela-
tivity formulated in section 5; indeedδl/δt does not calculate
ve f f but the average transient ofv. As a clarifying compari-
son recall thatδε does not violate the energy conservation, it
is simply a temporary derogation to this latter allowed by the
uncertainty principle only; why not should something simi-
lar happen also for the velocity, if this latter does not cause
divergent or imaginary results? Anyway, for the comparison
with the experiment are enough just the two equations (5,12)
that relate in the laboratory frame the distanceδl traveled by
the particle to the timeδt during which the transient is still in
progress; their ratio, assumed physically consistent with the
time length of the fluctuation transient, reads

δl
δt

=

mc2
√

r2
ε−(rpv/c)2

− mc2
√

1−(v/c)2

mv√
r2
ε−(rpv/c)2

− mv√
1−(v/c)2

= c
c
v
.

Sincev < c, thenδl/δt > c, which demonstrates a su-
perluminal particle transfer during the quantum fluctuation
cycle. If for instancev = 0.99c thenδl/δt = 1.01c. Note
that instead the speed of the photonv = c remains identi-
cally, universally and invariantly equal toc. Eqs. (5,5) have
been written through time and space uncertainty ranges only.
The Einstein relativity specifies the time rangeΔt = t − to
through a current time coordinatet and a lower boundary
to = xoV/c2; both times have a deterministic physical mea-
ning. This last result could be easily guessed also here, thin-
king that evento must depend onV/c and must be related to
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the correspondingxo. Thus a valueV > c would change the
signs ofΔt andΔt′ in eq. (5,5), i.e. the concept itself of se-
quence “before” and “after”. Apart from the fact that such a
conclusion would be illusory in the present theoretical frame
because the uncertainty discards “a priori” the local coordi-
nates, it is also essential in this respect a further remark. As
shown before, the lack of physical information aboutt andto
and t − to does not prevent to infer the relativistic formulas
of energy and momentum: yet, even specifyingto = xoV/c2,
the possible time-reversal during the quantum fluctuation cy-
cle does not affect any result previously obtained. First of
all because actually this cycle has not been specified, i.e. ex-
changingtend with tin does not change any step of the pre-
vious reasoning; moreover if the cycle starts with an initial
energyεEin and ends with the same final energyεEin, any dis-
crimination between beginning and ending of the cycle se-
ems unphysical. Therefore, since the possible time reversal
should be a local effect concerning the quantum fluctuation
only, all the conclusions hitherto obtained still hold. Also
note thatδl/δt = εEin/pEin = c2/v; so the inequality (7,2)
readsδε/δp > δl/δt as well, i.e. δε/δl > δp/δt: the left
hand side represents the force acting on the particle due to its
fluctuation driven energy gap along its path, the right hand
side represents the force due to the momentum change during
the fluctuation time length. Saying that the former is greater
than the latter means an excess force with respect to the mere
momentum change having fully quantum origin, necessarily
due to nothing else but the fluctuation in the case of a free
particle. It seems reasonable to assume that just this excess
force justifies the superluminal effect. As expected, neither
δl nor δt enter explicitly into the calculation of the velocity;
the ratio between two uncertainty ranges provides of course
an average value during the transient, which is in effect al-
lowed in the frame of the present approach. It is interesting to
emphasize that a givenδε/δl, related to the energy growing
along the path traveled by the particle, could be at increasing
δl not greater thanδp/δt, related to the given fluctuation time
length; this is becauseδl andδt are two independent quan-
tities, the former related to the experimental apparatus, the
latter to a feature of the fluctuation. Ifδl increases up to a lar-
ger valueΔl such thatδε/Δl < δp/δt the superluminal effect
is not observable. Indeed this is just in line with the previ-
ous considerations recalling that: (i) the effect is detectable
if at the end of the path of the particle withinδl the fluctu-
ation is still in progress; (ii) if instead the fluctuation cycle
ends while the particle is still traveling insideδl, then it beco-
mes an event occurring within an uncertainty range and thus,
as such, unobservable. If the model is correct, this is what
to expect imagining to increase the size ofδl up toΔl: the
same kind of observation should yield a positive outcome if
carried out in the experimental situation (i), but certainly a
negative outcome if carried out in the experimental situation
(ii). This also suggests a possible way to verify the conside-
rations just carried out: to detect the same velocity fluctua-

tion event of not-heavy particles with two detectors located
in two different laboratories. Although the concept of their
respective “distances” from the source is illusory for the re-
asons introduced in sections 3, it remains nevertheless still
true that different locations, wherever they might be, provide
different chances for the uncertainty of revealing or hiding
experimentally the superluminal transition. Thus the random
occurring/non-occurring of the superluminal effect should not
be ascribed to human experimental errors but to a further pro-
babilistic weirdness of the quantum world.

8 Discussion

The ordinary formulation of quantum mechanics contains the
classical physics as a limit case but needs this latter to be for-
mulated [17]. Regarding instead eqs. (1,1) as expressions of a
fundamental principle of nature, and not as mere by-products
of the commutation rules of operators, this ambiguous link
between classical and quantum physics is bypassed. Section 6
has shown that eqs. (1,1) entail as a corollary the operator for-
malism of wave mechanics; yet the present approach appears
more general than that based on this latter. As shown in sec-
tions 4 and 5, it automatically introduces since the beginning
the non-locality and non-reality into the description of quan-
tum systems. In principle the quantum uncertainty does not
prevent knowing exactly one dynamical variable only; being
the size of all ranges arbitrary by definition, one must admit
even the chanceΔx→ 0 that means local position of a parti-
cle exactly known. The same reasoning holds separately for
the momentum as well. Independent ranges however do not
provide physical information on the observable properties of
the quantum world. These observables require abandoning
separate certainties independently allowed; the physical me-
aning of the ranges changes when considering together two
conjugate dynamical variables, which also means discarding
the classical realism and localism as well but gaining the ei-
genvalues. Does the moon exist regardless of whether one
observes it? According to the approach sketched in section 2
this question should be better reformulated, for instance as
follows: do the properties of the moon we know exist re-
gardless of a possible observer? Yet if nobody observes the
moon, nobody could define the properties “we know”; these
latter are the outcomes of some kind of measurement, i.e.
they are triggered themselves by a previous measurement in-
teraction. Repeating this reasoning back in the time the con-
clusion is that before the first recording of light beam esca-
ping from the moon nobody would even know the existence
of the moon; in which case would become physically irrele-
vant the prospective physical properties of an object still to
be discovered. In this sense it appears understandable that the
properties we know exist when observations are carried out.
Hence what we call moon is just the result of an interaction
between an observer and an object sufficiently close to the
Earth to be observable. As concerns the localism it is appro-
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priate to think about an action at a spooky distance, since the
local coordinates defining the distance are actually an arbi-
trary extrapolation to the quantum world of a classical way of
thinking. This idea appeared since the early times of birth of
quantum mechanics, when the deterministic concept of tra-
jectory was irreversibly abandoned. The operator formalism
requires a wave function of time and space coordinates; these
latter identify in turn a region of space where however has
physical meaning the mere probability density to find the par-
ticle only. Thus the wave function denies the classical me-
aning of the local coordinates, e.g. position and momentum
or energy and time, as a function of which is however itself
calculated. In this respect the present approach formulates an
even more indeterministic and drastic view of the reality: to
discard the local values since the beginning. In this sense, eqs.
(1,1) seem a step ahead with respect to the operator forma-
lism; even though seemingly more agnostic, they avoid han-
dling the local variables to define and solve the appropriate
wave equations from which are extracted the eigenvalues, i.e.
the observables, in a probabilistic conceptual context. Here
indeed we refuse “a priori” the physical usefulness of intro-
ducing time and space local coordinates and, in general, local
quantities that do no longer appear in the eigenvalues; yet,
even so the results are identical. This suggests that actually is
the uncertainty the fundamental concept behind the results, a
sort of essential information directly related to the knowledge
we can afford; for instance, the arbitrariness of the quantum
numbers of wave mechanics, due to the mathematical featu-
res of the solutions of differential equations, is replaced by
that of the number of states; indeed the results show that the
latter have a physical meaning identical to the former. Eqs.
(1,1) provide these numbers since the beginning. This is the
reason of the straightforward character of the present appro-
ach, which indeed does not require solving any differential
equation but proceeds through trivial algebraic manipulations
of the formulae. The arbitrariness seems a concept with nega-
tive valence, especially in science; yet it played an essential
role in deriving eqs. (3,5) from eq. (3,2); on this step are ba-
sed eqs. (1,1). The section 2 shows that these equations plug
the classical definition of angular momentum into the quan-
tum world thanks to two concepts: introducing the number of
states and eliminating local information. The section 6 has
shown why the indistinguishability of identical particles is a
natural consequence of these premises; in the operator for-
malism instead it must be purposely introduced as a postulate
and appropriately handled from a mathematical point of view,
recall for instance the early Slater determinants. Moreover the
section 4 has shown why the present approach entails inheren-
tly even the non-locality and the non-reality of the quantum
world: while evidencing their link with the quantization of the
physical observables, these weird features are automatically
required by eqs. (1,1) throughn. Eventually, let us empha-
size that the present way of regarding the quantum world is
compatible with the special relativity. The paper [15] has in-

ferred its basic principles as corollaries, in section 7 some re-
sults particularly significant have been obtained: the invariant
interval, the Lorentz transformations of time and length, the
energy and momentum equations of a free particle, the rest
energy of particle, the existence of antimatter and the con-
cept of mass itself. The key idea underlying these results is
the way to regard the relativistic intervals: to discard their
deterministic definition, early introduced by Einstein, and re-
gard them as uncertainty ranges. As shown before, this sim-
ple conceptual step is enough to plug into the quantum world
even the special relativity. Moreover, the quantum way to
infer the relativistic equations has opened the way to admit
a typical quantum phenomenon, the energy fluctuation, able
to account for unexpected effects otherwise precluded by the
early deterministic basis of special relativity formulated by
Einstein.

9 Conclusion

The approach based uniquely on eqs. (1,1) contains inheren-
tly the requirements of non-locality and non-reality that cha-
racterize the quantum world. This kind of approach is also
consistent with the special relativity, whose basic statements
were found as corollaries in previous paper.
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It is shown how the fractal paths of SR = scale relativity (following Nottale) can be
introduced into a TD = thermodynamic context (following Asadov-Kechkin).

1 Preliminary remarks

The SR program of Nottale et al (cf. [1]) has produced a mar-
velous structure for describing quantum phenomena on the
QM type paths of Hausdorff dimension two (see below). Due
to a standard Hamiltonian TD dictionary (cf. [2]) an exten-
sion to TD phenomena seems plausible. However among the
various extensive and intensive variables of TD it seems un-
clear which to embelish with fractality. We avoid this feature
by going to [3] which describes the arrow of time in con-
nection with QM and gravity. This introduces a complex
time (1A) τ = t − (i~/2)β where β = 1/kT with k = kB

the Bolzmann constant and a complex Hamiltonian (1B) H =
E − (i~Γ/2) where E is a standard energy term, e.g. (1C) E ∼
(1/2)mv2+W(x). One recalls that complex time has appeared
frequently in mathematical physics. We will show how frac-
tality can be introduced into the equations of [3] without re-
sorting to several complex variables or quaternions.

Thus from [3] one has equations

H = E −
(

i~
2
Γ

)
; τ = t − i~

2
β; [E,Γ] = [H,H†] = 0; (1.1)

Ψ = exp−
iHτ
~ ψ; Pn =

wn

Z
;wn = ρnexp[−Enβ+Γnt];

i~∂τΨ = HΨ;Ψ =
∑

Cnψn;

Hn = En −
i~
2
Γn; [H,H†] = 0;

Eψn = Enψn;Γψn = Γnψn; (ψn, ψk) = δnk.

One could introduce another complex variable here, say j
with j2 = −1, but this can be avoided.

Now go to the SR theory and recall the equations

d̂
dt
=

1
2

(
d+
dt
+

d−
dt

)
− i

2

(
d+
dt
− d−

dt

)
; (1.2)

V = d̂x
dt
= V − iU =

1
2

(v+ + v−) − i
2

(v+ − v−);

d̂
dt
= ∂t +V · ∇ − iD∆;

H = m
2
V2 − imD∇ ·V +W =

1
2m
P2 − iD ·P+W; (1.3)

H = V · P − iD∇ · P − L;

V̂ = V − iD∇; (∂t + V̂ · ∇)V = −∇W
m

; (1.4)

U = D∇log(P); P = |ψ|2; ψ = eiS/2mD;

Q = −2mD2∆
√

P
√

P
; (1.5)

V = −2iD∇[log(ψ)]; S0 = 2mD;

D2∆ψ + iD∂tψ −
W
2m

ψ = 0; (1.6)

dV
dt
=

F
m
= U · ∇U +D∆U.

This has been written for 3 space dimensions but we will
restrict attention to a 1-D space based on x below.

We will combine the ideas in (1.1) and (1.2) in Section
2 below. Note here Q is the QP = quantum potential (see
e.g. [5–8] for background).

2 Combination and interaction

From (1.2)-(1.6) we see that the fractal paths in one space
dimension have Hausdorff dimension 2 and we note that U
in (1.2) is related to an osmotic velocity and completely de-
termines the QP Q. Note that these equations (1.2)-(1.6)
produce a macro-quantum mechanics (where D = ~/2m for
QM). It is known that a QP represents a stabilizing organiza-
tional anti-diffusion force which suggests an important con-
nection between the fractal picture above and biological pro-
cesses involving life (cf. [1, 9–13]). We also refer to [14–16]
for probabalistic aspects of quantum mechanics and entropy
and recommend a number of papers of Agop et al (cf. [17])
which deal with fractality (usually involving Hausdorff di-
mension 2 or 3) in differential equations such as Ginzburg-
Landau, Korteweg de-Vries, and Navier-Stokes; this work
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includes some formulations in Weyl-Dirac geometry (Feoli-
Gregorash-Papini-Wood formulation) involving super-
conductivity in a gravitational context.

Now let us imagine that W ∼ W and V ∼ v so that the
energy terms in the real part of the SE arising from (1.2)-(1.6)
will take the form

E ∼ 1
2

mV2 +W +Q (2.1)

and we identify this with E in the TD problem where

Q = −2mD2∆
√

P
√

P
; P = |Ψ|2. (2.2)

One arrives at QM forD = ~/2m as mentioned above and
one notes that the mean value Ē used in the analysis of [3]
will now have the form

Ē =
1
2

∫
mV2Pdx +

∫
|W|2Pdx +

∫
QPdx (2.3)

and the last term
∫
QPdx has a special meaning in terms of

Fisher information as developed in [5–7, 19–21]. In fact one
has ∫

QPdx = −2mD2
∫

∂2
x

√
P

√
P

Pdx = (2.4)

= −D
2

2

∫ 2P′′

P
−

(
P′

P

)2 Pdx =
mD2

2

∫
(P′)2

P
dx

In the quantum situationD = ~/2m leading to∫
QPdx =

~2

8m

∫
(P′)2

P
dx =

~2

8m
FI (2.5)

where FI denotes Fisher information (cf. [7, 21]). And this
term can be construed as a contribution from fractality.

One can now sketch very briefly the treatment of [3] based
on (1.1). Thus one constructs a generalized QM (with arrow
of time and connections to gravity for which we refer to [3]).
The eigenvalues En, Γn, in (1.1) are exploited with

ρn = |Cn|2; Pn =
wn

Z
;

Ψ =
∑

Cnψn; wn = ρne−Enβ+Γnt. (2.6)

One considers two special systems:

1. First let the eigenvectors Γn all be the same (decay free
system) and then wn = ρnexp[−Enβ] which means that
β is actually the inverse absolute temperature (multi-
plied by kB) when En is identified with the n-th energy
level and the system is decay free.

2. Next let all the En be the same so wn = ρnexp[−Γnt]
and all the ΓN have the sense of decay parameters if t is
the conventional physical time.

Thus the solution space of the theory space can be decom-
posed into the direct sum of subspaces which have a given
value of the energy or of the decay parameter. It is seen that
for β = constant the dynamical equation for the basis proba-
bilities is

dPn

dt
= −(Γn − Γ̄)Pn;

dΓ̄
dt
= −D2

Γ; D2
Γ = (Γ − Γ̄)2. (2.7)

From (2.7) one sees that Γ̄(t) is not increasing which
means that the isothermal regime of evolution has an arrow
of time, which is related to the average value of the decay
operator. Thus Pn increases if Γ̄ > Γn and decreases when
Γ̄ < Γn. One can also show that in the general case of β = β(t)
the dynamical equations for the Pn have the form

dPn

dt
= −

[
Γn − Γ̄ + (En − Ē)

dβ
dt

]
Pn. (2.8)

Here the specific function dβ/dt must be specified or ex-
tracted from a regime condition f (t, β, Ā(t, β)) = 0 for some
observable A (e.g. Ē = constant is an adiabatic condition). In
the adiabatic case for example when Ē =

∑
n EnPn = constant

there results
dβ
dt
= −ET − ĒT̄

D2
E

(2.9)

where DE denotes a dispersion of the energy operator E. Us-
ing (2.8)-(2.9) one obtains

dΓ̄
dt
= −D2

Γ

1 − (ET − ĒT̄ )2

D2
E

D2
Γ

 ≥ 0. (2.10)

Subsequently classical dynamics is considered for ~ → 0
and connections to gravity are indicated with kinematically
independent geometric and thermal times (cf. [3]).
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In this note, we present a proof to the Van Aubel Theorem in the Einstein Relativistic
Velocity Model of Hyperbolic Geometry.

1 Introduction

Hyperbolic Geometry appeared in the first half of the 19th

century as an attempt to understand Euclid’s axiomatic basis
of Geometry. It is also known as a type of non-Euclidean Ge-
ometry, being in many respects similar to Euclidean Geom-
etry. Hyperbolic Geometry includes similar concepts as dis-
tance and angle. Both these geometries have many results in
common but many are different. There are known many mod-
els for Hyperbolic Geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic veloc-
ity model, etc. Here, in this study, we give hyperbolic version
of Van Aubel theorem. The well-known Van Aubel theorem
states that if ABC is a triangle and AD, BE,CF are concurrent
cevians at P, then AP

PD =
AE
EC +

AF
FB (see [1, p. 271]).

Let D denote the complex unit disc in complex z - plane,
i.e.

D = {z ∈ C : |z| < 1}.
The most general Möbius transformation of D is

z→ eiθ z0 + z
1 + z0z

= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the
Möbius transformation of the disc to be viewed as a Möbius
left gyrotranslation

z→ z0 ⊕ z =
z0 + z
1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D,
and z0 is the complex conjugate of z0. Let Aut(D,⊕) be the
automorphism group of the grupoid (D,⊕). If we define

gyr : D × D→ Aut(D,⊕), gyr[a, b] =
a ⊕ b
b ⊕ a

=
1 + ab
1 + ab

,

then is true gyrocommutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:

1. gyr[u, v]a· gyr[u, v]b = a · b for all points
a,b,u, v ∈G.

2. G admits a scalar multiplication, ⊗, possessing the fol-
lowing properties. For all real numbers r, r1, r2 ∈ R and
all points a ∈G:

(G1) 1 ⊗ a = a

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a)

(G4)
|r| ⊗ a
∥r ⊗ a∥ =

a
∥a∥

(G5) gyr[u, v](r ⊗ a) = r ⊗ gyr[u, v]a

(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

3. Real vector space structure (∥G∥ ,⊕,⊗) for the set ∥G∥
of onedimensional “vectors”

∥G∥ = {± ∥a∥ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such
that for all r ∈ R and a,b ∈ G,

(G7) ∥r ⊗ a∥ = |r| ⊗ ∥a∥

(G8) ∥a ⊕ b∥ ≤ ∥a∥ ⊕ ∥b∥

Definition 1. Let ABC be a gyrotriangle with sides a, b, c
in an Einstein gyrovector space (Vs,⊕,⊗), and let ha, hb, hc

be three altitudes of ABC drawn from vertices A, B,C per-
pendicular to their opposite sides a, b, c or their extension,
respectively. The number

S ABC = γaaγha ha = γbbγhb hb = γccγhc hc

is called the gyrotriangle constant of gyrotriangle ABC (here

γv =
1√

1 − ∥v∥
2

s2

is the gamma factor).

(See [2, p. 558].)
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Theorem 1. (The Gyrotriangle Constant Principle)
Let A1BC and A2BC be two gyrotriangles in a Einstein gy-
rovector plane (R2

s ,⊕,⊗), A1 , A2 such that the two gyroseg-
ments A1A2 and BC, or their extensions, intersect at a point
P ∈ R2

s . Then,
γ|A1P| |A1P|
γ|A2P| |A2P| =

S A1BC

S A2BC
.

(See [2, p. 563].)

Theorem 2. (The Hyperbolic Theorem of Menelaus in Ein-
stein Gyrovector Space)
Let a1, a2, and a3 be three non-gyrocollinear points in an Ein-
stein gyrovector space (Vs,⊕,⊗). If a gyroline meets the sides
of gyrotriangle a1a2a3 at points a12, a13, a23, then

γ⊖a1⊕a12 ∥⊖a1 ⊕ a12∥
γ⊖a2⊕a12 ∥⊖a2 ⊕ a12∥

· γ⊖a2⊕a23 ∥⊖a2 ⊕ a23∥
γ⊖a3⊕a23 ∥⊖a3 ⊕ a23∥

·

γ⊖a3⊕a13 ∥⊖a3 ⊕ a13∥
γ⊖a1⊕a13 ∥⊖a1 ⊕ a13∥

= 1

(See [2, p. 463].)

Theorem 3. (The Gyrotriangle Bisector Theorem)
Let ABC be a gyrotriangle in an Einstein gyrovector space
(Vs,⊕,⊗), and let P be a point lying on side BC of the gyro-
triangle such that AP is a bisector of gyroangle ]BAC. Then,

γ|BP| |BP|
γ|PC| |PC| =

γ|AB| |AB|
γ|AC| |AC|

(See [3, p. 150].) For further details we refer to the recent
book of A. Ungar [2].

2 Main results

In this section, we prove Van Aubel’s theorem in hyperbolic
geometry.

Theorem 4. If the point P does lie on any side of the hyper-
bolic triangle ABC, and BC meets AP in D, CA meets BP in
E, and AB meets CP in F, then

γ|AP| |AP|
γ|PD| |PD| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

· γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| .

Proof. If we use the Menelaus’s theorem in the h-triangles
ADC and ABD for the h-lines BPE, and CPF respectively,
then

γ|AP| |AP|
γ|PD| |PD| =

γ|AE| |AE|
γ|EC| |EC| ·

γ|BC| |BC|
γ|BD| |BD| (1)

and
γ|AP| |AP|
γ|PD| |PD| =

γ|FB| |FB|
γ|FA| |FA| ·

γ|BC| |BC|
γ|CD| |CD| (2)

From (1) and (2), we have

2 · γ|AP| |AP|
γ|PD| |PD| =

γ|AE| |AE|
γ|EC| |EC| ·

γ|BC| |BC|
γ|BD| |BD|+

γ|FA| |FA|
γ|FB| |FB| ·

γ|BC| |BC|
γ|CD| |CD| ,

the conclusion follows. �

Corollary 1. Let G be the centroid of the hyperbolic trian-
gle ABC, and D, E, F are the midpoints of hyperbolic sides
BC,CA, and AC respectively. Then,

γ|AG| |AG|
γ|GD| |GD| =

γ|BC| |BC|
2

[
1

γ|BD| |BD| +
1

γ|CD| |CD|

]
. (3)

Proof. If we use theorem 4 for the triangle ABC and the cen-
troid G, we have

γ|AG| |AG|
γ|GD| |GD| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| ,

the conclusion follows. �

Corollary 2. Let I be the incenter of the hyperbolic triangle
ABC, and let the angle bisectors be AD, BE, and CF. Then,

γ|AI| |AI|
γ|ID| |ID| =

1
2

[
γ|AB| |AB|
γ|BD| |BD| +

γ|AC| |AC|
γ|CD| |CD|

]
. (4)

Proof. If we use theorem 3 for the triangle ABC, we have

γ|AE| |AE|
γ|EC| |EC| =

γ|AB| |AB|
γ|BC| |BC| , and

γ|AF| |AF|
γ|FB| |FB| =

γ|AC| |AC|
γ|BC| |BC| . (5)

If we use theorem 4 for the triangle ABC and the incenter
I, we have

γ|AI| |AI|
γ|ID| |ID| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| .

(6)

From (5) and (6), we have

γ|AI| |AI|
γ|ID| |ID| =

γ|BC| |BC|
2

·
γ|AB| |AB|
γ|BC| |BC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|AC| |AC|
γ|BC| |BC| ·

1
γ|CD| |CD| ,

the conclusion follows. �
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The Einstein relativistic velocity model is another model
of hyperbolic geometry. Many of the theorems of Euclidean
geometry are relatively similar form in the Einstein relativis-
tic velocity model, Aubel’s theorem for gyrotriangle is an
example in this respect. In the Euclidean limit of large s,
s → ∞, gamma factor γv reduces to 1, so that the gyroequal-
ity (1) reduces to the

|AP|
|PD| =

|BC|
2

[
|AE|
|EC| ·

1
|BD| +

|FA|
|FB| ·

1
|CD|

]
in Euclidean geometry. We observe that the previous equality
is a equivalent form to the Van Aubel’s theorem of euclidian
geometry.
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Bacău, 2008 (in Romanian).

2. Ungar A.A. Analytic Hyperbolic Geometry and Albert Einstein’s Spe-
cial Theory of Relativity, Hackensack, World Scientific Publishing Co.
Pte. Ltd., 2008.

3. Ungar A.A. A Gyrovector Space Approach to Hyperbolic Geometry,
Morgan & Claypool Publishers, 2009.

4. Ungar A.A. Analytic Hyperbolic Geometry Mathematical Foundations
and Applications, Hackensack, World Scientific Publishing Co. Pte.
Ltd., 2005.
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Rossi’s Reactors – Reality or Fiction?
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A tabletop prototype of a new kind of nuclear device was demonstrated at the University
of Bologna, several months ago. It generated thermal energy at the rate of 12 kW. A set
of one hundred of such interconnected devices, able to generate energy at a much higher
rate (up to 1000 kW) is said to be now commercially available. The inventor claims that
the energy was produced via nuclear fusion of hydrogen and nickel. This note addresses
conceptual difficulties associated with such interpretation. Experimental facts reported
by the inventor seem to conflict with accepted knowledge. This, however, should not
be a justification for the rejection of experimental data. Refutations and confirmations
should be based on independently performed experiments.

1 Introduction

An interesting website, describing an ongoing research
project, has been created by an Italian engineer Andrea Rossi
[1]. He is the inventor of a tabletop device in which pow-
dered nickel, mixed with common hydrogen, reported to gen-
erate thermal energy at the rate of 12 kW, for six months. A
large percentage of nickel was said to be converted into cop-
per, during that time. The device was recently demonstrated
at the University of Bologna. The most obvious questions,
raised by the reported features of the reactor are:

1. What lowers the coulomb barrier, between the atomic
nuclei of hydrogen and nickel?

2. Is the reported accumulation of copper consistent with
the well known half-lives of radioactive copper
byproducts?

3. Is the measurable isotopic composition of nickel, in
spent fuel, consistent with the amount of released
energy?

4. The radiation level, outside the operating 12 kW reac-
tor, was said to be comparable to that due to cosmic
rays. Spent fuel, removed from the reactor, one hour
after the shutdown, was found to be not radioactive [1].
How can these purported facts be explained?

Results from earlier experiments (2008 and 2009) are de-
scribed in [2]. In one case the device was used to heat a “small
factory” (probably two or three rooms) for one year.

2 Reported 2011 results

One demonstration of the device – January 14, 2011, at the
University of Bologna – is described in [3–5]. Subsequent
experiments – February 10, and March 29, 2011 – are de-
scribed in [6–8]. In both cases the apparatus consisted of
a cylinder containing nickel. Pure hydrogen was forced to
flow through the hot nickel powder. The amount of powder
was 100 grams [8, 9], or slightly more than one cubic inch,
depending on the level of compression. Reactions between
nickel and hydrogen turned out to be extremely exothermic,

generating thermal energy at the rate of about 12.4 kW. This
was 31 times higher than the rate at which electric energy was
supplied, to operate the equipment [4].

In the February experiment the amount of thermal energy
was determined from the flow rate of cooling water, and the
difference between its input and output temperature. In the
January experiment the water flow rate was slower; the enter-
ing water was a liquid, the escaping water was a vapor. The
amount of thermal energy released was determined from the
amount of liquid water (initially at 15 oC) transformed into
101 oC vapor. Rossi claims that most heat is produced from
nuclear reactions:

p + Ni→ Cu,

where p is nothing but ionized hydrogen. This is very sur-
prising because the temperature of hydrogen was below the
melting point of nickel. Addressing this issue in [10] Rossi
reported that about 30% of nickel was turned into copper, af-
ter six months of uninterrupted operation. A schematc dia-
gram of the reactor, and additional details are in [11, 12].

Comment 1
Many physicists have studied fusion of protons with nickel
nuclei. But their protons had much higher energies, such as
14.3 MeV [13]. Rossi’s protons, by contrast, had very low
energies, close to 0.04 eV. The probability of nuclear fusion,
expressed in terms of measurable cross sections, is known
to decrease rapidly when the energy is lowered. How can
0.04 eV protons fuse with nickel, whose atomic number is
28? Rossi is convinced that this is due a catalyst added to the
powdered nickel. The nature of the catalyst has not been dis-
closed. This prevents attempts to replicate the experiments, or
to discuss the topic theoretically. Secrecy might make sense
in some business situations, but it is not consistent with sci-
entific methodology.

Comment 2
How can 30% of nickel in Rossi’s reactor be transmuted into
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copper? This seems to be impossible, even if the coulomb
barrier is somehow reduced to zero by his catalyst. To justify
this let us focus on the 58Ni and 60Ni isotopes–they consti-
tute 94.1% of the nickel initially loaded into the device. The
reactions, by which copper is produced, from these isotopes,
would be:

p + 58Ni→ 59Cu (half-life is 3.2 s) (A)

and
p + 60Ni→ 61Cu (half-life is 3.3 h) (B)

The reported amount of accumulated copper – 30% of the
initial nickel being turned into copper, after six months of
operation–would indeed be possible, via reactions (A) and
(B), if the produced copper isotopes were stable, or had half-
lives much longer than six months. But this is not the case,
as shown above. The produced copper isotopes, 59Cu and
61Cu, rapidly decay into 59Ni and 61Ni. Each reaction, in
other words, would lead to accumulation of these isotopes of
nickel, not to accumulation of copper, as reported by Rossi.
The accumulation of copper would practically stop after sev-
eral half-lives. Note that 63Cu and 65Cu, if produced from fu-
sion of protons with 62Ni and 64Ni, would be stable. But nat-
ural abundance of these isotopes of nickel, 3.63% and 0.92%,
respectively, is too low to be consistent with the claimed ac-
cumulation of 30% of copper.

Comment 3
How much of the original 58Ni should be destroyed, after six
months of continuous operation, in order to generate ther-
mal energy at the rate of 12 kW? Let us again assume that
Coulomb barriers are somehow reduced to zero by Rossi’s
secret catalyst. The 58Ni is 68% of the total. On that basis
one can assume that 68% of 12 kW is due to the radioac-
tive decay of 59Cu, and its radioactive daughter, 59Ni. Thus
P′1 = 0.68 × 12 = 8.16 kW. This is the thermal power. The
nuclear power P1 must be larger, because neutrinos and some
gamma rays do escape from the vessel. As a rough estimate,
assume that the nuclear power is

P1 = 16 kW = 16,000 J/s = 1017 MeV/s.

The excited 59Cu, from the reaction (A), releases 3.8 MeV
of energy, as one can verify using a table of known atomic
masses. In the same way one can verify that the energy re-
leased from its radioactive daughter, 59Ni, is 4.8 MeV. In
other words, each transformation of 58Ni into 60Ni releases
3.8 + 4.8 = 8.6 MeV of nuclear energy.

The number of reactions (A) should thus be equal to
1017/8.6 = 1.16× 1016 per second. Multiplying this result by
the number of seconds in six months (1.55 × 107) one finds
that the total number of destroyed 58Ni nuclei is 1.80×1023, or
17.4 grams. A similar estimate can be made for other initially
present nickel isotopes. The overall conclusion is that the iso-
topic composition of nickel, after six months of operation, at

the 12 kW level, would change drastically, if the reaction A
were responsible for the heat produced in the reactor invented
by Rossi.

The amount of 59Ni, for example, would increase from
0% (natural abundance) to 17.4%. The amount of 58Ni, on
the other hand, would be reduced from 68% (natural abun-
dance) to 50.6%. The isotopic composition of nickel in spent
fuel was measured, according to [1], but results remain “priv-
ileged information”.

Comment 4
The level of radioactivity, next to the reactor generating heat
at the rate of 12 kW, was reported as not much higher than
the natural background [5]. Is this consistent with reaction
(A) being responsible for most of the heat? The answer is
negative. How can this be justified? In the steady state the
rate at which radioactive atoms, in this case 59Cu, are decay-
ing is the same as the rate at which they are produced. That
rate, as shown in Comment 3, is 1.16×1016 atoms per second.
In other words, the expected activity is

1.16 × 1016/3.7 × 1010 = 313, 000 Curies.

The emitted radiation would include gamma rays of 1.3
MeV, able to escape. The level of radiation, next to the reac-
tor, would depend on the wall thickness. It would certainly
exceed the background by many orders of magnitude. Ab-
sence of excessive gamma radiation might be an indication
that the reactions producing heat were different from the p+Ni
fusion.

3 Addendum

Note that the reported fuel power density of 120 W/g would
be at least ten times higher than in a fuel element of a nu-
clear reactor based on 235U. What can be more desirable than
higher safety and lower cost? Did Rossi really invent a new
kind of nuclear reactor? Logical speculations, such as those
above, are not sufficient to answer this question. Only inde-
pendently performed experiments can do this.

Rossi’s claims, if confirmed, would present a challenge to
theoretical physicists. Physics, unlike mathematics, is based
on confirmed experimental facts, not on axioms. Newly dis-
covered facts often lead to improvements of accepted theo-
ries. Let’s hope that Rossi’s incredible results can be inde-
pendently confirmed in the near future.
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The quantum Goos-Hanchen effect in graphene is investigated. The Goos-Hanchen
phase shift is derived by solving the Dirac eigenvalue differential equation. This phase
shift varies with the angle of incidence of the quasiparticle Dirac fermions on the bar-
rier. Calculations show that the dependence of the phase shift on the angle of incidence
is sensitive to the variation of the energy gap of graphene, the applied magnetic field
and the frequency of the electromagnetic waves. The present results show that the con-
ducting states in the sidebands is very effective in the phase shift for frequencies of the
applied electromagnetic field. This investigation is very important for the application of
graphene in nanoelectronics and nanophotonics.

1 Introduction

In recent years, the interest in novel device structures able to
surmount the miniaturization limits imposed by silicon based
transistors has led researchers to explore alternative technolo-
gies such as those originated in the field of semiconducting
quantum dots, nanowire, graphene and carbon nanotubes
[1, 2]. Graphene [3, 4] consists of a monolayer of carbon
atoms forming a two-dimensional honeycomb lattice.

Graphene has been intensively studied due to its fascinat-
ing physical properties and potential applications in the field
of nanoelectronics and another different field, for example,
biosensor, hydrogen storage, and so on [5, 6]. In graphene,
the energy bands touch the Fermi energy at six discrete points
at the edges of the hexagonal Brillouin zone. Out of these
six Fermi points, only two are inequivalent, they are com-
monly referred to as K and K´ points [7]. The quasiparticle
excitation about K & K´ points obey linear Dirac like energy
dispersion [8]. The presence of such Dirac like quasiparticle
is expected to lead to a number of unusual electronic proper-
ties in graphene including relativistic quantum Hall effect [9],
quasi-relativistic Klein tunneling [10, 11] and the lateral shift
of these Dirac quasi-particles in graphene, which is known as
Goos-Hanchen effect, Bragg reflector and wave guides [12–
15]. The present paper is devoted to investigate the quantum
Goos-Hanchen effect in graphene, taking into consideration
the effect of electromagnetic waves of wide range of frequen-
cies and magnetic field.

2 The Model

The transport of quasiparticle Dirac Fermions in monolayer
graphene through a barrier of height, Vb, and width, d, is
described by the following Dirac Hamiltonian, Ho, which is
given as [4, 16]:

Ho = −i~v fσ∇ + Vb, (1)

where v f is the Fermi velocity and σ = (σx, σy) are the Pauli
matrices. Since the graphene is connected to two leads and

applying a top gate with gate voltage, Vg. Also, the trans-
port of quasiparticle Dirac fermions are influenced by apply-
ing both magnetic field, B, and an electromagnetic field of
amplitude, Vac, and of wide range of frequencies, ω. So, ac-
cordingly Eq. (1) can be rewritten as follows:

H = −i~v fσ∇ + Vb + eVsd + eVg + eVac cos(ωt) +
~eB
2m∗
, (2)

where Vsd is the bias voltage, ~ is reduced Planck’s constant
and m∗ is the effective mass of quasiparticle Dirac fermions.
Now, due to transmission of these quasi-particles Dirac
fermions, a transition from central band to side-bands at
energies [11, 17] E ± n~ω, where n is an integer with val-
ues 0,±1,±2, . . .. The Dirac fermions Hamiltonian, H, (Eq.
2) operates in space of the two-component eigenfunction, Ψ,
where Dirac eigenvalue differential equation is given by [11]:

HΨ (r) = EΨ(r), (3)

where E is the scattered energy of quasi-particle Dirac
fermions. The solution of Eq. (3) gives the following eigen-
functions [11,18]. The eigenfunction of incident quasi-particle
Dirac fermions is

Ψin(r) =
∞∑

n=1

Jn

(eVac

~ω

)
[A + B] , (4)

where

A =
(

1
seiφ

)
exp

(
i(kxx + kyy)

)
,

B = r
(

1
−se−iφ

)
exp

(
i(−kxx + kyy)

)
,

Jn is the nth order of Bessel function of first kind and the
eigenfunction for the transmitted quasiparticle Dirac fermions
through the barrier is given by:

Ψtr (r) =
∞∑

n=1

Jn

(eVac

~ω

)
t
(

1
seiφ

)
exp

(
i(kxx + kyy)

)
(5)
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In Eqs. (4, 5), r and t are the reflection and transmission
amplitude respectively and S = Sgn(E) is the signum function
of E. The components of the wave vectors kx and ky outside
the barrier are expressed in terms of the angle of incidence,
φ, of the quasiparticles Dirac fermions as:

kx = k f cosφ, ky = k f sinφ, (6)

where k f is the Fermi wave vector. The eigenfunction Ψb

inside the region of the barrier is given by:

Ψb(r) =
∞∑

n=1

Jn

(eVac

~ω

)
[C + D] , (7)

where

C =
(
α

s
′
βeiθ

)
exp

(
i(qxx + kyy)

)
,

D = r
(

α
−s

′
βe−iθ

)
exp

(
i(−qxx + kyy)

)
,

qx = (k
′2
f − k2

y)
1
2 , (8a)

and

θ = tan−1
(

ky
qx

)
(8b)

in which

k′f =

√
(Vb − ε)2 −

ε2
g

2
~v f

, (9)

where εg is the energy gap and ε is expressed as

ε = E − eVg − n~ω − eVsd − Vb +
~eB
2m∗

(10)

In Eq. (7), the parameters s
′
, α, and β are given by:

s
′
= sgn (E − Vb) (11)

α =

√√√√√√√√√√√√√√√√1 +

s
′
εg

2~v f√
k′2f +

ε2
g

4(~v f )2

(12)

This parameter, α, corresponds to K-point. Also, β is
given by

β =

√√√√√√√√√√√√√√√√1 −

s
′
εg

2~v f√
k′2f +

ε2
g

4(~v f )2

(13)

This parameter, β, corresponds to K′-point. Now, in or-
der to find an expression for both the transmission coefficient,

t, (Eq. 5) and the corresponding Goos-Hanchen phase shift,
Φ, this is done by applying the boundary conditions at the
boundaries of the barrier [11,18]. This gives the transmission
coefficient, t, as:

t =
∞∑

n=1

Jn

(eVac

~ω

)
×

[
1

cos(qxd) − F

]
, (14)

where

F = i(s
′
sγ sec (φ) sec (θ) + tan(φ) tan(θ)) sin(qxd)

and γ is expressed as:

γ =

√
ε2
g

4(~v f )2 + k′2f

k′f
(15)

The transmission coefficient, t, is related to the Goos-
Hanchen phase shift, Φ, [12, 18] as:

t =
eiϕ

f
, (16)

where f is the Gaussian envelop of the shifted wave of quasi-
particle Dirac fermions [12,18,19]. So, the expression for the
phase shift is given by:

Φ = tan−1
[
sin (θ) sin (φ) + ss′γ

cos(θ)cos(φ)
tan(qxd)

]
, (17)

where d is the width of the barrier. We notice that the phase
shift, Φ (Eq. 17) depends on the angle of incidence, ϕ of the
quasiparticle Dirac fermion and on the barrier of height, Vb,
and its width, d, and other parameters considered, for exam-
ple, the energy gap, εg, the magnetic field, B, gate voltage, Vg,
and the external pulsed photons of wide range of frequencies.

3 Results and Discussion

Numerical calculations are performed for phase shift, Φ,
(Eq. 17) as shown below. For monolayer graphene, the val-
ues of both barrier height, Vb, and its width are respectively
Vb = 120 meV and d = 80 nm [16, 18, 19]. Also, the value of
the Fermi-velocity, v f is approximately 106 m/s, and the ef-
fective mass of quasiparticle Dirac fermions is approximately
m∗ = 0.054 me [16, 18, 19]. The engineering of band gap
of graphene generates a pathway for possible graphene-based
nanoelectronics and nanophotonics devices. It is possible to
open and tune the band gap of graphene by applying electric
field [20] or by doping [21]. So, in our calculations we take
the value of the energy gap of graphene to be εg = 0 eV, 0.03
eV, 0.05 eV [22].

The features of our results are the following:
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Fig. 1: The variation of Goos-Hanchen phase shift, Φ, with angle of
incidence, ϕ, at different values of energy gap.

Fig. 2: The variation of Goos- Hanchen phase shift, Φ, with angle
of incidence, ϕ, at different values of gate voltage.

1. Fig. 1, shows the dependence of the Goos-Hanchen
phase shift, Φ, on the angle of incidence ϕ at different
values of energy gap, εg. As shown from the figure
that the phase shift, Φ, decreases as the angle of inci-
dence, ϕ, increase for the considered values of the en-
ergy gap, εg. It must be noticed that for εg = 0.05eV,
for angle of incidence ϕ ≈1.335 rad, the phase shift, Φ ,
increases from -1.571 rad to 1.549 rad and then slightly
decreases. This result shows the strong dependence of
Goos-Hanchen phase shift on the engineered band gap
of graphene [18, 23]. This result shows that the phase
shift, Φ , can be enhanced by certain energy gap at the
Dirac points.

2. Fig. 2 shows the dependence of the phase shift, Φ, on
the angle of incidence, ϕ , at different values of the gate

voltage, Vg. As shown from the figure that for large
values of gate voltage, Vg, for example, Vg = 1V, the
phase shift, Φ , decreases as the angle of incidence,
ϕ, increase and phase shift takes only positive values.
While for values of Vg = 0V or Vg = -0.5V, the value
of phase shift oscillates between negative and positive
values. It is well known that the tunneling of quasipar-
ticle Dirac fermions could be controlled by changing
the barrier height, Vb, this could be easily implemented
by applying a gate voltage, Vg, to graphene [11,24–26].

3. Fig. 3 shows the dependence of the phase shift, Φ, on
the angle of incidence, ϕ ,at different values of mag-
netic field, B. As shown from the figure that for B =
0.5 T, the phase shift decreases gradually as the angle
of incidence, ϕ , increases to value Φ = 1.335 rad and
then increases to Φ = 1.549 rad at ϕ = 1.374 rad and
very slightly decreases. While for values B = 5 T and
10 T the value of the phase shift, Φ, is negative and
decreases up to Phi = -1.561 rad when ϕ = 0.8635rad
(when B = 5T) and then increases to Φ = 1.529 rad
when ϕ = 0.902 rad and then decreases as the angle of
incidence increases. For B = 10 T, the value of phase
shift is negative and decreases as the value of ϕ in-
creases up to ϕ = 0.432 rad and increases up to Φ =
1.547 rad and ϕ = 0.471 rad and decreases as the an-
gle of incidence increases. This result shows that how
a magnetic field modifies the transport of quasiparticle
Dirac fermions in graphene with certain barrier height
and certain energy gap [26].

4. Fig. 4 shows the variation of the phase shift, Φ, at dif-
ferent values of frequencies, ν , of the pulsed electro-
magnetic field. As shown from the figure, for higher
frequencies 400 THz, 800 THz and 1000 THz, the value
of the phase shift, Φ, decreases as the angle of inci-
dence increases. We notice that in this range of fre-
quencies, the value of phase shift is negative. While
for microwave frequencies, MW = 300 GHz the value
of the phase shift, Φ, decreases as the angle of inci-
dence increases up to ϕ = 1.021 rad and then the phase
shift increases up to Φ = 1.55 rad and ϕ = 1.06 rad and
then decreases gradually.

This result shows that the conducting states in the side
bands can be effective in the Goos-Hanchen phase shift for a
certain frequency of the applied electromagnetic signal [27].
This result is very important for tailoring graphene for pho-
tonic nano-devices.

The present results show that the Goos-Hanchen phase
shift can be modulated by both intrinsic parameters, for ex-
ample, the barrier height, the energy gap and the extrinsic
parameters, for example, magnetic field and the induced pho-
tons of electromagnetic field. The present research is very
important for the applications of graphene in different nano-
electronics and nanophotonic devices.
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Fig. 3: The variation of Goos-Hanchen phase shift, Φ, with angle of
incidence, ϕ, at different values of magnetic field.

Fig. 4: The variation of Goos-Hanchen phase shift, Φ, with angle
of incidence, ϕ, at different values of electromagnetic wave frequen-
cies.
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The spin transport characteristics through a mesoscopic device are investigated under
the effect of an AC-field. This device consists of two-diluted magnetic semiconductor
(DMS) leads and a nonmagnetic semiconducting quantum dot. The conductance for
both spin parallel and antiparallel alignment in the two DMS leads is deduced. The
corresponding equations for giant magnetoresistance (GMR) and spin polarization (SP)
are also deduced. Calculations show an oscillatory behavior of the present studied pa-
rameters. These oscillations are due to the coupling of photon energy and spin-up &
spin-down subbands and also due to Fano-resonance. This research work is very im-
portant for spintronic devices.

1 Introduction

The field of semiconductor spintronics has attracted a great
deal of attention during the past decade because of its po-
tential applications in new generations of nanoelectronic de-
vices, lasers, and integrated magnetic sensors [1, 2]. In ad-
dition, magnetic resonant tunneling diodes (RTDs) can also
help us to more deeply understand the role of spin degree of
freedom of the tunneling electron and the quantum size ef-
fects on spin transport processes [3–5]. By employing such a
magnetic RTD, an effective injection of spin-polarized elec-
trons into nonmagnetic semiconductors can be demonstrated
[6]. A unique combination of magnetic and semiconducting
properties makes diluted magnetic semiconductors (DMSs)
very attractive for various spintronics applications [7, 8]. The
II-VI diluted magnetic semiconductors are known to be good
candidates for effective spin injection into a non-magnetic
semiconductor because their spin polarization can be easily
detected [9, 10]. The authors investigated the spin transport
characteristics through mesoscopic devices under the effect
of an electromagnetic field of wide range of frequencies [11–
14].

The aim of the present paper is to investigate the spin
transport characteristics through a mesoscopic device under
the effect of both electromagnetic field of different frequen-
cies and magnetic field. This investigated device is made of
diluted magnetic semiconductor and semiconducting quan-
tum dot.

2 The Model

The investigated mesoscopic device in the present paper is
consisted of a semiconducting quantum dot connected to two
diluted magnetic semiconductor leads. The spin-transport of
electrons through such device is conducted under the effect
of both electromagnetic wave of wide range of frequencies
and magnetic effect. It is desired to deduce an expression for
spin-polarization and giant magnetoresistance. This is done

as follows:
The Hamiltonian, H, describing the spin transport of elec-

trons through such device can be written as:

H = − ~
2

2m∗
d2

dx2 + eVsd + eVg + EF + Vb

+ eVac cos(ωt) ± 1
2
gµBσB +

N2e2

2C
± σho,

(1)

where m∗ is the effective mass of electron, ~ is the reduced
Planck’s constant, Vsd is the source-drain voltage (bias volt-
age), Vg is the gate voltage, EF is the Fermi-energy, Vb is the
barrier height at the interface between the leads and the quan-
tum dot, Vac is the amplitude of the applied AC-field with
frequency ω, g is the Landé factor of the diluted magnetic
semiconductor, µB is Bohr magneton, B is the applied mag-
netic field, σ-Pauli matrices of spin, and ho is the exchange
field of the diluted magnetic semiconductor. In eq. (1), the
term (N2e2/2C) represents the Coulomb charging energy of
the quantum dot in which e is the electron charge, N is the
number of electrons tunneled through the quantum dot, and C
is the capacitance of the quantum dot. So, the corresponding
Schrödinger equation for such transport is

Hψ = Eψ, (2)

with the solution for the eigenfunction, ψ(x), in the corre-
sponding regions of the device can be expressed as [15]:

ψ (x) =



[
A1eik1 x + B1e−ik1 x

]
Jn

(
eVac
~ω

)
e−inωt, x < 0[

A2Ai (ρ (x)) + B2Bi (ρ (x))
]

Jn

(
eVac
~ω

)
× e−inωt, 0 < x < d
A3eik2 xJn

(
eVac
~ω

)
e−inωt, x > d

(3)

where Ai(ρ(x)) is the Airy function and its complement is
Bi(ρ(x)) [16]. In eqs. (3), the parameter Jn(eVac/~ω) rep-
resents the nth order Bessel function of the first kind. The
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solutions of eqs. (3) must be generated by the presence of
the different side-bands “n” which come with phase factor
e−inωt [11–14], and d represents the diameter of the quantum
dot. Also, the parameters k1, k2 and ρ(x) in eqs. (3) are:

k1 =

√
2m∗

~2 (E + n~ω + Vb + σho), (4)

n = 0, ± 1, ± 2, ± 3 . . .

k2 =

√
2m∗
~2 (Vb + eVsd + eVg + EF +

N2e2

2C +

n~ω ± 1
2gµBBσ ± σho)

(5)

and

ρ (x) =
d

eVsdΦ
( EF + Vb + eVsd

( x
d

)
+ eVg+

N2e2

2C
+

1
2
gµBBσ + E )

(6)

in which Φ is given by

Φ =
3
√
~2d

2m∗eVsd
. (7)

Now, the tunneling probability, Γ(E), could be obtained
by applying the boundary conditions to the eigenfunctions
(eq. (3)) and their derivative at the boundaries of the junc-
tion [11–14]. We get the following expression for the tunnel-
ing probability, Γ(E), which is:

Γ(E) =
∞∑

n=1

J2
n

(eVac

~ω

)
·
{

4k1k2

π2Φ2

[
α2k2

1k2
2 + β

2m∗
2
k2

1

]−1
}
, (8)

where α and β are given by:

α = Ai (ρ(0)) · Bi (ρ(d)) − Bi (ρ(0)) · Ai (ρ(d)) , (9)

and

β=
1
Φm∗

[
Ai (ρ(0)) · Bi′ (ρ(d)) − Bi (ρ(0)) · Ai′ (ρ(d))

]
, (10)

where Ai′(ρ(x)) is the first derivative of the Airy function and
Bi′(ρ(x)) is the first derivative of its complement. Now, the
conductance, G, of the present device is expressed in terms of
the tunneling probability, Γ(E), through the following equa-
tion as [11–14, 17]:

G =
2e2

h
sin (φ)

EF+n~ω∫
EF

dE
(
−∂ fFD

∂E

)
· Γ (E), (11)

where ϕ is the phase of the scattered electrons and the factor
(−∂ fFD/∂E) is the first derivative of the Fermi-Dirac distribu-
tion function and it is given by:

(
−∂ fFD

∂E

)
= (4kBT )−1 cosh−2

(
E − EF + n~ω

2kBT

)
, (12)

where kB is the Boltzmann constant and T is the absolute
temperature. The spin polarization, SP, and giant magneto-
resistance, GMR, are expressed in terms of the conductance,
G, as follows [18]:

S p =
G↑↑ −G↑↓
G↑↑ +G↑↓

, (13)

and

GMR =
G↑↑ −G↑↓

G↑↑
, (14)

where G↑↑ is the conductance when the magnetization of the
two diluted magnetic-semiconductor leads are in parallel
alignments, while G↑↓ is the conductance for the case of an-
tiparallel alignment of the magnetization in the leads. The
indicator ↑ corresponds to spin up and also ↓ corresponds to
spin down.

3 Results and Discussion

Numerical calculations to eqs. (11, 13 and 14), taking into
consideration the two cases for parallel and antiparallel spins
of quasiparticles in the two leads. In the present calculations,
we take the case of quantum dot as GaAs and the two leads
as diluted magnetic semiconductors GaMnAs. The values for
the quantum dot are [11–14,19–21]: EF = 0.75 eV, C = 10−16

F and d = 2 nm, Vb = 0.3 eV. The value of the exchange field,
ho, for GaMnAs is -1 eV and g = 2 [18–22].

The features of the present results:

1. Figs. 1a, 1b show the variation of the conductance with
the induced photon of the frequency range 1012 − 1014

Hz. The range of frequency is in the infra-red range
at different values of gate voltage, Vg. Fig. 1a is for
the case of the parallel alignment of spin in the two di-
luted magnetic semiconductor leads, while Fig. 1b for
antiparallel case. As shown from these figures that an
oscillatory behavior of the conductance with the fre-
quency for the two cases. It must be noted the peak
height of the conductance (for the two cases) increases
as the frequency of the induced photons. Also, the
trend of the dependence is a Lorentzian shape for each
range of frequencies. These results are due to photon-
spin-up and spin-down subbands coupling. This cou-
pling will be enhanced as the frequency of the induced
photon increases.

2. Fig. 2a shows the variation of the giant magnetoresis-
tance, GMR, with the frequency of the induced photon
at different values of gate voltage, Vg. As shown from
the figure, random oscillations of GMR with random
peak heights. GMR attains a maximum value ∼ 30%
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(a)

(b)

Fig. 1: The variation of conductance with frequency at two different gate voltages for (a) parallel spin alignment and (b) antiparallel spin
alignment.
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(a) (b)

Fig. 2: The variation of (a) GMR and (b) SP with frequency at two different gate voltages.

at ν = 2.585×1013 Hz (Vg = 0.35 V) and GMR attains
a maximum value ∼ 22% at ν = 2.615× 1013 Hz (Vg =

0.1 V).
3. Fig. 2b shows the variation of the spin polarization, SP,

with the frequency of the induced photon at different
values of gate voltage, Vg. As shown from the figure,
random oscillations of spin polarization with random
peak heights. SP attains a maximum value ∼ 17.6% at
ν = 2.585×1013 Hz (Vg = 0.35 V), and also SP attains a
maximum value ∼ 12.6% at ν = 2.615×1013 Hz (Vg =

0.1 V).

These random oscillations for both GMR & SP might be
due to spin precession and spin flip of quasiparticles which
are influenced strongly as the coupling between the photon
energy and spin-up & spin-down subbands in quantum dot.

Also, these results show that the position and line shape
of the resonance are very sensitive to the spin relaxation rate
of the tunneled quasiparticles [23,24] through the whole junc-
tion.

In general, the oscillatory behavior of the investigated
physical quantities might be due to Fano-resonance as the
spin transport is performed from continuum states of dilute
magnetic semiconductor leads to the discrete states of non-
magnetic semiconducting quantum dots [14, 25].

So, our analysis of the spin polarization and giant mag-
netoresistance can be potentially useful to achieve a coherent
spintronic device by optimally adjusting the material param-
eters. The present research is practically very useful in digital
storage and magneto-optic sensor technology.
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The Upper Limit of the Periodic Table of Elements Points out to the “Long”
Version of the Table, Instead of the “Short” One

Albert Khazan
E-mail: albkhazan@gmail.com

Herein we present an analysis of the internal constitution of the “short” and “long”
forms of the Periodic Table of Elements. As a result, we conclude that the second
(long) version is more correct. We also suggest a long version of the Table consisting of
8 periods and 18 groups, with the last (heaviest) element being element No. 155, which
closes the Table.

1 Introduction

Many research papers have been written about the discov-
ery of the Periodic Law of Elements. Many spectacular ver-
sions of this law have likewise been suggested. However the
main representation of this law is still now a two-dimensional
table consisting of cells (each single cell manifests a single
element). The cells are joined into periods along the hori-
zontal axis (each row represents a single period), while the
cells are joined into groups along the vertical axis (each col-
umn represents a single group). The resulting system is rep-
resented in three different forms: the “short version” (short-
period version); the “long version” (long-period version); and
the “super-long version” (extended version), wherein each
single period occupies a whole row.

Our task in this paper is the consideration of the first two
versions of the Periodic System.

There are hundreds of papers discussing the different ver-
sions of the Periodic Table, most of whom have been sug-
gested by Mark R. Leach [1].

To avoid any form of misunderstanding of the terminol-
ogy, we should keep in mind that, in each individual case, the
Periodic Law sets up the fundamental dependence between
the numerical value of the atomic nucleus and the proper-
ties of the element, while the Periodic System shows how we
should use this law in particular conditions. The Periodic Ta-
ble is a graphical manifestation of this system.

On March 1, 1869, Dmitri Mendeleev suggested the first
“long” version of his Table of Elements. Later, in Decem-
ber of 1970, he published another, “short” version of the Ta-
ble. His theory was based on atomic masses of the elements.
Therefore, he formulated the Periodic Law as follows:

“Properties of plain bodies, and also forms and properties
of compounds of the elements, have a periodic dependence on
the numerical values of the atomic masses of the elements”.

After the internal constitution of each individual atom had
been discovered, this formulation was changed to:

“Properties of plain substances, and also forms and prop-
erties of compounds of the elements, have a periodic depen-
dence from the numerical value of the electric charge of the
respective nucleus”.

All elements in the Periodic Table have been numbered,
beginning with number one. These are the so-called atomic
numbers. Further, we will use our data about the upper limit
of the Periodic Table [2–4], when continuing both the short
and long versions of the Table upto their natural end, which
is manifested by element No. 155.

2 The short version of the Periodic Table

2.1 The Periods

The Periodic System of Elements is presented with the Pe-
riodic Table (see Table 1), wherein the horizontal rows are
known as Periods. The first three Periods are referred to as
“short ones”, while the last five — “long ones”. The ele-
ments are distributed in the Periods as follows: Period 1 —
by 2 elements, Periods 2 and 3 — by 8 elements in each, Pe-
riods 4 and 5 — by 18 elements in each, Periods 6 and 7 —
by 32 elements in each, Period 8 — by 37 elements. Herein
we mean that Period 7 is full upto its end, while Period 8
has been introduced according to our calculation. Each sin-
gle Period (except for Hydrogen) starts with an alkaline metal
and then ends with a noble gas. In Periods 6 and 7, within
the numbers 58–71 and 90–103, families of Lanthanoids and
Actinides are located, respectively. They are placed on the
bottom of the Table, and are marked by stars. Chemical prop-
erties of Lanthanides are similar to each other: for instance,
they all are “reaction-possible” metals — they react with wa-
ter, while producing Hydroxide and Hydrogen. Proceeding
from this fact we conclude that Lanthanides have a very man-
ifested horizontal analogy in the Table. Actinides, in their
compounds, manifest more different orders of oxidation. For
instance, Actinium has the oxidation order +3, while Ura-
nium — only +3, +4, +5, and +6. Experimentally studying
chemical properties of Actinides is a very complicate task
due to very high instability of their nuclei. Elements of the
same Period have very close numerical values of their atomic
masses, but different physical and chemical properties. With
these, and depending on the length of the particular Period —
each small one consists of one row, while each long one con-
sists of two rows (the upper even row, and the lower odd row),
— the rate of change of the properties is smoother and slower
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in the second case. In the even rows of the long Periods (the
rows 4, 6, 8, and 10 of the Table), only metals are located.
In the odd rows of the long Periods (these are the rows 5, 7,
and 9), properties of the elements change from left to right in
the same row as well as those of the typical elements of the
Table.

The main sign according to which the elements of the long
Periods are split into two rows is their oxidation order: the
same numerical values of it are repeated in the same Period
with increase of atomic mass of the elements. For instance,
in Period 4, the oxidation order of the elements from K to Mn
changes from +1 to +7, then a triad of Fe, Co, Ni follows
(they are elements of an odd row), after whom the same in-
crease of the oxidation order is observed in the elements from
Cu to Br (these are elements of an odd row). Such distribu-
tion of the elements is also repeated in the other long Periods.
Forms of compounds of the elements are twice repeated in
them as well. As is known, the number of each single Pe-
riod of the Table is determined by the number of electronic
shells (energetic levels) of the elements. The energetic levels
are then split into sub-levels, which differ from each one by
the coupling energy with the nucleus. According to the mod-
ern reference data, the number of the sub-levels is n, but not
bigger than 4. However, if taking Seaborg’s suggestion about
two additional Periods of 50 elements in each into account,
then the ultimate high number of the electrons at an energetic
level, according to the formula N = 2n2, should be 50 (under
n = 5). Hence, the quantum mechanical calculations require
correction.

2.2 The Groups

The Periodic Table of Elements contains 8 Groups of the ele-
ments. The Groups are numbered by Roman numbers. They
are located along the vertical axis of the Table. Number of
each single Group is connected with the oxidation order of the
elements consisting it (the oxidation number is manifested in
the compounds of the elements). As a rule, the positive high-
est oxidation order of the elements is equal to the number of
that Group which covers them. An exception is Fluorine: its
oxidation number is −1. Of the elements of Group VIII, the
oxidation order +8 is only known for Osmium, Ruthenium,
and Xenon. Number of each single Group depends on the
number of the valence electrons in the external shell of the
atom. However it is equally possible to Hydrogen, due to
the possibility of its atom to loose or catch the electron, to
be equally located in Group I or Group VII. Rest elements in
their Groups are split into the main and auxiliary sub-groups.
Groups I, II, II include the elements of the left side of all Pe-
riods, while Groups V, VI, VII — the elements located in the
right side. The elements which occupy the middle side of the
long Periods are known as the transferring elements. They
have properties which differ from the properties of the ele-
ments of the short Periods. They are considered, separately,

as Groups IVa, Va, VIa, VIII, which include by three ele-
ments of each respective long Period Ib, IIb, IIIb, IVb. The
main sub-groups consist of the typical elements (the elements
of Periods 2 and 3) and those elements of the long Periods
which are similar to them according to their chemical proper-
ties. The auxiliary sub-groups consist of only metals — the
elements f the long Periods. Group VIII differs from the oth-
ers. Aside for the main sub-group of Helium (noble gases),
it contains three shell sub-groups of Fe, Co, and Ni. Chem-
ical properties of the elements of the main and auxilary sub-
groups differ very much. For instance, in Group VII, the main
sub-group consists of non-metals F, Cl, Br, I, At, while the
auxiliary subgroup consists of metals Mn, Tc, Re. Thus, the
sub-groups join most similar elements of the Table altogether.
Properties of the elements in the sub-groups change, respec-
tively: from up to down, the metalic properties strengthen,
while the non-metalic properties become weak. It is obvious
that the metalic properties are most expressed on Fr then on
Cs, while the non-metalic properties are most expressed on F
then on O [5].

2.3 Electron configuration of the atoms, and the Periodic
Table

The periodic change of the properties of the elements by in-
crease of the ordinal number is explained as the periodic
change of their atoms’ structure, namely by a number of elec-
trons at their outer energetic levels. Elements are divided into
seven periods (eight according to our dates) in accordance
with energetic levels in electron shells. The electron shell of
Period 1 contains one energetic level, Period 2 contains two
energetic levels, Period 3 — three, Period 4 — 4, and so on.
Every Period of the Periodic System of Elements begins with
elements whose atoms, each, have one electron at the outer
level, and ends with elements whose atoms, each, have at the
outer shell 2 (for Period 1) or 8 electrons (for all subsequent
Periods). Outer shells of elements (Li, Na, Ka, Rb, Cs); (Be,
Mg, Ca, Sr); (F, Cl, Br, I); (He, Ne, Ar, Kr, Xe) have a sim-
ilar structure. The number of the main sub-Groups is deter-
mined by the maximal number of elements at the energetic
level which equals 8. The number of common elements (el-
ements of auxiliary sub-Groups) is determined by maximal
electrons at d-sub-level, and it equals 10 for every large Pe-
riod (see Table 2).

As far as one of auxiliary sub-Groups of the Periodic Ta-
ble of Elements contains at once three common elements with
similar chemical properties (so called triads Fe-Co-Ni, Ru-
Rh-Pd, Os-Ir-Pt), then the number, as of common sub-Groups
as main ones, equals 8. The number of Lanthanoids and Ac-
tinides placed at the foot of the Periodic Table as independent
rows equals the maximum number of electrons at the f-Sub-
level in analogy with common elements, i.e. it equals 14.

A Period begins with an element the atom of which con-
tains one s-electron at the outer level: this is hydrogen in Pe-
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Table 1: The standard (long) version of the Periodic Table of Elements.
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Table 2: The suggested (short) version of the Periodic Table of Elements, up to No. 155.
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Fig. 1: Experience of the System of the Elements, based on their atomic mass (the table, according to Mendeleev). Dependence of the
atomic mass from the number of the elements (the graphs, according to the suggested formulation). The triangles mean the beginning of
each Period.

Fig. 2: Deviation of the modern (suggested) dependence of the atomic mass from the number of the elements from Mendeleev’s data.
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riod 1, and alkaline metals in the others. A Period ends with
precious gas: helium (1s2) in Period 1.

Detailed studies of the structure of an atom are not the aim
of our paper, therefore we draw common conclusions con-
cerning the corresponding locations of elements in blocks:

1. s-elements: electrons fill s-sub-shells of the outer level;
two first elements of every Period are related to them;

2. p-elements: electrons fill p-sub-shells of the outer
level; six last elements of every Period are related to
them;

3. d-elements: electrons fill s-sub-shells of the outer
level; they are elements of inserted decades of big Peri-
ods placed between s- and p-elements (they are called
also common elements);

4. f-elements: electrons fill f-sub-shells; they are Lan-
thanoids and Actinides.

3 Drawbacks of the short version and advantages of the
long version of the Periodic Table

The “short” form of the Table was cancelled officially by
IUPAC in 1989. But it is still used in Russian information
and educational literature, must probably, according to a tra-
dition. But it follows by detailed consideration that it contains
some moot points.

In particular, Group VIII contains in the common Group,
together with precious gases (the main sub-Group), triads of
elements, which have precisely expressed the properties of
metals. The contradiction here is that the triad Fe, Co, Ni is
near families of platinum metals although their properties dif-
fer from the properties of Groups of iron. Group I contains
alkaline metals having very strong chemical activity, but si-
multaneously the sub-Group “b” contains copper, silver and
gold which have not these properties but possess excellent
electric conductivity. Besides gold, silver and platinum, met-
als have very weak chemical activity.

Group VII, where nearby halogens such metals as man-
ganese, technezium and renium are placed, is also incorrect,
because in the same Group two sub-Groups of elements pos-
sessing absolutely different properties are collected.

The “short” Table is sufficiently informative but it is dif-
ficult in terms of use due to the presence of the “long” and
the “short” Groups, i.e. the small and big Periods divided
by even and odd lines. It is very difficult to place f-elements
inside eight Groups.

The “long” form of the Table consisting of 18 Groups
was confirmed by IUPAC in 1989. Defect characteristics of
the “short” Table were removed here: the sub-Groups are ex-
cepted, Periods consist of one stitch, elements are composed
of blocks, the families of iron and platinum metals have dis-
appeared, and so on.

The known Periodic Table consisting of 118 elements and
7 Periods where our dates for Period 8 are added must

contain: 17 s-elements, 42 p-elements, 50 d-elements, 42 f-
elements, and 4 g-elements.

The number 17 for s-elements follows from the fact that
two of them are in Group I and Group II of Period 8, while
element No. 155 (the last s-element, 17-th) is in Period 9 and
Group I (the sole) closes the Table.

The extended Table consisting of blocks containing the
number of elements calculated by us is published in [4].

3.1 From the Periodic Law to the Hyperbolic Law and
the upper limit of the Periodic System

A note by Mendeleev, in March of 1869, was published and
sent in Russian and French to scientists, titled “Experience of
Systems of Elements Founded on Their Atomic Weights and
Chemical Similarity” (with “atomic weight” to be understood
as “atomic mass” here and in the future). This date is consid-
ered as the discovery date of the periodic law of chemical el-
ements. The author dedicated the next two years to the work
in this direction, which was a correction of atomic masses, an
elaboration of studies about the periodical properties of ele-
ments, about the rôle of Groups, of big and small Periods, as
well as about the places of chemical combinations in the Ta-
ble. As a result, “Mendeleev’s Natural System of Elements”
which was the first periodic table of chemical elements was
published in the first edition of his book “The Foundations of
Chemistry”, in 1871.

It is necessary to note that the dates published in the ta-
ble of “Experience of Systems of Elements Founded on Their
Atomic Weights and Chemical Similarity” permits us to use
them in order to prove the correctness of Mendeleev’s work.

The comprehensive table based the book “Experience of
System of Element Found on Their Atomic Weight and
Chemical Similarity”, in terms of the dependence of each
atomic mass on the number of the corresponding element,
has been built by us and showed on Fig. 1. Because then it
was not known yet that the ordinal number of each element
characterizes its charge, it was simply the case that an ele-
ment possessing a minimal mass was allowed to be designed
as No. 1, and this order is conserved in the future: the next,
in terms of mass, element will be designated as No. 2, the
third as No. 3, and so on. Thus the ordinal number, which
was attributed to the element after the theory of the atom was
constructed has here another numerical value — symbolizing
order of priority. The Table on Fig. 1 is the same as the one
composed by Mendeleev, and the elements and the numbers
are placed as the points on the arc where the triangles desig-
nate the beginning of the Periods. As is clear, the arc goes
smoothly, preceding the elements and the atomic mass ∼100,
and after that it deviates preceding Ba. The trend line equa-
tion can be easily described by the multinomial of the third
degree, i.e. by R2 = 0.9847, in spite of a strong jump in the
region of Lantanides. It should be noted that the part of the
arc preceding Ba has R2 = 0.999. It means that the direction
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of the trend line after Ba reflects correctly the further course
of our dependence, which allows us to calculate easily the
atomic weights of other elements.

It should be noted that the trend line of the curve con-
structed according to contemporary dates has R2 = 0.9868. In
order that compare the dependence of the atomic mass from
the ordinal number according to contemporary dates and the
dates of Mendeleev the graph of was constructed (see Fig. 2).
As is clear, the maximal deviations (3–4%) are observed for
6 cases, (1–1.5%) — for 8 cases, the others are placed lower.
Because the common number of elements is 60, this spread is
negligible for the those time.

As follows from the indicated dates, Mendeleev showed
by means of his works concerning the Periodic Law that it is
true for 60–70 elements, opening the way for the extension of
the Table up to No. 118.

But our studies of the Periodic Table distinctly show that
a hyperbolic law takes place in it. The law determines the
upper limit of the Table through element No. 155. This fact
is indisputable and it is justified by numerous publications.

4 Conclusion

If it was allowed in the 1950s that a maximum value of an
ordinal number in Periodic Table could not exceed the value
Z = 110 due to a spontaneous division of the nucleus, then
in the 1960s theoreticians proposed the hypothesis that the
atomic nucleus could have anomalously high stability. Sea-
borg called these regions “islands of stability” in a “sea of
instability”. He hoped for a possible synthesis of super-
elements inside these regions, “. . . but until [now] the prob-
lem of the upper bound of the Periodic System [remains]
unsolved” (and so: at that time)!

Since in order to solve any problem it is necessary to
know a final goal and to define its bounds, we have realized
experimental studies and constructed a mathematical appara-
tus for the determination of the upper bound of the Periodic
Table. According to our calculations, the last element is esti-
mated and its location is determined: Period 9, Group I, with
atomic mass of 411.66 (approximately), for which Z = 155.
The earlier-proposed extended tables by Seaborg for 168 and
216 elements simply cannot be realized, because only 155
elements can be in the Table, in its entirety.
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Kepler-16 Circumbinary System Validates Quantum Celestial Mechanics
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We report the application of quantum celestial mechanics (QCM) to the Kepler-16 cir-
cumbinary system which has a single planet orbiting binary stars with the important
system parameters known to within one percent. Other gravitationally bound systems
such as the Solar System of planets and the Jovian satellite systems have large uncertain-
ties in their total angular momentum. Therefore, Kepler-16 allows us for the first time
to determine whether the QCM predicted angular momentum per mass quantization is
valid.

1 Introduction

We report a precision test of quantum celestial mechanics
(QCM) in the Kepler-16 circumbinary system that has planet-
b orbiting its two central stars at a distance of 0.70 AU from
the barycenter. QCM, proposed in 2003 by H.G. Preston
and F. Potter [1] as an extension of Einstein’s general the-
ory of relativity, predicts angular momentum per mass quan-
tization states for bodies orbiting a central mass in all grav-
itationally bound systems with the defining equation in the
Schwarzschild metric being

L
µ
= m

LT

MT
. (1)

Here µ is the mass of the orbiting body with orbital angular
momentum L and MT is the total mass of the bound system
with total angular momentum LT . We calculate that the quan-
tization integer m = 10, an amazing result with about a 1%
uncertainty. Note that in all systems tested, we assume that
the orbiting bodies have been in stable orbits for at least a 100
million years.

Kepler-16 is the first solar system type for which the total
mass and the total angular momentum are both known accu-
rately enough to allow a test of the angular momentum per
mass quantization condition to within a few percent. The ad-
vantage this system has over all others is that the binary stars
in revolution at its center contribute more than 99.5% of the
system’s total angular momentum. Moreover, more orbiting
bodies may be detected in the future to provide the acid test
of the theory because our precision result should improve.

2 Brief Review

Contrary to popular statements in the literature about plan-
etary orbital angular momentum, the angular momentum of
the Oort Cloud dominates the total angular momentum of the
Solar System, being about 60 times the angular momentum
of the orbiting planets, but its value has high uncertainty. The
Jovian planets have differential internal rotations which bring
their angular momentum uncertainties to more than 10% also.
The Earth-Moon and Pluto-Charon systems have known val-
ues and a fit can be made to m = 65 and m = 9, respectively,

but the application of the Schwarzschild metric is question-
able in systems for which a reduced mass must be used. In
addition, there is not another orbiting body for prediction pur-
poses.

The Mars-Phobos-Deimos system offers a test of the an-
gular momentum condition. We find that m = 61 for Phobos
and m = 97 for Deimos, with uncertainties less than about 4%.
The Schwarzschild metric is a good approximation here but
the integers are very large and therefore somewhat unsatisfac-
tory for a definitive test. We would prefer to find a system for
which the m values that fit are small integers, if possible.

We have applied the equation to many multiplanet exosys-
tems and found that the fits all predict additional undetected
angular momentum. Such solar systems can be expected to
have an additional planet and/or the equivalent of an Oort
Cloud that contributes significant orbital angular momentum.
Examples include: Kepler-18, HR 8799, HIP 57274, Gliese
581, 55Cnc, Kepler-11, PSR 1257, HD 10180, HD 125612,
HD 69830, 47 Uma, and 61 Vir.

Other confirmed circumbinary systems with one or two
known planets are either dominated by the planetary angular
momentum or the planets contribute about 50%, rendering
their fits unsuitable for a precision test: HW Virginis, NNSer-
pentis, and DP Leonis.

Our original article [1] contains the derivation of QCM
from the general relativistic Hamilton-Jacobi equation and its
new gravitational wave equation for any metric. Our first
application, to the Solar System without knowledge of the
Oort Cloud angular momentum, predicted that all the plane-
tary orbits should be within the Sun’s radius! Subsequently,
we learned about the Oort Cloud and were able to produce
two excellent QCM linear regression fits with R2 > 0.999 for
m sets (1) 2,3,4,5,9,13,19,24,28; (2) 3,4,5,6,11,15,21,26,30.
Therefore, we predict a total angular momentum for the Solar
System LS S ≈ 1.9 x 1045 kg m2/s with the planets contributing
only Lpl = 3.1 x 1043 kg m2/s.

Several follow-up articles verify its application to galax-
ies without requiring ’dark matter’ for gravitational lensing
by the galaxy quantization states [2], the quantization state of
baryonic mass in clusters of galaxies [3], and how the cosmo-
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logical redshift is interpreted as a gravitational redshift that
agrees with the accelerated expansion of the Universe [4].
That is, QCM applied to the Universe with the interior met-
ric dictates that every observer at distance r from the source
sees the light originating from an effective negative potential
V(r) ≈ -kr2 c2/[2(1-kr2)2], meaning the clocks run slower at
the distant source.

In the Schwarzschild metric the QCM wave equation re-
duces to a Schrödinger-like equation that predicts quantiza-
tion states for the angular momentum per mass and for the en-
ergy per mass. There is no Planck’s constant per se but instead
each system has its unique constant H = LT /MT c, a character-
istic distance for the gravitationally bound system. Important
physical quantities can be related to H and the Schwarzschild
radius. In the single free particle limit, such as a free electron,
the QCM equation reduces to the standard quantum mechan-
ical Schrödinger equation. Note that QCM is not quantum
gravity.

3 The Kepler-16 System

We have been waiting about 10 years for a gravitationally
bound system for which its total angular momentum per to-
tal mass is known to about 1%. Finally, in September, 2011,
the Kepler-16 system was reported [5] with two stars, star A
and star B, separated by 0.22 AU and a planet called planet-b
orbiting their barycenter at 0.70 AU. The list below provides
the important physical parameters of this system.

Star A:

Mass = 0.6897 ± 0.0035 solar masses

Orbital radius = 0.05092 ± 0.00027 AU

Period = 41.079220 ± 0.000078 days

Angular momentum = (1.4247 ± 0.0170) x 1044 m2/s

Star B:

Mass = 0.20255 ± 0.00066 solar masses

Orbital radius = 0.17339 ± 0.00115 AU

Period = 41.079220 ± 0.000078 days

Angular momentum = (4.8514 ± 0.0632) x 1044 m2/s

planet-b:

Mass = 0.333 ± 0.0016 Jupiter masses

Orbital radius = 0.7048 ± 0.0011 AU

Period = 228.776 ± 0.037 days

Angular momentum = (2.2479 ± 0.1080) x 1042 m2/s

Kepler-16 system:

LT /MT = (3.517± 0.011) x 1014 m2/s

Lb/Mb = (3.555± 0.036) x 1015 m2/s

Note that although the planet mass value has about a 5%
uncertainty, this large uncertainty is excluded from the equa-
tion because the planet mass divides out in Lb/µb. Our result
for the QCM angular momentum per mass quantization inte-
ger is

m = 10.1 ± 0.1. (2)

Therefore, we have determined that planet-b is in the m = 10
quantization state with a maximum uncertainty of less than
2%. In Einstein’s general theory of relativity and in New-
tonian gravitation there is no a priori reason for m to be an
integer, so its value could have been anywhere.

4 Comments

As good as this result has been, the acid test for QCM is yet
to come. We need to detect at least one more planet in the
Kepler-16 system to determine whether the QCM prediction
leads to its correct angular momentum value, i.e., an integer
multiple of LT /MT equal to the classical value at radius r.

Assuming that QCM passes the acid test, we wish to point
out that the existence of quantization states of angular mo-
mentum per mass and energy per mass are important con-
cepts for the formation of stars, planets, solar systems, galax-
ies, and clusters of galaxies. Models ignoring QCM will be
incomplete and will need speculative inventions such as dark
matter and perhaps dark energy to preserve traditional incom-
plete approaches toward ’understanding’ these gravitational
systems.

An additional gravitational test of QCM would be a lab-
oratory experiment with a slowly rotating attractor mass pro-
ducing a repulsive effect to counteract the Newtonian attrac-
tion at specific rotation frequencies for the given separation
distance to the affected mass. We are in the process of search-
ing for this behavior.
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The potential energy surfaces, V(β, γ), for a series of Xenon isotopes 122−134Xe have
been calculated. The relatively flat potential to 130Xe and energy ratio E+41

/E+21
= 2.2

show E(5) symmetry to the nucleus which is laying in the transition region from γ-
soft to vibrational characters. The interacting boson approximation model (IBA − 1)
has been used in calculating levels energy and electromagnetic transition probabilities
B(E2)′s. Back bending is observed for 122−130Xe. The calculated values are compared
to the available experimental data and show reasonable agreement.

1 Introduction

The chain of 122−134Xe isotopes is of great interest because of
the existence of transitional nuclei where the nuclear structure
changes from rotational to vibrational shapes. Many authors
studied this area of isotopes experimentally and theoretically.

Experimentally, the mass of 122−134Xe isotopes [1] were
detected on line using mass separator ISOLDE/CERN while
the lifetimes of the low lying states in 122−134Xe were mea-
sured using Doppler-Shift [2] technique.

Theoretically, many authors studied this series of isotopes
useing different theoretical models as algebric sp(4) shell
model [3], cranked Strutinsky method [4], relativistic mean
field theory [5, 6], isospin-dependent lattice gas model [7, 8],
general Bohr Hamiltonian [9], quadrupole-quadrupole plus
pairing model [10], cranked Hartree-Fock-Bogoliubov model
[11, 12] and interacting boson approximation model [13, 17].
They reported:

1. the reduced transition probabilities for Yrast spectra up
to I+ = 10;

2. the existance of shape transitions as well as E(5) and
X(5) symmetry nuclei,

3. the occurrence of backbending in 122−130Xe nuclei, and

4. M1 transition probabilities between the mixed-
symmetry and fully symmetric states.

2 Interacting Boson Approximation Model

The IBA-1 model [18] was applied to the positive parity low-
lying states in even-even 122−134Xe isotopes. The proton, π,
and neutron, ν, bosons are treated as one boson and the sys-
tem is considered as an interaction between s-bosons and d-
bosons. Creation (s†d†) and annihilation (sd̃) operators are
for s and d bosons. The Hamiltonian employed for the present
calculation is given as:

H = EPS · nd + PAIR · (P · P)+

+ 1
2 ELL · (L · L) + 1

2 QQ · (Q · Q)+

+5OCT · (T3 · T3) + 5HEX · (T4 · T4),
(1)

where

P · p = 1
2


{
(s†s†)(0)

0 −
√

5(d†d†)(0)
0

}
x{

(ss)(0)
0 −

√
5(d̃d̃)(0)

0

}


(0)

0

, (2)

L · L = −10
√

3
[
(d†d̃)(1)x (d†d̃)(1)

](0)

0
, (3)

Q · Q =
√

5


{

(S †d̃ + d†s)(2) −
√

7
2

(d†d̃)(2)
}

x{
(s†d̃ + +d̃s)(2) −

√
7

2
(d†d̃)(2)

}


(0)

0

, (4)

T3 · T3 = −
√

7
[
(d†d̃)(2)x (d†d̃)(2)

](0)

0
, (5)

T4 · T4 = 3
[
(d†d̃)(4)x (d†d̃)(4)

](0)

0
. (6)

In the previous formulas, nd is the number of bosons; P·P,
L · L, Q ·Q, T3 · T3 and T4 · T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons; EPS is the boson energy; and PAIR,
ELL, QQ, OCT , HEX are the strengths of the pairing, angu-
lar momentum, quadrupole, octupole and hexadecupole inter-
actions.

3 Results and discussion

3.1 The potential energy surfaces, (PESs)

The PESs [19], V(β, γ), for Xenon isotopes as a function
of the deformation parameters β and γ have been calculated
using :
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Fig. 1: Contour plot of the potential energy surfaces for 122−134Xe nuclei.

Fig. 2: Potential energy surfaces for 122−134Xe nuclei at γ = 0o (Prolate) and γ = 60o (Oblate).
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nucleus EPS PAIR ELL QQ OCT HEX E2S D(eb) E2DD(eb)
122Xe 0.4700 0.0000 0.0216 −0.0200 0.0000 0.00000 0.1390 −0.4112
124Xe 0.4680 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1280 −0.3786
126Xe 0.4490 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1260 −0.3727
128Xe 0.4720 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1410 −0.4171
130Xe 0.5420 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1500 −0.4437
132Xe 0.6450 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1460 −0.4319
134Xe 0.8020 0.0000 0.0216 −0.0200 0.0000 0.0000 0.1480 −0.4378

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

I+i I+f
122Xe 124Xe 126Xe 128Xe 130Xe 132Xe 134Xe

01
∗Exp. 21 1.40(6) 0.96(6) 0.770(25) 0.750(40) 0.65(5) 0.460(30) 0.34(6)

01 Theo. 21 1.4038 0.9651 0.7691 0.7575 0.6575 0.4684 0.3451

21 01 0.2808 0.1930 0.1538 0.1515 0.1315 0.0937 0.0690

22 01 0.0057 0.0033 0.0022 0.0015 0.0007 0.0002 0.0001

22 02 0.1552 0.0979 0.0741 0.0684 0.0567 0.0412 0.0343

23 01 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000

23 02 0.1640 0.1278 0.1047 0.1077 0.0926 0.0583 0.0298

23 03 0.0465 0.0248 0.0161 0.0133 0.0113 0.0091 0.0086

24 03 0.0766 0.0355 0.0198 0.0121 0.0064 0.0025 ——

24 04 0.1031 0.0886 0.0784 0.0867 0.0839 0.0683 ——

41 21 0.5297 0.3583 0.2787 0.2650 0.2186 0.1447 0.0941

41 22 0.0487 0.0316 0.0239 0.0227 0.0194 0.0145 0.0124

41 23 0.0737 0.0562 0.0452 0.0456 0.0386 0.0240 0.0122

61 41 0.6735 0.4529 0.3448 0.3183 0.2482 0.1465 0.0714

61 42 0.0476 0.0326 0.0254 0.0259 0.0244 0.0198 0.0182

61 43 0.0563 0.0428 0.0337 0.0332 0.0261 0.0127 ——

81 61 0.7369 0.4875 0.3586 0.3139 0.2199 0.0979 ——

81 62 0.0409 0.0290 0.0230 0.0246 0.0248 0.0214 ——

81 63 0.0438 0.0319 0.0237 0.0210 0.0127 —— ——

101 81 0.7363 0.4717 0.3269 0.2567 0.1362 —— ——

101 82 0.0347 0.0252 0.0202 0.0223 0.0237 —— ——

Table 2: Theoretically calculated reduced transition probabilities, B(E2)′s in e2 b2. *Ref. [27]
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Fig. 3: Comparison between experimental [20–26] and theoretical (IBA) energy levels.

Fig. 4: Back bending in 122−134Xe isotopes.
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ENΠNν (β, γ) = <NπNν; βγ |Hπν|NπNν; βγ> =

= ζd(NνNπ)β2(1 + β2) + β2(1 + β2)−2×

×
{
kNνNπ[4 − (X̄πX̄ν)β cos 3γ]

}
+

+

{
[X̄πX̄νβ2] + Nν(Nν − 1)

(
1
10

c0 +
1
7

c2

)
β2

}
,

(7)

where

X̄ρ =
(

2
7

)0.5
Xρ, ρ = π orν . (8)

The calculated PESs, V(β, γ), for Xenon series of isotopes
are presented in Fig. 1 and Fig. 2. They show that 122−128Xe
nuclei are deformed and the two wells on both oblate and
prolate sides are nearly equals and O(6) characters is expected
to these nuclei. 130Xe has flat potential energy, Fig. 2, which
indicates that the nucleus is E(5) symmetry and confirmed by
the energy ratio R = E+41

/E+21
= 2.2 as well as it is laying also

in the transition from γ- unstable, O(6), to vibrational, U(5),
nuclei while, 132,134Xe are vibrational like nuclei.

3.2 Energy spectra and transition rates

IBA-1 model has been used in calculating the energy of the
positive parity low-lying levels of Xenon series of isotopes.
Comparison between the experimental spectra [20–26] and
our calculations, using values of the model parameters given
in Table 1, are illustrated in Fig. 3. The agreement between
the low-laying calculated energy levels and their correspond-
ing experimental values is fairly good but for higher states
theoretical values are slightly higher. We believe that is due to
the change of the projection of the angular momentum which
may be due to band crossing and change in angular momen-
tum.

The electric quadrupole transition operator [18] employed
in this study is given by:

T (E2) = E2S D · (s†d̃ + d†s)(2) +
1
√

5
E2DD · (d†d̃)(2) . (9)

The reduced electric quadrupole transition rates between
Ii → I f states are given by

B(E2, Ii − I f ) =
[< I f ∥ T (E2) ∥ Ii >]2

2Ii + 1
. (10)

Unfortunately there is no enough measurements of elec-
tromagnetic transition rates B(E2) for these series of nuclei.
The only measured B(E2, 0+1 → 2+1 )’s are presented, in Ta-
ble 2 for comparison to the calculated values. The parame-
ters E2S D and E2DD, displayed in Table 1, are used in the
present calculation of the transition rates B(E2)′s and then
normalized to the experimentally known ones [27]. In our
calculations we did not introduce any new parameters.

3.3 Back bending

The moment of inertia J and energy parameters ~ω are calcu-
lated [28]using equations (11, 12):

2J
~2 =

4I − 2
∆E(I → I − 2)

, (11)

(~ω)2 = (I2 − I + 1)
[
∆E(I → I − 2)

(2I − 1)

]2

. (12)

The plots in Fig. 4 show back bending for 122−126Xe at
I+ = 10 while at I+ = 12 for 128,130Xe and this is in agreement
with the work done by other authors [29]. Back bending in
Xenon isotopes in higher states is explained [10] as due to
partial rotational alignment of a pair of neutrons in the 1h1/2
neutron orbit near the Fermi surface.

4 Conclusions

The IBA-1 model has been applied successfully to 122−134Xe
isotopes and we have got:

1. The ground state bands are successfully reproduced;

2. The potential energy surfaces are calculated and show
O(6) characters to 122−128Xe isotopes where the prolate
and oblate depths are equal;

3. Flat potential energy to 130Xe and energy ratios con-
firmed that the nucleus is an E(5) symmetry;

4. 132,134Xe nuclei show vibrational-like characters;

5. Electromagnetic transition rates, B(E2)′s, are
calculated, then normalized to experimental B(E2, 01−
21) values and then compared to the available data, and

6. Back bending for 122−126Xe have been observed at an-
gular momentum I+ = 10 and at I+ = 12 for 128,130Xe.
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The structure of a bound state of several Dirac particles is discussed. Relying on solid
mathematical arguments of the Wigner-Racah algebra, it is proved the a non-negligible
number of configurations is required for a description of this kind of systems. At
present, the main results are not widely known and this is the underlying reason for
the phenomenon called the proton spin crisis.

1 Introduction

Once upon a midnight dreary,
while I pondered weak and weary,
Over many a quaint and curious
volume of forgotten lore... [1].

The main objective if this work is to prove that the multi-
configuration structure of a bound state of several Dirac par-
ticles plays an extremely important role. The existence of
such a multi-configuration structure was already known many
decades ago [2, 3] and early electronic computers were used
for providing a numerical proof of this issue [4]. (Note that
the first edition of [2] was published in 1935.) Unfortunately,
this scientific evidence has not found its way to contempo-
rary textbooks of physics and has become a kind of a for-
gotten lore. For example, [5] uses a single configuration and
remarks that the error is about 5 per cent [5, see a comment on
p. 234]. Here [6, see p. 116] is a notable exception. The paper
proves the main points of this issue and shows its far reaching
meaning and its relevance to physical problems that are still
unsettled. In doing so the paper aims to make a contribution
to the correction of this situation.

It is well known that quantum mechanics explains the
Mendeleev periodic table of chemical elements. The shell
structure of electrons provides an easy interpretation of chem-
ical properties of noble gases (a full shell), halogens (a full
shell minus 1), alkali metals (a full shell + 1) etc. The stan-
dard explanation of the Mendeleev periodic table uses a sin-
gle configuration for a description of the electronic states of
each chemical element. Thus, for example, the helium and the
lithium atoms are described by the 1s2 and 1s22s configura-
tions, respectively. At this point the following problem arises:
Does the unique configuration structure of an atomic ground
state make an acceptable description of its quantum mechani-
cal system or is it just a useful pedagogical explanation of the
Mendeleev periodic table? The answer to this problem cer-
tainly must be obtained from a mathematical analysis of the
quantum mechanical state of systems that contain more than
one electron. By describing an outline of this task, the present
work proves beyond any doubt that an atomic state of more
than one electron has a multi-configuration structure and that
no single configuration dominates the system.

The conclusion stated above has two important aspects.
First, It is clear that a correct understanding of the structure
of any fundamental physical system is a vital theoretical as-
set for every physicist. Next, it turns out that the lack of
an adequate awareness of this physical evidence has already
caused the phenomenon called the “proton spin crisis” [7]
which haunts the particle physics community for decades.
The measurements published in [7] show that quarks carry
a very small portion of the proton’s spin and this evidence
has been regarded as a surprise. Now, it is shown in this work
that the multiconfiguration structure found in atomic states is
not a specific property of the Coulomb interaction. Thus, it
is expected to be also found in any bound state of three spin
1/2 quarks, like it is found in bound states of several spin 1/2
electrons. For this reason, one can state that if the experiment
described in [7] would have shown that quarks carry the en-
tire proton’s spin then this result should have been regarded
as a real crisis of fundamental quantum mechanical princi-
ples.

In this work, units where ~= c= 1 are used. The second
section contains a brief description of the main properties of a
bound state of several Dirac particles that are required for the
discussion. The underlying mathematical reasons for the mul-
ticonfiguration structure of states are discussed in the third
section. Some aspects of the results are pointed out in the last
section.

2 General Arguments

The main objective of this work is to find a reliable math-
ematical method for describing the ground state of a bound
system of spin 1/2 particles. Applying Wigner’s analysis of
the Poincare group [8, 9], one concludes that the total mass
(namely, energy) and the total spin are good quantum num-
bers. Thus, one assumes that an energy operator (namely,
a Hamiltonian) exists. For this reason, one can construct a
Hilbert space of functions that can be used for describing the
given system as an eigenfunction of the Hamiltonian. Evi-
dently, in the system’s rest frame, an energy eigenfunction
has the time dependent factor exp(−iEt). This factor can be
removed and the basis of the Hilbert space contains time in-
dependent functions.

The fact that every relatively stable state has a well de-
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fined total spin J can be used for making a considerable sim-
plification of the problem. Thus, one uses a basis for the
Hilbert space that is made of functions that have the required
spin J and ignores all functions that do not satisfy this con-
dition. Evidently, a smaller Hilbert space reduces the amount
of technical work needed for finding the Hamiltonian’s eigen-
functions. An additional argument holds for systems whose
state is determined by a parity conserving interaction, like
the strong and the electromagnetic interactions. Thus, one
can use functions that have a well defined parity and build
the Hilbert space only from functions that have the required
parity. This procedure makes a further simplification of the
problem.

The notion of a configuration of a system of several Dirac
particles is a useful mathematical tool that satisfies the two
requirements stated above [2, see p. 113] and [10, see p. 245].
A configuration is written in the form of a product of single
particle wave functions describing the corresponding radial
and orbital state of each particle belonging to the system (the
m quantum number is ignored). For atomic systems a non-
relativistic notation is commonly used and the values of the
nl quantum numbers denote a configuration, like 1s22s1. In
relativistic cases the variables nl j [10, see p. 245] are used.
In the latter case, the variables n jπ (here π denotes parity and
it takes the values ±1) is an equivalent notation for a rela-
tivistic configuration because l = j ± 1/2 and the numerical
parity of the l-value of a Dirac spinor upper part defines the
single particle’s parity. (This work uses the n jπ notation.) Ev-
idently, any acceptable configuration must be consistent with
the Pauli exclusion principle.

For any given state where the total spin J and parity are
given, one can use configurations that are consistent with J
and the product of the single-particle parity equals the par-
ity of the system. The total angular momentum J is obtained
from an application of the law of vector addition of angular
momentum [2, see p. 56] and [10, see p. 95]. Here the tri-
angular condition holds [10, see p. 98]. Thus, for example,
an acceptable configuration for the two-electron 0+ ground
state of the helium atom must take the form n1 jπ1

1 n2 jπ2
2 , where

j1 = j2 and π1 = π2. Similarly, a description of a 2-electron
state where Jπ = 3+ cannot contain a configuration of the form
n1

1
2
+ n2

3
2
+, because the two J values 1/2 and 3/2 can only

yield a total J = 1 or J = 2.
At this point the structure of the relevant Hilbert space

is known. It is made of configurations that satisfy certain
requirements. This is one of the useful properties of using
configurations - the relevant Hilbert space is smaller because
many configurations can be ignored due to the total spin and
parity requirements. Obviously, a smaller Hilbert space in-
dicates shorter computational efforts. Thus, the framework
needed for the analysis is established. The problem of find-
ing how many configurations are required for an acceptable
description of an atomic state is discussed in the following
section.

3 The Multi-Configuration Structure of Atomic States

The purpose of this section is to outline a proof that shows
why a bound state of several electrons takes the form of a lin-
ear combination of terms, each of which belongs to a specific
configuration. For this purpose, the Hamiltonian matrix is
constructed for a Hilbert space whose basis is made of func-
tions that take a configuration form. Evidently, non-vanishing
off-diagonal matrix elements prove that the required state is a
linear combination of configurations. It is shown that this
property holds even for the simplest atomic state of more
than one electron, namely the Jπ = 0+ ground state of the 2-
electron Helium atom.

It is explained in the previous section that the required
Hilbert space contains functions that have the given total spin
and parity. The form of a two electron function is written as
follows

χ(r1, r2) = Fi(r1)Fk(r2)( jπ1
1 jπ2

2 JM). (1)

Here, Fi(r1), Fk(r2) denote radial functions of the appropriate
electron, j1, j2, π1, π2 denote the single particle spin and par-
ity of the electrons, respectively, J is the total spin obtained
by using the appropriate Clebsch-Gordan coefficients [2, 10]
and M denotes the magnetic quantum number of the total an-
gular momentum,

Let us use the principles described in the previous sec-
tion and try to find the structure of the helium atom ground
state. Thus, due to the triangular rule [10, see p. 98] and in
order to be consistent with J = 0, we must use configurations
where j1 = j2. Similarly, in order to have an even total parity,
we must use configurations where the two electrons have the
same parity. Thus, the required Hilbert space contains func-
tions of the following form

χ(r1, r2) = Fi(r1)Fk(r2)( jπ jπ00), (2)

where j is a positive number of the form j = n+ 1/2, n is an
integer and π= ± 1.

The angular parts of any two different functions of (2) are
orthogonal. Hence, off-diagonal matrix elements of any pure
radial operator vanish. Since the following discussion is fo-
cused on finding off-diagonal matrix elements of the Hamil-
tonian, radial coordinates and radial operators are not always
shown explicitly in expressions.

At this point one can use a given Hamiltonian and con-
struct its matrix. Before doing this assignment one has to find
a practical procedure that can be used for overcoming the in-
finite number of configurations that can be obtained from the
different values of n, j and π. For this purpose one organizes
the configurations of (2) in an ascending order of j and exam-
ines a Hilbert subspace made of the first N0 functions, where
N0 is a positive integer. Here a finite Hamiltonian matrix is
obtained and one can diagonalize it, find the smallest eigen-
value E0 and its associated eigenfunction Ψ0. The quantities
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found here represent an approximation for the required solu-
tion. Let this approximate solution be denoted in this form

{E0,Ψ0}. (3)

In order to evaluate the goodness of this approximation, one
replaces N0 by N1 =N0 + 1 and repeats the procedure. The
new solution {E1,Ψ1} is a better approximation because it
relies on a larger Hilbert subspace. The difference between
these solutions provides an estimate for the goodness of the
solutions obtained. This procedure can be repeated for an in-
creasing value of Ni. Thus, if a satisfactory approximation is
reached for a certain value of Ni then one may terminate the
calculation and use the solution obtained from this procedure
as a good approximation to the accurate solution.

Now we are ready to examine the Hamiltonian’s matrix
elements. This examination demonstrates the advantage of
using configurations as a basis for the Hilbert space. Thus, the
angular part of the kinetic energy of each electron takes the
form found for the hydrogen atom and only diagonal matrix
elements do not vanish. The same result is obtained for the
spherically symmetric radial potential operator Ze2/r of the
nucleus. It follows that off-diagonal matrix elements can be
obtained only from the interaction between the two electrons.
(This quantity does not exist for the one electron hydrogen
atom and for this reason, each of the hydrogen atom eigen-
functions takes the form of a unique configuration.) In a full
relativistic case the two-electron interaction takes the form
of Breit interaction [11, see p. 170]. which contains the in-
stantaneous ordinary Coulomb term and a velocity-dependent
term. The existence and the results of the Hamiltonian’s off-
diagonal matrix elements are the main objective of this dis-
cussion and it is shown below that for this purpose the exam-
ination of the relatively simple Coulomb term is enough.

Thus, one has to write the 1/r12 operator in a form that is
suitable for a calculation that uses the single particle indepen-
dent variables r1, r2 of the configurations (2). This objective
is achieved by carrying out a tensor expansion of the inter-
action [10, see p. 208]. For the specific case of the Coulomb
interaction, one obtains [12, see p. 114]

1
r12
=

∞∑
k=0

rk
<

rk+1
>

Pk(cos θ12). (4)

Here r< and r> denote the smaller and the larger values of
r1 and r2, respectively and θ12 is the angle between them.
Pk(cos θ12) is the Legendre polynomial of order k. At this
point one uses the addition theorem for spherical harmon-
ics [10, see p. 113]

Pk(cos θ12) =
4π

2k + 1

k∑
m=−k

(−1)mYk,−m(θ1, ϕ1)Yk,m(θ2, ϕ2) (5)

and obtains an expansion of the appropriate Legendre poly-
nomial Pk(cos θ12) of (4) in terms of spherical harmonics that

depend on single particle angular variables. This analysis
shows how matrix elements can be obtained for a Hilbert
space whose basis is made of functions that are an appropriate
set of configurations.

At this point the wave functions of the Hilbert space basis
as well as the Hamiltonian operator depend on the radial and
the angular coordinates of single particle functions. The main
objective of this section is to explain why the electronic states
are described as a linear combination of configurations. It is
shown above that the configurations of the Hilbert space ba-
sis are eigenfunctions of the operators representing the kinetic
energy and the interaction with the spherically symmetric po-
tential of the nucleus. Hence, the discussion is limited to the
two particle operator (4) that depends on the expansion (5).

Let us find, for example, the off-diagonal matrix element
of the configurations ((1 1

2
+)200) and ((2 3

2
−)200) of the Hilbert

space basis (2). Consider the 2-electron Coulomb interaction
obtained for the upper (large) component of the Dirac spinor.
Thus, 1

2
+ is a spatial s-wave and 3

2
− is a spatial p-wave. The

Wigner-Racah algebra provides explicit formulas for expres-
sions that depend on the angular coordinates. Now, as stated
above, the main objective of the discussion is to show that
off-diagonal matrix elements do not vanish. For this purpose,
only the main points of the calculation are written and readers
can use explicit reference for working out the details.

The formal form of the angular component of the off-
diagonal matrix element is

Hi j =< j1 j2JM| 1
r12
| j ′1 j ′2JM > . (6)

Here j1, j2 of the ket are angular momentum values of the
first and the second electron, respectively and they are cou-
pled to a total J, M. The bra has an analogous structure. In
the particular case discussed here J =M = 0 and (6) takes the
form

Hi j =<
1
2

1
2 00| 1

r12
| 32

3
2 00 > . (7)

The following points describe the steps used in the calcu-
lation of (7).

1. The Wigner-Eckart theorem shows that (6) can be cast
into a product of a Wigner 3j symbol and a reduced
matrix element [10, see p. 117]

2. In (4), the expansion (5) of 1/r12 is a scalar product of
two tensors [10, see p. 128].

3. The reduced matrix element of such a scalar product
can be put in the form of a product of a Racah coeffi-
cient and two reduced matrix elements that depend on
the first and the second electron, respectively [10, see
p. 129].

4. Each of these reduced matrix elements takes the form
< sl j||Yk ||sl′ j′ > where sl denote single particle spin
and spatial angular momentum that are coupled to the
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particle’s total angular momentum j. In the specific
case discussed here it is < 1

2 0 1
2 ||Y1|| 12 1 3

2 >. The value of
the last expression can be readily obtained as a product
of a square root of an integer and a Wigner 3 j symbol
[10, see p. 521]. The final value is

< 1
2 0 1

2 ||Y1|| 12 1 3
2 >=

−2
√

4π
. (8)

This discussion shows that the Hamiltonian’s off diagonal
matrix elements do not vanish for the J = 0 ground state of
the He atom. It means that a single configuration does not
describe accurately this state. The next step is to carry out an
explicit calculation and find out how good is the usage of a
single configuration. This task has already been carried out
[4] and it was proved that the description of the ground state
of the He atom requires many configurations. Here radial
and angular excitations take place and no single configuration
plays a dominant role.

4 Discussion

Several aspects of the conclusion obtained in the previous
section are discussed below.

Intuitively, the multiconfiguration structure of the ground
state may be regarded as a mistake. Indeed, the ground state
takes the lowest energy possible. Hence, how can a mixture
of a lower energy state and a higher energy state yield a com-
bined state whose energy is lower than either of the two single
mono-configuration states? The answer to this question relies
on a solid mathematical basis. Thus, a diagonalization of a
Hermitian matrix reduces the lowest eigenvalue and increases
the highest eigenvalue [12, see e.g. pp. 420–423]. Hence,
for a Hermitian matrix, any off-diagonal matrix element in-
creases the difference between the corresponding diagonal el-
ements. It means that the smaller diagonal element decreases
and the larger diagonal element increases. Since the Hamilto-
nian is a Hermitian operator, one concludes that if the Hilbert
space basis yields a non-diagonal Hamiltonian matrix then
the lowest eigenvalue ”favors” eigenfunctions that are a lin-
ear combination of the Hilbert space basis functions.

It is shown in the previous section that the non-vanishing
off-diagonal matrix elements rely on the two body Coulomb
interaction between electrons. Thus, the tensor expansion of
the interaction (4) casts the 2-body Coulomb interaction into
a series of Legendre polynomials where cosθ12 is the polyno-
mial’s argument. Evidently, any physically meaningful inter-
action depends on the distance between the interacting parti-
cles. Hence, an expansion in terms of the Legendre polyno-
mials can be obtained. This expansion proves that the math-
ematical procedure described in the previous section has a
comprehensive validity [10, see p. 208]. Thus, what is found
in the previous section for electrons in the He atom ground
state also holds for quarks in the proton. Moreover, the proton
is an extremely relativistic system of quarks and, as such, its

spin-dependent interactions are expected to be quite strong.
Evidently, spin dependent interactions make a contribution to
off-diagonal matrix elements. On the basis of this conclusion,
one infers that the proton’s quark state must be described by
a linear combination of many configurations.

A polarized proton experiment has been carried out where
the instantaneous spin direction of quarks was measured [7].
The measurements have shown that the total quark spin con-
stitutes a rather small fraction of the proton’s spin. This result
is in a complete agreement with the mathematical analysis
carried out above. Thus, the relativistic proton dynamics indi-
cates that the j j-coupling provides a better approach (and this
is the reason for the usage of this notation here). In each quark
configuration, spin and spatial angular momentum are cou-
pled to a total single particle j-value and the Clebsch-Gordan
coefficients determine the portion of spin-up and spin-down
of the quark. Next, The relativistic quark state indicates that,
unlike the case of the hydrogen atom, the lower part of the
Dirac spinor of quarks is quite large. As is well known, if in
the upper part of a Dirac spinor is l= j±1/2 then its lower part
is l= j ∓ 1/2. Hence, different Clebsch-Gordan coefficients
are used for the upper and the lower parts of the Dirac spinor.
Furthermore, in different configurations, different Clebsch-
Gordan coefficients are used for the single particle coupling
of the three quarks to the total proton’s spin and the overall
weight of the spin-up and spin-down components takes a sim-
ilar value. This argument indicates that the outcome of [7] is
quite obvious and that if the experiment would have yielded
a different conclusion where quarks carry the entire proton’s
spin then this result should have been regarded as a real crisis
of fundamental quantum mechanical principles. This discus-
sion also shows that the quite frequently used description of
the results of [7] as “the proton spin crisis” is unjustified.

Computers are based on quantum mechanical processes
that take place in solid state devices. Hence, it is clear that
people who have established the laws of quantum mechan-
ics had no access to the computational power of computers.
For this reason, several approximations have been contrived
in order to get an insight into atomic structure. A method that
deals with configurations is called central field approxima-
tion [5, see p. 225]. Here, for every electron, the actual field
of all other electrons is replaced by an approximate spheri-
cally symmetric radial field. Evidently, as explained in the
third section, such a radial field does not cause a configuration
mixture and, in this approximation, a single configuration is
used for describing atomic states. This approach is frequently
used in a description of the Mendeleev’s periodic table [5, see
pp. 240–247].

However, even in the early days of quantum mechanics,
the central field approximation has been regarded as an ap-
proximation and people have constructed mathematical tools
for treating the multi-configuration atomic structure which is
known as the Wigner-Racah algebra of angular momentum.
These mathematical tools have been used in the early days of
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electronic computers [4] and the result is quite clear: many
configurations are required even for the simplest case of the
ground state J = 0 of the 2-electron He atom and no single
configuration plays a dominant role. Today, this outcome
is still known [6, see p. 116] but unfortunately not widely
known. Thus, [6] is based on lectures delivered in a chemistry
department. On the other hand, the birth and the long dura-
tion of the idea concerning the proton spin crisis prove that
this fundamental physical issue is indeed not widely known.
This paper has been written for the purpose of improving the
present status.
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Discovery of Uniformly Expanding Universe
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Saul Perlmutter and the Brian Schmidt – Adam Riess teams reported that their
Friedmann-model GR-based analysis of their supernovae magnitude-redshift data re-
vealed a new phenomenon of “dark energy” which, it is claimed, forms 73% of the
energy/matter density of the present-epoch universe, and which is linked to the further
claim of an accelerating expansion of the universe. In 2011 Perlmutter, Schmidt and
Riess received the Nobel Prize in Physics “for the discovery of the accelerating ex-
pansion of the Universe through observations of distant supernovae”. Here it is shown
that (i) a generic model-independent analysis of this data reveals a uniformly expanding
universe, (ii) their analysis actually used Newtonian gravity, and finally (iii) the data,
as well as the CMB fluctuation data, does not require “dark energy” nor “dark matter”,
but instead reveals the phenomenon of a dynamical space, which is absent from the
Friedmann model.

1 Introduction

Observational determination of the time evolution of the scale
factor a(t) of the universe is fundamental to understanding the
dynamics of the universe. Measurement [1, 2] of supernovae
magnitude-redshifts provided that critical data, and it is a sim-
ple procedure to determine a(t) from that data. A secondary
process is then to test different dynamical theories of the uni-
verse against that data. However this did not happen, and not
for the 1st time in the history of astronomy was one predeter-
mined theory forced into the data fitting.

The 1st example was Ptolemy’s fitting of his geocentric
model of the solar system to the Babylonian planetary orbit
data. This then required, and correctly so, that the orbits have
epicycle components. This model persisted for some 1400
years, until the heliocentric model replaced the geocentric
model, and for which the epicycle phenomenon then evap-
orated - it was merely an artifact of the incorrect geocentric
model. It now appears that a similar confusion of data and
model has reappeared in analysing the supernovae data, for
again a simple and manifestly inadequate model of the uni-
verse, namely Newtonian gravity (NG), has been used. A
generic model-independent analysis of the data reveals that
the universe is undergoing a uniform expansion, see sect.2.
However use of the Newtonian gravity model has resulted in
a new collection of model-induced artifacts, namely “dark en-
ergy”, “dark matter”, and a claim that the universe expansion
is accelerating. These artifacts also disappear once we use a
model that replaces Newtonian gravity.

It is usually argued that General Relativity (GR) in the
form of the Friedmann equation is superior to NG, and it was
the Friedmann equation that was used in analysing the su-
pernovae data [1, 2]. However in sect.3 we derive the Fried-
mann equation from NG in a few simple steps. This hap-
pens because GR was constructed as a generalisation of NG,
and reduces to NG in the limit of low matter densities and

low speeds. Alternatively, in sect.4, we show in a few simple
steps, that the dynamical 3-space theory of space and gravity
yields a uniformly expanding universe, and so dispenses with
the “dark energy” and “dark matter” artifacts. The implica-
tion here, and in previous analyses of the dynamics of space
itself, shows that NG is a flawed model of gravity, even at the
level of laboratory measurements of G, bore-hole g anoma-
lies, galactic rotation, and so on. So the Friedmann equation
is based upon a flawed theory. This is in fact a major out-
come of the observations of supernova events, and needs to
be understood.

2 Model Independent Analysis Reveals Uniform Expan-
sion

The scale factor a(t) = r(t)/r(t0); (a(t0) ≡ 1 by definition),
where r(t) are galactic separations on a sufficiently large
scale, and t0 is the present moment age of the universe. It
describes the time evolution of the universe assuming a ho-
mogeneous and isotropic description. In principle it may be
directly extracted from magnitude-redshift data without the
use of any particular dynamical model for a(t). The redshift
is z = 1/a(t) − 1, and the Hubble function is H(t) = ȧ/a. We
define H(z) by changing variables from t to z. A dimension-
less luminosity distance is given by (see appendix)

dL(z) = (1 + z)
∫ z

0

H0dz′

H(z′)
. (1)

dL(z) takes account of the reduced photon flux and energy
loss caused by the expansion. Then the magnitude-redshift
observables are computable from a(t)

µ(z) = 5 log10 dL(z) + m, (2)

where m is determined by the intrinsic brightness of the SNe
Ia supernova. In principle this can be inverted to yield a(t),
without reference to any dynamical theory for a(t). A simple
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Fig. 1: Supernovae magnitude-redshift data. Upper curve (light
blue) is “dark energy” only ΩΛ = 1. Next curve (blue) is best fit
of “dark energy”-“dark-matter” ΩΛ = 0.73. Lowest curve (black)
is “dark matter” only ΩΛ = 0. 2nd lowest curve (red) is generic
uniformly expanding universe.

first analysis of the data tries a uniform expansion a(t) = t/t0,
which involves one parameter t0 = 1/H0, which sets the time
scale. Fig.1 shows that this uniform expansion (shown by red
plot) gives an excellent account of the data. We conclude that
the supernovae magnitude-redshift data reveals a uniformly
expanding universe. So why did [1, 2] report an accelerat-
ing expansion for the universe? The answer, according to the
Nobel Prize briefing notes, is because “the evolution of the
Universe is described by Einstein’s theory of general relativ-
ity” [3]. To the contrary we argue that the data should be used
to test possible theories of the universe, as in the usual scien-
tific method, and not a priori demand that one theory, with ad
hoc adjustments, be defined to be the only correct theory.

3 Newtonian Gravity Universe Model

The analysis in [1,2] used the GR-based Friedmann equation
for a(t)

ȧ2 =
8
3
πGa(t)2ρ(t), (3)

where ρ(t) is the matter/energy density. However this equa-
tion follows trivially from Newtonian gravity. Consider a uni-
form density of matter moving radially with speed v(r, t), at
distance r, away from an origin. The kinetic + gravitational
potential energy, with total energy E, of a test particle of mass

m is given by
1
2

mv2 − GmM(r)
r

= E, (4)

where M(r) = 4
3πr

3ρ is the mass enclosed within radius r -
this follows simply from Newton’s Inverse Square Law. Us-
ing r(t) = a(t)r0, v = ṙ and the so-called critical case E = 0,
immediately gives (3). The reason for this simple derivation
is that GR was constructed as a generalisation of NG that re-
duces to NG in the limit of low speeds and matter densities.
So the Friedmann equation inherits all of the known failures
of NG. As well the redshift z is a Doppler shift, caused by the
motion of the source relative to the observer. Consider then
some of the implications of (3): (i) if ρ = 0, i.e. no matter,
then there is no expanding universe possible: ȧ = 0. This
arises because (3) is about the effects of matter-matter grav-
itational attraction, and without matter there are no gravita-
tional effects. (ii) (3) is not about the expansion of space, for
it arises from NG in which matter moves through a Euclidean
and unchanging space, (iii) (3) requires, at t = t0, that

H2
0 =

8
3
πGρc, (5)

where ρc is the so-called critical density. However (5) is
strongly violated by the data: the observed baryonic matter
density is some 20 times smaller than ρc, and so ρ must be
padded out to satisfy (5), and (iv) (3) does not posses uni-
formly expanding solutions, unless ρ ∼ 1/a2, a form not con-
sidered in [1, 2]. To fit the data [1, 2] used the restricted ad
hoc form

ρ(a) = (
ΩM

a3 + ΩΛ)ρc, (6)

where ΩΛ is the “dark energy” composition parameter, and
ΩM is the “matter” composition parameter. There is no theo-
retical underpinning for this “dark energy”. The above H0−ρc

(5) relationship requires that ΩΛ + ΩM = 1, resulting in a
two parameter model: H0 and ΩΛ. Fitting the data, by solv-
ing (3), and then using (1) and (2), gives ΩΛ = 0.73, and
so ΩM = 0.27. This fitting is shown in Fig. 1. Essentially
ΩΛ = 0.73 is the value for which NG best mimics a uni-
formly expanding universe, despite its inherent weakness as a
model of a universe. The known baryonic matter density, cor-
responding to Ωm = 0.05, then requires that ΩM −Ωm = 0.22
be interpreted as the “dark matter” composition. However
(3) has another strange feature, namely that a(t), as a con-
sequence of the “dark energy” parametrisation, possess an
exponential component: neglecting ΩM , which becomes in-
creasingly valid into the future we get

a(t) ∼ eH0
√
ΩΛt. (7)

The Nobel Prize for Physics in 2011 was awarded for the
discovery of this “accelerated expansion of the universe”, de-
spite the fact that the model-independent analysis in sect. 2
shows no such effect.

66 Cahill R.T. and Rothall D. Discovery of Uniformly Expanding Universe



January, 2012 PROGRESS IN PHYSICS Volume 1

4 Dynamical Space Universe Model

A newer dynamical model of space describes the velocity of
this structured space, relative to an observer using coordinate
system r and t, by [5]

∇·
(
∂v
∂t
+ (v·∇)v

)
+
α

8

(
(trD)2 − tr(D2)

)
+

+
δ2

8
∇2

(
(trD)2 − tr(D2)

)
+ ... = −4πGρ

∇ × v = 0, Di j =
∂vi
∂x j
. (8)

The 1st term involves the Euler constituent acceleration,
while the α− and δ− terms contain higher order derivative
terms. This dynamical theory is conjectured to arise from
a derivative expansion of a quantum foam theory of space.
Laboratory, geophysical and astronomical data show that α is
the fine structure constant, while δ appears to be a very small
Planck-like length. Quantum theory determines the “gravita-
tional” acceleration of quantum matter to be, as a quantum
wave refraction effect,

g =
∂v
∂t
+ (v · ∇)v+ (∇×v)×vR −

vR

1 −
v2

R

c2

1
2

d
dt

v2
R

c2

+ ..., (9)

where vR = v0−v is the velocity of matter relative to the local
space. Substituting the Hubble form v(r, t) = H(t)r, and then
H(t) = ȧ/a, we obtain

4aä + αȧ2 = −16
3
πGa2ρ. (10)

This has a number of key features: (i) even when ρ = 0,
i.e. no matter, a(t) , 0 and monotonically increasing. This is
because the space itself is a dynamical system, and the (small)
amount of actual baryonic matter merely slightly slows that
expansion, as the matter dissipates space. As well relation (5)
no longer applies, and so there is no “critical density”, (ii) the
redshift z is no longer a Doppler shift; now it is caused by the
expansion of the space removing energy from photons. Be-
cause of the small value of α = 1/137, the α term only plays
a significant role in extremely early epochs, but only if the
space is completely homogeneous∗. In the limit ρ → 0 and
neglecting the α term, we obtain the solution a(t) = t/t0. This
uniformly expanding universe solution is exactly the form di-
rectly determined in sect.2 from the supernovae data. It re-
quires neither “dark energy” nor “dark matter” – these effects
have evaporated, and are clearly revealed as nothing more
than artifacts of the NG model. The “accelerating expansion
of the universe” in the future has also disappeared.

∗Keeping the α term we obtain a(t) = (t/t0)1/(1+α/4)

Fig. 2: CMB angular power spectrum for (i) ΩΛ = 1 (light blue
curve), (ii) = 0.73 (dark blue curve), and (iii) = 0 (black curve),
confirming that the background space is uniformly expanding.

5 CMB Fluctuations

Another technique for determining the expansion rate of the
universe is to use the Cosmic Microwave Background (CMB)
temperature angular fluctuation spectrum. This spectrum is
computed as a perturbation of the plasma relative to an as-
sumed homogeneous background universe dynamical model.
The background model used is the Friedmann equation (3).
We show in Fig. 2 the angular fluctuation power spectrum
from CAMB (Code for Anisotropies in the Microwave Back-
ground), [6, 7], for the same three values ΩΛ = 0, 0.73 and 1,
as also used in Fig. 1. However, as already noted in sect. 3,
this homogeneous background dynamics is merely a New-
tonian gravity model, with “dark energy” and “dark matter”
used to pad out the critical density and mimic a uniform ex-
pansion. The Newtonian model and the dynamical 3-space
model give the same age for the universe, 13.7 Gyr, as they
both describe the same uniform expansion rate, with the mi-
nor variations in the Newtonian model expansion rate can-
celling out. However they give different decoupling times,
0.38 Myr for the Newtonian model and 1.4 Myr for the dy-
namical 3-space. So it is important to note that the decoupling
time is very model dependent.

6 Conclusions

The supernovae magnitude-redshift data is of great signifi-
cance to cosmology. It reveals, using a model-independent
analysis, that the universe is undergoing a uniform expan-
sion. This represents a major challenge to theories of the
universe, particularly as GR does not have such solutions.
We have also noted that GR, via the Friedmann equation, is
nothing more than Newtonian gravity applied to the gravita-
tional force between matter, essentially with galaxies as that
matter. To mimic the uniform expansion the canonical value
ΩΛ = 0.73 emerges by fitting the NG model to either the data,
or more revealingly, by fitting to the dynamical 3-space the-
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ory. However the ad hoc introduction of the “dark energy”
parameter results in a spurious accelerating expansion. These
spurious effects, “dark energy”, “dark matter”, and “accel-
erating expansion”, are reminiscent of Ptolemy’s epicycles
when an incorrect model of the solar system was forced to
fit the data, rather than using the data to test different models
of the solar system. This recurring failure to use the scien-
tific method resulted, in both cases, in deeply wrong theo-
ries being embellished and promoted as orthodoxy, with as-
tronomers now committing major resources to “explaining”
these new epicycles. The dynamical 3-space theory has been
extensively tested, from bore hole g anomalies, to supermas-
sive black holes and cosmic filaments. It gives a uniformly
expanding universe without the introduction of any ad hoc
parameters, and disagrees in general with Newtonian grav-
ity, even in the low matter density, low speed limits, while
nevertheless reproducing the NG restricted successes within
the solar system. Introducing “dark matter” and “dark en-
ergy” amounts to the belief that Newton had correctly and
completely described space and gravity some 300 years ago,
requiring only the identification of new matter/energy. The
supernova data is informing us that this is not so [8]. The use
of the ad hoc parametrisation in (6) is not sufficiently general
to give an unbiased fitting procedure, forcing an exponential
growth term which is not present in the data.
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8 Appendix: Luminosity Distance
To extract a(t) we need to describe the relationship between the
cosmological observables: the apparent energy-flux magnitudes and
redshifts, and in a model independent manner. We use the dynami-
cal space formalism, although the result, in (1) & (15), is generic and
was used in [1, 2]. First we take account of the reduction in photon
count caused by the expanding 3-space, as well as the accompany-
ing reduction in photon energy. To that end we first determine the
distance travelled by the light from a supernova event before detec-
tion. Using a choice of embedding-space coordinate system, with
r = 0 at the location of a supernova event at time t1, the speed of
light relative to this embedding space frame is c + v(r(t; t1), t), i.e.
c wrt the space itself, where r(t; t1) is the photon embedding-space
distance from the source. Then the distance travelled by the light at
time t, after emission at time t1, is determined implicitly by

r(t; t1) =
∫ t

t1

dt′(c + v(r(t′; t1), t′), (11)

which has the solution, on using v(r, t) = H(t)r,

r(t; t1) = ca(t)
∫ t

t1

dt′

a(t′)
. (12)

This distance gives directly the surface area 4πr(t; t1)2 of the
expanding sphere and so the decreasing photon count per unit area

on that surface. With t → t0 (and then dropping t0 in the notation),
a(t0) = 1 and a(t1) = 1/(1 + z(t1)) we obtain

r(z) = c
∫ z

0

dz′

H(z′)
. (13)

However because of the expansion the flux of photons is re-
duced by the factor 1/(1 + z) simply because they become spaced
further apart by the expansion. The photon flux is then given by
FP = LP/4π(1 + z)r(z)2 where LP is the source photon-number
luminosity. However usually the energy flux is measured, and the
energy of each photon is reduced by the factor 1/(1 + z) because of
the redshift. Then the energy flux is, in terms of the source energy
luminosity LE : FE = LE/4π(1 + z)2r(z)2 ≡ LE/4πrL(z)2 which de-
fines the effective energy-flux luminosity distance rL(z). Then the
energy-flux luminosity effective distance is

rL(z) = (1 + z)r(z) = c(1 + z)
∫ z

0

dz′

H(z′)
(14)

The dimensionless “energy-flux” luminosity effective
distance is then given by

dL(z) = (1 + z)
∫ z

0

H0dz′

H(z′)
. (15)

For the uniformly expanding universe H(z) = (1 + z)H0 and
dL(z) = (1 + z) ln(1 + z).
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On the Epistemological Nature of Genius and Individual Scientific Creation

Indranu Suhendro
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This brief exposition summarizes a universally over-arching deepening of the epistemo-
logy of aesthetics (especially as regards the nature of Genius) as outlined in a particular
section of the Author’s work on an all-embracing, post-Kantian epistemological theory
of Reality and the Universe called “The Surjective Monad Theory of Reality” (SMTR),
which generalizes, in the utmost ontological sense, Kantianism, phenomenology, and a
paradigm of Reality called “Reflexive Monism” (RM).

Most people, both eruditically trained and untrained, are pro-
foundly mistaken in their belief about the nature of Genius,
especially in relation to the mere prevalence of talent and
the dominant structure of pedantry (i.e., a dominant world-
paradigm of mass-education, as opposed to authentic indi-
vidual education), the epistemological nature of the so-called
“scientific research”, and the entire psychologism thereof. By
“psychologism”, we mean an ultimately solipsistic, super-
tautological basis that manages to present science and
scientific-technological progress (let alone revolution in the
sciences), among others, to the world at large in the image of
a homogeneously working contingency of non-independent
scientists, political factors, and industrial games, as opposed
to single creative individuals in the profoundest sense.

Such a semi-popular image replete with “democratic-
spiritism” (not to be confused with democracy in and of it-
self), which easily captures unassuming, aspiring talents into
the underlying system, cannot be denuded for what it is, what
it is not, and what is universally, utterly other than it, except
by (advances in) epistemology. Until then, the utmost criti-
cal attitude towards the world of informative representations
(e.g., in the sense of Wittgenstein), if not the most universal
nature of philosophy, science, and art, is found among indi-
vidual epistemic geniuses alone — who know just “what is
what” absolutely independently of all “otherness”.

In the sense of the post-Kantian epistemological theory
of Reality outlined in [1], Genius is indeed not even a “su-
perlative of talent” and is separated from all else by an en-
tire world of noumena. In terms of the ontological, multi-
teleological reality alluded to therein, which embraces also
the eidetic-noumenal “surject” (or “qualon”, which is beyond
mere “omnijectivity” and “inter-subjectivity”) in addition to
the usual reflection (“object”), projection (“subject”), and an-
nihilation (“abject”) in a certain domain of epistemological
dimensionality (“prefect”), Genius is said to be “noumenal-
reflective” (“surjective”), while talent is termed “reflective-
projective” (“phenomenal-reflexive”). Thus, by itself, the
said epistemological framework qualifies itself as being post-
Hegelian in its sector of dialectics: by the very presence of
“surjection”, Genius is beyond the usual triplicity of thesis,

anti-thesis, and synthesis — and so beyond all multiplicity-
dependent, contingent, linear progression.

The universal logic (i.e., meta-logic) thereof, by which
our epistemological meta-structure surpasses Kantian philo-
sophy and Socratic-Hegelian dialectics entirely is four-fold,
anholonomic, and asymmetric in that the general surjective
representation of a universal entity, as regards its “place” in
Reality, is as follows:

(without, within, within-the-within, without-the-without).

Thus, for a given complete ontological entity A (and not
merely a phenomenologically abstract and concrete entity),
there exists the following four-fold eidetic representation:

{A} = {A, non-A, non-non-A, none of these} .

The above, being “twice-qualified ontological”, is not to
be confused with both four-fold phenomenological Buddhist
logic (of phenomena embedded in infinite contingency) and
Whiteheadian process philosophy. Rather, the first two ele-
ments, i.e., A (“without”) and non-A (“within”) are of the
phenomenological level (in the self-dual concrete and abstract
sense): given an object of contemplation (“without”), it is im-
possible to discern its causal, formative “interior” (“within”)
without considering the abstract contingency (inter-
connectedness) of all possible phenomenal existents; while
the last two ontologically, surjectively denote Universality
(“within-the-within”) and Reality (“without-the-without”),
respectively. These four constituents are hereby called “on-
tological categories” for simplicity. Therefore, an entity or
instance is called “universal” if and only if it is “four-fold
eidetically qualified”, and not just “two-fold phenomenologi-
cally qualified”.

That which is surely universally qualified as such is the
Universe itself, for which we have the following representa-
tion:

{the Universe} = {the Material Universe,

the Abstract Universe, the Universe-in-itself, Reality
}
.

Meanwhile, for Thought itself, we have
{
Thought

}
=

{
Thought, Anti-Thought, Unthought, Reality

}
,
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i.e., the Universe-in-itself corresponds to Unthought (not to
be confused arbitrarily with “irrationality”) in the sense that
the Universe as Unthought is a direct presentation (“surde-
termination”) of Reality and not a mere (phenomenological-
reflective) representation, rendering Reality unthinkable in
the first place, and so it is beyond both the Material Uni-
verse and the Abstract Universe, which are the domains of
the traditional sciences (with respect to which, therefore, pro-
gress always seems endlessly “infinite”). Note that, espe-
cially when an arbitrary “thought” other than a “truly uni-
versal thought” (peculiar to Genius) is considered, “thought”
and “anti-thought” always exist in a single phenomenological
contingency while their directions of causality (“momenta”)
differ.

This way, the Cartesian dictum, “I think therefore I am”,
should be replaced by a twice-qualified ontological thinker
(and universal observer) as follows: “I think therefore I am, I
am not, I am not-not, and none of these”.

Accordingly, Reality is such that: 1. It is One-Singular
and cannot be reduced to Unreality simply because “Reality-
in-itself does not mingle with Unreality” in the first place,
whether by necessity or by chance (i.e., unlike arbitrary phe-
nomenological entities mingling across time and space), for
otherwise (noumenal and phenomenal) “things”, even the
Universe itself, would cease to exist “as one and at once”
(at one “Now”) — and both Reality and Unreality too would
be Not —, which is absurd in a four-fold manner: before,
during, after, and without time. 2. It contains “things” and
yet these “things” contain it not, not merely in the spatio-
temporal sense but in the sense that Reality, as Moment,
always precedes and surpasses “things” behind, within, and
ahead of them, and “none of these at all”. 3. The “distance”,
i.e., meta-logical foliage, between the four ontological cate-
gories is thus asymmetric and anholonomic: phenomenally
approaching Reality (M) from the transitive entirety of phe-
nomena (O) will be substantially different from approaching
such phenomenal entirety (O) directly from Reality (M). In
other words:{OM} , {MO}. 4. There exists a meta-logical
exception in that there are surjective instances with respect to
which Reality is their exception just as they are Reality’s ex-
ceptions (singularities) everywhere in the Universe, i.e., they,
unlike others, exist in sheer eidetic-noumenal symmetry with
Reality and the Universe. Such an instance is none other than
Genius. 5. In the surjective-deterministic sense of Reality,
there exists an ultimate observer in the twice-qualified onto-
logical sense of Genius, as opposed to an arbitrary observer:
whether or not a leaf falls in a forest with apparently no obser-
ver around, it still falls simply because the Universe, in its ca-
pacity as an ultimate observer, observes it. This is because the
universal meta-structure is such that the Universe is without
both “inside” and “outside” with respect to the (noumenal)
entirety of the laws of Nature. This saves both common-sense
objectivity while, up to such non-arbitrary ontological qualifi-
cation, keeping intact the unification of observers and obser-

vables as found in both quantum mechanics and the monad
formalism of General Relativity (e.g., of Abraham Zelma-
nov). Otherwise, without such universal determination, one
is left with mere surrealism and omnijectivity, which, as we
have said, can in no way be a direct presentation of Reality-
in-itself.

All that, in a word, is symbolically-noumenally written in
a single “Reality equation” as follows:

M: N
(
U(g, dg)

)
∼ S

where M stands for Reality (Reality-in-itself, “Being-qua-
Being”), N for the Qualic Monad (Reality’s entirely pre-
reflexive, self-singular presentation of itself, i.e., with or
without the Universe and reflective world-foliages, or “Multi-
verse”), U for the noumenal Universe (the Universe-in-itself),
(g, dg) for Surjectivity and infinite self-differentiation (iso-
morphic to Genius — which is none other than surjective, ar-
chetypal insight and motion — and the “interior” of the Uni-
verse), and S for Suchness (Eidos).

Thus, by “Universe” — in this truly qualified sense of
Reality — we always mean “Such Universe”, where “Such”
is “Twice-That/There” (in terms of the phenomenal “without”
and the noumenal “without-the-without”) and “Universe” is
“Twice-This/Here” (in terms of the phenomenal “within” and
the noumenal “within-the-within”).

In this epistemology, the Universe — in the likeness of
Reality itself — is therefore most tangible and most elusive
at once: it is “that which draws near from farness and draws
far from nearness”. It takes Genius to truly comprehend this
as it is, for the relationship between the Universe and Genius
in this respect is like that between the entire cosmos and the
monopolar meta-particle.

Such is how our framework generalizes Kantianism (and
what not) by the presence of the self-singular monad (“sur-
ject” or “qualon”, i.e., the ultimate pre-reflexive singularity)
free of the inconsistent inner state of “singularity in and of
multiplicity” when it comes to phenomenologically defining
traditional “Kantian oneness” (due to which Kantianism ul-
timately fails to distinguish between — or simply transcend
— “a thing-in-itself” and “another thing-in-itself”, let alone
between all noumena). In addition, it also effortlessly surpas-
ses the analytical rigor of Wittgensteinian logic and eradicates
all discrepancies between “essentialism” and “existentialism”
on a highest possible ontological level.

As such, Genius belongs to a self-singular nature (self-
constitution) of not just psychological thought, but also of Re-
ality itself, independently of the entire contingency (and, of-
ten, over-determination) of tautologically constructed world-
representations by the majority of sentient beings. Such stric-
tly individual determination, of Genius, is thus called “sur-
jective”. This, while talent is always info-cognitively co-
dependent on the entirety of prevailing contingencies, i.e., on
the way a specific world is represented by them as “multiple
intelligences” (through theses and anti-theses).
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In other words, with respect to the Universe, Genius is
Reality’s very exception just as Reality is the very exception
of Genius. Just as Reality is One-Singular beyond reduci-
bility and reflexivity (mere reflection and projection), so is
Genius, and so is the “mirror”, i.e., the mirror in which the
surjective instance of Genius appears: the Universe itself. As
such, unlike the case of talent, there is indeed no such a thing
as “mathematical genius”, “physical genius”, “philosophical
genius”, “musical genius”, etc. as people are commonly, par-
tially, phenomenally used to these terms. Rather, Genius is
always universal and, by that very universality, it is solitary
and chanceless: such is the nature of universal creation known
as art, which is the quintessence (sine qua non) of genuine
philosophical, artistic, and scientific creation.

In physics especially, the universal weight of an instance
of scientific creation by an individual of Genius inevitably
differs from the rest of physicists simply because the former
moves — without residue and mere chance — as an epistemi-
cally solitary artist at the very universal level of “science-in-
itself”, and thus at the Universal Moment, by whose act the
artist is immensely self-rewarded without even seeking recog-
nition other than the necessity to move as the Universe cate-
gorically moves from the noumenal category to the phenome-
nal domain, while at best the latter is merely tautologically
interested in “the problems that are important according to
others” — ever at the risk of genuine originality (although, as
we have seen, Genius is not a matter of merely being situatio-
nal, but of the pan-Kierkegaardian infinite single-mindedness
of “I cannot do otherwise”, in contrast to talent).

Hence, silently in the face of Reality, Genius happens to
the Universe as much as the Universe happens to it, while
others can hardly notice, let alone imbibe, this epistemologi-
cal degree of universal solitariness.

That is, to paraphrase Einstein somehow,

“True science, if not art itself, consists in the following:
apply yourself entirely and fearlessly to what deeply in-
terests you the most, and not simply to what others —
no matter who — are interested in, as this is between
you and the Universe, not you and people. This is be-
cause every true philosopher (or profound thinker and
creator), who truly understands his own moments, has
his own Kant”.

Of course, depending on the epistemological dimensio-
nality of a given human endeavor or science, there are ins-
tances where “working as a group” is important and essen-
tial to progress (e.g., medicine, experimental psychology, and
engineering). But in fundamental abstract sciences, as fun-
damental as they are in relation to art and philosophy, there
should be no excuse as to the arbitrary, non-epistemological
“peer-group treatment” and “machination” to which true indi-
vidual geniuses are often subject, precisely because such in-
dividuals alone carry the very archetype of Universality and
Revolution, which is absolutely not a matter of societal trai-

ning and progress. Intrinsically, such an individual may in-
deed refuse the entirety of conventions of a particular soci-
ety of people and their agendas in order to infinitely eye the
noumenal-creative “science-in-itself”, instead of just partici-
pating in “big scientism” and its often excessive relative loud-
ness.

For instance, aside from the creation of fundamental the-
ories or mathematical methods, the eminent general relativist
who spear-headed the Soviet cosmological school, Abraham
Zelmanov, is said to have regarded writing mere academic ar-
ticles as a “waste of time” [5]. Also Einstein himself is known
to have principally disregarded the anonymous “peer-review”
system prevalent in the American system, as opposed to the
way things were done rather transparently, epistemologically,
and dialectically in Europe at the time his theories flourished:
so long as there are no mathematical and other fundamen-
tal flaws in a submitted scientific thesis containing some ge-
nuine novelty, a corresponding anti-thesis would simply be
presented by the scientific editor(s), and thereafter a common
synthesis should likely be reached by both the individual sci-
entist and the universally capable editor(s): such is the epis-
temologically universal way of disseminating novel scientific
ideas and progress, and of championing true academic free-
dom, as greatly opposed to all superficial excuses (especially
those made by fallible, anonymous observers). It was also
Einstein’s single-mindedness which made him unable to ac-
cept “quantum theory as Copenhagen sees it”, strongly be-
lieving in a more deterministic (geometric) fashion thereof
— a “fate” he shared with even de Broglie (who envisioned
a kind of hidden “thermostat medium” in quantum physics)
and Bohm (with his hidden-variable quantum theory), among
others.

This, while mere “crackpots” are easily seen in broad day-
light for themselves, and yet Genius is not even visible in the
blazing sun of the day as in the mirrorless depths of the night
— unless by way of sheer deliberation on the part of the in-
dividual of Genius himself. Indeed, of this — and after a
lengthy, peripheral epistemic discourse and logical ascension
— Wittgenstein himself would have said, “Up there, I am
senseless: you must understand me senselessly”. (See, e.g.,
[6]; during his entire solitary life, Wittgenstein only cared to
produce two condensed philosophical works — each being a
self-complete fundamental treatise written in a very unortho-
dox style — instead of writing mere philosophical “documen-
taries”.)

However, the situation with “Genius and people” is rather
helpless in any age due to the anholonomic, asymmetric na-
ture of Genius — and the entire Universe itself — with res-
pect to the rest of otherness, of which individuals of Genius
are acutely conscious: just as the distance between Reality
and “things” is not the same as that between “things” and
Reality, as we have seen, the distance between Genius and
people is not the same as that between people and Genius.
Thus, mere sense-projection often only makes things worse.
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To understand Genius, one must understand the noumenal
Universe within its very own solitary instant, while most pe-
ople, merely existing in groups and in definite contingency
of both stances of the “dogmatist” (of objective dogmatism)
and the “relativist” (of subjective relativism), are still far away
from such cognizance, not just in the phenomenal-progressive
sense, but in the entire ontological-noumenal sense. Still,
one must know the noumenal even better than Kant himself
understood it (and his entire epistemology), hence the ph-
rase, “to understand Kant is to simply surpass him, there is
no other way”. Needless to say, the same seems to hold
for most known physical theories as well — such as relati-
vity and quantum theory, — especially in terms of the truly
epistemological-universal construction of quantum gravity
and unified field theories.

Indeed, while some of the known geniuses of the past are
rather belatedly celebrated by people today (only to superfi-
cially project themselves on the past and to aggrandize their
own sense of historical continuity as such), they always tend
to neglect the geniuses of the present. This is precisely be-
cause they themselves, no matter how talented and bright,
are not geniuses and have no substantial resemblance with
them whatsoever: they are merely the product of the age. It is
in this rather secluded Schopenhauerian-Weiningerian sense
and infinite, silent understanding that Genius, more than
others, embraces tragedy willingly: he is absolutely not the
product of the age in the first place and he suffers most intui-
tively amidst people.

Hence, in any cosmic epoch, the so-called “Renaissance”
is that infinitely solitary period of Genius before everyone
else is capable of naming it, and not merely its subsequent,
timely crumbs as received by a particular culture (society).
It is the “mysterious” (as Einstein would have called it), not
“public space”.

A man of Genius is simply a universal volunteer on the
canvas of Reality, without ulterior motives whatsoever, and
without him, Reality would never “archetypally act upon it-
self” in and of the Universe: as such, he is most capable of
infinite differentiation (“noema” and creation) peculiar to his
singular Genus alone. Such Genus (“Kudos”) is transcendent
— not simply parallel or anti-parallel — with respect to all
species.

As long as the four-fold logic behind Reality, the Uni-
verse, the manifold world-imagery, and Genius is not reali-
zed, an “objective dogmatist” will always fall into a “sub-
jective relativist” (and mere sophist) soon enough, and vice
versa, for the horizon-forming duality of phenomenological
things remains as such, according to traditional “two-
dimensional” (or “two-and-a-half” at most) eruditic logic.
Such, then, only serves to yield a fallible observer, of whom
Genius has no need whatsoever. In this sense, art is indeed
most suitable to most geniuses than is academic science, pre-
cisely due to the more solitary noumenal-epistemological na-
ture (richness) of art and its practicality at large. But, whe-

never such a universal mind appears in scientific territories,
one must intimate the art of it all, without any “sophisticated
pretention” whatsoever, rather than simply dismiss the emer-
gent qualic unorthodoxy peculiar to Genius (for, as history
has shown, such only results in one’s shameful chagrin in
the face of Reality, whether immediately or eventually), of
which that one has no true understanding whether in short or
at length. (In this respect, one can simply imagine Kant and
Goethe — rather than Euler and Gauss — doing some par-
ticular sciences, apart from philosophy and art, and the pre-
dictable neglect and cold calculation of those who feel their
territories have been violated. Fortunately, this particular case
involving the two men and the rest of the world does not seem
to have taken place.)

Undoubtedly, the foregoing epistemological discourse
fully capable of mirroring “worlds”, “anti-worlds”, and “non-
worlds”, (by “world”, of course we also mean “thought” or
“paradigm”) from the universal standpoint of Reality itself,
is particularly relevant to the championing of scientific hu-
man rights as outlined in [2] as well as to the importance of
aprioristic and dialectical thinking in physics (and science in
general) as reflected, e.g., in [3] and [4].

All that — the Universe itself — is inevitably opposed to
mere communalism, especially in the post-modern era of “big
scientism”.
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From the Chloride of Tungsten to the Upper Limit of the Periodic
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Experimental study of the physical chemical properties and the technology of manufac-
turing chemically clean hexachloride of tungsten has led to unexpected results. It was
found that each element of the Periodic Table of Elements has its own hyperbola in the
graph “molecular mass — content of the element”. The hyperbolas differ according to
the atomic mass of the elements. Lagrange’s theorem shows that the tops of the hyper-
bolas approach to an upper limit. This upper limit means the heaviest element, which is
possible in the Table. According to the calculation, its atomic mass is 411.66, while its
number is 155.

1 Introduction

In the early 1960’s, I and my research group worked in the
Department of Rare, Radioactive Metals and Powder Metal-
lurgy at Moscow Institute of Steel and Alloys, Russia. We lo-
oked for a better technology of manufacturing the chemically
clean hexachlorid of tungsten (WCl6) through chlorination of
ferrotungsten. Then, in the 1970’s, I continued this experi-
mental research study at the Baikov Institute of Metallurgy,
Russian Academy of Sciences.

Our main task in this experimental search was to obtain
a purely oxygen-free product. Because the raw material we
worked with was resented as a many-component gaseous mix,
we studied behaviour of the vaporous medleys during filtering
them by saline method, distillation, and rectification. As a
result, the percent of mass of the metal we have obtained in
vaporous medley was 99.9% for W, 20.0% for Mo, 2.0% for
Fe [1–3].

After cleaning the obtained condensate with the afore-
mentioned methods, we have found a small inclusion of the
chloride compound of tungsten in it. This chloride compound
of tungsten differs from the hexachloride of tungsten in co-
lour and the boiling temperature, which was 348◦C for WCl6,
286◦C for WCl5, and 224◦C for WOCl4 [4]. The cleaned he-
xachloride of tungsten recovers to the powder metallic state
by hydrogen in the boiling layer, in plasma, precipitates as a
thin cover on a base in use. It is used for manufacturing alloys
with other metals through metalthermic method, etc. [5].

2 Results

In development of this technology, it was found that the the-
oretical (expected) results of the chemical analysis of the va-
porous medleys do not match the experimental results for a
little. This occurred due to some quantity of WO2Cl2 and
WOCl4 obtained in the process, which were used further for
manufacturing a high clean WO3 [6]. In order to keep control

on the product of the chemical reactions, we have drawn de-
pendencies of the content of tungsten, chlorine, and oxygen in
the compounds (per one gram-atom of each element). This is
necessary because, for example, the common quantity of the
chloride of tungsten in chlorides is presented with a broken
line (see Fig. 1) whose mathematical equation is impossible.
As was found, after our Fig. 1, the arc of the content of tungs-
ten is presented with an equilateral hyperbolaY = K/X whe-
rein its different compounds (in particular WO3) are located.
In analogy to this graph, the respective arcs were obtained for
chlorine and oxygen, which appeared as hyperbolas as well.

Further checking for the possibility of creating similar
functions for the other chemical elements manifested the fact
that each element of the Periodic Table of Elements has its
own hyperbola, which differs from the others according to the
atomic mass of the element. As an example, Fig. 2 shows the
hyperbolas created for the elements of Group 2, including the
hypothetical elements No.126 and No.164. As is known, an
equilateral hyperbola is symmetric with respect to the bisec-
tor of the angleXOY in the first quarter. Besides, the bisector
coincides with the real axis, while the point of intersection
of it with the hyperbola (the top point) is determined as the
square root fromK(X0 = Y0). Respectively, for instance, the
top point of the hyperbola of beryllium (atomic mass 9.0122)
is located atX0 = Y0 = 3.00203.

In chemistry, it is commonly assumed to calculate the
quantity of a reacted element in the parts of unit. There-
fore, the hyperbola of each element begins from the mass
of the element andY = 1. From here, through Lagrange’s
theorem, we calculate the top of the hyperbola of beryllium:
X = 60.9097,Y = 0.14796. Comparing the obtained coor-
dinates, it is easy to see thatX/X0 = 20.2895 andY0/Y =

20.2895, which is the inverse proportionality with a respec-
tive scaling coefficient. Tangent of the angle of inclination
of the real axis in the other (scaled) coordinates isY/X =

0.14796/60.9097= 0.00242917. The scaling coefficient al-
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Fig. 1: The common quantity of the chloride of tungsten in chlorides.

lowed us to create a line joining the tops of the hyperbolas,
located in the real axis (see Fig. 3). This is a straight crossing
the lineY = 1, where the atomic and molecular masses of an
element described by the hyperbolas are equal to each other
(K = X). This is only possible if the origin of the hyperbola
and its top meet each other at a single point where the content
Y takes maximal numerical value (according to the equation
Y = K/X). Atomic mass of this�ultimate� element, determi-
ned by the crossing point, was calculated with use of the sca-
ling coefficient and the tangent of inclination of the real axis:
X = Y/ tanα = 1/0.00242917= 411.663243. This calcu-
lated element is the last (heaviest of all theoretically possible
elements) in the Periodic Table of Elements becauseY cannot
exceed 1. The second important characteristic of the element
– its atomic number – was calculated through the equation of
the exponentY = 1.6089 exp1.0993x (R2 = 0.9966). The cal-
culated number of the last element is 155. With use of these
equations, the respective parameters of all other elements of
the Periodic Table can be calculated, including in the interval
of super-heavy elements No.114–No.155 [7,8].

3 Discussion

We see that on the basis of the initially experimental studies
of the chloride of tungsten, a new law was found in the Peri-
odic Table of Elements. This is the hyperbolic law, according
to which the contentY of any element (per 1 gram-atom) in
any chemical compound of a molecular massX can be descri-
bed by the equation of the positive branches of an equilateral
hyperbola of the kindY = K/X (whereY 6 1 andK 6 X).
The hyperbolas of the respective chemical elements lie in the
order of the increasing nuclear charge, and have a common

real axis which meets their tops. The tops, with distance from
the origin of the coordinates, approach the locationY = 1 and
K = X wherein atomic mass takes its maximally possible nu-
merical value, which indicates the last (heaviest) element of
the Periodic Table.

It should be noted that the new dependencies we pointed
out here have provided not only better conditions of applied
research, but also a possibility for re-considering our views
on the conditions of synthesis of super-heavy elements. If
already in 2003 theoretical physicists discussed properties of
elements with number near 400 whose nuclei contain until
900 neutrons each [9], in February 2009, after primary publi-
cation of our studies, they discuss the elements with numbers
not higher than 150–200 [10].
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In a similar way as passing from Euclidean Geometry to Non-Euclidean Geometry, we
can pass from Subluminal Physics to Superluminal Physics, and further to Instantaneous
Physics. In the lights of two consecutive successful CERN experiments with superlumi-
nal particles in the Fall of 2011, we believe that these two new fields of research should
begin developing.

1 Introduction

Let’s start by recalling the history of geometry in order to
connect it with the history of physics.

Then we present the way of S-denying a law (or theory)
and building a spectrum of spaces where the same physical
law (or theory) has different forms, then we mention the S-
multispace with its multistructure that may be used to the
Unified Field Theory by employing amultifield.

It is believed that the S-multispace with its multistructure
is the best candidate for 21st centuryTheory of Everythingin
any domain.

2 Geometry’s history

As in Non-Euclidean Geometry, there are models that vali-
date the hyperbolic geometric and of course invalidate the
Euclidean geometry, or models that validate the elliptic ge-
ometry and in consequence they invalidate the Euclidean ge-
ometry and the hyperbolic geometry.

Now, we can mix these geometries and construct a model
in which an axiom is partially validated and partially invalida-
ted, or the axiom is only invalidated but in multiple different
ways [1]. This operation produces a degree of negation of
an axiom, and such geometries are hybrid. We can in general
talk about thedegree of negation of a scientific entityP, where
P can be a theorem, lemma, property, theory, law, etc.

3 S-denying of a theory

Let’s consider a physical space S endowed with a set of phy-
sical laws L, noted by (S, L), such that all physical laws L are
valid in this space S.

Then, we construct another physical space (or model) S1

where a given law has a different form, afterwards another
space S2 where the same law has another form, and so on
until getting a spectrum of spaces where this law is different.

We thus investigate spaces where anomalies occur [2].

4 Multispace theory

In any domain of knowledge, multispace (or S-multispace)
with its multistructure is a finite or infinite (countable or un-

countable) union of many spaces that have various structures.
The spaces may overlap [3].

The notions of multispace (also spelt multi-space) and
multistructure (also spelt multi-structure) were introduced by
the author in 1969 under his idea of hybrid science: combi-
ning different fields into a unifying field (in particular combi-
nations of different geometric spaces such that at least one ge-
ometric axiom behaves differently in each such space), which
is closer to our real life world since we live in a heterogene-
ous multispace. Today, this idea is accepted by the world of
sciences. S-multispace is a qualitative notion, since it is too
large and includes both metric and non-metric spaces.

A such multispace can be used for example in physics for
the Unified Field Theory that tries to unite the gravitational,
electromagnetic, weak and strong interactions by construc-
ting a multifield formed by a gravitational field united with
an electromagnetic field united with a weak-interactions field
and united with a strong-interactions field.

Or in the parallel quantum computing and in the mu-bit
theory, in multi-entangled states or particles and up to multi-
entangles objects.

We also mention: the algebraic multispaces (multi-
groups, multi-rings, multi-vector spaces, multi-operation sys-
tems and multi-manifolds, also multi-voltage graphs, multi-
embedding of a graph in an n-manifold, etc.) or structures
included in other structures, geometric multispaces (combi-
nations of Euclidean and Non-Euclidean geometries into one
space as in S-geometries), theoretical physics, including the
Relativity Theory [4], the M-theory and the cosmology, then
multi-space models for p-branes and cosmology, etc.

The multispace is an extension of the neutrosophic lo-
gic and set, which derived from neutrosophy. Neutrosophy
(1995) is a generalization of dialectics in philosophy, and
takes into consideration not only an entity<A> and its op-
posite<antiA> as dialectics does, but also the neutralities
<neutA> in between. Neutrosophy combines all these th-
ree<A>, <antiA>, and<neutA> together. Neutrosophy is
a metaphilosophy.

Neutrosophic logic (1995), neutrosophic set (1995), and
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neutrosophic probability (1995) have, behind the classical va-
lues of truth and falsehood, a third component called indeter-
minacy (or neutrality, which is neither true nor false, or is
both true and false simultaneously — again a combination of
opposites: true and false in indeterminacy).

Neutrosophy and its derivatives are generalizations of the
paradoxism (1980), which is a vanguard in literature, arts, and
science, based on finding common things to opposite ideas
(i.e. combination of contradictory fields).

5 Physics history and the future

a) With respect to the size of spacethere are:Quantum
Physicswhich is referring to the subatomic space, the
Classical Physicsto our intuitive living space, while
Cosmologyto the giant universe;

b) With respect to the direct influence: theLocality, when
an object is directly influenced by its immediate sur-
roundings only, and theNonlocality, when an object
is directly influenced by another distant object without
any interaction mediator;

c) With respect to the speed: the Newtonian Physicsis
referred to low speeds, theTheory of Relativityto su-
bluminal speeds near to the speed of light, whileSuper-
luminal Physicswill be referred to speeds greater than
c, andInstantaneous Physicsto instantaneous motions
(infinite speeds).

A physical law has a form in Newtonian physics, another
form in Relativity Theory, and different form at Superluminal
theory, or at Infinite (Instantaneous) speeds — as above in the
S-Denying Theory spectrum.

We get new physics at superluminal speeds and other phy-
sics at a very very big speed (v � c) speeds or at instantane-
ous (infinite) traveling.

At the beginning we have to extend physical laws and for-
mulas to superluminal traveling and afterwards to instantane-
ous traveling.

For example, what/how would be Doppler effect if the
motion of an emitting source relative to an observer is greater
thanc, or v � c (much greater thanc), or even at instantane-
ous speed?

Also, what addition rule should be used for superluminal
speeds?

Then little by little we should extend existing classical
physical theories from subluminal to superluminal and ins-
tantaneous traveling.

For example: if possible how would the Theory of Rela-
tivity be adjusted to superluminal speeds?

Lately we need to found a general theory that unites all
theories at: law speeds, relativistic speeds, superluminal spe-
eds, and instantaneous speeds — as in the S-Multispace The-
ory.

6 Conclusion

Today, with many contradictory theories, we can reconcile
them by using the S-Multispace Theory.

We also propose investigating new research trends such as
Superluminal Physics and Instantaneous Physics. Papers in
these new fields of research should be e-mailed to the author
by July 01, 2012, to be published in a collective volume.
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In April 2011, Craig Alan Feinstein published a paper inProgress in Physicsentitled
“An elegant argument thatP , NP”. Since then, Craig Alan Feinstein has discovered
how to make that argument much simpler. In this letter, we present this argument.

In April 2011, I published a paper inProgress in Physicsen-
titled “An elegant argument thatP , NP” [1]. Since then, I
have discovered how to make that argument much simpler. In
this letter, I present this argument.

Consider the following problem: Let{s1, . . . , sn} be a set
of n integers andt be another integer. We want to determine
whether there exists a subset of{s1, . . . , sn} for which the sum
of its elements equalst. We shall consider the sum of the
elements of the empty set to be zero. This problem is called
the SUBSET-SUM problem [2].

Let k ∈ {1, . . . , n}. Then the SUBSET-SUM problem
is equivalent to determining whether there exist setsI+ ⊆
{1, . . . , k} andI− ⊆ {k+ 1, . . . , n} such that

∑

i∈I+
si = t −

∑

i∈I−
si .

There is nothing that can be done to make this equation sim-
pler. Then since there are 2k possible expressions on the left-
hand side of this equation and 2n−k possible expressions on
the right-hand side of this equation, we can find a lower-
bound for the worst-case running-time of an algorithm that
solves the SUBSET-SUM problem by minimizing 2k + 2n−k

subject tok ∈ {1, . . . , n}.
When we do this, we find that 2k+2n−k = 2bn/2c+2n−bn/2c =

Θ(
√

2n) is the solution, so it is impossible to solve the
SUBSET-SUM problem ino(

√
2n) time with a determinis-

tic and exact algorithm. This lower-bound is tight [1]. And
this conclusion implies thatP , NP [2].
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The gravitational line element in this field is used to postulate the four spacetime ele-
ment of arc vector, volume element, del operator and divergence operator for space-time
gravitational fields. A relativistic dynamical theory is then established for static spheri-
cally symmetric gravitational fields. Equations of motion for test particles and photons
are obtained with post Newton and post Einstein correction terms of all orders of c−2.

1 Introduction

Schwarzschild in 1916 constructed the first exact solution of
Einstein’s gravitational field equations. It was the metric due
to a static spherically symmetric body situated in empty space
such as the Sun or a star [1].

In this article, we establish a link between Schwarz-
schild’s metric and Newton’s dynamical theory of gravitation.
The consequence of this approach is the emergence of com-
plete expressions for the velocity, acceleration and total en-
ergy with post Newton and post Einstein correction terms to
all orders of c−2 [2].

2 Euclidean Geometry in Static Spherically Symmetric
Fields

Recall that the scalar world line element dS 2 in Schwarz-
schild’s gravitational field is given as

dS 2 = −g11dr2 − g22dθ2 − g33dϕ2 + g00(dx0)2 (2.1)

where

g00 =

(
1 − 2GM

c2r

)
,

g11 =

(
1 − 2GM

c2r

)−1

,

g22 = r2,

g33 = r2 sin2 θ.

G is the universal gravitational constant, c is the speed of
light in vacuum and M is the mass of the static homogeneous
spherical mass (Schwarzschild’s mass) [3, 4]. Now, also re-
call that the world line element dS 2 from which the metric
tensor is formulated is obtained from the fundamental line el-
ement dS (r, θ, ϕ). Also, from vector analysis, it is well known
that dS (r, θ, ϕ) is the most fundamental quantity from which
all vector and scalar quantities required for the formulation of
the dynamical theory of classical mechanics are derived.

2.1 Element of arc vector

From equation (2.1), we realise that Schwarzschild’s gravita-
tional field is a four dimensional orthogonal vector space with
coordinates (r, θ, ϕ, x0) and unit vectors (̂r, θ̂, ϕ̂, x̂0) and hence
the element of arc vector dS is given as

dS = [−g11]1/2(dr)̂r + [−g22]1/2(dθ)̂θ

+[−g33]1/2(dϕ)ϕ̂ + [g00]1/2(dx0)x̂0
(2.2)

with scale factors hr, hθ, hϕ and hx0 defined as

hr = [−g11]1/2,

hθ = [−g22]1/2,

hϕ = [−g33]1/2,

hx0 = [g00]1/2.

2.2 Volume element and Gradient operators

As in Eulidean geometry in three dimensional vector space,
we postulate that the volume element dV in Schwarzschild’s
gravitational field is given by

dV = dS rdS θdS ϕdS x0 (2.3)

and the corresponding space element of volume

dV = dS rdS θdS ϕ, (2.4)

where
dS r = hrdr,

dS θ = hθdθ,

dS ϕ = hϕdϕ,

dS x0 = hx0 dx0.

We postulate that our complete spacetime del operator in
Schwarzschild’s gravitational field is given as

∇ = r̂
hr

∂

∂r
+
θ̂

hθ

∂

∂θ
+
ϕ̂

hϕ

∂

∂ϕ
+

x̂0

hx0

∂

∂x0 . (2.5)

The complete spacetime divergence, curl and laplacian
operators can be defined in a similar manner[2].
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3 Relativistic Dynamical Theory for Test Particles

From the spacetime line element, the instantaneous spacetime
velocity vector in the gravitational field can be defined[2] as

u =
dS
dτ

(3.1)

or
u = ur r̂ + uθθ̂ + uϕϕ̂ + ux0 x̂0, (3.2)

where τ is the proper time,

ur =

(
1 − 2GM

c2r

)−1/2

ṙ,

uθ = rθ̇,

uϕ = r sin θϕ̇

and

ux0 =

(
1 − 2GM

c2r

)1/2

ẋ0.

Hence, the instantaneous speed u is

u2 =

(
1 − 2GM

c2r

)−1

ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

+

(
1 − 2GM

c2r

)
(ẋ0)2.

(3.3)

Also the instantaneous spacetime acceleration vector is
given as

a =
du
dτ

(3.4)

or
a = ar r̂ + aθθ̂ + aϕϕ̂ + ax0 x̂0, (3.5)

where

ar =

(
1 − 2GM

c2r

)−1/2

r̈ − GM
c2r2

(
1 − 2GM

c2r

)−3/2

ṙ2,

aθ = rθ̈ + ṙθ̇,

aϕ = ṙ sin θϕ̇ + r cos θθ̇ϕ̇ + r sin θϕ̈

and

ax0 =
d
dτ

(1 − 2GM
c2r

)1/2

ẋ0

 .
Now, recall that the inertial mass mI and passive mass mp

are related to the rest mass m0 of a particle by

mI = mp =

(
1 − u2

c2

)−1/2

m0 (3.6)

where in this gravitational field, u2 is as defined in equation
(3.3). Also, the linear momentum of a particle of nonzero rest
mass is defined as

P = mIu (3.7)

or

P =
(
1 − u2

c2

)−1/2

m0u. (3.8)

The instantaneous relativistic kinetic energy (T ) of a par-
ticle of nonzero rest mass is given as

T = (mI − m0) c2 (3.9)

or

T =

(1 − u2

c2

)−1/2

− 1

 m0c2 (3.10)

and the instantaneous relativistic gravitational potential en-
ergy (Vg) for a particle of nonzero rest mass is

Vg = mpΦ = −
(
1 − u2

c2

)−1/2 GMm0

r
, (3.11)

where Φ = −GM
r is the gravitational scalar potential in

Schwarzschild’s gravitational field. Thus, the total relativis-
tic mechanical energy E for a particle of nonzero rest mass is
given as

E = T + Vg (3.12)

or

E = m0c2

(1 − GM
c2r

) (
1 − u2

c2

)−1/2

− 1

 . (3.13)

Thus, our expression for total energy has post Newton and
post Einstein correction terms of all orders of c−2.

The relativistic dynamical equation of motion for parti-
cles of non-zero rest mass[2] is given as

d
dτ

P = −mp∇Φ (3.14)

or

d
dτ

(1 − u2

c2

)−1/2

m0u

 = − (
1 − u2

c2

)−1/2

m0∇Φ (3.15)

or

a +
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)u = −∇Φ. (3.16)

Thus, the spacetime relativistic dynamical equations of
motion in static spherically symmetric gravitational field can
be obtained from (3.16). The time equation of motion is ob-
tained as

ax0 +
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)ux0 = 0 (3.17)

or
d
dτ

(1 − 2GM
c2r

)1/2

ẋ0

+
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)ux0 = 0.

(3.18)
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Notice that the first term of equation (3.18) is exactly
the expression obtained for the general relativistic time di-
lation and hence the second term is a correction term ob-
tained from our dynamical approach in Schwarzschild’s grav-
itational field.

Also, the respective azimuthal, polar and radial equations
of motion are obtained as

ṙ sin θϕ̇ + r cos θθ̇ϕ̇ + r sin θϕ̈

+
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)uϕ = 0,
(3.19)

rθ̈ + ṙθ̇ +
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)uθ = 0 (3.20)

and

ar +
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)ur

= −GM
r2

(
1 − 2GM

c2r

)−1/2 (3.21)

with correction terms not found in the general relativistic ap-
proach.

4 Relativistic Dynamical Theory for Photons

The instantaneous passive and inertial mass of photons is
given as

mp = mI =
hν
c2 , (4.1)

where h is Planck’s constant. Precisely, as in Special Rela-
tivity, we postulate that the relativistic dynamical linear mo-
mentum of photons is given as

P =
hν
c2 u, (4.2)

where u is as defined in (3.2). The relativistic dynamical ki-
netic energy for photons is given as

T = (mI − m0)c2 (4.3)

or
T = h(ν − ν0). (4.4)

Also, as in Newton’s dynamical theory of classical me-
chanics, the relativistic dynamical gravitational potential en-
ergy of photons(Vg) is postulated to be given by

Vg = mpΦ. (4.5)

Hence, in static spherically symmetric gravitational fields

Vg = −
hν
c2

GM
r
. (4.6)

Thus, the total mechanical energy E of a photon is given
as

E = h(ν − ν0) − hν
c2

GM
r
. (4.7)

If the mechanical energy of the photon is E0 at r = r0 then
using the principle of conservation of mechanical energy it
can be deduced that

ν =
E0

h

(
1 − GM

c2r

)−1

(4.8)

or

ν = ν0

(
1 − GM

c2r0

) (
1 − GM

c2r

)−1

. (4.9)

Equation (4.9) is our newly derived expression for grav-
itational spectral shift for static spherically symmetric mass
distributions with post Newtonian and post Einstein correc-
tions of all orders of c−2.

Also, the relativistic dynamical equation of motion for
photons in static spherically symmetric gravitational fields
can be obtained as

d
dτ

[(
1 − GM

c2r

)−1

u
]
= −

(
1 − GM

c2r

)−1

∇Φ (4.10)

from which the instaneous velocity and acceleration vectors
can be obtained.

5 Conclusion

Instructively, this approach unifies the dynamical and geo-
metrical theories of gravitation for test particles and photons
in static spherically symmetric gravitational fields. It is hoped
that if it is well developed it can account for most corrections
of theoretical results in gravitational fields. It is also hoped
that this approach can also be used to establish the long de-
sired unification of gravitational fields with other fundamen-
tal fields in nature.
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The turning point and acceleration expansion of the universe are investigated according
to the standard cosmological theory with a non-zero cosmological constant. Choosing
the Hubble constantH0, the radius of the present universeR0, and the density parameter
in matterΩM,0 as three independent parameters, we have analytically examined the other
properties of the universe such as the density parameter in dark energy, the cosmologi-
cal constant, the mass of the universe, the turning point redshift, the age of the present
universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa-
rameter of the universe. It is shown that the turning point redshift is only dependent of
the density parameter in matter, not explicitly on the Hubble constant and the radius of
the present universe. The universe turned its expansion from past deceleration to recent
acceleration at the moment when its size was about 3/5 of the present size if the density
parameter in matter is about 0.3 (or the turning point redshift is 0.67). The expansion
rate is very large in the early period and decreases with time to approach the Hubble
constant at the present time. The expansion velocity exceeds the light speed in the early
period. It decreases to the minimum at the turning point and then increases with time.
The minimum and present expansion velocities are determined with the independent
parameters. The solution of time-dependent radius shows the universe expands all the
time. The universe with a larger present radius, smaller Hubble constant, and/or smaller
density parameter in matter is elder. The universe with smaller density parameter in
matter accelerates recently in a larger rate but less than unity.

1 Introduction

The measurements of type Ia supernovae to appear fainter and
thus further away than expected have indicated that the uni-
verse turned its expansion from past deceleration to recent ac-
celeration [1-4]. The dark energy, a hypothetical form of ne-
gative pressure, is generally suggested to be the cause for the
universe to accelerate recently. The Einsteinian cosmological
constantΛ, initially assumed for a static model of the uni-
verse, is the simplest candidate of the dark energy [5]. Quin-
tessence such as the scalar field from the scalar-tensor the-
ory or the five-dimensional Kaluza-Klein unification theory is
usually considered as another candidate of the dark energy [6-
9]. In the black hole universe model, proposed recently by the
author, the dark energy is nothing but the accretion of mass
in an increasing time rate from outside space, the mother uni-
verse [10-17]. In the black hole universe model, the cosmo-
logical constant can be represented asΛ = 3(Ṁ/M)2, where
M is the universe mass anḋM is the time rate of the universe
mass. However, when the universe turns or what the redshift
of the turning point for the universe to turn its expansion from
past deceleration to recent acceleration has not yet been con-
sistently and precisely determined.

The turning point redshiftZTP was determined to be∼ 0.5
by combining the redshift and luminosity observations of type
Ia supernovae with the standard model of cosmology [2, 4].
The universe was considered to be flat (i.e.,k = 0 with k the

curvature of the universe) with a cold dark matter (CDM) and
a constant dark energy density (i.e., the cosmological cons-
tant). To explain the measurements of type Ia supernovae
with the flat universe model, the density parameters in matter
and dark energy (ΩM,0 andΩΛ,0) at the present time (t0) were
chosen to be

ΩM,0 ≡
8πGρM(t0)

3H2
0

= 0.3, (1)

ΩΛ,0 ≡
Λ

3H2
0

= 0.7, (2)

whereG is the gravitational constant,ρM,0 is the mass density,
andH0 ∼ 50− 70 km/s/Mpc is the Hubble constant [18-21].
For a holographic dark energy, the turning point redshift de-
pends on a free parameter [22]. The turning point redshift is
ZTP ∼ 0.72 if the free parameter is chosen to be unity. For
the best fit to the type Ia supernova data, the free parameter
is around 0.2, which leads to a smaller turning point redshift,
ZTP ∼ 0.28.

To combine the measurements of type Ia supernovae with
the cosmological model, a redshift-luminosity distance rela-
tion is required. The often used relation is, however, a linearly
approximate relation,

dL(Z) ' c(1+ Z)
∫ Z

0

du
H(u)

, (3)
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which is only good for nearby objects (see the detail of the
standard derivation given by [23]. Using this approximate
redshift-luminosity distance relation to study the expansion
of the universe constrained by the measurements of type Ia
supernovae with redshift greater than unity, one cannot accu-
rately determine the turning point redshift [24] (Zhang and
tan 2007). In Eq. (3),c is the light speed,Z is the redshift
of light from the object, anddL is the luminosity, which is
usually defined by

F =
L

4πd2
L

, (4)

whereL is the luminosity of the object such as a supernova,F
is the apparent brightness of the object (i.e., the object emis-
sion flux measured at the Earth).

In this study, we analytically derive the turning point redshift
only from the cosmological model without combining the
model with the type Ia supernova data of measurements and
thus without using the approximate redshift-luminosity dis-
tance relation. The simplest cosmological model that des-
cribes the recent acceleration of the universe is governed by
the Friedmann equation with a non-zero Einsteinian cosmo-
logical constant [1-2, 5]. The expansion characteristics of the
universe described by this constantΛCDM model depend on
three independent parameters. There are many different ways
or combinations to choose the three independent parameters.
But no matter how to combine, the number of independent
parameters is always three. We have chosen the Hubble cons-
tantH0, the radius of the present universeR0, and the density
parameter in matterΩM,0 as the three independent parame-
ters and have further derived the turning point redshift. The
derived turning point redshift is only dependent of the den-
sity parameter in matterΩM,0, not dependent of the other two
independent parametersR0 andH0 if the universe is flat.

Exact solutions of the Friedmann equation [25-26] with
the cosmological constant were obtained by [27-28]. The
physical solutions, however, have not yet been analyzed with
the recent measurements of the universe, especially on the
turning point redshift.

The objective of this study is to quantitatively study the
turning point and expansion characteristics of the recent acce-
leration universe through analyzing and numerically solving
the Friedmann equation with a non-zero cosmological cons-
tant. First, for each set ofH0, ΩM,0, andR0, we analytically
obtain the turning point redshiftZTP and other cosmological
parameters such as the density parameter in dark energyΩΛ,0,
the cosmological constantΛ, and the mass of the universeM.
Then, we substitute the obtainedM andΛ into the Friedmann
equation to numerically solve the time-dependent expansion
rate or Hubble parameterH(t), velocity v(t), radiusR(t), and
acceleration parameterq(t) of the universe. Third, from the
solutions, we determine the age of the present universe. Fi-
nally, we discuss the significant results and summarize our
concluding remarks.

2 Turning Point and Expansion Characteristics of the
Universe

According to the standard cosmological theory, the expansion
of the universe is governed by the Friedmann equation [25-26,
29]

H2(t) ≡
Ṙ2(t)
R2(t)

=
8πGρM(t)

3
−

kc2

R2(t)
+
Λ

3
, (5)

(Friedmann 1922, 1924; Carroll et al. 1992) where the dot
refers to the derivative with respect to time,G is the gravita-
tional constant,ρM(t) is the density of matter given by

ρM(t) =
3M

4πR3(t)
, (6)

andk is the curvature of the space given by -1, 0, 1 for the
universe to be open, flat, and closed, respectively. For the flat
universe (i.e.,k = 0), Eq. (5) becomes

H2(t) ≡
Ṙ2(t)
R2(t)

=
2GM
R3(t)

+
Λ

3
. (7)

The solution of Eq. (7) depends on three independent pa-
rameters:R0, M, andΛ. There are many different combinati-
ons that can be considered as the three independent parame-
ters such as (R0, H0, Λ), (R0, H0, ΩM,0), etc. In this study,
we have chosenR0, H0, andΩM,0 as the three independent
parameters.

To describe the acceleration of the universe, we define the
acceleration parameter as

q(t) ≡
R(t)R̈(t)

Ṙ2(t)
= 1+

Ḣ(t)
H2(t)

. (8)

Traditionally, a negative sign is inserted in Eq. (8) for the
deceleration parameter.

A light that was emitted at timet is generally shifted
towards the red when it is observed at the present timet0 due
to the expansion of the universe. The redshift of the light is
given by

ZH =
R(t0)
R(t)

− 1. (9)

The recent acceleration universe turned its expansion
from past deceleration to recent acceleration at the moment
when the acceleration parameter is equal to zero, i.e.,

q(tTP) = 0, (10)

wheretTP is defined as the turning point - the time when the
universe neither accelerates nor decelerates. It has been re-
cognized for years but not yet theoretically determined.

Differentiating Eq. (7) with respect to time to getḢ(t) and
using the turning point condition (10), we have the following
relation

Λ =
3GM

R3(tTP)
. (11)
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Then, using Eq. (9), we have

Λ =
3GM
R3(t0)

(
R3(t0)
R3(tTP)

)

=
3GM

R3
0

(ZTP + 1)3, (12)

where we have replacedR(t0) by R0 and denoted the redshift
of observed light that was emitted at the turning point byZTP

- the turning point redshift. From Eq. (12), the turning point
redshift can be written as

ZTP =



ΛR3

0

3GM




1/3

− 1. (13)

At the present timet0, Eq. (7) can be written as

1 = ΩM,0 + ΩΛ,0, (14)

where the density parameters in matter and dark energy are
defined respectively by

ΩM,0 =
8πGρM(t0)

3H2
0

=
2GM

H2
0R3

0

, (15)

and

ΩΛ,0 =
Λ

3H2
0

. (16)

From Eqs. (15)-(16), we obtain

ΛR3
0

3GM
= 2

1− ΩM,0

ΩM,0
. (17)

Then, Eq. (13) reduces

ZTP =

(

2
1− ΩM,0

ΩM,0

)1/3

− 1. (18)

Eq. (18) is a new result and has not been obtained be-
fore by any one. It is seen from Eq. (18) that the turning
point redshiftZTP is only dependent of the density parame-
ter in matterΩM, not explicitly on another two independent
parameterH0 andR0.

Figure 1 plotsZTP as a function ofΩM. The result indi-
cates that, for the universe to be recently turned (i.e.,ZTP >
0), the density parameter in matter must beΩM,0 < 2/3 (or
ΩΛ,0 > 1/3). For the universe to be turned at 1& ZTP & 0.5,
the density parameter in matter must be 0.2 . ΩM . 0.4.
WhenΩM,0 = 1, we haveZTP = −1, which implies that the flat
universe will never be accelerated if the cosmological cons-
tant is zero. This is consistent with the gravitational physics
because gravity always attracts.

ConsideringH0, R0, andΩM,0 as three independent para-
meters in the flat universe model, we can determineΩΛ, M,
Λ, andZTP by Eqs. (14)-(16) and (18). Substituting the de-
terminedM andΛ into Eq. (7), we can numerically solve
the expansion parameters of the recent acceleration universe

Fig. 1: Turning point redshiftZTP versus density parameter in matter
ΩM,0.

Fig. 2: Expansion characteristics of the universe whenΩM,0 = 0.3,
R0 = 15 billion light years, andH0 = 50,60,70 km/s/Mpc. (a)
Radius of the universeR(t), (b) expansion rateH(t), (c) expansion
velocity v(t), (d) acceleration parameterq(t).

including the radiusR(t), expansion rateH(t), expansion ve-
locity v(t), and acceleration parameterq(t).

Figure 2 plots these expansion parameters –R(t), H(t),
v(t), andq(t) – as functions of time. We have chosenH0 =

50,60,70 km/s/Mpc, ΩM,0 = 0.3, andR0 = 15 billion light
years, which are displayed in Figure 2a. Three types of lines
(dotted-dashed, solid, and dashed) correspond to the results
with three different Hubble constants. With these three sets
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Fig. 3: Expansion characteristics of the universe whenΩM,0 =

0.2,0.3,0.4 andH0 = 60 km/s/Mpc with the sameR0. (a) Radius
of the universeR(t), (b) expansion rateH(t), (c) expansion velocity
v(t), (d) acceleration parameterq(t).

of parameters, we haveM = 1.7,2.4,3.3 × 1053 kg, Λ =

5.5,8.0,10.8× 10−36 s−2, ΩΛ,0 = 0.7, andZTP = 0.67.

Figure 2a shows thatR(t) increases with time to appro-
ach R0 at the present timet0. In comparison with a linear
relation, the radius-time curves bend down atR . 3R0/5 and
then slightly go up atR & 3R0/5. The flat universe turned its
expansion from past deceleration to recent acceleration at the
time when the size of the universe was about three-fifth of the
present universe (i.e., atZTP ' 2/3) due to the dark energy
or non-zero cosmological constant. Figure 2b indicates that
the expansion rate or Hubble parameterH(t) decreases with
time (or Ḣ(t) < 0) to approach the Hubble constantH0 at the
present time. The dotted line refers toH0 = 60 km/s/Mpc. Fi-
gure 2c shows that the expansion velocity decreases with time
to the minimum at the turning point and then increases with
time to approachv0 = H0R0, which exceeds the light speed in
the case ofH0 = 70 km/s/Mpc andR0 = 15 billion light years.
In the early period, the expansion velocity can be much grea-
ter than the light speed. The minimum expansion velocity is
determined byvmin = (2GM)1/3Λ1/6. From Figure 2d, that the
universe turned its expansion from past deceleration to recent
acceleration can be seen in more obviously. The dotted line
refers toq = 0. Each curve ofq(t) intersects with the dotted
line at the turning point. For a different Hubble constant, the
turning pointtTP is different. The acceleration parameter is
negative (i.e., deceleration) before the turning point and posi-
tive (i.e., acceleration) after the turning point. At the present
time, the acceleration parameter is slightly over 0.5.

Figure 3 also plots the four expansion parametersR(t),

H(t), v(t), and q(t) as functions of time. In this plot, we
have chosen a singleH0 = 60 km/s/Mpc but threeΩM =

0.2,0.3,0.4 with the sameR0. The three types of lines cor-
respond to the results with three different density parameters.
With these three sets of parameters, we haveM = 2.4× 1053

kg, Λ = 8.0 × 10−36 s−2, ΩΛ,0 = 0.8,0.7,0.6, andZTP =

1,0.67,0.5. The results are basically similar to Figure 2. The
turning point redshift is single in the case of Figure 2 but mul-
tiple in the case of Figure 3. The radius-time curves (Figure
3a) also bend down relative to the linear relation in the past
and go up recently, which implies that the flat universe was
decelerated in the past and accelerated recently. The decre-
asing profiles of expansion rateH(t) with time only slightly
different among different density parameters (Figure 3b). The
expansion velocity reaches the minimumvmin at the turning
point and approachesv0 at t0 (Figure 3c). The acceleration
parameter att0 is greater if the universe contains more dark
energy relative to matter (Figure 3d). For a different density
parameter, the turning pointtTP is different. The acceleration
parameter is negative (i.e., deceleration) before the turning
point and positive (i.e., acceleration) after the turning point.

From Figures 2 and 3, we can find the present time or the
age of the present universe withR0 = 15 billion light year. For
a differentH0 or ΩM,0, the age of the present universe should
be different. The age of the present universe determined based
on Figures 2 and 3 is plotted as a function ofH0 in Figure 4a
and as a function ofΩM,0 in Figure 4b. It is seen that the
age of the present universe decreases withH0 andΩM,0 when
R0 is fixed. ForR0 = 15 billion light year,H0 = 50− 70
km/s/Mpc, andΩM,0 = 0.3, the age of the universe is in the
range of∼ 13− 19 billion years, slightly less thanH−1

0 . The
universe is elder if it turned earlier (i.e., smallerΩM,0) or has
a smaller expansion rate.

3 Discussions and Conclusions

The open or closed universe can also be recently accelerated
by the dark energy. Sincek is not zero, the density parameters
will be quite different in order for the universe to be turned
from deceleration to acceleration at a similar turning point.
The details on the turning point and expansion characteristics
of the open and closed universes will be studied in future.

Consequently, the turning point and accelerating expan-
sion of the flat universe has been investigated according to
the cosmological theory with a non-zero cosmological cons-
tant. Choosing six sets ofH0, R0, andΩM,0, we have quanti-
tatively determinedΩM,0, Λ, M, ZTP, t0, R(t), H(t), v(t), and
q(t). Analyzing these results, we can conclude the following
remarks.

To turn the expansion from deceleration to acceleration,
the flat universe must contain enough amount of dark energy
ΩΛ,0 > 1/3. The turning point redshift depends only on the
density parameter in matterZTP = [2(1−ΩM,0)/ΩM,0]1/3 − 1.
The flat universe will never be accelerated if the cosmologi-
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Fig. 4: Age of the universe as a function ofH0 (a) andΩM,0 (b).

cal constant is zero. For the flat universe to be turned from
deceleration to acceleration at 0.5 . ZTP . 1, the density pa-
rameter in matter must be 0.4 & ΩM,0 & 0.2. The radius of the
universe generally increases with time. The expanding profi-
les are belong to theM1 type of exact solutions given by [27-
28]. The expansion rate of the universe rapidly decreases with
time to approach the Hubble constant. The expansion velocity
decreases with time to the minimumvmin = (2GM)1/3Λ1/6

at the turning point and then increases with time to appro-
ach v0 = H0R0. The acceleration parameter also increases
with time and changes from negative to positive at the turning
point. The acceleration of the present universe is larger if it
contains more dark energy. The age of the universe depends
on all of R0, H0, andΩM,0. The flat universe with a fixedR0

should be elder for smallerH0 or ΩM,0 due to the expansion
velocity smaller.

Overall, this study has shown the constraints and charac-
teristics of the recent acceleration universe, which deepens
our understanding of the turning and accelerating of the uni-
verse from past deceleration to recent acceleration.
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We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran-
sition in the early Universe. Assuming an underlying theory that violates Lorentz in-
variance, we start with a Dirac like equation, involving four massless fields, and which
does not exhibit Lorentz invariance. We then perform transformations that restore it to
its covariant form along with a mass term for the fermion field. It is proposed that these
transformations can be visualized as waves traveling in an anisotropic media. The trans-
formation it/ℏ→ β is then utilized to transit to a statistical thermodynamics system and
the partition function then gives a better insight into the character of this transition. The
statistical system hence realized is a two level system with each state doubly degenerate.
We propose that modeling the transition this way can help explain the matter antimatter
asymmetry of the Universe.

1 Introduction

The idea that the Universe is homogeneous, isotropic and that
space-time is Lorentz invariant are important pillars of theo-
retical physics. Whereas the cosmological principal assumes
the Universe to be homogeneous and isotropic, Lorentz in-
variance is required to be a symmetry of any relativistic quan-
tum field theory. These requirements have robust footings,
but there can possibly be scenarios where these ideas are not
sufficient to describe the dynamics of a system. Temperature
fluctuations in the Cosmic Microwave Background (CMB)
radiation indicate that the assumptions made by the cosmo-
logical principal are not perfect. There is no conclusive ev-
idence of Lorentz violation to date but this has been a topic
of considerable interest and the Standard Model Extension
(SME) has been constructed which includes various terms
that preserve observer Lorentz transformations but violate
particle Lorentz transformations [1]. Limits have been placed
on the coefficients of various terms in the SME as well [2].
Another important question is the matter-antimatter asymme-
try of the Universe which is not completely resolved. Sak-
harov, in 1967 derived three conditions (baryon violation, C
and CP violation and out of thermal equilibrium) for a the-
ory to satisfy in order to explain the baryon asymmetry of the
Universe.

Origin of fermion masses is also one of the most intrigu-
ing questions which is now close to be answered by the AT-
LAS and CMS experiments at the Large Hadron Collider.
Hints of this particle have been seen and we will know for
sure this year, hopefully mid 2012, whether it exists or not. If
the Higgs does not exist than the formalism presented in this
article can also serve as a possible explanation for the origin
of mass of fermions.

In this paper we intend to describe the evolution of a
theory that violates Lorentz invariance to a theory that pre-
serves it. The fields that are involved in the Lorentz violat-
ing theory can be viewed in analogy with fields traveling in

an anisotropic medium. When the system evolves from the
anisotropic to isotropic phase the symmetry of the theory is
restored and the partition function formalism can be used to
better understand how this transition takes place. This for-
malism, we propose, can help explain the matter-antimatter
asymmetry of the Universe. The paper is organized as fol-
lows: In section 2 and 3 we describe these transformations
and propose a way to interpret them as plane wave transitions
into anisotropic media. In section 4 the partition function is
used to get a better insight into how the transformations in
section 2 occur and we conclude in section 5.

2 Transformations leading to Covariant Dirac equation

In this section we outline a set of transformations that lead
to the Dirac equation for a QED (Quantum Electrodynamics)
like theory with no interaction terms. We start with a Dirac-
like equation which involves four fields (χa, χb, χc, χd). These
fields can be redefined in a simple way such that the covariant
form of the Dirac equation is restored along with a mass term.
We assume a minimal scenario and consider just the kinetic
terms for the fields in the underlying theory. If we start with
the following equation (ℏ = c = 1):

iχ̄aγ
0∂0χa + iχ̄bγ

1∂1χb + iχ̄cγ
2∂2χc + iχ̄dγ

3∂3χd = 0, (1)

and transform each of the χ fields in the following manner,

χa(x)→ eiαmγ0 x0ψ(x), χb(x)→ eiβmγ1 x1ψ(x),

χc(x)→ eiδmγ2 x2ψ(x), χd(x)→ eiσmγ3 x3ψ(x), (2)

we get the Dirac equation in covariant form, along with a
mass term (using, for e.g., eiβmγ1 x1γ0 = γ0e−iβmγ1 x1 ),

ψ[iγµ∂µ − (α + β + δ + σ)m]ψ = 0, (3)

where α, β, δandσ are real positive constants. For plane wave
solution for particles, ψ = e−ip.xu(p), the above redefinition
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for the field χa, for example, is a solution of the following
equation:

∂

∂t
χa(x) = −i(E − αmγ0)χa(x), (4)

with similar equations for the other fields. Equation (4), is
similar to equation (27) in reference [3] which is a solution
of the differential equation governing linear elastic motions
in an anisotropic medium (with a constant matrix, see section
III of the reference). With α = 0 the left hand side is just the
Hamiltonian with the plane wave its eigenstate.

Note that the manner in which we can transform equa-
tion (1) to (3) is not unique and there are various ways to do
this with different combinations of the χ fields along with the
field ψ. A mass term (mχχ) for the χ fields could have been
added to equation (1), but the redefinitions (2) can be used to
eliminate it. So, if we want our resulting equation to describe
a massive fermion, these fields should be massless or cannot
have mass term of the form mχχ. This argument will be fur-
ther corroborated with the results we present in section 4. The
transformation matrices in equation (2) are not all unitary, the
matrix eiαmγ0 x0 is unitary while the rest (eiβmγi xi ) are hermitian.

The fields in equation (1) can be considered as indepen-
dent degrees of freedom satisfying equation (4) in an under-
lying theory that violates Lorentz invariance. The transfor-
mations (2) can, therefore, be seen as reducing the degrees
of freedom of the theory from four to one. In such an un-
derlying theory, various interaction terms can be written for
these fields. Since we intend to obtain the free Dirac equation,
we have considered only kinetic terms involving the fields χ.
A quadratic term involving different χ fields (mχiχ j) can be
added to equation (1) but this leads to a term that violates
Lorentz invariance in the resulting Dirac equation. A quartic
term (cχiχiχ jχ j) is possible and would result in a dimension
6 operator for the field ψ with the constant c suppressed by
the square of a cutoff scale. So, with the restriction that the
resulting Dirac equation only contains terms that are Lorentz
scalars the number of terms we can write for the χ fields can
be limited. In other words we impose Lorentz symmetry in
the resulting equation so that various terms vanish or have
very small coefficients.

3 Visualizing field Redefinitions

Space-time dependent field redefinitions in the usual Dirac
Lagrangian result in violation of Lorentz invariance. For ex-
ample, the field redefinition ψ→ e−iaµxµψ leads to the Lorentz
violating terms in the Lagrangian [1]. This particular redefini-
tion, however, would not lead to physically observable effects
for a single fermion. A transformation of this type amounts
to shifting the four momentum of the field. It can also be
viewed in analogy with plane waves entering another medium
of a different refractive index which results in a change in the
wave number of the transmitted wave. Similarly, transforma-
tions (2) can be interpreted as transitions of a wave from an

anisotropic to isotropic medium or vice versa as done in the
Stroh’s matrix formalism [3]. For plane wave solutions of ψ,
the χ fields have propagative, exponentially decaying and in-
creasing solutions (for example, e±imx, e±mx). This wave be-
havior is similar to that in an anisotropic medium or a medium
made of layers of anisotropic medium. The eigenvalues of the
Dirac matrices being the wave numbers of these waves in this
case. The coefficients in the exponent relates to how fast the
wave oscillates, decays and/or increases exponentially. The
transfer matrix in Stroh’s formalism describe the properties of
the material and in this case can possibly represent the prop-
erties of the anisotropic phase from which the transition to the
isotropic phase occurs.

Therefore, we can visualize a global and local transforma-
tion as transitions of plane waves to different types of media.
The wave function of a particle (E > V) which comes across
a potential barrier of a finite width and height undergoes a
phase rotation (eiklψ) upon transmission. If the width of the
barrier extends to infinity, the wave function can be viewed as
undergoing a position dependent phase rotation (eikxψ). The
transformations (2) can similarly be seen as a plane wave en-
tering an anisotropic medium. Another phenomenon called
birefringence in optics can be used to explain why these four
fields map on to the same field ψ. Birefringence results in a
plane wave splitting into two distinct waves inside a medium
having different refractive indices along different directions
in a crystal. These analogies can serve as crude sketches to
visualize how the transformations in equation (2) can occur.

In the usual symmetry breaking mechanism a Higgs field
acquires a vacuum expectation value (VEV) and the resulting
mass term does not respect the symmetry of the underlying
group. For example, in the Standard Model, due to its chiral
nature, a Higgs field is introduced in order to manifest gauge
invariance. Once the Higgs field acquires a VEV the mass
term only respects the symmetry of the resulting group which
is U(1)EM. In our case the mass term arises after symmetry
of the Dirac equation is restored. Consider the simple case
where we have one field χa in addition to the field ψ:

iχ̄aγ
0∂0χa + iψ̄γi∂iψ = 0, (5)

and this field transforms to the field ψ as χa(x)→ eiαmγ0 x0ψ(x)
, leading to the Dirac equation. In order to discuss the symme-
tries of the above equation let’s assume that the two indepen-
dent degrees of freedom are described by the above equation.
Equation (5) then has two independent global U(1) symme-
tries and the resulting equation has one. In fact, there is a list
of symmetries of equation (5) not possessed by (3), for ex-
ample invariance under local transformations, χa → eibiθ(xi)χ′a
(i, j = 1, 2, 3), where bi can be a constant vector, the matrix
γ0 or any matrix that commutes with γ0 (e.g., σi j, γ5γi). This
implies invariance under global and local SO(3) transforma-
tions (rotations of the fields χa but not boosts). Similarly,
ψ→ eiA θ(t)ψ′ is a symmetry, where A can be a constant or the
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matrix iγ0γ5 which commutes with the three Dirac matrices
γi. After the transformation χa → eimγ0tψ the equation is no
more invariant under these symmetries and the SO(1,3) sym-
metry of the Dirac equation is restored along with a global
U(1) symmetry.

4 Partition Function as a Transfer Matrix

In the early Universe, a transition from a Lorentz asymmetric
to a symmetric phase could possibly induce transformations
of the form (2). Let’s again consider the simple example in
equation (5). For this case the eigenvalues of the Dirac ma-
trix γ0 define the wave numbers of the waves traveling in the
anisotropic medium. The direction of anisotropy in this case
is the temporal direction, which means that the time evolu-
tion of these waves is not like usual plane waves. It is not
straight forward to visualize the fields, the dynamics of whom
are described by the anisotropy of space time, but we can use
the partition function method to get a better insight into this.
We can, by using this formalism, calculate the temperature at
which the transformations in equation (2) occur.

We next perform a transition to a thermodynamics system
by making the transformation it → β, where β = 1/kBT [4].
The partition function is then given by the trace of the trans-
formation matrix eimγ0t,

Z = Tr(emβγ0 ) = 2eβm + 2e−βm. (6)

This partition function is similar to that of a two-level sys-
tem of spin 1/2 particles localized on a lattice and placed in
a magnetic field with each state, in this case, having a degen-
eracy of two. The lower energy state corresponding to spin
parallel to the field (E = −m, Z1 = eβm). In this case the
doubly degenerate states correspond to spins up and down of
the particle or anti-particle. For N distinguishable particles
the partition function is ZN , N here is the total number of
particles and antiparticles of a particular species. So, we are
modeling our system as being on a lattice with the spin along
the field as representing a particle and spin opposite to the
field representing an antiparticle.

The evolution of this system with temperature represents
the time evolution of the system in equation (1). In other
words the partition function describes the evolution of these
waves from anisotropic to isotropic phase as the temperature
decreases. For a two level system the orientation of the dipole
moments becomes completely random for large enough tem-
peratures so that there is no net magnetization. In our case we
can introduce another quantity, namely a gravitational dipole,
which would imply that the four states (particle/antiparticle,
spin up/down) of N such particles at high enough tempera-
tures orient themselves in a way that the system is massless.
This just serves as an analogy and does not mean that the
masses are orientating themselves the same way as dipoles
would do in space. The anisotropic character can be seen as
mimicking the behavior of the field in a two level system. The

population of a particular energy level is given by

np(p) =
Ne±βm

eβm + e−βm , (7)

which shows that the number density of particles and antipar-
ticles vary in a different way with respect to temperature.
In the early Universe, therefore the anisotropic character of
space-time seems to play an important role such that parti-
cles and anti-particles behave in different manners. As the
temperature decreases the number density of the anti-particles
decreases and is vanishingly small for small temperatures (∼
e−2βm). When the decoupling temperature is attained there is a
difference in the number density of the particles and antipar-
ticles as described by equation (7). This leads to an excess
of particles over antiparticles. The decoupling temperature
of a particular species of particle with mass m and which is
non-relativistic is given by, kBT ≲ 2m. Below this tempera-
ture the particles annihilate to photons but the photons do not
have enough energy to produce the pair. This can be used to
get the ratio of antiparticles over particles (matter radiation
decoupling). For βm ≈ 0.5, we get

np − np

np
≈ 0.6 , (8)

which implies an excess of particles over antiparticles and
thus can serve as another possible way to explain the mat-
ter antimatter asymmetry of the Universe. This number is
very large compared to the one predicted by standard cos-
mology (∼ 10−9). The above expression yields this order for
βm ≈ 10−9 which implies a large temperature. For electrons
this would imply a temperature of the order 1018K which is
large and the electrons are relativistic. So if we assume that
the decoupling takes place at a higher temperature, the baryon
asymmetry can be explained. Even without this assumption
the conditions proposed by Sakharov can also enhance the
number of particles over the antiparticles. Sakharov’s condi-
tions involve the interaction dynamics of the fields in the early
Universe whereas in our case the statistical system serves
more as a model describing the dynamics of space-time to
a more ordered phase.

Statistical mechanics, therefore, enables us to visualize
this transition in a rather lucid way. In a two level system the
net magnetization at any given temperature is analogous to
the excess of particles over antiparticles in the early Universe.
The time evolution of this anisotropic to isotropic transition
is modeled on the evolution of a statistical thermodynamics
system with particles on a lattice placed in a magnetic field.
The particles on the lattice are localized, static and have no
mutual interaction. The free energy of the system is given by:

F = −NkBT ln{4 cosh
[
mβ

]}. (9)

From this we can calculate the entropy S , heat capacity
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Fig. 1: Plot of heat capacity CV for the mass of electron, up quark,
neutrino and W boson. The maximum of the heat capacity of the
electron occurs at 4.8 × 109K, for the up quarks is 1.9 × 1013K, for
neutrinos is 291K and for the W bosons is 7.8 × 1014K. We use
kB = 8.6 × 10−5 eV/K and mν = 0.03 eV.

CV and mean energy U of the system:

S = −
(
∂F
∂T

)
V

= NkB ln
{
4 cosh

[
mβ

]} − NmkBβ tanh
[
mβ

]
(10)

U = F + TS = −Nm tanh
[
mβ

]
(11)

CV =

(
∂U
∂T

)
V
= NkBm2β2sech2 [

mβ
]

(12)

In Fig. 1, the peaks in the heat capacity represent phase
transition of a particular particle species. These are second
order phase transitions and the peak in the heat capacity is
usually referred to as the Schottky anomaly [5]. Note that the
phase transition we model our system on is a magnetic one.
So, modeling the complex system in the early Universe on a
lattice with spin 1/2 particles can reduce the complications of
the actual system by a considerable amount.

The Schottky anomaly of such a magnetic system, there-
fore, represents phase transitions in the early Universe. For
a particular species of particles the Schottky anomaly shows
a peak around mc2 ≈ kT . The phase transition for the elec-
trons occurs at the temperature where nuclei start forming in
the early Universe. For the quarks the transition temperature
refers to confinement into protons and neutrons. Similarly, W
boson’s transition occurs at the electroweak breaking scale.
The W boson, being a spin 1 particle, is not described by the
Dirac equation, but the heat capacity entails this feature of
showing a phase transition for the energy scale relevant to the
mass of a particle.

The curve for neutrinos implies that the transition tem-
perature for neutrinos is around 291 K, which means that
the density of antineutrinos from the big bang for present

neutrino background temperatures (∼ 2 K) is not negligible.
The ratio of antineutrinos over neutrinos for T = 2 K, is
nν/nν ∼ 10−15000 (mν = 2 eV) and for an even lower neu-
trino mass mν = 0.1 eV the ratio is nν/nν ∼ 10−500, which for
other more massive particles is much smaller. A cosmic neu-
trino and antineutrino background is one of the predictions of
standard cosmology but is still unobserved. This model pre-
dicts an antineutrino background much less than the neutrino
one.

In Fig. 2, the plots of mean energy and entropy are shown
in dimensionless units. In the massless limit for fermions the
entropy attains its maximum value of NkBln4. The plots show
that the energy of the system approaches zero as the temper-
ature approaches infinity. This situation is analogous to the
spins being completely random at high temperatures for the
two level system. The same way that the magnetic energy
of the system on the lattice is zero at high temperatures, the
mass of this system is zero in the very early Universe. As the
temperature decreases the energy of the system attains it min-
imum value (U = −Nm) and the particles become massive at
the temperature less than the value given by the peak of the
heat capacity. The entropy for high temperatures asymptoti-
cally approaches its maximum value of NkBln4.

According to the statistical thermodynamics model that
describes this transition, as this phase transition occurs an-
tiparticles will start changing into particles and as can be seen
from the figure the system will move towards all spins aligned
parallel with the “field”, i.e., towards being particles. From
Fig. 2 we can see that the energy of the system starts attain-
ing the minimum value as the temperature decreases where
all particles are aligned with the field and are “particles”. The
plot of entropy vs. temperature also represents an important
feature of these transformations. The entropy decreases with
decreasing temperature and this represents the transition to a
more ordered phase using equations (2). The plots of energy
of the system U in Fig. 2 show that the system will eventu-
ally settle down to the lowest energy state which in this case
means that the system will have almost all particles with neg-
ligible number of antiparticles. In short, the plot of the heat
capacity reflects the phase transitions, the plot of energy U
represents the transition from massless to massive states and
the plot of entropy represents the transition of space time to a
more ordered phase.

The Big Bang theory is one of the most promising can-
didates to describe how the Universe began. According to
this theory, the Universe expanded from a singularity where
curved space-time, being locally Minkowskian, eventually b-
ecame flat. It is possible that there even was a transition to the
Minkowski space from a non-Minkowski one. If the Universe
began with a state of maximum entropy than we can very well
assume that space-time was not Minkowskian even locally.
The fields that dwell in space-time are representation of the
symmetry group that describes it. The χ fields in the underly-
ing theory, described by equation (1), are therefore, not rep-
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Fig. 2: Plot of entropy and energy for a particle of mass m. For large
enough temperatures the energy of the system approaches zero and
the entropy approaches the limiting value of NkBln4.

resentations of the Lorentz group. The CPT theorem assumes
symmetries of Minkowski space-time in implying the simi-
larities between particles and antiparticles. If the underlying
theory is not Minkowskian than particles and antiparticles can
behave differently and this is what the model described in this
section implies.

Finally, we would like to point out that the occurrence
of the Schottky anomaly has motivated the study of negative
temperatures [6]. Note that the partition functions is invari-
ant under the transformation T → −T but the equations for
the free energy, entropy and energy are not. The existence
of negative temperatures has been observed in experiments.
Negative temperatures, for example, can be realized in a sys-
tem of spins if the direction of the magnetic field is suddenly
reversed for a system of spins initially aligned with the mag-
netic field [5]. Similarly, as described in reference [6] the al-
lowed states of the system must have an upper limit. Whereas
this is not the case for the actual particles in the early Uni-
verse, the statistical mechanics system on which it can be
modeled on has this property. A negative temperature sys-
tem would eventually settle down to the lower energy state
(U = Nm) which in our case would mean that the Universe
would ends up having more antiparticles than particles. This
is yet another interesting insight we get by modeling the early
Universe on a two state system.

5 Conclusions

We analyzed transformations that restore the Dirac equation
to its covariant form from an underlying theory that violates
Lorentz invariance. The fields in the underlying theory are
massless and the transformations yielding the Dirac equation
describe a massive fermion field. The transformations per-
formed, we suggest, can be interpreted as waves traveling
in an anisotropic medium. The partition function formalism
then, enabled us to model these transformations on the evolu-
tion of a system of spin 1/2 particles on a lattice placed in a
magnetic field. Symmetry breaking in this case takes place in
this lattice, the partition function of which characterizes the
transition. Also, since space-time is not Minkowskian in the
underlying theory, the CPT theorem does not hold, implying a
difference in the behavior of particles and antiparticles. This

is in agreement with the analogy created with the statistical
system whereby spin up and down particles behave in differ-
ent ways with the evolution of the system. This formalism
can arguably serve as another possible way to explain the ori-
gin of fermion masses till the final results related to the Higgs
boson are presented in 2012.

We then showed that this model can describe the anis-
otropic to isotropic phase transitions in the early Universe.
Three important features of the early Universe are depicted
in this model: (1) The heat capacity shows the occurrence of
phase transitions. (2) The mean energy of the system shows
how the particles become massive from being massless. (3)
The plot of entropy shows that the transition to a Lorentz sym-
metric phase occurred from an asymmetric one. At any given
temperature the net magnetization measures the excess of par-
ticles over antiparticles. We then suggest that this model can
be used to explain the matter antimatter asymmetry of the
Universe.
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In this brief paper, we show the neutrino velocity discrepancy obtained in the OPERA
experiment may be due to the local Doppler effect between a local clock attached to a
given detector at Gran Sasso, sayCG, and the respective instantaneous clock crossing
CG, sayCC, being this latter at rest in the instantaneous inertial frame having got the
velocity of rotation of CERN about Earth’s axis in relation to the fixed stars. With this
effect, the index of refraction of the Earth crust may accomplish a refractive effect by
which the neutrino velocity through the Earth crust turns out to be small in relation
to the speed of light in the empty space, leading to an encrusted discrepancy that may
have contamined the data obtained from the block of detectors at Gran Sasso, leading
to a time interval excessε that did not provide an exact match between the shift of the
protons PDF (probability distribution function) by TOFc and the detection data at Gran
Sasso via the maximum likelihood matching.

1 Definitions and Solution

Firstly, the effect investigated here is not the same one that
was investigated in [2], but, throughout this paper, we will
use some useful configurations defined in [2]. The relative ve-
locity between Gran Sasso and CERN due to the Earth daily
rotation may be written:

~vG −~vC = 2ωRsinαêz, (1)

whereêz is a convenient unitary vector, the same used in [2],
ω is the norm of the Earth angular velocity vector about its
daily rotation axis, beingRgiven by:

RE =
R

cosλ
, (2)

whereRE is the radius of the Earth, its averaged valueRE =

6.37× 106 m, andα given by:

α =
1
2

(αG − αC) , (3)

whereαC andαG are, respectively, CERN’s and Gran Sasso’s
longitudes (← WE→). Consider the inertial (in relation to
the fixed stars) reference frameOCxCyCzC ≡ Oxyz in [2].
This is the lab reference frame and consider this frame with
its local clocks at each spatial position as being ideally syn-
chronized, viz., under an ideal situation of synchronicity be-
tween the clocks ofOCxCyCzC ≡ Oxyz. This situation is the
expected ideal situation for the OPERA collaboration regard-
ing synchronicity in the instantaneous lab (CERN) frame.

Now, consider an interaction between a single neutrino
and a local detector at Gran Sasso. This event occurs at a
given spacetime point(tν, xν, yν, zν) in OCxCyCzC ≡ Oxyz.
The interaction instanttν is measured by a local clockCC at
rest at(xν, yν, zν) in the lab frame, viz., in theOCxCyCzC ≡

Oxyz frame. But, under gedanken, at this instanttν, accord-
ing to OCxCyCzC ≡ Oxyz, there is a clockCG attached to
the detector at Gran Sasso that crosses the point(tν, xν, yν, zν)
with velocity given by Eq. (1). SinceCG crossesCC, the
Doppler effect between the proper tic-tac rates measured at
each location ofCC andCG, viz., measured at their respective
locations in their respective reference frames (the reference
frame ofCG is the OGxGyGzG ≡ Õx̃ỹz̃ in [2], also inertial
in relation to the fixed stars), regarding a gedanken control
tic-tac rate continuosly sent byCC, say via electromagnetic
pulses fromCC, is not transverse. Since the points at which
CC andCG are at rest in their respective reference frames will
instantaneously coincide, better saying, will instantaneously
intersect, attν accordingly toCC, they must be previously
approximating, shortening their mutual distance during the
interval tν − δtν << tν along the line passing through these
clocks as described in theCC world.

SupposeCC sendsN electromagnetic pulses toCG. Dur-
ing the CC proper time interval(tν − δtν) − 0 = tν − δtν ∗

within whichCC emits theN electromagnetic pulses, the first
emitted pulse travels the distancec (tν − δtν) and reaches the
clock CG, as described byCC. Within this distance, there
areN equally spaced distances between consecutive pulses as

∗The initial instantCC starts to emit the electromagnetic pulses is set
to zero in both the framesOCxCyCzC ≡ Oxyz and OGxGyGzG ≡ Õx̃ỹz̃;
zero also is the instant the neutrino starts the travel to Gran Sasso in
OCxCyCzC ≡ Oxyz; hence the instant the neutrino starts the travel to Gran
Sasso and the emission of the first pulse byCC are simultaneous events in
OCxCyCzC ≡ Oxyz. These events are simultaneous inOGxGyGzG ≡ Õx̃ỹz̃
too, since they have got the same spatial coordinatezc = z = 0 along the
OCzC ≡ Ozdirection as defined in [2]. The relative motion between CERN
and Gran Sasso is parallel to this direction. The only one difference between
these events is the difference in theirxC = x coordinates, beingxC = 0 for
the neutrino departure andxC = L = 7.3 × 105 m for CC, being these lo-
cations perpendicularly located in relation to the relative velocity given by
the Eq. (1).
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described in theCC world, sayλC:

NλC = c (tν − δtν) . (4)

Also, since the clocksCC andCG will intersect attν, as
described inOCxCyCzC ≡ Oxyz, during the intervalδtν, the
clock CG must travel the distance 2ωRsinα δtν in the CC

world to accomplish the matching spatial intersection at the
instanttν, hence the clockCG travels the 2ωRsinα δtν in the
CC world, viz., as described byCC in OCxCyCzC ≡ Oxyz:

NλC = 2ωRsinα δtν ⇒ δtν = N
λC

2ωRsinα
. (5)

Solving fortν, from the Eqs. (4) and (5), one reaches:

tν =
NλC

c

(
1+

c
2ωRsinα

)
. (6)

Now, from the perspective ofCG, in OGxGyGzG ≡ Õx̃ỹz̃,
there must beN electromagnetic pulses covering the
distance:

c
(
tGν − δt

G
ν

)
− 2ωRsinα

(
tGν − δt

G
ν

)
, (7)

wheretGν − δt
G
ν is the time interval between the non-proper in-

stantstG = tν = 0, at which theCC clock sends the first pulse,
and the instanttGν −δt

G
ν , at which this first pulse reachesCG, as

described byCG in its world OGxGyGzG ≡ Õx̃ỹz̃. Within this
time interval,tGν −δt

G
ν , CG describes, in itsOGxGyGzG ≡ Õx̃ỹz̃

world, the clockCC approximating the distance:

2ωRsinα
(
tGν − δt

G
ν

)
, (8)

with the first pulse traveling:

c
(
tGν − δt

G
ν

)
, (9)

giving the distance within which there must beN equally
spaced pulses, say, spaced byλG, as described byCG in its
OGxGyGzG ≡ Õx̃ỹz̃ world:

NλG = (c− 2ωRsinα)
(
tGν − δt

G
ν

)
. (10)

With similar reasoning that led to the Eq. (5), now in the
OGxGyGzG ≡ Õx̃ỹz̃ CG world, prior to the spatial matching
intersection betweenCC andCG, the CC clock must travel
the distanceNλG during the time intervalδtGν , with theCC

approximation velocity 2ωRsinα:

NλG = 2ωRsinα δtGν ⇒ δt
G
ν = N

λG

2ωRsinα
. (11)

From Eqs. (10) and (11), we solve fortGν :

tGν = N
λG

2ωRsinα
1

[1− (2ωRsinα) /c]
. (12)

From the Eqs. (6) and (12), we have got the relation be-
tween the neutrino arrival instanttν as measured by the CERN
reference frame,OCxCyCzC ≡ Oxyz, and the neutrino arrival
instant tGν as measured by the Gran Sasso reference frame,
OGxGyGzG ≡ Õx̃ỹz̃, at the exact location of the interaction
at an interation location within the Gran Sasso block of de-
tectors, provided the effect of the Earth daily rotation under
the assumptions we are taking in relation to the intantaneous
movements of these locations in relation to the fixed stars as
previously discussed:

tGν
tν

=
λG

λC

[
1− (2ωRsinα)2 /c2

]−1
= γ2λG

λC
, (13)

whereγ ≥ 1 is the usual relativity factor as defined above.
Now, λG/λC is simply the ratio between the spatial dis-

placement between our consecutive gedanken control pulses,
being these displacements defined through our previous para-
graphs, leading to the Eqs. (4) and (10). Of course, this ratio
is simply given by the relativistic Doppler effect under an ap-
proximation case in whichCC is the source andCG the detec-
tor. The ratio between the Eqs. (10) and (4) gives:

λG

λC
= [1− (2ωRsinα) /c]

(
tGν − δt

G
ν

)

(tν − δtν)
. (14)

But the time interval(tν − δtν) is a proper time interval
measured by the source clockCC, as previously discussed. It
accounts for the time interval between the first pulse sent and
the last pulse sent as locally described byCC is itsOCxCyCzC

≡ Oxyz world. These two events accur at different spatial
locations in theCG detector clock worldOGxGyGzG ≡ Õx̃ỹz̃,
sinceCC is approximating toCG is this latter world. Hence,
tν − δtν is the Lorentz time contraction oftGν − δt

G
ν , viz.:

tν − δtν = γ
−1

(
tGν − δt

G
ν

)
∴

(
tGν − δt

G
ν

)

tν − δtν
= γ =

[
1− (2ωRsinα)2 /c2

]−1/2
. (15)

With the Eqs. (14) and (15), one reaches the usual rela-
tivistic Doppler effect expression for the approximation case:

λG

λC
=

√
1− (2ωRsinα) /c
1+ (2ωRsinα) /c

. (16)

With the Eq. (16), the Eq. (13) reads:

tGν
tν

=
[
1− (2ωRsinα)2 /c2

]−1/2
[1+ (2ωRsinα) /c]−1 =

=
γ

1+ (2ωRsinα) /c
. (17)

Since(2ωRsinα) /c << 1, we may apply an approxima-
tion for the Eq. (17), viz.:

γ ≈ 1+
1
2

(2ωRsinα)2

c2
, (18)
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and:

[1+ (2ωRsinα) /c]−1 ≈ 1− (2ωRsinα) /c, (19)

from which, neglecting the higher order terms, the Eq. (17)
reads:

tGν
tν
≈ 1−

2ωRsinα
c

∴ (20)

tGν − tν = −
2ωRsinα

c
tν. (21)

From this result, the clock that tag the arrival interaction
instanttGν in Gran Sasso turns out to measure an arrival time
that is shorter than the correct one, this latter given bytν.
With the discrepancy,ε, given by the value measured by the
OPERA Collaboration [1], sincetν is simply given byL/vν,
whereL is the baseline distance between the CERN and Gran
Sasso,vν the speed of neutrino through the Earth crust, one
obtains a value forvν. We rewrite the Eq. (21):

ε = tGν − tν = −
2ωRsinα

c
L
vν
. (22)

With the values∗ ω = 7.3 × 10−5 s−1, R = RE cosλ ≈
6.4× 106 m× cos(π/4) = 4.5× 106 m, sinα ≈ sin(7π/180) =
1.2 × 10−1, c = 3.0 × 108 ms−1 and L = 7.3 × 105 m, also
with the discrepancyε, given by the Eq. (22), being, say,
ε = −62 × 10−9 s, the neutrino velocity through the Earth
crust reads:

vν ≈ 3.1× 106 ms−1, (23)

being the refraction index of the Earth crust for neutrino given
by:

nc|ν =
c
vν
≈ 97. (24)

In reference to the matching PDF (probability distribu-
tion function) in the OPERA experiment, one would have
a discrepancy between the maximum likelihood distribution
obtained from the block of detectors at Gran Sasso and the
translation of the PDF due to the protons distribution by TOFc

given by, in virtue of the Eq. (22):

TOFν = TOFc + ε = TOFc −
2ωRsinα

c
L
vν
∴

TOFν − TOFc ≈ −62 ns, (25)

under the reasoning and simplifications throughout this paper.
One should notice the resoning here holds if the discrepancy
turns out to be encrusted within the time translation of the
PDF data, but such effect would not arise if the time interval
TOFν were directly measured, since, in this latter situation,
such interval would only readL/vν.

∗See the Eqs. (2) and (3). The latitudes of CERN and Gran Sasso
are, respectively: 46deg14min3sec(N) and 42deg28min12sec(N). The longi-
tudes of CERN and Gran Sasso are, respectively: 6deg3min19sec(E) and
13deg33min0sec(E).

Fig. 1: Spacetime diagram for the phenomenon previously dis-
cussed. TheOz andOz′ axes depict the negative portions, respec-
tively, of our previously definedOzandÕz̃ axes.

2 Spacetime diagram: a detailed explanation

Fig. 1 depicts the results we previously obtained, to which
we will provide interpretation throughout this section.

The method we had used as a gedankenexperiment to send
N light pulses is depicted via the Fig. 1. There are two dif-
ferent situations, since we want to determine, via the appli-
cation ofN gedanken pulses, in which reference frame the
interaction of a neutrino at a point within the block of detec-
tors at Gran Sasso actually had its interaction instant tagged.
One should notice the Opera Collaboration shifted the PDF
of the protons distribution to the time location of the inter-
actions at Gran Sasso, but one must notice the proton PDF
was not at the same instantaneous reference frame the block
of detectors was. Hence, when one shifts the proton PDF dis-
tribution, one is assuming this shifted distribution represents
the interactions at Gran Sasso in the same reference frame
of the produced protons. This latter situation of shifting the
PDF data of the protons is represented by the pointA in the
Fig. 1, viz., the pointA represents the protons PDF distri-
bution at its shifted position, and the clock that measures the
shifting process is at rest in the CERN reference frame pre-
viously discussed,OCxCyCzC ≡ Oxyz, being our previously
obtainedtν given by the line segmentOA in the Fig. 1, with
the method ofN sent pulses firstly accomplished in this ref-
erence frame. Note thattν ≡ OA is not the time a photon
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would spend to accomplish the shift∗, since one would expect
this from the shifting the OPERA Collaboration statistically
accomplished, once the Collaboration would be intrinsically
assuming the time shift TOFc as actually being the time in-
terval the protons PDF would spend to match the distribution
at the detection location, which would lead to a neutral shift
in comparison with the detected distribution obtained from
the Gran Sasso detectors in a case in which the protons PDF
travelled atc, viz., a fortuitous shift would be simply pointing
out to a velocity discrepancy in relation toc. The time inter-
val the protons PDF actually spent to reach the Gran Sasso
detectors was not directly measured, and the physical shift
that actually occurred was, by the reasonings of this paper,
tν. Now, since the interactions at Gran Sasso occurred in the
OGxGyGzG ≡ Õx̃ỹz̃ reference frame, the clock that tagged a
neutrino interaction, measured via our gedanken method of
N sent pulses, now being applied in the Gran Sasso reference
frame, has its world lineG′B in the Fig. 1, viz,tGν ≡ G′B,
i.e., the line segmentG′B in the Fig. 1 has our previously ob-
tainedtGν as its lenght. Hence, once the OPERA Collaboration
tried to matchtν and tGν , they, unfortunately, would obtain a
discrepancy given by the Eq. (22), since twodifferentframes
raise and do not match. Finally, we would like to point out
that, in the Fig. 1:OE is our previously definedtν − δtν, EA
is our previously definedδtν, G′G is our previously defined
tGν − δt

G
ν andGB is our previously definedδtGν . Also, as said

before,A is the time location the proton PDF was actually
shifted by the OPERA Collaboration, although they had apri-
oristically assumed a TOFc shift for the protons PDF, andB
the time location a Gran Sasso local clock actually tagged a
neutrino event.

3 Conclusion

It is interesting to observe that even with a velocity having
got two orders of magnitude lesser thanc a neutrino may be
interpreted as having got a velocity greater thanc, depend-
ing on the method used to measure neutrino’s time of flight,
with the Earth crust presenting an index of refractionnc|ν > 1,
due, also, to the local Doppler effect between the clocks at-
tached to Gran Sasso and the respective intersecting ones in
the CERN reference frame, as discussed throughout this pa-
per, in virtue of the Earth daily rotation.
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∗the propagation axis of this photon does not appear in Fig. 1, since
its propagation axis,Ox, is not depicted in the Fig. 1, which is not relevant
for our analysis here. This same irrelevance for the propagation axis of the
neutrinos holds here.
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In conventional theoretical physics and its Standard Model the guiding principle is that
the equations are symmetrical. This limitation leads to a number of difficulties, because
it does not permit masses for leptons and quarks, the electron tends to “explode” un-
der the action of its self-charge, a corresponding photon model has no spin, and such a
model cannot account for the “needle radiation” proposed by Einstein and observed in
the photoelectric effect and in two-slit experiments. This paper summarizes a revised
Lorentz and gauge invariant quantum electrodynamic theory based on a nonzero electric
field divergence in the vacuum and characterized by linear intrinsic broken symmetry. It
thus provides an alternative to the Higgs concept of nonlinear spontaneous broken sym-
metry, for solving the difficulties of the Standard Model. New results are obtained, such
as nonzero and finite lepton rest masses, a point-charge-like behavior of the electron due
to a revised renormalization procedure, a magnetic volume force which counteracts the
electrostatic eigen-force of the electron, a nonzero spin of the photon and of light beams,
needle radiation, and an improved understanding of the photoelectric effect, two-slit ex-
periments, electron-positron pair formation, and cork-screw-shaped light beams.

1 Introduction

Conventional electromagnetic theory based on Maxwell’s
equations and quantum mechanics has been successful in its
applications to numerous problems in physics, and has some-
times manifested itself in an extremely good agreement with
experiments. Nevertheless there exist areas within which
these joint theories do not provide fully adequate descriptions
of physical reality. As already stated by Feynman [1], there
are unsolved problems leading to difficulties with Maxwell’s
equations that are not removed by and not directly associated
with quantum mechanics. It has thus to be remembered that
these equations have served as a guideline and basis for the
development of quantum electrodynamics (QED) in the vac-
uum state. Therefore QED also becomes subject to the typical
shortcomings of electromagnetics in its conventional form.

A way to revised quantum electrodynamics is described in
this paper, having a background in the concept of a vacuum
that is not merely an empty space. There is thus a nonzero
level of the vacuum ground state, the zero point energy, which
derives from the quantum mechanical energy states of the
harmonic oscillator. Part of the associated quantum fluctua-
tions are also carrying electric charge. The observed electron-
positron pair formation from an energetic photon presents a
further indication that electric charges can be created out of
an electrically neutral vacuum state. In this way the present
approach becomes based on the hypothesis of a nonzero elec-
tric charge density and an associated electric field divergence
in the vacuum state. This nonzero divergence should not be-
come less conceivable than the nonzero curl of the magnetic
field related to Maxwell’s displacement current.

The present treatise starts in Section 2 with a discussion
on quantization of the field equations. This is followed in

Section 3 by a description of the difficulties which remain in
conventional theory and its associated Standard Model. An
outline of the present revised theory is then given in Section 4,
and its potentialities are presented in Section 5. A number of
fundamental applications and new consequences of the same
theory are finally summarized in Sections 6 and 7.

2 Quantization of the field equations

As stated by Schiff [2] among others, Maxwell’s equations
are used as a guideline for proper interpretation of conven-
tional quantum electrodynamical theory. To convert in an
analogous way the present extended field equations into their
quantum electrodynamical counterpart, the most complete
way would imply that the quantum conditions are included
already from the outset.

In this treatise, however, a simplified procedure is ap-
plied, by first determining the general solutions of the basic
field equations, and then imposing the relevant quantum con-
ditions afterwards. This is at least justified by the fact that the
quantized electrodynamic equations become identically equal
to the original equations in which the potentials and currents
are merely replaced by their expectation values, as shown by
Heitler [3]. The result of such a procedure should therefore
not be too far from the truth, by using the most probable tra-
jectories and states in a first approximation.

3 Difficulties in conventional theory

As pointed out by Quigg [4] among others, the guiding prin-
ciple of the Standard Model in theoretical physics is that its
equations are symmetrical, and this does not permit masses
for leptons and quarks. Such a feature also reveals itself in
the symmetry of the conventional field equations of QED in
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which there are vanishing divergences of both the electric and
magnetic fields in the vacuum, as given e.g. by Schiff [2].

In the Dirac wave equation of a single particle like the
electron, the problem of nonzero mass and charge is circum-
ambulated by introducing given values of its mass me and
charge e. With an electrostatic potential ϕ and a magnetic
vector potential A, the equation for the relativistic wave func-
tion has the form

α0mecΨ + α · [(ℏ/i)∇Ψ − (e/c)AΨ] + eϕΨ = − ℏ
ic
∂

∂t
Ψ (1)

where αi are the Dirac matrices given e.g. by Morse and
Feshbach [5].

To fulfill the demand of a nonzero particle mass, the sym-
metry of the field equations has to be broken. One such pos-
sibility was worked out in the mid 1960s by Higgs [6] among
others. From the corresponding equations a Higgs particle
was predicted which should have a nonzero rest mass. Due to
Ryder [7] the corresponding Lagrangian then takes the form

L = −1
4

FµνFµν +
∣∣∣∣(∂µ + icAµ

)
ϕ
∣∣∣∣2 − m2ϕ∗ϕ − λ(ϕ∗ϕ)2 (2)

where ϕ represents a scalar field, Aµ a vector field, and Fµν =
∂µAν − ∂νAµ is the electromagnetic field tensor. The quantity
m further stands for a parameter where m2 < 0 in the case
of spontaneous symmetry breaking, and the parameter λ is
related to a minimized potential. The symmetry breaking is
due to the two last terms of the Lagrangian (2). The latter is
nonlinear in its character, and corresponds to a deduced rela-
tion for the minimum of the vacuum potential. Experimental
confirmation of this mechanism does not rule out the applica-
bility of the present theory to the problem areas treated in this
paper.

3.1 Steady states

Conventional theory based on Maxwell’s equations in the
vacuum is symmetric in respect to the field strengths E and
B. In the absence of external sources, such as for a self-
consistent particle-like configuration, the charge density ρ̄ ,
divE and curlB all vanish. Then there is no scope for a local
nonzero energy density in a steady state which would oth-
erwise be the condition for a particle configuration having a
nonzero rest mass. This is consistent with the statement by
Quigg [4] that the symmetric conventional field equations do
not permit masses for leptons and quarks.

The fundamental description of a charged particle is in
conventional theory deficient also in the respect that an equi-
librium cannot be maintained by the classical electrostatic
forces, but has been assumed to require extra forces of a non-
electromagnetic origin, as proposed e.g. by Heitler [3] and
Jackson [8]. In other words, the electron would otherwise
“explode” under the action of its electric self-charge.

The electron behaves like a point charge with a very small
radius. Standard theory is confronted with the infinite self-
energy of such a system. A quantum electromagnetic renor-
malization procedure has then been applied to yield a finite
result, by adding an infinite ad hoc term to the Lagrangian,
such as to obtain a finite result from the difference between
two “infinities” [7]. Even if such a procedure has turned out
to be successful, it can be questioned from the logical and
physical points of view.

3.2 Wave modes

In a state of explicit time dependence, the conventional sym-
metric wave equations by Maxwell in the vacuum with van-
ishing electric and magnetic field divergences can be recast
in terms of a Hertz vector Π, as described by Stratton [9] and
Halln [10] among others. These equations result in two partial
solutions, Π1 and Π2 , denoted as an electric and a magnetic
type which are given by the fields

E1 = ∇(divΠ1) − (1/c2)∂2Π1/∂t2 (3)

B1 = (1/c2)curl(∂Π1/∂t) (4)

and

E2 = −µ0curl(∂Π2/∂t) (5)

B2 = µ0∇(divΠ2) − (µ0/c2)∂2Π2/∂t2. (6)

Here c2 = 1/µ0ϵ0 with µ0 denoting the magnetic perme-
ability and ϵ0 the dielectric constant in the vacuum. Using the
results obtained from equations (3)-(6) and given in current
literature, the integrated angular momentum in the direction
of propagation (spin) can be evaluated for plane, cylindrical,
and spherical wave modes. This is made in terms of the elec-
tromagnetic momentum density

g = ϵ0E × B =
1
c2 S (7)

where S is the Poynting vector, and of the density

s = r × S
c2 (8)

with r standing for the radius vector. The results are summa-
rized as described by the author [11]:

• For plane waves propagating in the direction of a rect-
angular frame (x, y, z) the field components Ez and Bz

vanish as well as the spin. A three-dimensional distur-
bance of arbitrary shape at a given instant can in princi-
ple be constructed by Fourier analysis from a spectrum
of plane waves. At later instants, however, such a dis-
turbance would rapidly disintegrate [9].
• Cylindrical geometry has the advantage of providing

a starting point for waves which propagate with con-
served shape in a defined direction like a photon, at
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the same time as it can have limited dimensions in the
transverse directions under certain conditions. With an
elementary wave form f (r) exp[i(−ωt + kz + nφ)] in a
cylindrical frame (r, φ, z) with z in the direction of prop-
agation, the dispersion relation becomes

K2 = (ω/c)2 − k2 (9)

This leads to local spin densities sz1 and sz2 of equation
(8) in respect to the z axis where

|sz1| and |sz2| ∝ K2n [Jn(Kr)]2 sin 2nφ (10)

for the two types of equations (3)-(6), and with Jn(Kr)
as Bessel functions. Consequently, the local contribu-
tion to the spin vanishes both when n = 0 and K = 0.
With nonzero n and K the total integrated spin also van-
ishes.
• When considering spherical waves which propagate

along r in a spherical frame (r, θ, φ) of unbounded space
at the phase velocity ω/k = c with a periodic variation
exp(inφ), the field components are obtained in terms of
associated Legendre functions, spherical Bessel func-
tions, and factors sin(nφ) and cos(nφ) [9]. The asymp-
totic behavior of the components of the momentum
density (7) then becomes

gr ∝ 1/r2 gθ ∝ 1/r3 gφ ∝ 1/r3 (11)

The momentum gr along the direction of propagation
is the remaining one at large distances r for which the
spin thus vanishes. From the conservation of angular
momentum there is then no integrated spin in the near-
field region as well. This is confirmed by its total inte-
grated value.
From these results is thus shown that the conventional
symmetric equations by Maxwell in the vacuum, and
the related equations in quantized field theory, do not
become reconcilable with a physically relevant photon
model having nonzero spin.
In addition, a conventional theoretical concept of the
photon as given by equations (3)-(6) cannot account for
the needle-like behavior proposed by Einstein and be-
ing required for knocking out an atomic electron in the
photoelectric effect. Nor can such a concept become
reconcilable with the dot-shaped marks which occur at
the screen of two-slit experiments from individual pho-
ton impacts, as observed e.g. by Tsuchiya et al. [12].

4 An outline of present revised theory

As stated in the introduction, the present theory is based on
the hypothesis of a nonzero electric charge density in the vac-
uum. The detailed evaluation of the basic concepts of this the-
ory has been reported by the author [13, 14] and is shortly out-
lined here. The general four-dimensional Lorentz invariant

form of the corresponding Proca-type field equations reads(
1
c2

∂2

∂t2 − ∇
2
)

Aµ = µ0Jµ, µ = 1, 2, 3, 4 (12)

where

Aµ =
(
A,

iϕ
c

)
(13)

with A and ϕ standing for the magnetic vector potential and
the electrostatic potential in three-space,

Jµ = (j, icρ̄) = ρ̄(C, ic) j = ρ̄C = ϵ0(divE)C (14)

and C being a velocity vector having a modulus equal to the
velocity constant c of light, i.e. C2 = c2. Consequently
this becomes a generalization of Einsteins relativistic veloc-
ity limit. In three dimensions equation (12) in the vacuum
results in

curlB
µ0
= ϵ0(divE)C +

ϵ0∂E
∂t

(15)

curlE = −∂B
∂t

(16)

B = curlA, divB = 0 (17)

E = −∇ϕ − ∂A
∂t

(18)

divE =
ρ̄

ϵ0
. (19)

These equations differ from the conventional form, by a
nonzero electric field divergence in equation (19) and by the
additional first term of the right-hand member in equation
(15) which represents a “space-charge current density” in ad-
dition to the displacement current. Due to the form (14) there
is a similarity between the current density and that by Dirac
[5]. The extended field equations (15)-(19) are easily found
also to become invariant to a gauge transformation. The same
equations can further be derived from a Lagrangian density

L = 1
2
ϵ0(E2 − c2B2) − ρ̄ϕ + j · A. (20)

In this context special attention will be paid to steady
states for which the field equations reduce to

c2curlcurlA = −C(∇2ϕ) =
ρ̄

ϵ0
C (21)

and to wave modes for which(
∂2

∂t2 − c2∇2
)

E +
(
c2∇ + C

∂

∂t

)
(divE) = 0. (22)

The main characteristic new features of the present theory
can be summarized as follows:
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• The hypothesis of a nonzero electric field divergence
in the vacuum introduces an additional degree of free-
dom, leading to new physical phenomena. The associ-
ated nonzero electric charge density thereby acts some-
what like a “hidden variable”.
• This also abolishes the symmetry between the electric

and magnetic fields, and the field equations then obtain
the character of intrinsic linear symmetry breaking.
• The theory is both Lorentz and gauge invariant.
• The velocity of light is no longer a scalar quantity, but

is represented by a velocity vector of the modulus c.

5 Potentialities of present theory

Maxwell’s equations in the vacuum, and their quantized
counterparts, are heavily constrained. Considerable parts of
this limitation can be removed by the present theory. Thus the
characteristic features described in Section 4 debouch into a
number of potentialities:
• The present linear field equations are characterized by

an intrinsic broken symmetry. The Lagrangian (20) dif-
fers from the form (2) by Higgs. The present approach
can therefore become an alternative to the Higgs con-
cept of nonlinear spontaneous broken symmetry.
• In the theory by Dirac the mass and electric charge of

the electron have been introduced as given parameters
in the wave equation (1), whereas nonzero and finite
masses and charges result from the solutions of the
present field equations. This is due to the symmetry
breaking of these equations which include steady elec-
tromagnetic states, not being present in conventional
theory.
• As a further consequence of this symmetry breaking,

the electromagnetic wave solutions result in photon
models having nonzero angular momentum (spin), not
being deducible from conventional theory, and being
due to the current density j in equations (14) and (15)
which gives a contribution to the momentum density
(7).
• This broken symmetry also renders possible a revised

renormalization process, providing an alternative to the
conventional one in a physically more surveyable way
of solving the infinite self-energy problem. This alter-
native is based on the nonzero charge density of equa-
tion (19).
• In analogy with conventional theory, a local momen-

tum equation including a volume force term is obtained
from vector multiplication of equation (15) by B and
equation (16) by ϵ0E, and adding the obtained equa-
tions. This results in a volume force density which does
not only include the well-known electrostatic part ρ̄E ,
but also a magnetic part ρ̄C × B not being present in
conventional theory.

6 Fundamental applications

A number of concrete results are obtained from the present
theory, as fundamental applications to models of leptons and
photons and to be shortly summarized in this section.

6.1 An Electron Model

Aiming at a model of the electron at rest, a steady axisym-
metric state is considered in a spherical frame (r, θ, φ) where
A = (0, 0, A) and j = (0, 0, cρ̄) with C = ±c representing the
two spin directions. Equations (21) can be shown to have a
general solution being derivable from a separable generating
function

F(r, θ) = CA − ϕ = G0G(ρ, θ) = G0R(ρ)T (θ) (23)

where G0 stands for a characteristic amplitude, ρ = r/r0 is
a normalized radial coordinate, and r0 is a characteristic ra-
dial dimension. The potentials A and ϕ as well as the charge
density ρ̄ can be uniquely expressed in terms of F and its
derivatives. This, in its turn, results in forms for the spatially
integrated net values of electric charge q0, magnetic moment
M0, mass m0 obtained from the mass-energy relation by Ein-
stein, and spin s0.

A detailed analysis of the integrals of q0 and M0 shows
that an electron model having nonzero q0 and M0 only be-
comes possible for radial functions R(ρ) being divergent at
the origin ρ = 0, in combination with a polar function T (θ)
having top-bottom symmetry with respect to the midplane
θ = π/2 . Neutrino models with vanishing q0 and M0 become
on the other hand possible in three other cases. The observed
point-charge-like behavior of the electron thus comes out as a
consequence of the present theory, due to the requirement of
a nonzero net electric charge.

The necessary divergence of the radial function R leads
to the question how to obtain finite and nonzero values of all
related field quantities. This problem can be solved in terms
of a revised renormalization procedure, being an alternative to
the conventional process of tackling the self-energy problem.
Here we consider a generating function with the parts

R = ρ−γe−ρ, γ > 0 (24)

T = 1 +
n∑
ν=1

{a2ν−1 sin[(2ν − 1)θ] + a2ν cos(2νθ)}

= 1 + a1 sin θ + a2 cos 2θ + a3 sin 3θ + . . . (25)

where R is divergent at ρ = 0 and T is symmetric in respect to
θ = π/2. In the present renormalization procedure the lower
radial limits of the integrals in (q0,M0,m0, s0) are taken to
be ρ = ϵ where 0 < ϵ ≪ 1. Further the concepts of first
and second counter-factors are introduced and defined by the
author [13,15], i.e.

f1 = crGϵ = r0G0 f2 = cGϵ
2 = G0 (26)

24 Bo Lehnert. A Way to Revised Quantum Electrodynamics



April, 2012 PROGRESS IN PHYSICS Volume 2

where crG and cG are corresponding constants. Consequently
all field quantities (q0,M0,m0, s0) then become nonzero and
finite at small ϵ. This revised renormalization procedure im-
plies that the “infinities” of the field quantities due to the di-
vergence of R at ρ = 0 are outbalanced by the “zeros” of the
counter-factors f1 and f2 .

The quantum conditions to be imposed on the general so-
lutions are the spin condition

s0 = ±h/4π (27)

of a fermion particle, the magnetic moment relation

M0m0/q0s0 = 1 + δM δM = 1/2π f0 = 0.00116 (28)

given e.g. by Feynman [16], and the magnetic flux condition

Γtot = |s0/q0| (29)

where Γtot stands for the total magnetic flux being generated
by the electric current system.

From these conditions the normalized electric charge q∗ ≡
|q0/e| , with q∗ = 1 as its experimental value, can be ob-
tained in terms of the expansion (25). In the four-amplitude
case (a1, a2, a3, a4) the normalized charge q∗ is then found
to be limited at large a3 and a4 in the a3a4-plane to a nar-
row “plateau-like” channel, localized around the experimen-
tal value q∗ = 1 as shown by Lehnert and Scheffel [17] and
Lehnert and Hk [18]. As final results of these deductions all
quantum conditions and all experimentally relevant values of
charge, magnetic moment, mass, and spin can thus be repro-
duced by the single choices of only two scalar free parame-
ters, i.e. the counter-factors f1 and f2 [15,17,18]. This theory
should also apply to the muon and tauon and corresponding
antiparticles.

With correct values of the magnetic flux (29) including
magnetic island formation, as well as the correct magnetic
moment relation (28) including its Land factor, the plateau
in a3a4-space thus contains the correct experimental value
q∗ = 1 of the elementary charge. There are deviations of only
a few percent from this value within the plateau region. This
could at a first sight merely be considered as fortunate coinci-
dence. What speaks against this is, however, that changes in
the basic conditions result in normalized charges which dif-
fer fundamentally from the experimental value, this within an
accuracy of about one percent. Consequently, omission of the
magnetic islands yields an incorrect value q∗ ≈ 1.55, and an
additional change to half of the correct Land factor results in
q∗ ≈ 1.77. That the correct forms of the magnetic flux and
the magnetic moment become connected with a correct value
of the deduced elementary charge, can therefore be taken as
a strong support of the present theory. Moreover, with wrong
values of the magnetic flux and Land factors, also the values
of magnetic moment M0 and mass m0 would disagree with
experiments.

The Lorentz invariance of the electron radius can be for-
mally satisfied, in the case where this radius is allowed to
shrink to that of a point charge. The obtained results can on
the other hand also apply to the physically relevant situation
of a small but nonzero radius of a configuration having an
internal structure.

The configuration of the electron model can be prevented
from “exploding” under the influence of its eigencharge and
the electrostatic volume force ρ̄E. This is due to the presence
of the magnetically confining volume force ρ̄C × B [18].

6.2 A Photon Model

Cylindrical waves appear to be a convenient starting point for
a photon model, due to the aims of a conserved shape in a
defined direction of propagation and of limited spatial ex-
tensions in the transverse directions. In a cylindrical frame
(r, φ, z) the velocity vector is here given by the form

C = c(0, cosα, sinα) (30)

where sinα will be associated with the propagation and cosα
with the spin. In the case of axisymmetric waves, equation
(22) yields

ω = kν, ν = c(sinα) (31)

for normal modes which vary as f (r) exp[i(−ωt + kz)]. The
angle α should be constant since astronomical observations
indicate that light from distant objects has no dispersion. The
basic equations result in general solutions for the components
of E and B , in terms of a generating function

F(r, z, t) = Ez + (cotα)Eφ = G0G, (32)
G = R(ρ) exp[i(−ωt + kz)]

and its derivatives. The dispersion relation (31) shows that
the phase and group velocities along the z direction of prop-
agation are smaller than c. Not to get in conflict with the
experiments by Michelson and Moreley, we then have to re-
strict ourselves to a condition on the spin parameter cosα, in
the form

0 < cosα ≪ 1 ν/c ≈ 1 − 1
2

(cosα)2. (33)

From the normal mode solutions, wave-packets of narrow
line width can be deduced, providing expressions for the cor-
responding spectrally integrated field strengths Ē and B̄. The
latter are further used in spatial integrations which lead to a
net electric charge q = 0 and net magnetic moment M = 0,
as expected, and into a nonzero total mass m , 0 due to
the mass-energy relation by Einstein, as well as to a nonzero
spin s , 0 obtained from the Poynting vector and equation
(8). There is also an associated very small photon rest mass
m0 = m(cosα). Thus a nonzero spin and a nonzero photon
rest mass become two sides of the same intrinsic property
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which vanishes with the parameter cosα, i.e. with divE. Due
to the requirement of Lorentz invariance, a nonzero cosα thus
implies that a nonzero spin arises at the expense of a slightly
reduced momentum and velocity in the direction of propaga-
tion. This is a consequence of the generalized Lorentz invari-
ance in Section 4.

In this connection it has to be added that the alternative
concept of a momentum operator p = −iℏ∇ has been applied
to a massive particle in the Schrdinger equation [2]. As com-
pared to the momentum density g of equation (7), however,
the operator p leads to physically unrealistic transverse com-
ponents for a cylindrically symmetric and spatially limited
wave-packet model of the photon.

With a radial part of the generating function (32) being of
the form

R(ρ) = ργe−ρ (34)

there are two options, namely the convergent case of γ > 0
and the divergent one of γ < 0. In the convergent case com-
bination of the wave-packet solutions for a main wavelength
λ0 with the quantum conditions

m = h/cλ0 s = h/2π (35)

results in an effective transverse photon radius

r̂ =
λ0

2π(cosα)
γ > 0. (36)

In the divergent case a corresponding procedure has to be ap-
plied, but with inclusion of a revised renormalization being
analogous to that applied to the electron. With the corre-
sponding smallness parameter ϵ the effective photon radius
then becomes

r̂ =
ϵλ0

2π(cosα)
γ < 0. (37)

The results (36) and (37) can be considered to represent two
modes. The first has relatively large radial extensions as com-
pared to atomic dimensions, and for ϵ/(cosα) ⩽ 1 the sec-
ond mode leads to very small such extensions, in the form
of “needle radiation”. Such radiation provides explanations
of the photoelectric effect, and of the occurrence of the dot-
shaped marks on a screen in double-slit experiments [12].
The two modes (36) and (37) are based on the broken sym-
metry and have no counterpart in conventional theory. They
can also contribute to an understanding of the two-slit exper-
iments, somewhat in the sense of the Copenhagen school of
Bohr and where an individual photon makes a transition be-
tween the present modes, in a form of “photon oscillations”
including both a particle behavior and that of wave interfer-
ence, as stated by the author [19]. Such oscillations would
become analogous to those of neutrinos which have nonzero
rest masses.

The nonzero electric field divergence further leads to in-
sintric electric charges of alternating polarity within the body
of an individual photon wave packet. This contributes to the
understanding of electron-positron pair formation through the
impact of an external electric field from an atomic nucleus or
from an electron, as proposed by the author [20].

There is experimental evidence for the angular momen-
tum of a light beam of spatially limited cross-section, as men-
tioned by Ditchburn [21]. This can be explained by contribu-
tions from its boundary layers, in terms of the present ap-
proach.

The wave equations of this theory can also be applied to
cork-screw-shaped light beams in which the field quantities
vary as f (r) exp[i(−ωt+ m̄φ+kz)] and where the parameter m̄
is a positive or negative integer. The dispersion relation then
becomes

ω/k = c(sinα) + (m̄/kr)c(cosα). (38)

The normal modes and their spectrally integrated screw-
shaped configurations then result in a radially hollow beam
geometry, as observed in experiments described by Battersby
[22] among others.

For the W+, W− and Z0 bosons, a Proca-type equation
being analogous to that of the present theory can possibly be
applied in the weak-field case. This would then provide the
bosons with a nonzero rest mass, as an alternative to the Higgs
concept.

With the present theory of the vacuum state as a back-
ground, fermions like the electron and neutrino, and bosons
like the photon, could be taken as concepts with the following
characteristics. The fermions can be made to originate from
the steady-state field equations, represent “bound” states, and
have an explicit rest mass being associated with their spin.
This does not exclude that moving fermions also can have
wave properties. The bosons originate on the other hand from
the dynamic wavelike field equations, represent “free” states,
and have an implicit rest mass associated with their spin.
They occur as quantized waves of the field which describe
the interaction between the particles of matter.

7 New consequences of present theory

Among the fundamental new consequences which only come
out of the present theory and also strongly support its rele-
vance, the following should be emphasized:
• Steady electromagnetic states lead to rest masses of

leptons.
• A nonzero electronic charge is by necessity connected

with a point-charge-like geometry.
• A deduced electronic charge agreeing with the experi-

mental value results from correct forms of the magnetic
moment and magnetic flux, but not from other forms.
• A confining magnetic force prevents the electron from

“exploding” under the influence of its eigencharge.
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• Electromagnetic waves and their photon models pos-
sess spin.
• There are needle-like wave solutions contributing to the

understanding of the photoelectric effect and of two-slit
experiments.
• The angular momentum of a light beam can be ex-

plained.
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We have parameterized Einstein’s thought experiment with atomic clocks, supposing
that we knew neither if the space and time are relative or absolute, nor if the speed of
light was ultimate speed or not. We have obtained a Parameterized Special Theory of
Relativity (PSTR), first introduced in 1982. Our PSTR generalized not only Einstein’s
Special Theory of Relativity, but also our Absolute Theory of Relativity, and introduced
three more possible Relativities to be studied in the future. After the 2011 CERN’s
superluminal neutrino experiments, we recall our ideas and invite researchers to deepen
the study of PSTR, ATR, and check the three new mathematically emerged Relativities
4.3, 4.4, and 4.5.

1 Einstein’s thought experiment with the light clocks

There are two identical clocks, one is placed aboard of a
rocket, which travels at a constant speedv with respect to
the Earth, and the second one is on the Earth. In the rocket,
a light pulse is emitted by a source fromA to a mirrorB that
reflects it back toA where it is detected. The rocket’s move-
ment and the light pulse’s movement are orthogonal. There is
an observer in the rocket (the astronaut) and an observer on
the Earth. The trajectory of light pulse (and implicitly the dis-
tance traveled by the light pulse), the elapsed time it needs to
travel this distance, and the speed of the light pulse at which
is travels are perceived differently by the two observers (de-
pending on the theories used — see below in this paper).

According to the astronaut (see Fig. 1):

Δt′ =
2d
c
, (1)

whereΔt′ time interval, as measured by the astronaut, for the
light to follow the path of double distance 2d, while c is the
speed of light.

According to the observer on the Earth (see Fig. 2):

2 l = vΔt , s= |AB| = |BA′|

d = |BB′| , l = |AB′| = |b′A′|




, (2)

whereΔt is the time interval as measured by the observer on
the Earth. And using the Pythagoras’ Theorem in the right
triangleΔABB′, one has

2s= 2
√

d2 + l2 = 2

√

d2 +

(
vΔt
2

)2

, (3)

but 2s= cΔt, whence

cΔt = 2

√

d2 +

(
vΔt
2

)2

. (4)

Squaring and computing forΔt one gets:

Δt =
2d
c

1
√

1− v
2

c2

. (5)

Figure 1

Figure 2

Whence Einstein gets the following time dilation:

Δt =
Δt′

√
1− v

2

c2

. (6)

whereΔt > Δt′

2 Parameterized Special Theory of Relativity (PSTR)

In a more general case when we don’t know the speedx of
the light as seen by the observer on Earth, nor the relationship
betweenΔt′ andΔt, we get:

xΔt = 2

√

d2 +

(
vΔt
2

)2

. (7)

But d = cΔt′

2 , therefore:

xΔt = 2

√(
cΔt
2

)2

+

(
vΔt
2

)2

, (8)

or
xΔt =

√
c2(Δt′)2 + v2(Δt′)2 . (9)
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Dividing the whole equality byΔt we obtain:

x =

√

v2 + c2

(
Δt′

Δt

)2

. (10)

which is thePSTR Equation.

3 PSTR elapsed time ratioτ (parameter)

We now substitute in a general case

Δt′

Δt
= τ ∈ (0,+∞) , (11)

whereτ is the PSTR elapsed time ratio. Therefore we split
the Special Theory of Relativity (STR) in the below ways.

4 PSTR extends STR, ATR, and introduces three more
Relativities

4.1 If τ =
√

1− v
2

c2 we get the STR (see [1]), since replacing
x by c, one has

c2 = v2 + c2

(
Δt′

Δt

)2

, (12)

c2

c2
−
v2

c2
=

(
Δt′

Δt

)2

, (13)

or Δt′

Δt =

√
1− v

2

c2 ∈ [0,1] as in the STR.

4.2 If τ = 1, we get ourAbsolute Theory of Relativity(see
[2]) in the particular case when the two trajectory vectors are
perpendicular, i.e.

X =
√
v2 + c2 = |~v + ~c| . (14)

4.3 If 0 < τ <
√

1− v
2

c2 , the time dilation is increased with
respect to that of the STR, therefore the speedx as seen by
the observer on the Earth is decreased (becomes subluminal)
while in STR it isc.

4.4 If
√

1− v
2

c2 < τ < 0, there is still time dilation, but
less than STR’s time dilation, yet the speedx as seen by the
observer on the Earth becomes superluminal (yet less than
in our Absolute Theory of Relativity). About superluminal
velocities see [3] and [4].

4.5 If τ > 1, we get anopposite time dilation(i.e. Δt′ > Δt)
with respect to the STR (instead ofΔt′ < Δt), and the speedx
as seen by the observer on earth increases even more than in
our ATR.

5 Further research

The reader might be interested in studying these new Relativ-
ities mathematically resulted from the above 4.3, 4.4, and 4.5
cases.
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The Surjective Monad Theory of Reality:
A Qualified Generalization of Reflexive Monism

Indranu Suhendro
www.zelmanov.org

What remains of presence and use in the universal dark (or perhaps, after all, in a too
luminous, sight-blinding place), when mirrors are traceless as if without glass, when
eyes are both mindfully and senselessly strained: wakeful but not ultimately cognizant
enough — being a splendid spark at best, but incapable of self-illumination and shed-
ding light on existents as if (situated) in themselves —, when no reflection remains
within and without? Indeed, only that exceedingly singular, somewhat pre-existent
(i.e., pre-reflexive) Motion and Moment without reflection inheres, which is our char-
acteristic redefinition of Noesis or Surjectivity. This, since Reality can in no way be re-
duced to Unreality, even in such noumenal darkness where existence and non-existence
are both flimsy, for otherwise at once — at one universal Now and Here — all would
cease to exist, “before before” and “after after”; and yet all that, nay Being itself, al-
ready exists with or without (the multiplicity of) reflective attributes, i.e., without the
slightest chance to mingle, by both necessity and chance, with Non-Being and hence
with multiplicity! That is simply how chanceless Reality is in itself, suddenly beyond
both the possible and the impossible, such that even Unreality (as it is, without history),
which is a lingering “backwater part” of the Universe after all, can only be (i.e., be
“there”, even if that simply means “nothing”, “nowhere”) if and only if RealityIS, i.e.,
if Reality is One even without operational-situational sign or space in the first place, and
not the other way around. Such, then, is what chance, i.e., the chance of reflection, may
mean in the Universe — and not elsewhere: Reality is such that if it weren’t Such, both
Reality and Unreality would be Not, ever. He who fails to see this at once — as One —
will not be able to understand the rest of the tale, Here and Now (or, as some say, “Now-
Here”, “Nowhere”, or as Wittgenstein would have put it, “senselessly”), with or without
the Universe as we commonly know it. — A first self-query in epistemic solitude.

1 Introduction: silently in the loud background of
things

“Come, like a gush of early bewilderment abruptly
arriving at the edge of time. Let us sort ourselves
out from the loudness of things here.”

The present elucidation is not a “consciousness study”. It
is a conscious expression of Reality. It is a symptom of con-
sciousness, a deliberation of knowing. Or, as some would
say, “it’s a proof, like music, rain, or a tempest”. It is a
self-orchestrated pulsation and presencing without truncation
even by silent objectivity, just as one may paint certain scenes
of Sun-brushed magnolia eyes and long coral noons, or per-
haps the deep winter rain and the seamless Moon-lit snow —
simply like a mindful artist reminded of nudity during cer-
tain cavernous moments, nearly without a mirror capturing
his inward constellation of motions. And so he moves, as it
is, simultaneously before and after reflection, as if moving
away from time itself. And so it moves, the entire reflection
included.

Despite the possibly glacial theoretical sounding of the
title and the way the text shall proceed from here (perhaps in-
consistently), it is essentially not another viscid gathering of
scholastic words on monism, let alone an ecstatic, bemused

first-time attempt at modeling Reality. It is not a theory in the
sense of mental speculation and inspirational belief: it is Pres-
ence and Idea before and after philosophy, and a direct pre-
sentation and “surdetermination” during philosophy. Thus, it
is not a mere representation, for it does not even begin with
reflection. Rather, the entirety of reflection is but momentous
and strengthened only by what truly precedes and surpasses
it. It is not a psychological documentary multi-linearly tinged
with philosophical armor and scientific draping. It is not a
predictable philosophy in the rear. It is not a lucrative science
as the world knows it. It is a mirror for worlds, anti-worlds,
and all the non-worlds. And sometimes this very mirror does
vanish, for absolute certainty’s sake.

This is an exposition to be enjoyed the most by self-
similar “stray falcons”, who can’t help with their epistemic-
intellectual speed and Genius, whose taste — upon the wind
and beyond distant hills — is beyond that of the herd and
the faltering, image-dependent, super-tautological world as a
whole. It is not intended to be a secure throne in the sky
nor a comfy haven on the Earth. Also, it is definitely not
for the hideous, vainly copious one-dimensional intellect de-
void of the valley’s affection and the seasons’ intimation. It
is a silence-breaking tempest and a self-sustaining root in
the most evident evening, entirely independent of the small
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sparks of the present age of thought. It calls upon witnessing
the Witness (and the Witnessed) in infinite exhaustiveness,
intimidation, and silence.

It is incumbent upon the reader to acknowledge that the
present exposition’s veracity is to be grasped not by merely
studying it, but by “studying it, not studying it, not-not study-
ing it, and by none of these” (as to why, it shall be clear later).
While Reality is not situational (as we shall see), the surrep-
titious meta-situation here is that, while there is an entire his-
tory of human ideas in the background of the world at any
instant, its content moves not on any regularly known ground
of being, so basically even the intrepid reader cannot compete
with its velocity and vortex, for it is ahead of his reading, be-
hind it, within it, and without it. And it is none of these.

Still, let the burning lines of the night and the time-span
of the intellect’s long orbit be epistemologically intimated.
For even if there is nothing to be seen and understood by
the reader here, that one shall still see “seeing” itself, beyond
mere “spiritism”, however indifferent.

And so here falls headlong the platitudinous introductory
tone first. Granted, it shall evaporate away soon enough, once
the most unlikely epistemic sensitivity happens to the reader.

At the forefront of humanity — which is definitely a con-
scious, self-reflective episode in the evolution of the cosmos,
according to the famous Anthropic Principle of cosmology
and cosmogony — there is no need to explain why one needs
to fully explore the nature of consciousness philosophically
and scientifically, i.e., unless one is a dead-end dogmatist
who, however taut, probably dares not “swear upon his own
life, as to whether or not his beliefs are universally true after
all”.

The present semantic-ontological exposition centers
around a further (or furthest possible) development of the
theory of consciousness called “Reflexive Monism” (RM) —
hereby referred to as the “Surjective Monad Theory of Real-
ity” ( S MTR).

By contrast, the version of realism called “Biological Nat-
uralism” (BN) posits that consciousness is merely an emer-
gent property of inanimate matter: everything that exists is
necessarily inside the material brain, possibly as a quantum
state. Thus, there is “no world inside the mind” — and so
there is no “mind” (only a material brain) — and conscious-
ness is but a field (electromagnetic, perhaps) activity involv-
ing the neuronal circuitry. Connected to this (and the theory
of “Artificial Intelligence”, AI), is the theory of Multiple In-
telligences (MI ), which advocates “consciousness” as a col-
lective state of material brains via a global circuit mechanism,
necessitating the existence of multiple participants — ulti-
mately leaving no room for an individual brain, let alone an
individual mind in the Universe (and hence, one could say, no
room for a real solitary Genius at all, sinceMI -consciousness
is always a collective pseudo-democratic state, no matter how
transparent), for phenomenal multiplicity (rather than the
self-cognizant, inhering presence of a single universal intel-

ligence) is at the very core of this form of materialism. Yet,
consider this now-generic example as, e.g., conveyed by Vel-
mans [1]. Suppose, convinced like many merely collectivistic
scientists today, one acceptsBN, then by definition one also
accepts the whole world (nay, the Universe) as contained in
the material brain. But most of every-day objects, including
the skies and the horizons, seem to be located “out there” —
that is, outside the brain. Thus, in order to encapsulate all
that in a single material brain, one must accept that there is a
“real skull” (whether or not certain “noumena” are known to
one here) whose size is beyond that of the skies and the hori-
zons, since physically the brain is contained in a skull. The
“real skull” would then be related to individual skulls through
some kind of “statistical-holographic averaging”. The differ-
ence between “is” and “seems” becomes so arbitrary here, as
we can easily see.

On the other hand, the history of human thought presents
us with “Pure Idealism” (PI) — such as that advocated by
Berkeley in one of its versions — where the world is but a
mental entity, purely located inside the mind. By “world”,
we mean all that can exist as a single situational adage and
corollary of reflective facts, including qualia (the trans-optical
reality of color) and psychosomatic sensations. According to
PI, there is “no world out there”. In this approach, the mind
is distinguished from the material brain, with the brain being
a material self-representation of the mind, and everything is
necessarily contained in the mind — yet with serious trou-
bles for, likeBN, it is without clear epistemic qualifications
regarding the notion of individual and multiple entities: ac-
cording to this theory, one might be tempted to see whether
or not the Universe too ceases to exist, when an arbitrary mind
(anyone’s mind) dies out. Non-epistemologically positing es-
sentially “eternal souls” does not really help either. (As re-
gards qualia, we shall readily generalize this notion to include
not just color, but also subsume it in the category spanned by
the pre-reflexive “Surject”, i.e., “Qualon” — precisely so as
not to take the abstract phenomenological entity for granted.)

Such radical, self-limited approaches leave room for both
“dogmatism” and “relativism”, and consequently have their
own drawbacks as shown, e.g., in Velmans’ studies. Indeed
in the face of Reality, one cannot help but be radical and iso-
lated, whether shivering or rasping, but true epistemological
qualification (herein to be referred to as “eidetic qualifica-
tion”) is quite profoundly something else. Velmans himself
— formerly a proponent ofBN — is a cogent philosophical
proponent ofRM and has indeed very extensively explored
this reality theory, especially its aspects pertaining to cogni-
tive psychology. Yet, we shall naturally go even beyond him
in “imbibing Reality”, hence the present theory as our basic
ontological paradigm.

As is evident,RM is a version of realism adopted by
thinkers such as Spinoza, Einstein (but not specifically its as-
sociated pantheism), and Velmans — which goes beyondBN
and PI. Reality is said to isomorphically partake of events
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(mental and material instances) both inside and outside the
brain — and the mind.

Let us attempt to paraphraseRM as follows: the most
fundamental “stuff” of the Universe is a self-intelligent, self-
reflexive (“autocameral”) substance beyond both (the com-
monly known) mind and matter, possibly without an “out-
side” and an “inside” in the absolute sense (think of a Möbius
strip or a Klein bottle, for instance). And yet, locally and
“conspansively” (for the original use of this term, see also
[2]: here “conspansion” is to be understood as self-expression
and self-expansion within the semantics and syntax of univer-
sal logic), it produces intrinsic mind and extrinsic matter —
as we know them.

In our present theory, this underlying substance is further
identified as a non-composite self-intelligent Monad
(“Nous”), without any known attribute whatsoever other than
“surjective, conscious Being-in-itself”: we can make no men-
tion of extensivity, multiplicity, and the entire notion of
knowledge set at this “level” of Reality, whether subjectively
or objectively, or both simultaneously. Otherwise, inconsis-
tent inner multiplicity associated with reflection would some-
how always have to qualify (i.e., ontologically precede) Being
not only as being self-situational or self-representational, but
also as being “accidentally none of these”. Such is absurd,
for then it must also hold in the sheer case of Non-Being, i.e.,
without both existence and such multiplicity-in-itself and -
for-itself. Being pre-reflexive, and hence pre-holographic and
pre-homotopic, the true meaning of this point shall be effort-
lessly self-evident as we proceed from here. This is the reason
why our Noushas no superficial resemblance with arbitrary
phenomenal intelligence, let alone substance.

And yet the very same Monad sets out the emergent prop-
erties of reflexivity, holography, and homotopy with respect
to the Universe it emergently, consciously sees (or
“observes”, as per the essential element of quantum mechan-
ics: the observer and elementary particles are both fundamen-
tal to the theory). It is necessarily, inevitably “intelligent”
since it positively spans (knows) the difference between exis-
tence and non-existence and thereby fully augments this dis-
tinction in that which we refer to as the Universe or Reality’s
Trace, which individual intelligences may reflect in various
degrees of “motion” and “observation”. Otherwise, no one in
extension would ever know (or have the slightest conscious
power to know) the distinction between existence and non-
existence; between the conscious and the unconscious — and
further between absolute singular existence and various epis-
temological categories of multiplicity. Verily, this forms the
basis of our paradigm for a fully intelligent cosmos — and
further qualified versions of the Anthropic Principle.

Furthermore, our framework manifests a theory of Re-
ality via four-fold universal (trans-Heraclitean) logic, which
is beyond both conventional (binary) and fuzzy logics — as
well as beyond Kantian categorical analysis. Given a super-
set ({A, B}), where{A} is a collection of abstract principles,

{B} is a collection of emergent realities isomorphic to the en-
tirety of {A}, and the super-set ( ) is “eidetically symmetric”
(the meaning of which shall become clear later) with respect
to its elements, it contains the full logical span of “A”, “non-
A”, “non-non-A”, and that which is “none of these” (how it
differs from traditional Buddhist logic will become clear later
as well). As such, one may inclusively mention a maximum
span of truly qualified universals, including ontological neu-
tralities. This gives us a “surjective determination of Reality”,
whose fundamental objects are related to it via infinite self-
differentiation, as distinguished from Unreality.

While so far the reader is rigged with limited equipment
— for, at this point, we have not introduced the essence and
logical tools of the present theory to the reader — we can
nevertheless roughly depict Reality accordingly, i.e., we shall
start with “thinking of thinking itself” and “imagining the
dark”. For this we will need one to imagine an eye, a mir-
ror, a pitch-dark room (or infinite dark space), and circumfer-
ential light. Then, the following self-conclusive propositions
follow:

P1. In the pitch-dark room (“Unreality”), there exists an
Ultimate Observer (“Eye”) that sees the pure, luminous mir-
ror. The mirror is the Universe — henceforth called the
“Mirror-Universe” —, which is a “bare singularity” with re-
spect to itself, but which is otherwise multi-dimensional (for
instance, n-fold with respect to the four categorical dimen-
sions of space-time, matter, energy, and consciousness, let
alone the Universe itself).

P2. The circumferential light augments both the mirror
and the sense of staring at it, resulting in the image of an “eye”
(or “eyes”, due to the multiple dimensions of the Mirror-
Universe) and a whole range of “eye-varied fantasies” —
which is the individual mind and a variational synthesis of
that very image with the dark background — where that
which is anyhow materialized readily borders with Unreality.

P3. The circumferential light is, by way of infinite self-
differentiation (and transfinite, self-dual consciousness), none
other than (universal) consciousness.

P4. Reality is the Eye, the Consciousness, the Mirror,
the Image, and the “Eye-without-Eye”. This can only be
understood later by our four-fold universal logic encompass-
ing the so-called “Surjectivity” (Noesis) — with the introduc-
tion of “Surject” at first overwhelming both “Subject” and
“Object” (in addition to “Dimension”) in this framework, but
as we shall see, only this very “Surject” ultimately defines
“Moment” (and not just a universal continuum of three-
dimensional space and sequential time) and “Uniqueness”
(and not just the “totality of consistent and inconsistent
facts”) four-fold: “within”, “without”, “within-the-within”,
and “without-the-without”, ultimately corresponding to the
paramount qualification of Reality for itself and, subsequent-
ly, its associated “class of Surjects” in the noumenal and phe-
nomenal world-realms.

Before we proceed further by the utilization of the above
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similes, we note in passing that the underlying monad
of any reflexive model of the Universe is none other than
mind and matter at once, when seen from its phenomenal-
organizational-relational aspect, a property which constitutes
— or so it seems — both the semantics and syntax of the Uni-
verse, especially when involving conscious observers such as
human beings. That is, noumenally (in-it-self, for instance
in the Kantian sense), the Universe is consciousness-in-itself,
and phenomenally (in relation to the way its intelligibility in-
heres by means of extensive objects), it is a self-dual reality
with a multiverse of material and mental modes of existence.
But, as we shall see, there is a lot more to our adventure than
just this: hence our generalization.

So much for a rather self-effacing introduction, in antici-
pation of the irregular dawning of things on the reader’s men-
tal window. Before we proceed further, let us remark on the
rather speculative nature of “excess things” regarding the sub-
ject of RM in general: while, in general, mind cannot be re-
duced (transformed) into matter and vice versa, there exists
subtle interactive links between them that should be crucially
discerned by pensive research activities so as to maximally re-
late the philosophical dialectics of consciousness and techno-
logical endeavors, i.e., without causing philosophy, yet again,
to get the “last mention”. For, to partake of Reality as much
as possible, humans must simply be as conscious as possible.

2 The gist of the present epistemology: the surjective
qualon

“Mere eruditic logic often turns — as has been
generically said — philosophy into folly, science
into superstition, and art into pedantry. How far
away from creation and solitude, from play and
imagination, from day and night, from noon and sil-
houette it is! How Genius is precisely everything
other than being merely situational, alone as the
Universe.”

Herein we present a four-fold asymmetric theory of Real-
ity whose essence — especially when properly, spontaneous-
ly understood — goes beyond the internal constitutions and
extensive limitations of continental and analytic philosophies,
including classical philosophy in its entirety (most notably:
Platonism, neo-Platonism, atomism, dualism, and peripatetic
traditions), monism (Spinoza-like and others), sophistic rela-
tivism and solipsism (which, as we know, has nothing to do
with the actuality of the Einsteinian physical theory of rel-
ativity), dogmatic empiricism and materialism, Kantianism
and neo-Kantianism, Hegelianism and non-Hegelian dialec-
tics (existentialism), Gestalt psychologism, symbolic logic,
hermeneutics, and all phenomenology. This, while leaving
the rather arbitrary self-triviality of major super-tautological
(collectivistic, ulterior, inter-subjective) and post-modern,
post-structural strands of thought in deliberate non-residual
negligence — for, abruptly starting at the level of axiology
and being generically “not even wrong” in short or at length,

these are devoid of real ontological-epistemological weight in
our view.

The new ontological constitution under consideration is
four-fold and asymmetric in the sense that there exist four
levels necessitating both the Universe and Unreality, i.e., Re-
ality, the Reflexive Mirror-Universe, the Projective World-
Multiplicity, and Unreality, whoseeidetic connective distan-
ces(i.e., “foliages” or “reality strengths”) aretelically (i.e.,
multi-teleologically) direction-dependent and not arbitrarily
symmetric among themselves unless by means ofNoesis, by
which the very theory is said to beeidetically qualified(i.e.,
qualified byEidos, or Suchness — be it Alone without even
specific reference to the Universe at all, or when noumenally
and associatively designated as All or All-in-All) — and
hence self-unified and self-unifying with respect to an en-
tirely vast range of phenomenological considerations.

It is to be noted that Surjectivity, as implied by the very
term Noesis, in our own specific terminology is associated
with Nous, or the Universal Monad, which is none other than
theFirst Self-Evident Essencethrough whose first qualitative
“Being-There” (Ontos qua Qualon) the ontological level, and
not just the spatio-temporal level, is possible at all, especially
as a definite, non-falsifiable concentration of knowledge.

Thus, in particular, the classical Socratic-Hegelian dialec-
tics of thesis, anti-thesis, and synthesis is herein generalized
to include alsoNoesis, but rather in the followingasymmet-
ric, anholonimicorder:Noesis(via the Ontological Surjective
“Surject”, i.e., “Qualon”), Synthesis(via the Epistemological
Reflexive “Dimension”, i.e., “Prefect”), Thesis (via the Re-
flective Dimensional “Object-Subject”, i.e., “Affect”), Anti-
Thesis(via the Projective Dimensional “Subject-Object”, i.e.,
“Defect”). This corresponds to the full creation of a new
philosophical concept, let alone the Logos, by the presence
of self-singular points and infinitely expansive perimeters.

The ontic (i.e., single monad) origin of the noumenal
Universe is Reality itself, i.e., Reality-in-itself (Being-qua-
Being) without any normatively conceivable notion of an in-
ternally extensive (self-reflexive) contingency (e.g., the usual
context of cognition, information, syntax, simplex, and evo-
lution) of inter-reflective, isomorphic, homotopic unity and
multiplicity at all, let alone the immediate self-dual presence
of subjects and objects (i.e., representational and observa-
tional categories, such as space-time and observers).

Thereafter, extensively, upon the emergence of the notion
of a universe along withuniversality, i.e., reflexivity(encom-
passing, by noumenal and phenomenal extension, bothreflec-
tion andprojection— with the former being universal, ulti-
mately akin to singularity and non-dual perception but still,
in an austere sense, other than Reality itself, and with the lat-
ter being somewhat more inter-subjective and arbitrary, still
bordering with the dark, shadowy vanity of Unreality), Real-
ity is said to encompass primal, pre-geometric (i.e., “mirror-
less”, trans-imaginary, orqualic) singularities and transfor-
mational multiplicities (modalities) at successive levels capa-
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ble of fully reflecting essence and existence in the four-fold
Suchness of “within”, “ without”, “ within-the-within”, and
“without-the-without”, where original noumena inhere only
by means ofeidetic-noetic instance(Surjection) without the
necessity of phenomena whatsoever, but only the presence of
the so-called “Surject” — that which is not known to regu-
lar epistemologies, for in a sense it is other than “subject”,
“object”, and “dimension”. Only then do both noumena and
phenomena appearinfo-cognitivelyby means of reflexive om-
nijectivity involving arbitrary subjects, objects, and epistemo-
logical dimensions (i.e., in fundamental semantic triplicity),
which in turn is responsible for the reflective and projective
self-dual modes of all abstract and concrete phenomenal exis-
tences — hence the emergence of the universal syntax, nearly
as circular self-causality.

In elaborating upon the above allusions, we shall also in-
troduce a post-Kantian four-fold universal logic (not to be
confused with four-fold Buddhist logic or that which is as-
sociated with non-relativistic, semantics-based process phi-
losophy) associated with an eidetically qualified kind ofnon-
composite consciousness, which enables us to epistemologi-
cally generalize and elucidate the metaphysics (logical inte-
rior) of the so far sound-enough theory of Reflexive Monism
(i.e., “sound-enough” at least at the “mesoscopic” stage of
things, and in comparison with the majority of competing
paradigms).

In connection with the elucidatory nature of this exposi-
tion, we shall adopt a style of narration as intuitive, lucid, and
prosaic as possible — while being terse whenever necessary
—, due to the otherwise simple ambiguity inherent in the as-
sociation of Reality with a potentially inert scholastic theory
(while there is subtle isomorphism between Reality and lan-
guage at a descriptive stage, to the Wittgensteinian extent, as
recorded in [5], that “that which can be spoken of, must be
spoken of clearly, and that which cannot, must be withheld in
utter silence”, how can Reality only be a “theory” or “philos-
ophy” after all?): the profundity of the former is ultimately
senseless and immediate, with or without deliberate system-
ization on our part, while the latter is but a singular, cognition-
based contingency-in-itself (a logical enveloping singularity
and yet always not devoid of the multiplicity of perceptual
things, including those of plain syntactical undecidability).

3 Peculiar eidetic re-definitions: aprioristic terminology
and essence

“May I suspect, friend, you know — arbitrarily —
what appears. But, tell me, what IS?”

It is important to note that some of the eclectic terms em-
ployed throughout this exposition do not essentially depend
on their scholastic historicity. It is immaterial whether or not
they have come into existence through the collective jargon of
the multifarious schools of all-time philosophers. (Needless
to say, the same applies to scientific-sounding terms, without
any attempt towards imparting to the reader’s mind a sense

of “pseudo-science” whenever touching upon aspects other
than traditional science, for one must be most acutely aware
of the profound tedium prevalent in much of the arbitrary lit-
erature of post-modernism and so-called “theosophy” in ac-
tual relation to pseudo-science, pseudo-spirituality, pseudo-
philosophy, and pseudo-artistry.) Rather, whenever we use
these terms, we would only like to further present them in
the twice-innermost and twice-outermost sense: phenomeno-
logical instances have inner and outer meaning, and yet we
wish to also encompass the “twice-inward” (twice-Unseen,
twice-Real within-the-within) and “twice-outward” (twice-
Manifest, twice-Real without-the-without) akin to Reality be-
yond simple constitutional duality and arbitrary individual
fragments. This is simply a prelude to an amiable over-all
description of the four-fold Suchness of Reality and its self-
qualified primal noumena, which is not attributable to simple,
eidetically unqualified “bi-dimensional” entities (whose com-
mon qualification is solely based on “this” and “other”, “yes”
and “no”, or at most “yes and/or no”).

Now, in order to be trans-phenomenally readable, we may
give the following list of five primary eidetic redefinitions
(corollaries) essential to the outline of things here:

— Suchness (S) (Eidos): that which is manifestly There,
as qualified by Being-in-itself, with or without existen-
tial reflexivity (the multiplicity of forms and mirrors);

— Monad (N) (Nous, Monados, Ontos qua Qualon): the
first intelligible self-qualification (“Qualion”) of Re-
ality and hence its first actual singularity, the noetic-
presential “U(N)” of “Universum” (i.e., “Qualon”),
with or without singular internal multiplicity of reflex-
ive things (i.e., “versum”, or possibleextensa) other
than a “bare” eidetic (and hence noetic) being in and of
Reality-in-itself (i.e., by its simply Being-There). Such
is beyond both the traditional “Atom” and “Platon”, let
alone the infinitesimals. It is simply the noumenal All
and All-in-All, as well as the first eidetic-archetypal
Singularity, with or without phenomenological
“allness” (reflexive enclosure);

— Universe (U) (Universum, Kosmos): the noumenal-
phenomenal four-fold Universe, i.e., the surjective, re-
flexive (multi-dimensionally reflective-transformation-
al), projective, annihilatory universal foliation, ultima-
tely without “inside” nor “outside”. The multi-space
All by the Surjective Monad — simultaneously a multi-
continuum and multi-fractality, being simultaneously
Euclidean and non-Euclidean, geometric and pre-
geometric, process and non-process (interestingly, see
how all these seemingly paradoxical properties can ex-
ist in a single underlying multi-space geometry as de-
scribed in [7] — see also a salient description of the
essentially inhomogeneous physical cosmos in relation
to random processes as presented in [12]). In other
words, Reality’s singular Moment and infinite Reflex-
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ivity, with or without phenomenal space and time;

— Reality (M) (Ontos qua Apeiron): that which is the
Real-by-itself. The self-subsistent Reality of Reality
in-it-self (with or withoutrealities— i.e., with or with-
out internal self-multiplicity), the Surjective Monad,
the Reflexive Universe, and Unreality. Here the aus-
terity of the symbolic, presential letter “M” (for the es-
sentially “Unlettered”) inheres absolutely without any
vowel such that it is said that “nothing enters into it and
nothing comes out of it”;

— Surject (g) and/or Surjectivity (dg) (Noesis, Epoche):
the first self-disclosing instance (“instanton”) of Real-
ity, or such self-evident instances in existence. Reality
is said not to act upon itself, for it is simply beyond cat-
egorical stillness and motion, and so it “acts” only upon
the first reflexive mirror, the Universe, thereby capa-
ble of infusing new universally isomorphicdifferentia
(“solitons”), i.e., new noumenal instances and new phe-
nomenological events in the Universe (with respect to
its trans-finite nature). In relation to it, the Universe is
like a light-like (holographic, homotopic) mirror-
canvas, a ground-base yet ever in motion, upon which
the “Lone Artist” paints his “Surjects”. This is none
other than the innermost nature of Genius (which dif-
fers, as we shall see here (i.e., by this more universal
qualification) from mere superlative talent, just as ei-
detic surjectivity is beyond mere reflexivity).

As can be seen, each of the notions above is self-singular:
these realities are self-similar among themselves, without cat-
egorical parallel apart from the ontological level. In other
words, simply because Reality is One (Self-Singular), with
or without reference to regular phenomenological (arithmeti-
cally countable) oneness, so are the Mirror, the Image, and
the Shadow in essence.

As we shall witness in this exposition, all That (Reality,
Monad, Universe, Unreality) can be given as follows:

M : N
(
U(g,dg)

)
∼ S,

where “:” denotes eidetic-noetic Presence (or Moment) and
“∼” represents transcendental equality as well as trans-
individual self-similarity among the equation’s constituents.
This, in a word, is more than sufficient to end our exposi-
tion at this early stage — for it is a self-contained proof of
consciousness for itself —, as it is mainly intended for spon-
taneous cognizance, but we wish to speak more amiably of
things along the epistemological perimeter of the intellect.

Non-composite Oneness belongs to Reality, so to speak,
without having to be qualified or necessitated by that which
is other than itself, simply because the self-necessary and the
possible (existent), even the impossible (non-existent), can
only be cognitively perceived “there” in and of the Real, not
“elsewhere” by any other means, and not even by any pre-
sential concentration of singular multiplicity (i.e., ontologi-

cal and epistemological gatheredness). In other words, Re-
ality is not diversifiable — and made plural — within and
without, since it has no categorical “inside” nor “outside”,
especially with respect to the discriminative entirety of cog-
nition. Even absolute non-existence can only be conceived
in, and necessitated by, Reality as a category — hence, in
the absence of multiple intelligible things other than the sup-
posedly primal “opposite” of pure existence, there is no ac-
tuality of absolute non-existence that can necessitate Reality
as it is, nor is there anything phenomenal and noumenal that
can cause it to mingle, in and across phenomenological time
and space, with chance, causality, and mediation, let alone
with singularly inconsistent multiplicity and Unreality. It is
boundless not because it lies in infinite space, or because it
is where infinite multiplicity inheres, or because it is a rep-
resentation of eternity, or even because a finite entity is ulti-
mately annihilated by “not knowing” and “non-existence” in
the face of some infinite unknown, but because its ontological
rank or weight (i.e., ontic-teleological reality) is without ei-
ther immediate or extensive multiplicity in its own interiority
or reflexive dimensionality, not even the entirety of “knowl-
edge”. If this weren’t so, a single arbitrary reflective quan-
tity could then also be shown to inhere intransitively (without
existential predication), independently of Being, at any on-
tological level,just as Being can always necessitate it pred-
icatively: for things to be situated in existence (extensivity),
Being (Reality) must be there first absolutely without min-
gling with Non-Being (Unreality),unlike the way things may
phenomenologically mingle among themselves(be it consis-
tently or inconsistently). The metaphysical connection (the
simplex of meta-logic) among ontological categories herein
must then be, as will be shown shortly, asymmetric and an-
holonomic. Or else, there would be no discernment of the
ontological weight of some absolute presence-essence (not in
the way suggested by mere “essentialism”, where even in the
case of arbitrary entification, essence must always precede
existence), and there could be no logic whatsoever at sub-
sequent levels of cognition, and isomorphism would be lim-
ited to the arbitrariness of inconsistent, self-flawed cognitive
discrimination even on the phenomenological scale of things,
which is not as trivial as the “arbitrariness of arbitrary things”.

This way, the Essence of Being is its ownBeing-qua-
Being, which is identical, only in the “twice-qualified” sense,
with the Being of Essence itself, i.e., ”within-the-within” and
“without-the-without”. Only in this ontological instance does
eidetic asymmetry vanish.

It is not “logical”, and yet it is “not illogical” either — for
the entirety of “logic”, “anti-logic”, and “non-logic” can only
be traced (conceptualized) in its presence, with or without
the necessity of accidental particularities. For instance, then,
when we say “universe” without this qualification, we can
still come up with the notion of “multiverse” while often still
retaining space-time categories or attributes, or a plethora of
schizophrenic universes “apart” from each other in one way
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or another, and yet we cannot anyhow apply the same splitting
and extensivity, or diffeomorphism, to Reality itself in order
to make it appear as a co-dependent and co-differential among
others outside its own necessity.

Reality, therefore, is not a set, not a category, not a func-
tor (or functional), not of the likeness of both objective tan-
gible matter (materia) and subjective abstract forms (forma,
qualia). It is neither regular nor aberrant, as commonsense
and traditional phenomenology would have “being” defined
at best as “inconsistent multiplicity in and of itself”. It is not
a representation of something that has to have a normative
representation, be it abstract or concrete, conscious or uncon-
scious. It simplyIS, even when there is no language and
count to express this, without the notion that consciousness
is “always conscious of something” in association with the
internal multiplicity of knowledge. However, the four-fold
asymmetric universal logic to be sketched in the following
section is Reality’s exception just as Reality is its exception:
we can truly say a great deal of things by means of it, espe-
cially consciousness.

Know intuitively (at once, or never know at all) that if
Reality weren’t Such, both Reality and Unreality would not
only be unthinkable and imperceptible (however partial), they
would not be, whether in existence or non-existence, in pre-
eternity, at present, or in the here-after, in infinite contin-
gency, finite extensivity, or universal emptiness, and there
would be no universe whatsoever, finite or infinite, some-
where or nowhere, transcendent or immanent, — and none
of these —, and no one would any likely embark upon writ-
ing this exposition at all!

Such is our blatant methodology bySurjectivityand eide-
tic redefinition, instead of both psychologism and the Husser-
lian phenomenological method of “bracketing”, which often
amounts to either the “arbitrarily subjective over-determina-
tion” or the “arbitrarily objective suppression” of certain on-
tological constitutions already present among phenomenal
categories.

4 Beyond Kant, phenomenology, and reflexivity: a four-
fold, eidetically qualified universal logic with asym-
metric, anholonomic categorical connection

“Now, I must tell you of something more tangible
than all solid objects and more elusive than all
traceless things in the heavens and on the Earth.
Behold the highest branches of the tree of knowl-
edge — untouched by reflection —, of which the
night-in-itself is the garden.”

We are now in a position to outline the underlying features
of our model of universal logic, which shall manifest the an-
alytic epistemological sector of our present theory. In doing
so, we will also make an immediate amiable comparison with
the crux of Kantian epistemology, for the present case can be
seen as a somewhat more universally deterministic general-
ization thereof.

As we have previously implied, it is important to dis-
tinguish between the phrase “four-fold” in our new frame-
work and that found, e.g., in Buddhist empirical dialectics.
In the latter, being of empirical-transformational character
at most, there is no trace of essential relationship or logi-
cal enclosure with respect to the more contemporary Kantian
and Fichtean categories pertaining to “das Ding an sich” (the
thing-in-itself). Rather, in that ancient framework, given an
object of contemplationA belonging to phenomena and sub-
ject to process — and ultimately embedded in a universe of
infinite contingency regarding the past, present, and future
—, the associated dialectical possibilities, of the utmost ex-
tent, are: “A”, “non-A”, “non-non-A”, and “none of these”,
already (though not sufficiently, as we shall see) in contrast to
the more usual forms of binary logic.A roughly tangible ex-
ample would be the irreversible transformation of water (“A”)
into milk (“non-A”), into vapor (“non-non-A”), and into curds
(“none of these”), by the process of powdering, mixing, and
heating however complete.

Though bearing superficial visceral resemblance with this
in the use of the similarly expressed four identifiers, our log-
ical strand is more of ontological “unbracketed” (i.e., non-
Husserlian) dialectical nature, and not of mere process-based
empiricism, existentialism, and phenomenology (i.e., non-
Heideggerian). Rather, we subsume the entire phenomenal
world of entification, process, and contingency already in the
first and second categories (of “A” and “non-A”), as we shall
see, thus leaving the two last categories as true ontological
categories. We assume that the reader is quite familiar with
essentially all kinds of dialectical preliminaries, so we shall
proceed directly to the new elements of the four-fold analysis
we wish to immediately convey here.

In accordance with the ontic-teleological unity given in
the preceding section, we keep in mind four major consti-
tuents responsible for the presence of definite universal exis-
tence, hereafter denoted as the following “eidetic simplex”:

{MO} : {S(Suchness),U(Universe),N(Monad),M(Reality)} +

+{phenomenal instances,O(phenomenal entirety)},

where the first group belongs uniquely to Reality (M) and the
second is due to empirical-dialectical process-based observa-
tion whose phenomenological entirety is denoted byO. This
representation implies that the identification is made fromM
to O, i.e., from Reality to phenomena, yielding a true unitary
ontic-teleological state for any given elements ofO. The ana-
lytic union betweenM andO, in this case, is none other than
the Universe, i.e.,U as a function of its underlying noetic
surjectivity (g,dg).

Now, just asM is singular and four-fold with respect to
the above representation, so isO. Due to the union between
M and O, there exist common elements betweenM and O
possessing true ontological weight: the “within-the-within”
element and the “without-the-without” element. In short,
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given an arbitrary phenomenal instanceA, we can write, ac-
cording to the underlying representation

O = (without, within, within-the-within,

without-the-without),

the following representation:

O(A) = (A, non-A, non-non-A, none of these),

where we shall simply call the four ontological entries “cate-
gories” — for the sake of brevity.

Let us note the following important identifications for the
associated elements: givenA as an object, there is guaranteed,
in the empirical necessity of phenomenological space-time,
an entity other thanA — in fact a whole range of limitless
instances of otherness —, including that which is categorized
by traditional Buddhist logic as either “non-non-A” or “none
of these”, especially in the residual sense of a given underly-
ing process, as we have seen. But, in our approach, these two
are not yet eidetically qualified and simply exist as part of the
infinite contingency of phenomena — and so we can regardA
already as both entity and process, without the need to make
use of the earlier formalized aspects of Buddhist logical rep-
resentation. As such, a phenomenal objectA has no “inside”
other than the entire phenomenal contingency in the form of
immediate “otherness” (e.g., any “non-A”): this, when ap-
plied to an arbitrary organic individual, without negating the
existence of the extensive world, negates the presence of a
non-composite “soul” once and for all (but not the “soul-in-
itself” as an eidetically qualified microcosm), which remains
true in our deeper context of representation.

Meanwhile, at this point, we shall call the traditionally un-
decided Kantian categories into existence instead, according
to which “non-non-A” (“without-the-without”) is the entire
fluctuative phenomenological setO, which is devoid of abso-
lute individual entification, simply due to the fact that Kan-
tianism is undecided aboutA-in-itself, yet leaving it there, as
it is, in existence. This arises in turn simply because of the
inherent Kantian empirical undecidability between pure sub-
jectivity (“spiritism” and “relativism”) and pure objectivity
(“material dogmatism”) — alluded to elsewhere in a preced-
ing section.

However, given our ontic-teleological equation, the pre-
sent theory overcomes such undecidability on the epistemo-
logical level of things, including the phenomenological prob-
lem of the inconsistency of a singular entity (such as the phe-
nomenal mind and its knowledge and abilities): singular yet
still constituted by its inevitable inner multiplicity of reflec-
tive objects. It is as follows.

Given, for instance, the classic example of “a leaf falling
off a tree in a forest”: does it fall, after all, when there is
no one observing it? Our response to this, accordingly, is
that it truly depends on what kind of observer is present,
i.e., how he is categorically qualified in Reality. Thus, an

arbitrary observer will not qualify as a decisive representa-
tion: in that case, the leaf still falls due to, e.g., the law of
gravity, for the macroscopic laws of physics are “arbitrarily
objective-compulsive” in relation to the arbitrary observer. In
other words, such a subjective observer is always objectified
(or “subjectified away”) by that which is other than himself,
which in this case is the totality of the manifest laws of Na-
ture. Hence, his subjective self is bounded by a kind of tem-
poral self-determined objective dogmatism as well, and if he
attempts to be objective, he is soon limited to being subjective
enough. In all this, he is composed of fundamental indetermi-
nacy not intrinsically belonging to himself — as approached
from the “below limit” —, but which is a surjective determi-
nation from the “above limit”, i.e., from the Universe itself.

Rather strikingly, the situation is fundamentally different
if the observer is the Universe itself: whether or not the leaf
falls, it depends on Noesis, according to the representative
constitution of the Universe in our “Reality equation” above.
In other words, there exists a so-called “Ultimate Observer”
as a “surjective instanton” with respect to the entire Mirror-
Universe of reflexivity. Since this observer exists at the self-
similar singular ontological level of Suchness, it is again self-
singular without parallel and indeed without any logical ex-
traneous qualifier (and quantifier), thereby encompassing the
Real, the Mirror, the Image, and the Shadow, in the manner of
Reality. In other words, such an observer is none other than
Reality, in relation to the Universe. Needless to say, that need
not be “Reality-in-itself” in the rough sense of the phrase, de-
spite existing also at the primary ontological level and in lim-
itless eidetic oneness with Reality. Rather, it is most uniquely
none other than it — and nothing else is directly (presentially)
like such “Non-Otherness” with respect to Reality itself. Re-
spectively, such an observer is noetic, i.e., the essence is of
the level of the Surjective Monad, and such identification is
already beyond all practical phenomenology even in its ex-
tended descriptive form.

Hence, up to the most lucid isomorphism, the “within-the-
within/non-non-A” element of an eidetically qualified entity
{A} (which, unlike an ordinary entity subject to Buddhist and
Kantian dialectics, definitely possesses genuine, empathic in-
wardness and outwardness) can be identified as none other
than the Universe, which in turn is the noumenalA itself,
while the corresponding “without-the-without/none-of-these”
element as Reality itself, whereas the conventional modes of
“within” ( A2) and “without” (A1) are, respectively, the ab-
stract phenomenologicalA and the concrete (or material) phe-
nomenologicalA. Hence the following representation:

{A} = {A1,A2,U,M}.

A straightforward example of{A} is the Universe itself, i.e.,

{Universum} = {the Material Universe, the Abstract Uni-

verse, the Universe-in-Itself, Reality}.
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Or, in subtle correspondence with that, we may think of the
categorical representation of thought itself, which has no
equal parallel among arbitrary phenomena other than what
is similar yet other than it (i.e., its possible anti-pod):

{Thought} = {Thought, Anti-Thought, Unthought, Reality}.

Thus, phenomenally, thought always entails anti-thought:
both are two intelligible sides of the same coin on the phe-
nomenological horizon. However, note that such anti-thought
is not equivalent to the further eidetically qualified
Unthought. Simply speaking, this very Unthought somehow
allows not the entirety of phenomena to perceive Reality as
thinkable in the first place. In this light, the famous dictum by
Descartes, “I think, therefore I am,” is indeed far from com-
plete. The more complete phrasing would be something like:
“I think, therefore I am, I am not, I am not-not, and none of
these.” And this too, in the face of Reality, would still depend
on the eidetic qualification of the one expressing it.

“Away” from all matter and abstract dynamical physical
laws, the Universe can thus be identified as a singular
surjective-reflexive mirror of “superluminosity” upon which
Reality “acts” trans-reflectively throughNoesisand Differ-
entia (especially the qualified infinitesimals), hence the so-
briquet “Mirror-Universe” (which is particularly meaningful
here, and may or may not be related to the use of the phrase in
the description of an exciting geometric structure of the phys-
ical Universe as revealed in [8] and based on a chronometri-
cally invariant monad formalism of General Relativity as out-
lined in [4, 9, 11]). It is said to be “superluminal” in reference
to the state of “universal unrest” as measured against all the
rest of individual phenomena in the cosmos, somewhat in as-
sociation with the ever-moving, massless photon as compared
to the rest of physical entities (but this is only a gross, fairly
illegitimate comparison, as we do not aim at sense-reduction
at all).

Other examples include fundamental categories such as
space-time, energy, matter, consciousness, etc.

Note that, generally speaking, the abstract phenomeno-
logical category (e.g., the concept, instead of the actual stuff,
of a tree) is not the same for any entity as the noumenal cat-
egory. Further, whenever an arbitrary, fluctuative entity<A>
(without eidetic qualification) is represented according to the
above scheme, we should have instead

< A >=< A1,A2, {U}, {M} >,

i.e., although{U} and{M} are present in the above represen-
tation, as if being<A>’s linearly valid components in their
respective contingency,<A> possesses no universal similar-
ity with {U} and{M}, let alone with just Reality, but only with
A1 andA2 (subject to phenomenological mapping or transfor-
mation) — which is whyU andM appear “bracketed away”
therein, for otherwise they would best be written as “null

components” (but which in turn would carry us away from
its deeper ontological representation).

Finally, as we have seen, our all-comprehensive “Reality
equation” (i.e., all the above in a word) is

M : N
(
U(g,dg)

)
∼ S.

And we can say something fundamental about the state of
Reality and the Universe as follows:

{MO} = All-Real (M andO are Real and Self-Evident),

{OM} = Ultimately Unreal (leaving Real onlyM),

{MO} , {OM} (the Reality-condition of asymmetry

and anholonomicity),

i.e., the eidetic “distance” (connective foliage) between Re-
ality (M) and Otherness/Phenomena (O) is not the same as
that between Otherness/Phenomena (O) and Reality (M) —
in part owing to the non-reality of arbitrary phenomena with
respect to Reality —, which is why Reality is said to “contain
all things, and yet these contain it not”, so long as arbitrari-
ness is the case. In this instance, we may effortlessly wit-
ness the generally eidetic, anholonomic, asymmetric connec-
tion between categories in the Universe, with respect to Re-
ality. (These categories, in the main, being ontology, episte-
mology, axiology, and phenomenology.) The word “anholo-
nomic” clearly points to the path-dependence, or more pre-
cisely the direction-dependence, of our epistemological con-
sideration:eidetically, surjectively approaching things from
the non-dual ontic-teleological Reality will be substantially
different from arbitrarily, phenomenologically approaching
Reality from(the transitive state of) things.

Eidetic symmetry, thus, only holds in an “exotic case”
possessed of Qualon, whereby an entity is eidetically quali-
fied, so that it truly bears “resemblance” in “substance” with
the Universe and Reality. Ordinary phenomenal symmetry
holds in commonsense cases of isomorphism between things
in the same category or in extensively parallel categories
across boundaries, e.g., between one particle and another in
collision, between an actual ball and a geometric sphere, be-
tween physics and mathematics, or between language and the
world. In this respect, traditional philosophy (as represented
chiefly by ontology and epistemology) qualifies itself above
such phenomenological parallelism, especially with the very
existence of the epistemology of aesthetics, but anyhow re-
mains “infinitely a level lower” than Reality. (Such is in
contrast to a famous, epistemologically trivial statement by
Stephen Hawking, somewhat in the same line of thinking as
some of those working in the area of Artificial Intelligence
(AI) or certain self-claimed philosophers who enjoy meddling
with “scientists” and “technologists” regarding the current
state of science and the eventual fate of humanity, which can
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be roughly paraphrased as: “The only problem left in philos-
ophy is the analysis of language,” where the one saying this
“intuitively” mistakes post-modernism for the entirety of phi-
losophy. One, then, might be curious as to what he has in
store to say about art in general, let alone Being!)

It is important to state at this point that the kind of con-
sciousness possessing eidetic-noetic symmetry (with respect
to the Universe and Reality) is none other than Genius, or
Noesis itself, whose nature we shall exclusively elaborate
upon in the last section.

5 The Ultimate Observer in brief

“Who is looking at who? How far away is the Real
from the reflection?”

We can very empathically say that the Ultimate Observer
is such that if that One stopped observing the Universe by
way of Surjection (Surjectivity,Noesis), and not only in terms
of phenomenological abstract laws and concrete entities, it
would all cease to exist at once — at one Now — “before be-
fore” and “after after”, noumenally and phenomenally. This,
again, is beyond the level of omnijective reality (omnijectiv-
ity) or conscious surrealism (of “altered consciousness
states”) and mere inter-subjectivity, for it is an eidetically
qualified noetic determination without parallel and residue.

The respective observer, then, is called a “noetic ob-
server”: he eyes the Universe even before the Universe is
“conscious enough to eye him”, with all its noumenal and
phenomenal instances, and the Universe takes onessentia
(forma) only through him. The level of imagination of such
an observer, which is equivalent to the very form and inte-
rior of the entire Universe, is not as naive thinkers would
potentially suggest (with express slogans like “anybody can
dream anything into life” and “anything is possible for any-
one”): first of all, he is eidetically qualified by Reality as
regards his very presence and his observing the Universe.
Thus, it cannot be just an arbitrary observer, let alone “con-
sciousness”, in phenomena, and so both typical superficial
“science-fiction” and “spiritual pseudo-science” (i.e., “scien-
tific pseudo-spirituality”) ultimately fail at this point, leaving
only indeterminate non-universal surrealism.

What has been said of Reality thus far, in the forego-
ing twice-qualified ontological fashion, has been said enough
clearly, exhaustively, and exceptionally. Still, let’s continue
to throw some endless surjective light at any of the better-
known sciences (such as physics and cosmology) and at the
so far little-understood (or completely misunderstood) philos-
ophy of universal aesthetics (i.e., the nature of Genius).

6 On a model of quantum gravity and quantum cosmol-
ogy: the all-epistemological connection

“Of geometry and motion, however, I must speak,
no matter how faint.”

We now wish to briefly review certain aspects of a model
of quantum gravity as outlined in [3]. This consideration may
be skipped by those interested only in the supra-philosophical
aspects of the present exposition. But, as we shall see, there is
an intimately profound universal similarity between a primary
underlying wave equation there and our “Reality equation” as
presented here, elsewhere.

In the truly epistemological dimension of this theory,
gravity and electromagnetism are unified by means of con-
structing a space-time meta-continuum from “scratch”, which
allows for the spin of its individual points to arise from first
geometric construction and principles, without superficially
embedding a variational Lagrangian density in a curved back-
ground as well as without first assuming either discreteness or
continuity. As a result, we obtain a four-dimensional asym-
metric, anholonomic curved space-time geometry possess-
ing curvature, torsion, and asymmetric metricity (generally
speaking, the distance between two pointsA and B, on the
fundamentally asymmetric, “multi-planar” manifold, is not
the same as that betweenB and A). The symmetric part of
the metric uniquely corresponds to gravity while the anti-
symmetric part thereof to electromagnetism (which is a gen-
eralized symplectic (pure spin) structure), resulting altogether
in a unique, scale-independent spin-curvature sub-structure.

A five-dimensional phase space then exists only in purely
geometric fluctuation with respect to the four-dimensional
physical manifold, in contrast to regular Kaluza-Klein and
string theory approaches. Thus, we do not even assume
“quantization”, along with continuity, discreteness, and em-
beddability.

An important result is that both the gravitational and elec-
tromagnetic sectors of the theory are “self-wavy”, and the en-
tire space-time curvature can be uniquely given by the wave
function of the Universe for all cosmological scales, serving
as a fundamental fluctuative radius for both the monopolar
meta-particle and the Universe. Needless to say, here the Uni-
verse and such a meta-particle (monopole) are roughly one
and the same. Also crucial is the fact that outside matter and
electromagnetic sources (as both are uniquely geometrized by
the dynamics of torsion in our theory, while in turn the tor-
sion is composed of the dynamics of the anti-symmetric part
of the metric responsible for individual spin “kinemetricity”),
gravity uniquely emerges in an electromagnetic field. An-
other instance is that both gravity and matter appear therein
as “emergent” with respect to the entire geometric quantum
fluctuation whose primary nature is electromagnetic.

To cut the story short, our quantum gravitational wave
equation is as follows:

(DD − R) U (g,dg) = 0 ,

whereDD is the generalized (anholonomic) wave-operator
— constructed by means of the generalized covariant deriva-
tive Di —, R is the spin-curvature scalar,U is the wave func-
tion of the Universe,g is the asymmetric metric, anddg is the
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asymmetric metrical variation. In contrast to the “spinless de-
scription” of the Klein-Gordon equation of special relativistic
quantum mechanics and the originally non-geometric Dirac
equation, our wave functionU is an intrinsic spin-curvature
hypersurface “multivariant” (i.e., the hypersurface character-
istic equation) and, upon the emergence of a specific toroidal
quantum gravitational geometry, becomes none other than the
generator of the most general kind of spherical symmetry (es-
pecially useful in the description of particle modes).

A complementary wave equation is also given there in the
form of a completely geometric eikonal equation:

g(ik) (DiU)(DkU) = −RU2 −→ 1 ,

which goes over to unity in the case of massive particles (oth-
erwise yielding a null electromagnetic geometry in the case
of massless photons), for which

R= R (g,dg) −→ −
1

U2
.

Among others, such fundamental equations of ours result
along with the following comprehensive tensorial express-
ions:

Rik = W2(U) g(ik) (for gravity and matter),

Fik = 2W (U) g[ik] (for electromagnetism),

where the operations “( )” and “[ ]” on tensorial indices de-
note symmetrization and antisymmetrization, respectively,
and summation is applied to repeated tensorial indices over
all space-time values. Note that the above second-rank spin-
curvature tensor, represented by the matrixRik, consists fur-
ther of two distinct parts built of a symmetric, holonomic
gravitational connection (the usual symmetric connection of
General Relativity) and a torsional, anholonomic material
connection (a dynamical material spin connection constitut-
ing the completely geometrized matter tensor).

The strong epistemological reason why this theory,
among our other parallel attempts (see, e.g., the work on the
geometrization of Mach’s principle by the introduction of a
furthest completely geometrized, chronometric (co-moving)
physical cosmic monad as outlined in [10] — and the list
of some of the Author’s other works therein), qualifies as a
genuine unified field theory and a theory of quantum grav-
ity is that, among others, its equation of motion (namely,
the geometric Lorentz equation for the electron moving in a
gravitational field) arises naturally from a forceless geodesic
motion, that the theory gives a completely geometric energy-
momentum tensor of the gravo-electromagnetic field — plus
room for the natural emergence of the cosmological term as
well as the complete geometrization of the magnetic mono-
pole — and that the theory, without all the previously men-
tioned ad hoc assumptions (such as the use of arbitrary em-
bedding procedures and the often “elegant” concoction of epi-
stemologically unqualified Lagrangian densities, with non-
gravitational field and source terms), naturally yields the

eikonal wave equation of geometric optics, therefore com-
pletely encompassing the wave-particle duality: therein a par-
ticle is a localized wave of pure spin-curvature geometry. Or
to be more explicit: elementary particles, including light it-
self, propagate with certain chirality (helicity) arising purely
geometrically due to individual-point spin and manifold tor-
sion, in two geometric transverse and longitudinal modes
(hence the existence of two such completely light-like sur-
face vectors in the case of photons, whereby a photon can be
regarded as a null surface of propagation with transverse and
longitudinal null normal vectors emanating from it, which is
the ground-state of all elementary particles).

In short, the theory yields a completely geometric descrip-
tion of physical fields and fundamental motion for all scales,
especially as regards the question: “why is there motion in
the Universe, rather than phenomenal stillness?” — which is
quite comparable to the generically winding epistemic query:
“why is there existence, rather than absolute non-existence?”.

The full extent of this physical theory is not quite an ap-
propriate subject to discuss here, but we will simply leave it
to the interested reader for the immediate comparison of our
following two equations:

(DD − R) U (g,dg) = 0 (for the phenomenal Universe),

M : N
(
U(g,dg)

)
∼ S (for the noumenal Universe),

with respect to the manifest epistemological connection be-
tween the noumenal and phenomenal Universes.

Additionally, our model of quantum gravity also reveals
why the physical Universe is manifestly four-dimensional,
in terms of the above-said generalized symplectic metrical
structure, and whether or not the cosmos originates in time
(for instance, due to a “big bang” ensuing from the standard
classical, homogeneous, non-quantum gravitational model of
cosmology) — to which the definite answer now is: it does
not, but it can be said to be “emergent” as it is entirely qual-
ified (necessitated), in the ontic-teleological sense, by that
which is other than space-time categories, and in this sense
the Universe is both preceded and surpassed by Reality and
yet, due to Noesis, is never apart from it. As there remain
categories of infinities, certain physical-mathematical singu-
larities may locally exist in the fabric of the cosmos rendering
the space-time manifold “non-simply connected”, but across
such local boundaries the cosmic origin itself cannot truly be
said to be (traceable) in time, for the Universe-in-itself is Re-
ality’s “Now-Here”, infinitely prior to, and beyond, the evo-
lutionary and yet also encompassing it.

7 Genius: a conversation with noumena — closure

“That leaf, which silently yellows and falls, is —
more than all smothering possibilities — a happen-
ing unto itself. If only it were to happen up above
instead of down here, among us, the celestial do-
mains would all be terrifyingly cleansed at once.”
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We are now at a psychological and intensely personal
stage where we can truly speak of the nature of Genius in the
solitude of certain unsheltered sentiments and unearthed fis-
sures belonging to the individual who sees the longest
evening all alone, to which he lends all of his insight. That,
he verily sees not outside the window, but entirely in him-
self. The only helplessly beautiful solace he has, then, arises
simply from his soul seeing things this way. By “soul”, we
mean that which moves from the pre-reflexive Surject to the
reflexive realms as none other than the microcosm, such that
others can hardly notice that he is happening to the Universe
as much as the Universe is happening to him.

Weren’t Genius synonymous with Infinity — while in the
synoptic world of countless impalpable beings, like a con-
trasting taciturn ghost, he is often an infinitely stray, perpetu-
ally long personification (acute inwardness) of the noumenal
world along outwardly paradoxical, tragic banishing slopes
—, Kierkegaard would not have swiftly declared,

“The case with most men is that they go out into life
with one or another accidental characteristic of per-
sonality of which they say,’ Well, this is the way I am. I
cannot do otherwise.’ Then the world gets to work on
them and thus the majority of men are ground into con-
formity. In each generation a small part cling to their
‘I cannot do otherwise’ and lose their minds. Finally
there are a very few in each generation who in spite of
all life’s terrors cling with more and more inwardness
to this ‘I cannot do otherwise’. They are the Geniuses.
Their ‘I cannot do otherwise’ is an infinite thought, for
if one were to cling firmly to a finite thought, he would
lose his mind.”

Similarly, Weininger is known to have exclaimed,

“The age does not create the Genius it requires. The
Genius is not the product of his age, is not to be ex-
plained by it, and we do him no honor if we attempt to
account for him by it. . . And as the causes of its ap-
pearance do not lie in any one age, so also the con-
sequences are not limited by time. The achievements
of Genius live forever, and time cannot change them.
By his works a man of Genius is granted immortal-
ity on the Earth, and thus in a three-fold manner he
has transcended time. His universal comprehension
and memory forbid the annihilation of his experiences
with the passing of the moment in which each occurred;
his birth is independent of his age, and his work never
dies.”

(For more such non-dissipating, spectacular universal
overtures, see [6].)

Peculiar to Genius is, among other solitary things, an in-
finite capability for intricate pain (inward ailment), for per-
petual angst, which people often misrepresent as arising from
mere anti-social loneliness or lack of amusement. But this
aspect of Genius cannot be partitioned arbitrarily from the

soaring spontaneity of his infinite ecstasy. Rather, Genius is
simply beyond ecstasy and despondence, as well as beyond
pride and self-deprecation, the way people are used to these
terms. In any case, it is a state of universal sensitivity, inspi-
ration, solitude, and creativity, which is the Eye of Creation,
whereby Reality is comprehensively “likened” to a form en-
suing from Noesis.

This way, most people are mistaken in their belief that
Genius and talent are equivalent, for Genius is, indeed, “sep-
arated from all else by an entire world, that of noumena”, and
not situated “within the spectrum of all linearly predictable
expectations and contingencies”, as Goethe, Schopenhauer,
Wilde, Emerson, Weininger, and Wittgenstein would have
agreed. Mere belief, assumption, or syllogism is effortlessly
devoid of authentic realization, let alone Reality: it is not even
worthy of the simplest meta-logical refutation.

Indeed, Genius is in no way the superlative of talent. Tal-
ent is, at most, phenomenal-reflective, while Genius is
noumenal-surjective and noumenal-reflective. It has been
said that Genius does not act as a role model for talent at
all: with respect to the latter, the former may appear inanely
murky and most wasted, simply because the latter lacks that
which is infinitely other than the entire contingency of multi-
ple reflections and projections.

The world of Genius is Moment, Universality, and Cre-
ation, where the entirety of noumena is revealed to the per-
sona without residue, which is the greatest, most absolute ku-
dos in existence, be it in the presence or absence of an au-
dience. The world of talent is ordinary — no matter how
augmented — time, space, and imitation, i.e., the relative in-
tegral power of the inter-subjective contingency and tautology
of phenomenal recognition and security.

The ocean of Genius is the heaviest self-necessity of
greatly spontaneous assaults and pervasions on any shore
without sparing both any large accidental object and a sin-
gle grain of sand: it evokes creation and destruction entirely
in its own being in this world. The pond of talent, amidst
dregs, is the relative confidence of “sedimental measurement
and experimentation”, albeit still related to intensity.

The intentionality of Genius is a self-reserved “Parsifal”
of Universality, while that of talent is always other than the
thing-in-itself (and so, for instance, a talent associated with
science tends not to embrace the essence of science itself,
which is one with the essence of creative art and epistemic
philosophy, but only something of populistic, tautological
“scientism”).

The essence of Genius is Reality, not just situational
“truth” — not the normative, often progressive, collective
truths of talent and society.

The way of Genius in the world is traceless originality
and thus defies all sense of imitation and expectation. Who
shall discover the traces of fish in water and those of birds
in the sky? And yet, this matter of Genius is more than that:
he is different from all similarities and differences, absolutely
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independent of representation. Hence it is said of men of Ge-
nius — for instance by Weininger — that “their parents, sib-
lings, and cousins cannot tell you anything about them, for
they simply have no mediational peers, no genial otherness”.
By contrast, talent is still psychogenetically and methodolog-
ically inheritable.

The life of Genius is that of utter sensitivity, and not just
volitional silence and loudness. It is one of transcenden-
tal consciousness and intensity, and not constituted of mere
choice and chance.

As the hallmark of the Genius is authenticity and creativ-
ity, which is not situated within the rhyme and rhythm of a
mere choice of life-styles, he can do no other than this, and
no one needs to tell or teach him anything.

Individuals of Genius exist as universal gradations of the
pure eidetic plenum, and not as part of the mere ascending
levels of talent. Thus, the particularity of Genius is always si-
multaneously universal: it is both twice-qualified “Atom” and
“Platon”, Instanton and Soliton. He possesses the entirety
of Object, Subject, Dimension, and Surject to unbelievable
lengths.

Indeed, as has been generically said: “science becomes
pure imagination, art pure life, and philosophy pure creation”,
there in the vicinity of Genius.

Genius is Michelangelo, not Rafaelo. Genius is Leonardo,
not rhetoric. Genius is Mozart, not the Royal Court. Genius
is Beethoven, not the audience and merely connected hear-
ing. Genius is Zola, not psychotherapy. Genius is Kafka, not
stability. Genius is Rembrandt, not feminism. Genius is Tol-
stoy, not chastisement. Genius is Johann Sebastian, not the
Bach family. Genius is Klimt, not neurasthenics and Venus.
Genius is van Gogh, not art exhibitionism. Genius is Glinka
and Gould, not musical recording. Genius is Abel and Ga-
lois, not the Parisian Academy. Genius is Kierkegaard, not
Hegelianism. Genius is Weininger, not Aryanism. Genius
is Wittgenstein, not philology. Genius is Kant, Einstein, and
Zelmanov, not the herd of “scientism”. Genius is Goethe, not
Prussia. Genius is Cezanne, not Europe. Genius is Emerson,
not America. Genius is Neruda, not Chile. Genius is Tagore,
not India.

Genius is the Renaissance in motion before everyone else
is capable of naming it, not its “timely and subsequent
crumbs”. Genius is Dream, not sleep. Genius is Insight, not
the day. Genius is Vision, not a report or a documentary. Ge-
nius is the austere summit, not the floating clouds. Genius is
the ocean, not a river. Genius is gold, not the muddy colliery,
not the mining. Genius is youth, not childhood, not adoles-
cence, not adulthood, and absolutely not old age. Genius is
all-life, not imitation. Genius is all-death, not barren con-
stancy and consistency. Genius is acutely conscious suicide,
not helplessness — but definitely not all suicides are Genius.
Genius is love, not crude relationship. Genius is music, not li-
censed instrumentation. Genius is Self, not super-tautological
composition. Genius is sheer nostalgy, not learning. Genius

is Creation, not school, not training.
Genius is the cold North Atlantic, not the luxurious Ti-

tanic. Genius is the Siberian currents, not the avoidance of
winter for more festive humidity. Genius is the entire Sonora,
not urban life of chance-fragments. Genius is character, not
yielding sexuality. Genius is Moment, not societal time. Ge-
nius is Mystery, not public space. Genius is Memory, not
standard coordination. Genius is Nature, not information —
and so not recognition. Genius is the full eclipse as it is, not
prediction. Genius is the entire night, not a system.

Genius is Motion-in-itself, not a planned sequence. Ge-
nius is real individuality in the Universe, not composite insti-
tutional, societal, cultural pride. Genius is the singular con-
quest, not an artificial war. Genius is the universal meteor, not
a celebratory fire-cracker. Genius is the rareness of a tsunami,
a volcano, or an earthquake, not reported abrupt casualties.
Genius is solitude, not sold and given democracy, and not a
republic. Genius is the abyss and the sudden voice and force
arising from it, not typical antiquity, Victorianism, and post-
modernism.

Genius is the Universe, not a specific age of trends, not a
destined place of people.

Genius is Reality, not a situation, not an option, not a col-
lection of societal facts.

Genius is Genius, not talent.
Genius is a word not yet spoken (enough) by other sen-

tient beings. And, respectively, a drop not yet consumed, a
meaning not yet sighed, a clarity not yet impregnated. A birth
not yet celebrated, a sudden electricity not yet channeled, a
humanity not yet recognized.

Often, in relation to tragedy, Genius emerges as a funeral
song, preceding all births and surpassing all deaths, which
people find hard to canonize. Amidst their superficial merri-
ment, a man of Genius is like the night that falls on their eyes
and sinks in their souls — to be forgotten at their selfish ease.
He is the loneliness of the day on a deep cogitator’s pane, one
with the blue nacre of things.

Why then would Genius be most exclusively, among oth-
ers, associated with tragedy? It is because most people would
not mind partaking of “joy as it is”, with or without antici-
pation and as much and gauche as possible, yet they are ever
impotent and apprehensive when it comes to facing “the other
thing as it is”, i.e., tragedy. As Genius is the only spontaneous
genera capable of infinitely imbibing the noumenal “thing-in-
itself”, in universality and in particularity, in representation
and in person, a man of Genius would principally never shun
tragedy. His objective is inevitably the surjective pure intima-
tion of it.

Thus, tragedy has sought the Genius even from before
the dawning of the world. Indeed, he would even volun-
teer for it. And the entire Universe volunteers for it too, in
and through his very individuality. This is why, the theme of
tragedy (or death) is rather universal: it is consciously fre-
quented only by very few men and yet by the entire Universe
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itself. These men, without losing their Self, which is Real-
ity and the Universe — unlike the way most people under-
stand it —, embrace phenomenal selflessness and defense-
lessness with full noumenal understanding and bursting inno-
cence: they are “too close” to the torrents of the most unlikely
visitation of kisses, “too close” to thunder in the heavy rain,
“too close” to the Sun in elevation and peaking radiation, “too
close” to the soil and dust in every heavenly intimation, “too
close” to the nakedness of Nature in everything raw and full,
“too close” to the chiseled understanding of certain winter-
banished seeds and underground grains, “too close” to the
Cornelian female breast of surreptitiously migrating strengths
and silences. They are “too close” to their own prodigious
male latitude, in their expensive self-immolating Siriusian nu-
clear moods, eventually being poured out of life onto the can-
vas of death as the most splendid of selfless, will-less, unadul-
terated presence of colors and paintings, while thus rendering
themselves too far from incidental admirers other than Real-
ity itself. Such is glory: only due to that does deeply crimson
compassion whiten in this world for a few sensitive others
to see.

Though this world may see naught but sad wrinkles, the
love of Genius is strong in its own unseen furrows, at the core
of stars, in the fire of molten things. Genius is strong though
weak and peevish in appearance: it is exalted in everything
that takes roots and bears its own growth, in everything uni-
versal Reality wishes to see for itself. The Crucified is such
a rare taste in people’s veins to devour. So either they unveil
their own souls in the tragedy of Genius and then die to live
anew, or live the life of a heathen forever.

When will this world fall into indigenous silence, like Ge-
nius, but not in certain sleep? Where is the soft hand of a
lovely, caring female weaver upon Genius’ crushed, blacken-
ing fingers emerging from the rugged Earth and its ravines?
In an aspect that relates the solitude of Genius and the conti-
nuity of mankind, known and unknown Geniuses have been
digging the Earth for eons, for this world’s most conscious
dreams, so that humanity may gush out with Nature’s own
blood of youth: such is done among tormenting rocks, yet in
order to reach above the Sun — yes, with the entire humanity.

Who would glue his petty, cowardly self to the secret, yet
infinitely open, wounds of Genius? Either humanity caresses
Genius the way Genius would touch humanity, until nerves,
whips, and scourges become impalpable in humanity’s con-
stitution of clay and fire, and of some might of the Unknown,
or it perishes altogether with self-sufficient Genius not repeat-
ing itself for its cause ever again.

And to humanity it will then be said, “Either gaze at the
red branches in the park of lovers, where Genius lives and
dies unnoticed, where life fills its own cup through entwined
hearts, lips, and arms through the sacrificial life of Genius
at unseen roots, or, perchance, seek another countenance, an-
other reality altogether and die without Reality ever sketching
you in its own bosom.”

In this savage world of heavily fabricated walls, who then
would want to taste a most tender, fateful wet drop of dew
and honey oozing from the pristine skin of Genius, in the rain
of tragedy and in the weft of huge solitude, which might just
taste like the Universe — all of the Universe?

Who, then, would be able to recapture the moments of
Genius, once they pass for good? Would they ever be able
to simply rediscover the soul of Genius among many roots,
thorns, and tremors and still multiply the silent understanding
of love and life that hides in a wide ocean that shall never want
to depart from humanity?

Who, then, would abandon the ever-putrefying cowar-
dice, soulless collectivism, and mere conformity with much
of this unconscious world and sit with Genius just for one
more night — where there shall be no more secrets in the
darkness’ midst, other than shadowless man, without flight
from destiny, naked, engraved, and unshaken on the scarlet
horizon behind a thousand prison features? Who shall be
loved and sought by freedom this way?

Genius is a most shunned resonance behind all languages:
both “knowing” and “not knowing” recognize it not. Whereas
people are sole humans, a man of Genius is, infinitely more
acutely, the most solely human: he is the one who under-
stands love and sacrifice the most, who breathes limitlessly
upon the flanks of wild flowers and hidden rivulets, yet no
one among sole humans dares to love him with enough vast-
ness of space. Indeed, he is the drops and substances in the
rain, all the non-existence in dust.

When an individual of Genius desires existence in this
world, he comes yielding against everyone else’s direction,
cutting the evening on its very edges, unfolding horizons —
even if that means undoing fancy rainbows. And when he
yearns for an ultimate self-exile, he rushes towards death un-
conditionally, just as he once arrived in this world not by
slow walking, purblind wandering, and empty gazing, but by
the crackling spontaneity that impulsively and immeasurably
forms fateful symmetries through the soul’s pure motion.

The life of Genius leaves this world a silent place under-
ground for the most solitary and distinguished of understand-
ing, knowledge, tenderness, and pain. Only a few, therefore,
know what a “most original Genius” truly means. If only
people knew the universal responsibility set upon the shoul-
ders of Genius, and not just its apparent glories, very few of
them would dare to aspire to the rank of Genius. Instead,
they would be fairly content with talent alone. For, in rela-
tion to humanity as a “non-ideal savior”, Genius lives with
such a palpitating, lonely chest and uplifting sensitivity in the
narrowness of time’s remaining passage. (As Schopenhauer
once declared, “Great minds are related to the brief span of
time during which they live as great buildings are to a little
square in which they stand: you cannot see them in all their
magnitude because you are standing too close to them.”)

As regards the history of indifference and war that has be-
fallen mankind, the heavens, some say, can’t be errant. But
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what idea do they have of a man of Genius whose heart of im-
mense autumns is like a shattered clock, which he hears tick-
ing mercilessly every second until its near cease, even when
its fire — of awakening blood — moves from his heart’s soli-
tude, to his soul’s labyrinth, to his lips, to the desire to pos-
sess, to nearness, to excitement, to the redemption of human-
ity? When the only place he can carry humanity to — for the
moments and lost wings to take, to hold, to secure — is his
ship of winter, passing through wounding seas, violent winds,
and threshing floors? When he himself is one of the branches
of the long, solitary night — of azure fate — and hardly a
resting place for another soul’s existence?

A man of Genius loves humanity beyond its occasional
self-pity and vain arrogance, without knowing how to carry
the luster and growth of the garden of passion and intimacy
elsewhere other than through the often awkward abruptness
and intensity of each second. And so, wordlessly, certain
hidden things are written in blood and yet shared in mois-
ture, freely given and fully experienced — just as the cup,
potion, and tavern are spun only at night — even while per-
sonal hope, let alone a future, ever shies away for himself, for
soon enough nearly everyone’s eyes are to shut at length in
sleep, not knowing that Reality itself is present in the darkest
ravine of their modulations.

Men of Genius do not cross poignant, dark reefs to merely
taste the deeps of depravity for themselves, but to make con-
tact with the entirety of humanity and to love the uncon-
sciously tragic as it is. But, of conversing with the severity
and weather of naked love in the most drenching downpour of
sentiments, who shall readily repay these men by communing
in their names, even without having seen them?

Who, then, can cover the perimeter of Genius like a pure
ring? In the Genius, life passes in a single heartbeat, and
he happens to the world like the grip of the strangest spon-
taneous intimacy upon the furthest comprehension of sincere
lovers. The nakedness of Genius is just as day and night are
inseparably present in the world, unveiling each other — and
thus essentially beating in each other — more than just taking
turns and partaking of chance.

Verily, before the whole world of people ever does it, Ge-
nius is the poetry that immediately captures the high flares
of every joy and the disconcerting depths of every tragedy
there has ever been and will ever be so long as humanity ex-
ists. By the very personification of Genius is the most distant
fate of humanity drawn near and the nearest pitfalls thereof
redeemed.

People do the Genius absolutely no honor by merely pro-
jecting phenomenal attributes and expectations — and by
merely scholastically and naively reflecting — upon him.
When, coincidentally, certain men of Genius happen to be
situated in certain domains of the society (instead of living
in relative obscurity and epistemic solitude), which is a very
rare case, it is to be understood that a zoo that proudly keeps
a lion or a falcon, has no way of knowing whether or not

it fully possesses it; and yet too often the zoo honors the
beast and prides itself in the act only in order to praise it-
self. Genius exists independently of such a contingency and
tautology. The entire gist of societal-phenomenal intention-
ality approaches not the abyss of the Genius, who, alone, is
the monad, center, mind, and heart of the Universe. He is the
entirely unabridged, naked pulse of Nature. It is the Genius
who merely not “eyes the abyss” and “is conversant with it”,
but who also exists there with absolute self-certainty, inde-
pendently of all the objects outside the abyss (out there in the
world), and independently of the entire abyss itself. He is not
a mere philosopher of “mereology” either. He never has the
need to question his own existence nor to “unveil himself”,
whatsoever. He is not a mystic in this sense (and in that of
Wittgenstein): it is not mysticism that is mystical, it is the
way things already are in and of his nature; yet this he often
projects onto people as “mysticism” in order to be “roughly
understood”, i.e., when forced to speak to the world.

Indeed, Genius is more of the Universal Mind that estab-
lishes (and not just imparts to others) the “Suchness” of the
Universe entirely through itself and moves things that way
from the infinite past to the infinite future, through the infinite
moment, instead of just a mere saint and mystic who has to
find his way, by following the ways of other adepts, in much
of the Unknown. It is the Pure Sword that still glitters and
functions (i.e., moves) in the darkest stretch of space, with
or without the presence of mirrors and lights. And it is not
just a spark, nor a mere brilliance: Genius is the wholeness of
unique illumination and pure presence.

The Universe of Genius individuality is four-fold, encom-
passing an infinite amount of noumenal uniqueness (not just
“totality”) and a most extensive category of phenomenal
modes of existence. Thus, again, it contains:

— Reality: Eidos-Nous— the Surjective Monad, Abso-
lute Unique Singularity,

— The Mirror-Universe — the Reflective Whole, Singu-
larity, Transcendence,

— The Imagery-World — the Projective Particularity,
Multiplicity, Immanence,

— Unreality — the Absolute Darkness

i.e., its being-there, entirely in the greatest genus of individu-
ation, is essentially without chance and residue.

The man of Genius, as such, needs no “belief” nor “hy-
pothesis”, nor even any “transcendental method”, be it of re-
ligious, philosophical, or scientific dialectical nature, for he,
the Eye-Content of Infinity and the Sign-Severity of Oneness,
is he whose essence is All-in-All, the All-One, the Unique:
“within”, “without”, “within-the-within”, and “without-the-
without”. And this is more than just saying that his individual
entification is the microcosm — and that he is a particulariza-
tion of the Universe.

Unlike a mere saint who is the ultimate phenomenal (lin-
ear, diametrical) opposite of a mere criminal, a person of Ge-
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nius possessesAnimus(Anima, “animate animal”), with re-
spect to the entire Imagery-World, and is therefore the most
unpredictable, spontaneous, intense, and creative in his phe-
nomenal actions, beyond the entirety of collective anthropo-
morphic morality, if not ethics. And, unlike a mere criminal
who is the phenomenal opposite of a mere saint, Genius is
fully, intrinsically possessed of Noesis. Thus, a single mo-
ment of Genius in the Universe enriches existences infinitely,
whether the individual is “animal-like” (in terms of instinct,
but not merely psycho-pathological: for instance, even when
madness seems to have befallen a man of Genius — as Atlas
is said to excessively bear the world on his shoulders, alone,
more than any other —, it is so without the Genius losing
his persona at all, for his essence is absolutely non-composite
Individuality and Universality, inwardly and outwardly; mad-
ness is a mere “surrealism” the Genius deliberately embraces
in order to relatively, specifically “seal” his suffering without
ulterior motives other than “inward romanticizing” (for in-
stance, Goethe and Kafka), and the same can be said about the
case of a suicidal Genius) of tragedy-in-itself, or whether he is
deliberately an entirely new humanity — and, again, not just
a new species — beyond the external world’s understanding.

The Genius is he who knows the saint more than the saint
knows himself, and he who knows the devil more than the
devil knows himself: needless to say, he definitely knows
Kant better than Kant knows himself (indeed, he who under-
stands Kant, goes beyond him and thereby “bedevils” him,
while most others are stuck, without soul, in mere scholas-
tic documentaries on Kantianism). Whether or not he speaks
of what people call “morality”, it is entirely up to him: in
any case, he alone personifies Reality and gives its most elu-
sive aspects to his subjects. Unlike the sadist, he suffers not
from the outward surreal vacuum of space and, unlike the
masochist, from the inward intimidation of time (again, see
Weininger’s psychological essay on aspects of sadism and
masochism in [6]). His deliberate transgression of establish-
ed, normative mores is equally non-understandable by most
sentient beings as his infinite capacity for tenderness and self-
lessness. In any of these acts, he truly owns his moments,
either by throwing universal light into utter darkness or by
annihilating even light in every phenomenal perception. In
one respect, he is indeed ageless Momentum: he is child-like,
though not exactly a child, and he is sage-like, though not
exactly a sage.

As the Genius is he who phenomenally contains the most
variegated manifold of attributes, names, and characters, he
thus has to represent an entirely new genus of humanity, a
whole new epoch in the evolution of the cosmos, beyond the
level of acceptance of present humanity. He remains human,
simultaneously aloft as the sky — proud as a mountain —
and fragile as the sand of time — humbled as a valley — be-
yond mere acceptance and refusal, and even beyond contem-
plation. Just as the heavens send down the rain just as much
as they reflect sunlight, and just as the great ocean gently inti-

mates sand-grains and yet annihilates shores and settlements,
so is Genius the one most capable of sorrow and joy; rage
and calmness; destruction and creation — of both infinitely
romanticizing and molding the modes of existence.

Thus, while there can be countless linearly, smoothly pre-
dictable talented, institutionalized people in the world, “who
are just happy and successful enough” without the tinctures of
tragedy and without possessing the Surjective Monad of Ge-
nius, there is indeed no Genius without a trait of tragedy, for
tragedy is the only melodrama in the Universe used as a lan-
guage to convey and gather known and unknown multitudes:
it is a forceful communication among breaths made possible
in a largely superficial world and in a truly secluded corner
of the Universe — however with the possibility of commu-
nication across it. Of this universal epistemic disposition,
the Genius would rather embrace moments of melancholia
and quiver like certain autumnal sitar-strings, than be merely
happy. Again, while not being a merely fateful one, he never
shuns tragedy: he voluntarily internalizes any tragedy (espe-
cially the tragedy of other men of Genius, whether known
or unknown) and still gives it a breathing space and pulse in
the Universe (and indeed binds it as a cosmic episode), when
most people are wary of it. Nor does the Genius withhold
conquest merely for the sake of mercy. He is the virtuoso,
and not just the actor. He is also at once the script, the stage,
the spectator, and the actor — the very life of the play. In
the cosmic sense of the ultimate unification of observers and
observables, he is self-observed, self-observing, self-existent.

As such, the following can be said about the dominion
and nature of Genius, which belongs to no school and species
at all. An individual of Genius is entirely his very own genus,
more than a species, of Universality: without him, the Uni-
verse is not the Universe, and Reality would never “act upon
itself” and “beget an archetype”. No one can teach Genius
anything. No school, nor training, nor erudition can beget,
let alone produce, the conscious existence of Genius. Its
meta-human dominion is that of non-composite Self-Will an-
imating the infinitesimals (i.e., meta-particulars) of the Uni-
verse. Its person is the one most capable of infinite self-
differentiation (besides his intrinsic, immutable uniqueness),
precisely because the Universe — the infinite Memory (Holo-
graphy), Moment (Presence), and Mystery (Precedence) —
is never exhausted when it comes differentiation, especially
self-distinction.

Genius is the very vein and veil of Nature. Once people
of discernment and reflection witness the Genius’ unfolding
the heavens by climbing them up, at once they shall also wit-
ness that he has no ladder nor means, that he is the creator
of even the Unknown and of perceptual noema. Or even if at
first it appears to them that the Genius uses a ladder or means
(such as any transcendental logical method of deduction or
any style of art), it will entirely fall back upon themselves af-
ter being self-thrown, at them and away from him, by himself,
and there is no fear in the Genius regarding this, for, again, he
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is everywhere Reality’s exception just as Reality is his excep-
tion. His sheer independence is the sine qua non of existence.

Thus, where are the kisses to leap towards the solitude of
Genius, to consume it for last? Hidden in the pure seethe
of an ocean’s changeless soul, the love of Genius for the
Real and the Human is hardly reachable. Even if Genius ap-
pears in the faintest human form, among other things in the
perpetual sand of existence, people still find it unreasonable
to intimate it. Instead, they readily besiege and confine its
very incarnation into disappearance, ridicule by ridicule, be-
trayal by betrayal, kiss by kiss. But they can imprison not
the most invisible, most infinitesimal — the most artful grain
(meta-particle) in the Universe. Like unknown butterflies and
fresh grapes, however short-lived, the Genius swiftly takes
for farewell upon the eyelids of beauty, coming home not any
later at the coronet noon of that which has communed with
him in existence and appearance.

Only Genius knows Genius, and this is no sentimental
exaggeration — whether the inter-subjective world of people
(not the world-in-itself) is awake or asleep, it is bound to be
troubled by the very person. Indeed, for most, “he draws near
from farness, and he draws far from nearness”, with respect
to perception and non-perception, by the very essence and
form of Reality — and Unreality —, for the distance between
Genius and people is not the same as that between people and
Genius.

Footnote

Suggested parallel reading in philosophy, psychology, math-
ematics, and physics, especially for the sake of the reader’s
perspicacity of the present novel epistemological (meta-
logical) work in simple comparison with other works dealing
with theories of Reality and the Universe.
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Macro-Analogies and Gravitation in the Micro-World:
Further Elaboration of Wheeler’s Model of Geometrodynamics
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The proposed model is based on Wheeler’s geometrodynamics of fluctuating topology
and its further elaboration based on new macro-analogies. Micro-particles are conside-
red here as particular oscillating deformations or turbulent structures in non-unitaty
coherent two-dimensional surfaces. The model uses analogies of the macro-world,
includes into consideration gravitational forces and surmises the existence of closed
structures, based on the equilibrium of magnetic and gravitational forces, thereby sup-
plementing the Standard Model. This model has perfect inner logic. The following
phenomena and notions are thus explained or interpreted: the existence of three genera-
tions of elementary particles, quark-confinement,“Zitterbewegung”, and supersymme-
try. Masses of leptons and quarks are expressed through fundamental constants and
calculated in the first approximation. The other parameters — such as the ratio among
masses of the proton, neutron and electron, size of the proton, its magnetic moment, the
gravitational constant, the semi-decay time of the neutron, the boundary energy of the
beta-decay — are determined with enough precision.

The world . . . is created from nothing,
provided the structure . . .

P. Davies

1 Introduction

The Standard Model of fundamental interactions (SM) is a
result of the attempts of thousands of researches in the course
of decades. This model thus bears rather complicated mathe-
matical techniques which hide the physical meaning of the
phenomena.

Is this process inevitable? And also: can further mathe-
matical details make the Standard Model able to explain vir-
tually everything that takes place in the micro-world? May it
be necessary to add SM by the concept proceding not from
electrodynamics? This problem statement is grounded, be-
cause another adequate model allows us to consider micro-
phenomena from another side, and so it remains accessible
for more number researchers.

According to contemporary statements, objects of the
micro-world cannot be adequately described by means of
images and analogies of the surrounding macro-world. But
certain analogies successfully interpreting phenomena of the
micro-world and explaining their physical essence exist. It
will be shown further in the present exposition.

This work uses conceptualization of another class of phy-
sical phenomena, and its possibilities are demonstrated. This
model has the inner logic which does not contradict confir-
med aspects of SM. Besides, it explains some problems which
are not solved at the present time.

It is necessary to outline a survey illustration of our mo-
del worked out in the spirit of Wheeler’s geometrodynamics.
The logic of the model, and its adequacy, is justified by many

examples. Thus another approach towards understanding
micro-phenomena is proposed. Herein, straightforward nu-
merical results are obtained only on the basis of the laws of
conservation of energy, charge and spin, and evident relations
between fundamental constants, without any additional coef-
ficients. These results, being the basic points of this model,
justify the model’s correctness.

The geometrization of the physics assumes the interpreta-
tion of micro-phenomena by topological images. Many such
works have been outlined now: for example, the original ele-
ments of the micro-world, from which particles are construc-
ted according to Yershov’s model [1], are preons, which are,
generally speaking, local singularities.

Wheeler’s idea of fluctuating topology is used here as an
original model of a micro-element of matter: in particular,
electric charges are considered therein as singular points loca-
ted at a surface and connected to each other through “worm-
holes” or vortex current tubes of the input-output kind in an
additional direction, thus forming a closed contour.

A surface can be two-dimensional, but fractal, topologi-
cally non-unitaty coherent at that time. It can consist of vortex
tubes linkage which form the three-dimensional structure as
a whole.

This paper follows [3], where numerical values of the
electric charge and radiation constants were obtained. It is
shown in [3] that from the purely mechanistic point of view
the so-calledchargeonly manifests the degree of the non-
equilibrium state of physical vacuum; it is proportional to the
momentum of physical vacuum in its motion along the con-
tour of the vortical current tube. Respectively, the spin is pro-
portional to the angular momentum of the physical vacuum
with respect to the longitudinal axis of the contour, while the
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magnetic interaction of the conductors is analogous to the for-
ces acting among the current tubes.

The electric constant in the framework of the model is a
linear density of the vortex tube:

ε0 =
me

re
= 3.233× 10−16 kg/m, (1)

and the value ofinverse magnetic constantis associated with
a centrifugal force:

1
μ0

= c2ε0 = 29.06 n (2)

appearing by the rotation of a vortex tube of the massme and
of the radiusre with the light velocityc. This force is equi-
valent to the force acting between two elementary charges by
the given radius. Note that Daywitt has obtained analogous
results in [4].

One must not be surprised that the electrical charge has
dimension of impulse. Moreover, only the number of electric
chargesz is meaningful for the force of electrical and magne-
tic interaction, but not the dimension of a unit charge. So, for
example, the Coulomb formula takes the form:

Fe =
z1z2

μ0r2
(3)

wherer is the relative distance between the charges expressed
in the units ofre.

The co-called standard proton-electron contour intersec-
ting the surface at the pointsp+ and p− is considered in [3]
and in further papers. The total kinetic energy of this contour
equals the energy limit of the electron. Possibilities of the
model explaining different phenomena of the micro-world are
considered with the help of this standard contour.

2 On the connection between the electric and the weak
interactions

The electric and weak interactions are united in the uniform
contour. The form of our model continuum in a neighborhood
of a particle is similar to the surface of a hyperboloid. It is
conditionally possible to separate the contour into two regi-
ons: the proper surface of the region (the regionX) and the
“branches”, or vortex tubes (the regionY), as shown Fig. 1. A
perturbation between charged particles along the surfaceX is
transmitted at light velocity in the form of a transverse surface
wave, i.e. the electromagnetic wave. The perturbation along
vortex tubes byY spreads in the form of a longitudinal wave
with the same velocity of transmission, as it will be shown.

Express the light velocity from (1) as:

c =

√
s
ε0

√
1

sμ0
(4)

wheres is some section, for instance, the section of the vortex
tube. Upon dimensional analysis, the first factor is a specific

volume, the second — a pressure. In other words, this for-
mula coincides with the expression of the local velocity of
sound inside continuous medium. It is interpreted in this case
as the velocity of the longitudinal wave along the tube of the
contour. The longitudinal wave transforms into the transverse
surface wave from the viewpoint of an outer observer at the
boundary of theX- andY-regions.

According to [3], the mass of the contour is given by
M = c2/3

0 me = 4.48 × 105me. This value equals approxi-
mately thesummary mass of W, Z-bosons(the dimensionless
light velocity c0 = c

[m/sec] is introduced here). One can state
therefore that the vortex current tube is formed by three vortex
threads rotating around the principal longitudinal axis. These
threads are finite structures. They possess, by necessity, the
right and left rotation; the last thread (it is evidently double
one) possesses summary null rotation. These threads can be
associated with vector bosonsW+, W−, Z0 which are conside-
red as true elementary particles as well as the photon, electron
and neutrino.

This structure is confirmed by three-jet processes obser-
ved by high energies — the appearance of three hadron stre-
ams by the heavyY-particle decay and by the electron and
positron annihilation. The dates about detection of three-zone
structure of really electron exist [5].

Other parameters of the weak interaction correspond to
the given model. So, the projective angle is an addition to
theWeinberg angle of mixing qw of the weak interaction. The

projective angle is determined in [3] as arcsin
c1/6

0√
2πa

= 61.8◦,
wherea is inverse to the fine structure constant. The value
sin2 qw = 0.231 is determined experimentally, i.e.qw = 28.7◦

and π2 − qw = 61.3◦. Based exactly on the value of this angle
the electric charge is calculated precisely, the numerical value
of which has the form [3]:

e0 = mec4/3
0 cosqw × [m/sec]= 1.603× 10−19 kg m/sec. (5)

3 Fermions and bosons

It is necessary to note that vortex structures are stable in this
case if they are leaned on the boundary of phase division, i.e.
on the two-dimensional surface.

The most close analogy to this model, in the scale of our
world, could besurfaces of ideal liquid, vortical structures
in it and subsequent interaction between them, forming both
relief of the surface and sub-surface structures.

Vortex formations in the liquid can stay in two extreme
forms — the vortexat the surfaceof radiusrx along theX-
axis (let it be the analog of a fermion of the massmx) and the
vortical current tubeunder the surfaceof the angular velocity
ν, the radiusry and the lengthly along theY-axis (let it be the
analog of a boson of the massmy). These structures oscillate
inside a real medium, passing through one another (forming
an oscillation of oscillations). Probably, fermions conserve
their boson counterpart with half spin, thereby determining
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their magnetic and spin properties, but the spin is regenerated
up to the whole value while fermions passing through boson
form. The vortex field, twisting into a spiral, is able to form
subsequent structures (current tubes).

The possibility of reciprocal transformations of fermions
and bosons forms does not mean that a micro-particle can
stay simultaneously in two states, but it shows that a mass
(an energy) can have two states andpass from one form to
another.

It is easy to note that this model of micro-particles gi-
ves an overall original interpretation of the employed notions:
mass defectandsupersymmetry. At the same time, our model
does not require us to introduce additional particles (super-
players) which have remained undetected until now by expe-
riments and, evidently, will not be discovered.

4 The determination of the relation of the masses pro-
ton/electron

In order to compare masses of fermions, it is necessary to
consider them as objects possessing inner structure. Let us
introduce the analog where the vortex tube is similar to a jet
crossing the surface of liquid inside a bounded region and ori-
ginating ring waves, or contours of the second order (which
originate, in turn, contours of the third order, etc.). Let this
region of intersection correspond to a micro-particle. Then
it is considered now as a proper contour and can be charac-
terized by parameters of the contour: a quantum numbern,
the radius of the vortex threadr, the circuit velocityν and the
mass of the contourM.

Let us proceed to determine the quantum numbers for
micro-particles. We express the typical spin of fermions th-
rough parameters of their characteristic contour, being res-
tricted to self-evident cases, namely:

1) the spin of the particle equals the momentum of the
contour as a whole:

h
4π

= Mν r , (6)

2) the spin of the particle equals the momentum of the
contour, related to the unity element of the contour structure
(the photon):

h
4π

=
Mν r

z
, (7)

whereh = 2πamecre is the Planck constant.
The parameters ofM, ν, r following from the charge con-

servation condition are determined as [3]:

M = (an)2me, (8)

ν = c1/3
0

c
(an)2

, (9)

r = c2/3
0

re

(an)4
, (10)

and the number of photonsz in the contour for the case of the
decay of the contour (ionization) is

z≈ n4. (11)

The following evident relation ensues from the expression
of the linear densityε0 (1):

ly
re

=
my
me

=
M
me

= (an)2. (12)

In other words, the relative length of the current tube ex-
pressed through the unitsre equals the boson mass M expres-
sed through the unitsme.

Using the parameters obtained in (8), (9), (10), (11) from
(6) and (7), we find:

1) for the first particle, assuming that it is a proton

n = np =

(
2c0

a5

)1/4

= 0.3338, (13)

2) for the second particle, assuming that it is an electron

n = ne =

(
2c0

a5

)1/8

= 0.5777. (14)

Taking into account properties of fermions and bosons in
our model, we conjecture that the boson thread is able to pack
extremely compactly into thefermion formby a process of
oscillation along theY-axis. This packing is possible along all
four coordinates (degrees of freedom), because this structure
can form subsequent structures. Using (10) and (12), we find
that the relative linear dimension of a fermion along theX-
axis is proportional to the radius of the vortex thread. It can
be expressed by the formula:

r
re

=

(
r
re

) (
ly
re

)1/4

=
(c0)2/3

(an)7/2
. (15)

For instance, substituting into the above-obtained formu-
lasn = np, we find the characteristic dimensions of the proton
structure expressed through the unitsre: the radius of the vor-
tex threadr = 0.103, the linear dimension along theX-axis
rx = 0.692 and the length of the vortex threadly = 2092. For
the electron, by the substitutionn = ne, we have, respectively:
0.0114, 0.1014 and 6266.

Of course, the expression (15) has only qualitative charac-
ter, but it can be used for the calculation of themass relation
of arbitrary fermions, assuming that the respective masses are
proportional to their four-dimensional volumes:

mxp

mxe
=

(
rxp

rxe

)4

=

(
ne

np

)14

. (16)

For the given couple of particles, we have the relation
(

0.5777
0.3338

)14
= 2160, therefore it is evident that this couple is
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Fig. 1: The contours: scheme of the contours of the proton, and their
sizes (in the units ofre).

reallyprotonandelectron. Thus the given relation is equal to
the mass of the proton expressed by the units of the electron
mass. It is more evident, because the boson mass of a par-
ticle myp is almost equal to the fermion massmxp , and it is
non-randomly so. Let these masses be equal, then the more
precise value is the boson mass according to (12), because it
does not depend on the photon numberz, which is determined
by means of the approximated formula. Then we can correct
also the valuene using the relation (16), and accept that its
value is equal to 0.5763. It is necessary to correct the proton
mass and electron charge by the cosine of the Weinberg an-
gle. We obtain, as the final result, an almost exact value of
the observed proton mass:

mp

me
= (anp)2 cosqw = 1835. (17)

The Weinberg angle has also a geometric interpretation as

cosqw =
(

1
2π

)1/14
, which confirms indirectly the correctness

of the expression (16) also.
The masses of other particles expressed through the units

of the electron mass are calculated: for the fermion — accor-
ding to (16), assuming thatnp is the quantum number for an
arbitrary fermion, and for the boson — according to (12).

The quantum numbers for the electronne and the proton
np are their inner determinant parameters, emerging into the
influence zone of these particles. The parameterne determi-
nes the length of the enveloping contour of the electron as
a circle of the lengthly = (ane)2re, corresponding to three
inscribed circles of the diameterdy. The vortex threads ro-
tate inside these circles. This diameter equals the Compton
wavelength, i.e. the amplitude of electron oscillations, which

follows from the Dirac equation (the phenomena “Zitterbewe-
gung”). Evindently, it follows from geometric reasons:

dy =
(ane)2re sin(60◦)

2π
= 2.423× 10−12m, (18)

which coincides with the Compton wavelength, where
“Zitterbewegung” is confirmed by experiments [6].

Analogously, the parameternp determines the length of

the contour of the proton of the diameterdy =
(anp)2re

π
enve-

loping the extremely contractedp+ − e−-contour, parameters
of which reach critical values withν = c, Fig. 1. It follows in
this case from (9):

np = nmin =
c1/6

0

a
= 0.1889 (19)

and using (12) we find furtherly = c1/3
0 re = 669re ≈ dy.

The excitation of elementary particles gives a set of their
non-stable forms. So, fermions can have more porous and
voluminous packing of boson threads, forming hyperons, etc.
Apparently, some preferred configurations of packing exist,
but the most compact is a proton, for which the volume and
the mass of the particle areminimal for baryons.

5 Three generations of elementary particles

A micro-particle is considered in our model as an actual con-
tour, therefore any contour connecting charged particles can
be compared with a particle included in a greater contour; i.e.
the mass of a relatively lesser contour is assumed to be the
mass of a hypothetical fermion (e.g. a baryon as the analog
of a proton for greater one), as shown in Fig. 2. Thus, there
can exist correlated contours of the first and following orders
forming several generation of elementary particles. It is clear
that two quantum numbers correspond to every particle de-
pending on its classification: 1) the particle is considered as
a fermion (the analog of the proton being part of the greater
contour of the following class); 2) the particle is considered as
a boson (the mass of the contour of the previous class of parti-
cles). Fermion and boson masses are equal only for a proton,
besides they have the same quantum numbern = 0.3338.

The analog of a proton for theμ-contour is the mass of
the standard contourM = c2/3

0 me. We find from (16) its
quantum numbernμ = 0.228. The analog of a proton for
theτ-contour is the mass of theμ-contour, andnτ is determi-
ned from extreme conditions, i.e. whenν → 1, r → 1 and
nτ = nmin = 0.1889. Then we find from (16) the mass of theμ-
contour or theτ-analog of a proton which equals 6.05×106me.

It is logical to assume that by analogy with the second
class that this mass also consists of three bosons (the middle
mass of every boson 2.02× 106me, i.e. 1030 GeV), which
corresponds to the upper bound of the mass of the unknown
Higgs boson. Thus, in reality, theτ-contour is the largest and
the last one in the row.
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Fig. 2: Scheme of the families of the elementary particles.

Assume that the relation between the masses of baryons
and their leptons in the following classes of particles, i.e.
between masses of theμ-analog of the proton and a muon,
and theτ-analog of a proton and a taon, is the same as for
a proton-electron contour: it equals 2092. Then, using the
obtained value, we can estimate the masses of other leptons.
The mass of amuonequals4.48×105

2092 = 214me, whereas the

mass of ataonequals6.05×106

2092 = 2892me.
Theμ- and theτ-analogs of protons as baryons do not ac-

tually exist, but their boson masses (anμ)2me and (anτ)2meare
close to the masses of lightest mesons — kaon and a couple
of pions.

6 On the proton’s structure

Continuing a hydrodynamic analogy, we assume that any
charged particle included in a contour of circulation is the
region where a flow of the medium intersects the boundary
betweenX- andY-regions: the phase transformation is reali-
zed in this boundary and the parameters attaincritical values.

Let us now introduce the notion the density of a fermion
and a boson mass:ρx =

mx

wx
andρy =

my
wy

. Neglecting their
exact forms, assume three-dimensional volumes of fermions
and bosons in the simplest form: a fermion — as a sphere
wx = r3

x, a boson thread — as a cylinder wy = r2ly.
Using (10), (12), (15), (16), we obtain, after transformati-

ons, their respective densities:

ρx =
ρen14

e a10.5

n3.5c2
0

, (20)

ρy =
ρe(an)8

c4/3
0

, (21)

whereρe is the density of the electron for a classical volume
me

r3
e
= 4.071× 1013 kg/m3.
Of course, the densities of fermion and boson masses by

the critical section are equal. Then we find byρx = ρy the
critical quantum number and the density:

nk =
n1.217

e a0.217

c0.058
= 0.480, (22)

ρk =
ρ0 (ane)9.74

c1.797
0

= 7.65× 1016 kg/m3, (23)

It is possible to ascribe these averaged parameters to some
particle — aquark, existing only inside the phase transfer
region. At once note that a quark by this interpretation is not
a specific particle but only a part of the mass of a proton,
obtaining critical parameters. The value of the mass can be
determined from the formula (16):mk = 12.9me. It is easy to
calculate further other parameters of an electronic quark. It
is possible to verify that the density of a quark is between the
fermion and boson densities of a proton, and its size goes in
to the size of a nucleon.

The critical velocity of a vortex current is determined
from the known hydrodynamic equation:

νk =

(
pk

ρk

)1/2

, (24)

where in this case:νk is the critical velocity,ρk =
mk

wk
is the cri-

tical density, wk is the volume of the quark,pk is the pressure
in the critical section, or the energy related to a corresponding
volume. The energy of the standard contour equalsmec2 [3],
and the critical volume is determined aszkwk, wherezk is the
number of quarks.

Substituting the indicated values and expressing alsoνk
through (9), we find from (24) the number of quarks as

zk =
(ank)4me

c2/3
0 mk

= 3.2. (25)

This result shows that the flow of the general contour must
split into three partsin the region of the proton so as to satisfy
the conditions of critical density and velocity. The relation of
boson masses of an electron and a proton equals the same

value. In fact, using (12), we obtainMe

Mp
=

(
ne

np

)2
= 3.0.

It means that in order that the conditions of current conti-
nuity and charge steadiness in any section of the contour are
realized,inverse circulation currentsmust arise in a neigh-
borhood of a proton. It can be interpreted as a whole that
zones with different signs of charge exist in a proton. Using a
minimalnumber ofnon-recurrent force current lines, we can
express schematically current lines in a proton in a unique
way, as shown in the Fig. 3

As seen, there exist two critical sections with a conditio-
nally plus current (up in the scheme) and one section with a
conditionally minus current (down in the scheme), where th-
ree current lines correspond to a general current in the
scheme. Therefore, the fermion surface of a proton is cons-
tructed: the regions where force lines intersect the critical
sections on the line 0 – 0 inside a proton will be projected
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on this surface in the form+2/3, +2/3, −1/3 from the total
charge according to the number and direction of the force li-
nes intersecting this surface.

Therefore, it is more correct to associate quarks not with
critical sections but withsteady ring currents, containing one
or two closed single contours intersecting the critical sec-
tion, as follows from the scheme. Therefore the masses of
quarks can be determined as 1/3 or 2/3 from the summary-
calculated 12.9me, i.e. they must be equal, respectively, to
4.3me and 8.6me , which coincides in fact with the masses of
light quarks determined at the present time.

Parameters of quarks ofμ- and τ-classes are calculated
analogously by substitution of muon and taon quantum num-
bers in place ofne, respectively, (Table 1).

Of course, the proposed structure of the proton is a hy-
pothesis of the author only. Nevertheless, the definite num-
bers and masses of quarks here do not contradict the ones ob-
tained by other methods earlier. Concerning theconfinement
or non-flying of quarks: this phenomenon is self-evident, be-
cause a proton in the presently given model has no combined
parts, but it has only local features in its structure. The den-
sity of a proton in critical-value regions is considerable less
than its fermion density: they are, probably “holes” and, of
course, they cannot be distinguished as individual particles.
On the other hand, only regions of critical sections, being of
advanced frontal velocity pressure (dynamical pressure), are
observed by experiments aspartons.

We can deduce one more reason on behalf of the stated
model: the Georgi-Glashow hypothesis of a linear potential
exists. According to this hypothesis, between infinitely heavy
quarks there must act, independently from a distance, a force
of attraction (approximately 14 tons). Current tubes are just
linear objects in our model.

Concerning the force: its limiting value can be expressed
here as the sum of electrical forces’ projections relative to the
center of the right triangle. The forces act in pairs between
critical sections carrying an elementary charge by the condi-
tion that the distance between them is minimal (according to
(10), for a quarkr = 0.0239re). Then, taking into account
(3), we findFe =

3 cos 30◦

μ0 r2 = 1.33× 105 N or 13.3 tons.

7 The weak interaction and the neutrino

The stated scheme of a proton allows us to give a native illus-
tration to the proton-neutron transitions in the weak interacti-
ons. For example, in the case of the so-called hunting pheno-
menon (e-capture) if a proton and an electron bring together
up to n 6 1) an intermediate contour is formed, connecting
the particles temporarily. The boson mass of the contour, in
addition, must be more than the sum of the combined boson
masses of the proton and the electron, precisely:

M = (an)2me + myp + mye. (26)

Let n =1, thenM = 27108me. Using the general relation

Fig. 3: Scheme of the proton: distribution of the current lines inside
the proton.

between the boson mass of a contour and a lepton, we find the
mass of the fermion for this contour:mx =

27137
2092 = 12.9me.

This result turns out to be independent. The obtained va-
lue M coincides with a total mass of the quark and confirms
that in the process ofe-capture the temporal contour is ac-
tually formed, which is analogous to earlier considered con-
tours (section 5) where one of the critical sections of a proton
as a lepton is present.

Recall that our model contour has the properties of ideal
liquid, therefore closed ring formations as parts of this con-
tinuum are absolutely inelastic and absolutely deforming at
the same time. The contour connecting the particles, by their
further coming together, transmits a share of energy-
momentum to the inner structure of the proton, deforms and
orients itself to theY-region; then it is extracted as aneutrino
which takes the momentum (spin) of the electron (Fig. 1). In
other words, this process is similar to a separation of charge
and spin — the phenomenon, fixed in hyperfine conductors
[7], which vortex tubes are supposedly similar to.

A similar contour is formed by every act of the weak in-
teraction, and it corresponds to the exchange of intermediate
bosons. The relative slowness of this process is connected
with the time constant t. The typical value oft, taking into
account a spiral derived structure, determined by the time du-
ring which a circulating current passes with the velocityν
through all line of the “stretched” counter (the size ofW-,
Z-particles). For the standard contour we have

t = (4.884)2
Rb (re/r)
ν

= 1.25× 10−9 sec, (27)

where 4.884 is the quantum number for a standard contour
[3], r andν are determined by (9) and (10) by the givenn, Rb

is the Bohr first radius.
It follows from the logic of the model, that a neutrino is a

particle analogous to a photon, but it spreads in theY-region,
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i.e. it transfers energy along the vortex tube of the contour. As
known, two kinds of these particles: a neutrino — with a left
spiral and an anti-neutrino — with a right spiral, correspon-
ding to two poles of a general contour. Because a neutrino
is a closed structure and exists only in theY-region, it has
no considerable charge and the mass in a fermion form ( i.e.
in form of theX-surface objects). Probably, a neutrino has a
spiral-toroidal structure and thus it inherits or reproduces (de-
pending on the type of the weak interaction) the structure of
the vortex tube of the contour.

8 On the magnetic-gravitational interaction

Consider a possibility of existence of the mentioned closed
contours at the express of an equilibrium between magnetic
forces of repulsion and electrical forces of attraction. Let us
formally write this equality for tubes with oppositely directed
currents, neglecting the form of the contour and its possible
completeness, and expressing the magnetic forces through the
Ampere formula in the “Coulomb-less” form:

zg1zg2γm2
e

r2
i

=
ze1ze2 μ0m2

ec2 li
2π ri × [sec2]

, (28)

wherezg1, zg2 , ze1, ze2, ri , li are gravitational masses and
charges expressed through masses and charges of an electron,
a distance between current tubes and theirs length.

Substitutingμ0 from (2), we derive from (28) the cha-
racteristic size of the contour as themean-geometricof two
linear values:

lk =
√

li ri =

√
zg1zg2
ze1ze2

√
2πγε0 × [sec]. (29)

The parameterlk is composite. Using the formulas (10),
(12), (29), we obtain for a contour with a unit charge the va-
lues li and ri , where the lengths are expressed by the units
of re:

li =
c2/3

0

l2k
, (30)

ri =
l4k

c2/3
0

. (31)

The contour can be placed both in theX-region (for exam-
ple, a contourp+– e−) and in theY-region (inside an atomic
nucleus). A deformation of the contour, for example, its con-
traction by the e-capture, takes place by means of theβ-decay
energy. When a proton and an electron come together, energy
and fermion-mass increase of the contour occurs, while the
boson mass decreases, but the impulse (charge) is conserved.

Consider some characteristic cases of a contour contrac-
tion and of a further transition of the nucleon from a proton
form into a neutron one.

a) Write the equality (29) forp+– e−-contour, where
zg1 =

mp

me cosqw
is the relative mass of the proton, where the

cosine of the Weinberg angle is considered, andzg2 = 1. In
this caselk = 5977.4re, which corresponds to the valueRb

π

exactly. In other words, for the contourp+– e−:

lk =

√
mp

me cosqw

√
2πγε0 × [sec]=

Rb

π
. (32)

The extension of the contour is now impossible, because
all the mass of the proton is involved in the contour of circu-
lation. Thus the parametersli and ri are limited and equal
to 0.0125 and 2.850× 109 re, respectively, i.e. the length
of contour tubes equals the radius of the vortex thread of an
electron, approximately (section 4), and the distance between
them equals the limiting size of the hydrogen atom (3902Rb).
The last result is confirmed by the fact that the maximal level
of energizing of hydrogen atoms in the cosmos, registered at
the present time by means of radio astronomy, does not ex-
ceedn = 301 [8].

b) Let lk be equal to the Compton wavelengthλk = 2πare.
In this case,li and ri are equal to 0.604 and 1.227× 106 re,
respectively, i.e. the length of contour tubes corresponds to
the diameter of a nucleon, and the distance between them —
to the size of the most atomic size (82Rb). Thus, taking into
account (30) and the expression forλk, we can express the
proton radius in the form:

r p =
c2/3

0

8π2a2
= 0.302re = 851 fm, (33)

which corresponds to the size of the proton, determined by
the last experiments (842 fm) [9].

The equality (29) oflk = λk is observed, if the relation
zg1zg2
ze1ze2

= 43.4. This value can be interpreted as the product of
the masses of two quarkszg1zg2, included in the contour of a
nucleon or an atomic nucleus.

c) The critical contour ofν = c. Hereli = c1/6
0 , ri = c1/3

0 ,
lk = c1/4

0 by the units ofre. The equality (29) is fulfilled
provided that the relationzg1zg2

ze1ze2
≈ 1. A fraction of the impulse

is transmitted to its own current (quark) contour of the proton
by a further contraction of the contour, because the velocity
of circulation cannot exceed the light velocity.

d) The contour is axially symmetric and is placed at the
intersection of regionsX andY, which corresponds to a tran-
sient state between a proton and a neutron. It is logical to as-
sume that the mass of the contour is situated in a critical state
which is intermediate between fermion and boson forms. It is
possible to suppose, according to the considered model, that a
boson thread is contracted already into a contour by the length
lk, but it is not packed yet into a fermion form.

In this caseli = ri = lk = c2/9
0 re, and the equality (29)

is fulfilled provided that the relationzg1zg2
ze1ze2

≈ 1/3. The limit
impulse of this contourI = πε0 lk c ≈ e0

3 cosqw
, consequently it

could correspond to one excited quark contour.
The size of the magnetic-gravitational contour is correla-

ted with the size of an atom depending on the value of gravi-
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tational masses involved in its structure; the product of these
masses is in the limits (5.4 . . . 43)m2

e in the intervals of the
main quantum numbersn = 1, . . . , 8. Moreover, in the re-
gion X the relationzg1zg2

ze1ze2
is proportional to the degree of de-

formation of the contour, i.e. to the relation of the size of the
symmetric contourlk with respect to the small axis of the de-
forming one; the coefficient of proportionality isconstantand
equal to 0.34≈ 1/3.

The contour is reoriented into the regionY by the proton-
neutron transition. However in this case, in the regionY, there
is a sole solution, which determines the critical contour by
ν = c. Herel i = c1/3

0 , ri = 1, lk = c1/6
0 by the unitsre. The

contour is inserted in the current tube with the sizere and the
inverse relation is realized exactly for this contour:

ze1ze2

zg1zg2
=

lk
3ri
. (34)

Taking into account that for the symmetric contourlk =

c2/9
0 re and using the formula (29), we have, after transforma-

tions,
c5/9

0 r2
e

2πγε0 × [sec2]
= 3. (35)

The uniqueness of the solution indicates that, by the tran-
sition of a proton into a neutron, the contour is isolated into
the regionY, namely with the corresponding critical parame-
ters, and corresponds to a neutrino.

The expressions (32) and (35) are exact, as the valuesπ
and 3 reflect the geometry of the space and its three-
dimensionality. It is possible to deduce from them the for-
mula of thegravitational constantusing the least quantity of
values possessing dimensions, and to obtain also the more
exact expression for the Weinberg angle. So, removing the
expression forε0, we find from (35), after transformations,

γ =
c5/9

0

6πρe × [sec2]
= 6.6733× 10−11 m3/sec2kg, (36)

from (32) and (35):

cosqw =
π2c5/9

0

3a4

mp

me
= 0.8772. (37)

Note that the expression forγ shows that the gravitational
constant is an acceleration, i.e. the velocity at which the spe-
cific volume of matter in the Universe changes, in view of its
expansion.

Thus, the analysis of a magnetic-gravitational equilibr-
ium, additionally and independently, confirms the existence
of three zones in the proton structure and the correspondence
to the masses of light quarks of the active parts of the pro-
ton mass, included in the circulation. The conditions stated
in sections 4, 6, 8 reflect different aspects of the unit structure
of a proton as a whole.

9 The determination of the mass and lifetime of the neu-
tron

A neutron is somewhat heavier than a proton, which is due
to the excited condition of its own current (quark) contours.
But in SM, only one quark from among the three undergoes
a transformation by the proton-neutron jump. Let us assume
that this quark contour obtains in addition the energy of a
symmetric contour (which is considered in this situation as
the own contour of a particle of the massε0lk), which leads
to its size extension and, respectively, to the increase of the
nucleon mass.

Let us equate a total-energy differential, obtained by a nu-
cleon, to the rotational energy of a symmetric contour except
the initial rotational energy of a quark contour:

(mn −mp)c2

cosqw
= ε0 lkν

2
i −

mkν
2
k

2
, (38)

whereνi is the peripheral velocity of a symmetric contour,νk
is the peripheral velocity of a quark contour,1

2 mk is the ave-
raged mass of a quark contour (section 6). Starting from the
massesc2/9

0 me and 12.9me, theirs quantum numbers are de-
termined from the formula (16), the rotational velocities —
from (9). Substituting these values we obtain after transfor-
mations the expression (by the unites ofme andre):

mn −mp = rie


c

2/7
0 −

m9/7
k

2


 cosqw = 2.53me, (39)

whererie is the radius of the vortical thread of the electron
determined from (10).

After discharge of a neutrino and deletion of three enclo-
sed current lines, there remains one summary contour in the
neutron. This contour consists of three closed force lines. Its
size can maximally reach the size of a symmetric contour by
means of the obtained energy. This contour forms three vor-
tex threads by the lengthly with co-directed currents. These
threads rotate relative to the longitudinal axis and have the
boson massesmy. The equality of magnetic and inertial (cen-
trifugal) forces for vortex threads must follow from the equi-
librium condition. By analogy with (28), we have:

my ν20
ri

=
ze1ze2 μ0m2

ec2 ly
2π ri × [sec2]

, (40)

whereν0 is theperipheral velocityof vortex threads. Taking
into account (1), (2), (12), we find from (40):

ν0 =

√
ze1ze2 re

√
2π × [sec]

, (41)

where the velocity does not depend on the length of the vortex
threads and the distance between them.

A spontaneous, without action of outer forces, neutron-
decay is realized just owing to the own rotation of vortex
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threads, causing a variation of its inner structure. In other
words, the excited contour deforms and is turned into another
configuration with less energy, which corresponds to the ini-
tial energy of the proton. This process must characterize itself
by theconstant of timewhich can be determined as a quoti-
ent from a division of the characteristic linear size in terms
of the peripheral velocityν0. As the diameter of the tube is
not determined,ri is not determined, then it is expediently to
consider the length of a symmetric transient contourπ lk as a
characteristic size. In this case, the constant of time takes the
form for unit charges:

τ =
π lk
ν0

=
√

2π3 c2/9
0 × [sec]= 603 sec. (42)

On the other hand, the constant of time can be determined
also from energetic reasons, taking into account the difference
of the masses of nucleons.

Let a neutron lose step-by-step the transmitted total en-
ergy (mn − mp)c2 by portions which are proportional to the
energy of an electronmeν

2
e, whereνe is the electron’s own-

contour rotational velocity during the time equal to the period
of vortex threads rotation inside the current tube. Determine
this characteristic time asre

ν0
= 2.51 sec, then, taking into

account (9), (39), (41), we obtain the period of the total dis-
persion of the energy by a neutron:

τ =

√
2π (mn −mp) × [sec]

rie cosqw
= 628 sec, (43)

The obtained constants of time correspond to the half-life
of a neutronτ1/2. By definition,τ1/2 = ln 2× τn, whereτn is
the lifetime of a neutron; its value which is obtained by one
of the recent studies is 878.5 sec [10], thenτ1/2 = 609 sec.

Note that the contour of a neutrino also consists of three
different vortex fields and probably undergoes periodically
small variations of time when forming three configurations
relative to a chosen direction. This result, probably, can ex-
plain the problem of solar neutrinos and their possible varia-
tions.

10 On theβ-decay energy

The energy of the excited contour of a neutron by its decay
is transmitted to an electron and an anti-neutrino extracted
by this process. Taking into account (1), (9), (16), we can
express, in relative units, the additional impulseIβ = πε0 lkνi
transmitted to a nucleon from the symmetric contour:

Iβ =
πc37/63

0

(ane)2
= 47.92mec. (44)

This impulse is distributed between the contours of a neu-
trino and an electron with the total massMβ, and these con-
tours are present in any process of the weak interaction.

In addition, the mass of a neutrino contour isc1/3
0 me, and

the mass of an electron contour also cannot be smaller than

the critical valuec1/3
0 me. The velocity of rotation of the con-

tour by the impulse transmission will beIβMβ
, and theβ-decay

energy isEβ =
I2
β

Mβ
; then its maximal value, transmitted additi-

onally to the electron and neutron contours, and, consequen-
tly, to the electron and the neutrino, occurs atMβ = 2c1/3

0 me.
Substituting the values, we obtain the boundary value of en-
ergy: Eβ0 = 1.72 (in the units ofmec2) or 0.88 MeV.

The same result can be obtained by means of another,
independent way, if we assume that the transient contour is
symmetric from an energetic viewpoint (but not from a geo-
metric one). Assume that the limit energy of the mass of a
fermion contour equals the energy of rotation of this mass in
a boson form, i.e.mxc2 = myν2. Introduce also into the ex-
pression of the impulse the value of the spin of the contour:
it allows us to characterize the process of theβ-decay more
objectively. Correct to this end the quantum numberne for
the unit relative mass (the mass of an electron) in the case of
arbitrary spin. It is evident that, taking into account of (7) and
(14), nei =

ne

k1/8 , wherek is the relation between an arbitrary
spin value and the spin 1/2.

Taking into account the aforesaid equalities and using the
formulas (9), (12), (16), we obtain as a result the expression
for the impulse of the contour which is analogous to (44), in
the units ofmec:

Iβ =
k7/12c11/9

0

(ane)14/3
. (45)

It gives, for k = 2, the value of the impulse 47.96mec,
coinciding with the result of the formula (44).

Thus we have showed that, by the transient condition of a
nucleon, the symmetric contour obtains temporarily the spin
1 (joining the spin of an electron 1/2, which then takes a neu-
trino).

This energy of theβ-decay for isotopes can be higher, and
its maximal value can be determined. According to our mo-
del, a symmetric contour can transfer the limit impulse which
equals one third of a charge (section 8, d). Then, taking into
account (5), assumingMβ = 2c1/3

0 me and introducing the
Weinberg angle, we obtain as a result the simple expression
of theβ-decay limit energy in the units ofmec2:

Eβlim =
c1/3

0 cosqw

18
= 32.6 (46)

or 16.7 MeV.
In fact, the maximal value of theβ-decay energy among

different isotopes is registered for the transition N12→C12

(16.6 MeV), which coincides with the calculated value. The
value of the impulse which corresponds to the given energy
follows from the formula (45) byk = 28. In other words, the
obtained spin is proportional to the number of nucleons in the
nucleus (for a nitrogen, 28/2 = 14).

In the case ofe-capture only a neutrino is extracted, then
Mβ = c1/3

0 me, and the typical energy of the neutrino must be
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1.75 MeV.
Namely, such contours, possessing symmetric forms and

balanced energies (quarks), are the base of the microstructure
of particles:threequarks for baryons andtwo — for mesons.
Partially, fork = 1, the contour, possessing the spin 1/2, has
the mass 146.4me. Consequently, two such contours, de-
pending on their properties of combination, can form mesons
more easily — pions, and their excited states — , i.e. heavier
micro-particles.

Thus, the results obtained in sections 8, 9, 10 in the frame-
work of our model correspond to well-known parameters and
admissible limits. Various coincidences of the calculated va-
lues with reality (e.g. the number of quarks, the sizes of the
axes of characteristic contours, the size of the proton, the gra-
vitational constant, the difference of the masses of nucleons,
the half-life of the neutron, theβ-decay energy) cannot have
accidental nature: they prove that the structure satisfying the
magnetic-gravitational equilibrium condition really exists in
the micro-world.

11 The magnetic moments of the proton and the neutron

The anomalous magnetic moment of the protonμp in the gi-
ven model can be calculated as follows. The valueμp depends
on the boson configuration of a proton and is determined re-
lative to theY-axis whereμp is the product (charge×velocity
×path). We thus have, for a vortex thread, a peripheral velo-
city ν and a circumferenceπr. Substitutingν andr from (9)
and (10), we obtain as a result:

μ =
πc0ce0 re

(anp)6
= 1.393× 10−26 am2, (47)

which differs insignificantly from the experimental value.
The magnetic moment of the neutron equals two thirds of

the proton’s magnetic moment, i.e. proportional to the reduc-
tion of the number of intersections of the critical sections by
current lines for a proton (six instead of nine, existing in a
proton, see Fig. 3). Naturally, the sign of the moment chan-
ges in addition, because three positive enclosed currents are
removed.

The calculated values of some parameters with respect
to reality, or obtained earlier by other methods, are given in
Table 1.

12 Conclusion

This work is an attempt to add a physically descriptive inter-
pretation to some phenomena of the micro-world using both
topological images of Wheeler’s geometrodynamic idea and
further macro-world analogies. This approach allows us to
include into consideration inertial and gravitational forces.

This model has a logical demonstrative character and de-
termines a scheme for the construction of a possible theory
adding up the Standard Model (SM) of particle physics. The
new theory must use such mathematical apparatus, in the fra-
mework of which vortex structures and their interactions

Particles∗ Calculated data Actual data

Family 1

Proton 1835 1836

Electron 1 1

Quark 12.9 (4.3; 8.6) 3.93; 9.37

Family 2

μ-analog of the proton,mxμ 4.48× 105 4.92× 105 †

Muon 214 206.8

μ-quark 8780 3230; 276

Family 3

τ-analog of the proton,mxτ 6.31× 106 ?
τ-lepton 2892 3480
τ-quark 233000 348000; 8260

Other parameters

Charge of the electron, kg m/s 1.603× 10−19 1.602× 10−19

Number of the quarks
(on the basis of the phase
transit condition) 3.2 3

Number of the quarks
(on the basis of the magnetic-
gravitational equilibrium) 3 3

Interacting force among
the quarks, N 1.33× 105 1.4× 105

Weinberg angle 28.2◦ 28.7◦

Compton wavelength, m 2.423× 10−12 2.426× 10−12

The gravitational constant,
m3/kg sec2 6.673× 10−11 6.673× 10−11

Radius of the proton, fm 851 842

Difference between the mass
of the proton and the mass
of the neutron,me 2.53 2.53

Semi-decay of the neutron
(kinematic estimation), sec 603 609

Semi-decay of the neutron
(energetic estimation), sec 628 609

Ultimate high energy of
theβ-decay, MeV 16.7 16.6

Magnetic moment of
the proton, am2 1.39× 10−26 1.41× 10−26

Magnetic moment of
the neutron, am2 −0.92× 10−26 −0.97× 10−26

∗Masses of the particles are given in the mass of the electron.
†The summary mass of the W, Z-bosons.

Table 1: The actual numerical parameters, and those calculated ac-
cording to the model suggested by the author.
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could be described. As often mentioned by the author, the
contours will be mapped out by singular configurations of
force lines of some field.

Nevertheless, the present model gives a correct interpre-
tation even in the initial, elementary form where only laws
of conservation are used. It explains some phenomena mi-
sunderstood in the framework of SM and allows us to obtain
qualitative and, sometimes, quantitative results by calculation
of important parameters of the micro-world.

In part, this model predicts that it is impossible by means
of experiments conducted at the BAC to obtain new particles
— dubbed “super-partners”: rather, it is necessary to seek
new massive vector bosons in the region of energies approxi-
mating 1000 GeV.

Submitted on October 13, 2011/ Accepted on January 31, 2012
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Quantum Uncertainty and Relativity
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The major challenge of modern physics is to merge relativistic and quantum theories
into a unique conceptual frame able to combine the basic statements of the former with
the quantization, the non-locality and non-reality of the latter. A previous paper has
shown that the statistical formulation of the space-time uncertainty allows to describe
the quantum systems in agreement with these requirements of the quantum world. The
present paper aims to extend the same theoretical model and approach also to the special
and general relativity.

1 Introduction

Merging quantum mechanics and general relativity is surely
the most challenging task of the modern physics. Since their
early formulation these theories appeared intrinsically dis-
similar, i.e. conceived for different purposes, rooted on a dif-
ferent conceptual background and based on a different math-
ematical formalism. It is necessary to clarify preliminarily
what such a merging could actually mean.

A first attempt was carried out by Einstein himself in the
famous EPR paper [1] aimed to bridge quantum behavior and
relativistic constraints; he assumed the existence of hypothet-
ical “hidden variables” that should overcome the asserted in-
completeness of the quantum mechanics and emphasize the
sought compatibility between the theories. Unfortunately this
attempt was frustrated by successive experimental data ex-
cluding the existence of hidden variables. The subsequent
development of both theories seemed to amplify further their
initial dissimilarity; consider for instance the emergence of
weird concepts like non-locality and non-reality of quantum
mechanics, which make still more compelling the search of
an unified view.

The most evident prerequisite of a unified model is the
quantization of physical observables; being however the gen-
eral relativity essentially a 4D classical theory in a curved
non-Euclidean space-time, the sought model requires new hy-
potheses to introduce the quantization. A vast body of litera-
ture exists today on this topic; starting from these hypotheses
several theories have been formulated in recent years, like the
string theory [2,3] and loop quantum gravity [4], from which
were further formulated the M-theory [5] and the supersim-
metric theories [6]. The new way to represent the particles as
vibrating strings and multi-dimensional branes is attracting
but, even though consistent with the quantization, still under
test. Moreover the quantization of the gravity field is not the
only problem; additional features of the quantum world, the
non-locality and non-reality, appear even more challenging
as they make its rationale dissimilar from that of any other
physical theory. The quantum mechanics postulates a set of
mathematical rules based on the existence of a state vector |ψ⟩
describing the quantum system in Hilbert space and a Hermi-

tian operator corresponding to a measure, whose outcomes
are the eigenvalues that represent the observables; the evolu-
tion of a system is represented by an evolution operator T (t)
such that |ψ(t)⟩ = T (t) |ψ(0)⟩ operating on the state vector at
the initial time. To these rules overlap also the exclusion and
indistinguishability principles to formulate correctly the state
vectors. The relativity rests on physical intuitions about the
behavior of masses in a gravity field and in accelerated sys-
tems; it postulates the equivalence between gravitational and
inertial mass and aims to build a covariant model of physical
laws under transformation between inertial and non-inertial
reference systems.

Apart from the apparent dissimilarity of their basic as-
sumptions, a sort of conceptual asymmetry surely character-
izes the quantum and relativistic theories; on the one side
abstract mathematical rules, on the other side intuitive state-
ments on the behavior of bodies in a gravity field. If the
unification of these theories concerns first of all their basic
principles, the task of introducing into a unified model even
the concepts of non-locality and non-reality appears seem-
ingly insurmountable. Eventually, a further concern involves
the choice of the mathematical formalism appropriate to the
unified approach. In general the mathematical formulation
of any theoretical model is consequence of its basic assump-
tions. The tensor calculus is required to introduce covariant
relativistic formulae in curvilinear reference systems; is how-
ever its deterministic character really suitable to formulate a
non-real and non-local theoretical model? This last remark
is suggested by previous papers that have already touched on
this subject.

Early results showed that a theoretical approach based on
the quantum uncertainty only, introduced as a unique assump-
tion to calculate the electron energy levels of many-electron
atoms/ions and diatomic molecules [7,8], could be subse-
quently extended to the special relativity too [9] while be-
ing also consistent with the concepts of non-localism and
non-realism of quantum mechanics. Despite this encouraging
background, however, so far the implications of the concepts
introduced in the quoted papers have not been fully investi-
gated and systematically exploited. In these early papers, the
connection between quantum approach and special relativity
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was preliminarily acknowledged through gradual results pro-
gressively obtained, concerning however other less ambitious
tasks; for instance, to assess the chance of superluminal speed
of neutrinos [9]. The decisive strategy to this purpose was to
regard the concept of uncertainty as a fundamental law of na-
ture and not as a mere by-product of the commutation rules of
operators. The statistical formulation of the quantum uncer-
tainty has been proven effective on the one side to explain and
account for all of the aforesaid features of the quantum world,
i.e. quantization and non-reality and non-locality, and on the
other side to obtain as corollaries the basic statements of spe-
cial relativity too along with the invariant interval and Lorentz
transformations. So it seemed sensible to exploit more pro-
foundly these early achievements before proceeding towards
a more advanced generalization including the general relativ-
ity too.

The present paper aims to collect together and push for-
ward these preliminary results through further considerations
having more general and systematic character; the approach
proposed here is purposely focused towards a unifying task
able to combine together quantum and relativistic require-
ments within the same conceptual frame. For this reason the
present paper heavily rests on previous results introduced in
the quoted references. While referring to the respective pa-
pers when necessary, some selected considerations very short
and very important are again reported here for clarity of ex-
position and to make the present paper as self-contained as
possible.

The paper consists of three parts. The first part, exposed
in section 2, merely summarizes some concepts already pub-
lished and some selected results previously achieved; these
preliminary ideas are however enriched and merged together
with new suggestions. The second part, section 3, stimulates
further considerations approaching the intermediate target of
merging together basic concepts of quantum mechanics and
special relativity. The third part, section 4, aims to show that
effectively even the most significant Einstein results of gen-
eral relativity are compliant with the quantum approach here
proposed.

The foremost concern constantly in mind is how to trans-
fer into the beautiful self-consistency of relativity the alien
concepts of quantization, non-locality and non-reality of the
quantum world.

2 Preliminary considerations

The present section collects some ideas and results reported
in previous papers concerning the statistical formulation of
quantum uncertainty. Two equations sharing a common num-
ber of allowed states

∆x∆px = nℏ = ∆ε∆t (2,1)

are the only basic assumption of the present model. No hy-
pothesis is made about size and analytical form of these ran-

ges, which are by definition arbitrary. These equations disre-
gard the local values of the dynamical variables, considered
indeed random, unknown and unpredictable within their un-
certainty ranges and thus of no physical interest. The concept
of uncertainty requires the particle delocalized everywhere in
its space range ∆x without any further detail about its ac-
tual motion; in practice the theoretical approach describes a
system of quantum particles through their uncertainty ranges
only exploiting the following positions

px → ∆px, x→ ∆x, t → ∆t, ϵ → ∆ϵ. (2,2)

The first relevant consequence is that the calculations
based on these ranges only waive in fact a specific kind of
reference system. Consider for instance ∆x = x − xo: the
lower boundary xo describes the position of ∆x with respect
to the origin O of an arbitrary reference system R, the upper
boundary x its size. So, owing to the lack of hypotheses or
constraints on xo and x, the considerations inferred through
the ranges (2,2) hold in any R whatever it might be, Cartesian
or curvilinear or else; also, being both boundary coordinates
xo and x arbitrary and unknowable, their role as concerns size
and location of ∆x in R could be identically exchanged. Hold
also for the other ranges, e.g. for to and t of ∆t = t − to, the
same considerations introduced for xo and x, in particular the
arbitrariness of the time coordinates in the reference system
where is defined the time length ∆t.

If in R both boundaries are functions of time, as it is to be
reasonably expected according to eqs. (2,1), then not only the
range size is itself a function of time dependent on the rela-
tive signs and values of ẋ and ẋo, but also the results hold for
reference systems in reciprocal motion; indeed a reference
system Ro solidal with xo moves in R at rate ẋo and possi-
ble acceleration ẍo. Nothing indeed compels to regard ẋo as a
constant, i.e. Ro could be non-inertial or inertial depending on
whether the concerned physical system admits or not accel-
erations. As any outcome inferred through the positions (2,2)
holds by definition in an arbitrary reference system R or Ro, it
is clear since now the importance of this conclusion in relativ-
ity, which postulates covariant general laws of nature. Intro-
ducing local coordinates requires searching a covariant form
for the physical laws thereafter inferred; once introducing ar-
bitrary uncertainty ranges that systematically replace the local
coordinates “a priori”, i.e. conceptually and not as a sort of
approximation, hold instead different considerations.

This topic will be concerned in the next subsection 4.1.
Here we emphasize some consequences of the positions (2,2):
(i) to waive a particular reference system, (ii) to fulfill the
Heisenberg principle, (iii) to introduce the quantization thro-
ugh the arbitrary number n of allowed states, (iv) to overcome
the determinism of classical physics, (v) to fulfill the require-
ments of non-locality and non-reality [9]. Hence appears sen-
sible to think that an approach based uniquely on eqs. (2,1)
through the quantum positions (2,2) is in principle suitable to
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fulfil the requirements of special and general relativity too,
far beyond the conceptual horizon of the quantum problems
to which the quoted papers were early addressed. While be-
ing well known that the concept of uncertainty is a corollary
of the operator formalism of wave mechanics, the reverse path
is also possible: the operators of wave mechanics can be in-
ferred from eqs. (2,1) [9]. The operator formalism is obtained
introducing the probability Πx = δx/∆x for a free particle to
be found in any sub-range δx included in the whole ∆x during
a given time range δt; it is only required that the sub-range be
subjected to the same conditions of arbitrariness and uncer-
tainty of ∆x. Analogous considerations hold in defining the
probability Πt = δt/∆t for the particle to be confined during a
time sub-range δt within a given δx, while ∆t is the time range
for the particle to be within ∆x. These probabilities allow to
infer the operators

px → ±
ℏ

i
∂

∂x
, ϵ → ±ℏ

i
∂

∂t
. (2,3)

As intuitively expected, the space and time sub-ranges δx
and δt describe a wave packet having finite length and mo-
mentum that propagates through ∆x during ∆t. The positions
(2,2), directly related to eqs. (2,1), and the non-relativistic po-
sitions (2,3), inferred from eqs. (2,1), compare the two pos-
sible ways of introducing the quantum formalism. This result
is important for two reasons: (i) it justifies why eqs. (2,1)
lead to correct quantum results through the positions (2,2);
(ii) the connection and consistency of the positions (2,2) with
the familiar wave formalism (2,3) justifies the starting point
of the present model, eqs. (2,1) only, as an admissible option
rather than as an unfamiliar basic assumption to be accepted
itself. Although both eqs. (2,1) and the wave equations in-
troduce the delocalization of a particle in a given region of
space, in fact the degree of physical information inherent the
respective approaches is basically different: despite their con-
ceptual link, eqs. (2,1) entail a degree of information lower
than that of the wave formalism; hence they have expectedly
a greater generality.

Consider a free particle. Eqs. (2,1) discard any informa-
tion about the particle and in fact concern the delocalization
ranges of its conjugate dynamical variables only; accordingly
they merely acknowledge its spreading throughout the size
of ∆x during the time uncertainty range ∆t. Being also this
latter arbitrary, the information provided by eqs. (2,1) con-
cerns the number of states n allowed to the particle and its
average velocity component vx = ∆x/∆t only. The wave me-
chanics concerns and describes instead explicitly the particle,
which is regarded as a wave packet travelling throughout ∆x;
as it is known, this leads to the concept of probability density
for the particle to be localized somewhere within ∆x at any
time. The probabilistic point of view of the wave mechanics,
consequence of Πx and Πt, is replaced in eqs. (2,1) by the
more agnostic total lack of information about local position
and motion of the particle; this minimum information, con-

sistent with the number of allowed states only, corresponds
in fact to the maximum generality possible in describing the
physical properties of the particle. The fact that according to
eqs. (2,1) the particle could likewise be anywhere in all avail-
able delocalization range, agrees with the Aharonov-Bohm
effect: the particle is anyhow affected by the electromagnetic
field even in a region of zero field, because the probabilis-
tic concept of “here and then there” is replaced by that of
“anywhere” once regarding the region of the concerned field
as a whole 3D uncertainty volume whose single sub-regions
cannot be discerned separately. These conclusions also ex-
plain the so called “EPR paradox”: the idea of spooky action
at a distance is replaced by that of action at a spooky dis-
tance [9], because the positions (2,2) exclude the concept of
local positions and thus that of a specific distance physically
distinguishable from any other distance. Just because ignor-
ing wholly and in principle the particle and any detail of its
dynamics, while concerning instead uncertainty ranges only
where any particle could be found, the indistinguishability of
identical particles is already inherent the eqs. (2,1); instead
it must be postulated in the standard quantum wave theory.
The number n of allowed states is the only way to describe
the physical properties of the particle; this explains why n
plays in the formulae inferred from eqs. (2,1) the same role
of the quantum numbers in the eigenvalues calculated solv-
ing the appropriate wave equations [7]. An evidence of this
statement is shortly sketched for clarity in section 3.

The generality of eqs. (2,1) has relevant consequences:
the approach based on these equations has been extended to
the special relativity; instead the momentum and energy op-
erators of eqs. (2,3) have limited worth being inherently non-
relativistic. In effect the probabilities Πx and Πt have been in-
ferred considering separately time and space; it was already
emphasized in [9] that Πx and Πt should be merged appro-
priately into a unique space-time probability Π(x, t). The ne-
cessity of a combined space-time reference system will be
discussed in the next section 3. This fact suggests that a gen-
eral description of the system is obtainable exploiting directly
eqs. (2,1), which by their own definition introduce concur-
rently both space and time coordinates into the formulation
of quantum problems; in short, the present paper upgrades
the early concept of uncertainty to that of space-time uncer-
tainty in the way highlighted below.

It has been shown that eqs. (2,1) also entail inherently
the concepts of non-locality and non-reality of the quantum
world: the observable outcome of a measurement process is
actually the result of the interaction between test particle and
observer, as a function of which early unrelated space and
momentum ranges of the former collapse into smaller ranges
actually related to n according to eqs. (2,1); accordingly, it
follows that the quantized eigenvalues are compliant with the
non-locality and non-reality of quantum mechanics. This col-
lapse is intuitively justified here noting that any measurement
process aims to get information about physical observables;
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without shrinking the initial unrelated ranges, thus reducing
their degree of initial uncertainty, the concept of measurement
would be itself an oxymoron. These results prospect therefore
a positive expectation of relativistic generalization for the po-
sitions (2,2). Due to the subtle character of the connection
between quantum and relativistic points of view, the present
paper examines more closely in the next section the first con-
sequences of the considerations just carried out, previously
obtained in the quoted papers: the first goal to show the suc-
cessful connection of eqs. (2,1) with the special relativity, is
to infer the invariant interval and the Lorentz transformation.

3 Uncertainty and special relativity

The special relativity exploits 4-vectors and 4-tensors that
consist of a set of dynamical variables fulfilling well defined
transformation rules from one inertial reference system to an-
other. For instance, the components ui of four velocity are
defined by the 4-vector dxi as ui = dxi(cdt)−1(1 − (v/c)2)−1/2,
being v the ordinary 3D space velocity; the angular momen-
tum is defined by the anti-symmetric 4-tensor Mik =

∑
(xi pk−

xk pi), whose spatial components coincide with that of the
vector M = r × p.

Despite the wealth of information available from such
definitions, however, the central task always prominent in the
present paper concerns their link to the concepts of quantiza-
tion, non-locality and non-reality that inevitably qualify and
testify the sought unification: if the final target is to merge
quantum theory and relativity, seems ineffective to proceed
on without a systematic check step after step on the compli-
ance of such 4-vectors and tensors with the quantum world.

To explain in general the appropriate reasoning, compare
the expectations available via tensor calculus and that avail-
able via the positions (2,2): having shown previously that
eqs. (2,1) are compliant with the non-reality and non-locality,
this means verifying the consistency of the former definitions
of angular momentum or velocity with the concept of un-
certainty. Since both of them necessarily exploit local co-
ordinates, then, regardless of the specific physical problem
to be solved, the previous definitions are in fact useless in
the present model; the local coordinates are considered here
worthless “a priori” in determining the properties of physical
systems and thus disregarded.

Merging quantum and relativistic points of view compels
instead to infer the angular momentum likewise as shown in
[7], i.e. through its own physical definition via the positions
(2,2) to exploit eqs. (2,1). For clarity this topic is sketched in
the next sub-sections 3.4 to 3.7 aimed to show that indeed the
well known relativistic expressions of momentum, energy and
angular momentum of a free particle are inferred via trivial
algebraic manipulations of eqs. (2,1) without exploiting the
aforesaid standard definitions through local 4-coordinates.

Let us show now that the basic statements of special rela-
tivity are corollaries of eqs. (2,1) without any hypothesis on

the uncertainty ranges. First, the previous section has shown
that once accepting the positions (2,2) all inertial reference
systems are indistinguishable because of the total arbitrari-
ness of their boundary coordinates; if in particular both xo

and to are defined with respect to the origin of an inertial
space-time reference system R, then the arbitrariness of the
former require that of the latter. So in any approach based on
eqs (2,1) only, all R are necessarily equivalent in describing
the eigenvalues, i.e. the observables of physical quantities.
Second, it is immediate to realize that the average velocity
vx = ∆x/∆t previously introduced must be upper bounded.
Consider a free particle in finite sized ∆x and ∆px, thus with
finite n; if vx → ∞ then ∆t → 0 would require ∆ε → ∞,
which in turn would be consistent with ε → ∞ as well. Yet
this is impossible, because otherwise a free particle with finite
local momentum px could have in principle an infinite energy
ε; hence, being by definition an allowed value of any physi-
cal quantity effectively liable to occur, the value of vx must be
upper bound. Third, this upper value allowed to vx, whatever
its specific value might be, must be invariant in any inertial
reference system. Indeed vx is defined in its own R without
contradicting the indistinguishability of all reference systems
because its value is arbitrary like that of both∆x and∆t; hence
the lack of a definite value of vx lets R indistinguishable with
respect to other inertial reference systems R′ whose v′x is ar-
bitrary as well. If however vx takes a specific value, called
c from now on, then this latter must be equal in any R oth-
erwise some particular R(c) could be distinguishable among
any other R′, for instance because of the different rate with
which a luminous signal propagates in either of them. Thus:
finite and invariant value of c, arbitrariness of the boundary
coordinates of ∆x and equivalence of all reference systems in
describing the physical systems are strictly linked. One easily
recognizes in these short remarks, straightforward corollaries
of eqs (2,1), the basic statements of the special relativity.

This result legitimates thus the attempt to extend the out-
comes of the non-relativistic approach of the early papers
[7,8] to the special relativity. Before exemplifying some spe-
cific topics in the following subsections, it is useful to note
that eqs. (2,1) can be read in several ways depending on how
are handled the ranges in a given R.

The first example is provided by the ratio ∆x/∆t: if the
particle is regarded as a corpuscle of mass m delocalized in
∆x, thus randomly moving throughout this range, then ∆x/∆t
is its average velocity component vx during ∆t, whatever the
local features of actual motion within ∆x might be. Inter-
esting results can be inferred hereafter in a straightforward
way. It is possible to define ∆px/∆t equal to ∆ε/∆x for any n,
thus obtaining the concept of average force field component
Fx = ∆px/∆t throughout ∆x, or the related average power
∆ε/∆t = Fxvx and so on. This is not mere dimensional exer-
cise; these definitions hold without specifying a particular ref-
erence system and will be exploited in the following to check
their ability to get both quantum and relativistic results.
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In the next subsection will be examined in particular the
ratio ∆px/∆x to introduce the curvature of the space-time
simply via uncertainty ranges, i.e. in the frame of the un-
certainty only. In these expressions, the ranges play the same
role of the differentials in the respective classical definitions.
This suggests how to regard the concept of derivative entirely
in the frame of eqs. (2,1) only, i.e. as ratio of uncertainty
ranges. The fact that the size of the ranges is arbitrary sug-
gests the chance of thinking, for mere computational pur-
poses, their limit sizes so small to exploit the previous def-
initions through the differential formalism; for instance it is
possible to imagine a particle delocalized in a very small, but
conceptually not vanishing, range dx without contradicting
any concept introduced in the positions (2,2), because re-
mains valid in principle the statement dx∆px = nℏ despite
the random values of x between xo and xo + dx tend to the
classical local value xo. It is also possible to define very low
values of vx, i.e. dx/∆t ≪ c, because ∆x and ∆t are indepen-
dent ranges and so on. Furthermore, hypothesizing ℏ so small
that all ranges can be even treated as differentials, let us try
to regard and handle the ranges of eqs. (2,1) as if in the limit
case n = 1 they would read (dx)(dpx) = ℏ = (dt)(dε). This
means that, for mere computational purposes, the case n = 1
is regarded as a boundary condition to be fulfilled when cal-
culating the sought physical property.

To check the validity of this point through an example
of calculation involving vx, rewrite eqs. (2,1) in the forms
∆px/∆t = ∆ε/∆x and ∆ε = ∆px∆x/∆t that however will be
now handled likewise as if dpx/dt = Fx = dε/dx and dε =
vxdpx to assess the results hereafter obtainable. In agreement
with these computational notations, which however do not
mean at all regarding the formal position ∆x/∆t → dx/dt as
a local limit, let us consider a free particle and write

ε = ∫ v′x(dpx/dv′x)dv′x. (3,1)

Although these positions are here introduced for calcu-
lation purposes only, since actually the uncertainty ranges
are by definition incompatible with the concept of differential
limit size tends to zero, nevertheless it is easy to check their
validity recalling that in a previous paper [9] simple consider-
ations based on eqs. (2,1) only allowed to infer px = εvx/c2;
this equation is so important that its further demonstration
based on a different reasoning is also provided below in sub-
section 3.4. Replacing in eq (3,1) and integrating yields ε =
c−2 ∫ v′x[d(εv′x)/dv′x]dv′x, easily solved in closed form; the so-

lution ε = const
(
1 − (vx/c)2

)−1/2
yields by consequence also

px = vxc−2const
(
1 − (vx/c)2

)−1/2
. If vx → 0 then px → 0; yet

nothing compels also the vanishing of ε. Calculating thus the
limit px/vx for vx → 0 and calling m this finite limit,

lim
vx→0

px

vx
= m, (3,2)

one infers the integration constant const = ±mc2; follow im-
mediately the well known expressions

px = ±mvx

(
1 − (vx/c)2

)−1/2
,

ε = ±mc2
(
1 − (vx/c)2

)−1/2
.

(3,3)

The double sign corresponds in the former case to that of
either velocity component, in the latter case to the existence
of antimatter. Moreover exploit also ∆px/∆t − ∆ε/∆x = 0;
regarding again this equation in its computational differen-
tial form dpx/dt − dε/dx = 0 and solving it with respect to
vx, as if the ranges would really be differentials, one finds of
course vx = −∆x/∆t. These results are important: handling
the ranges as differentials entails just the well known rela-
tivistic results, which appear however to be limit cases i.e.
boundary conditions of the respective definitions via uncer-
tainty ranges; this confirms that the intervals appearing in the
invariant interval and in the Lorentz transformation of length
and time must be actually regarded as uncertainty ranges, as
pointed out in [9], so that also the transformation formulae get
full quantum meaning. This holds provided that the ranges
related to ℏ be really so small with respect to distances and
times of interest to justify the integral calculus; this is cer-
tainly true in typical relativistic problems that usually concern
massive bodies or cosmological distances and times.

So far the particle has been regarded as a corpuscle char-
acterized by a mass m traveling throughout ∆x during the time
range ∆t. According to the positions (2,3) and owing to the
results [9], however, the particle can be identically described
as a wave propagating throughout the same space range dur-
ing the same time range; also to this purpose are enough eqs.
(2,1), the basic assumptions of the wave formalism are un-
necessary.

Let us regard ∆x as the space range corresponding to one
wavelength and the related ∆t as a reciprocal frequency ω =
∆t−1; so one finds ∆ε = nℏω with ω = 2πν, in which case
∆x/∆t = ωλ = v as well. In principle one expects from this
result that in general an average velocity v1 corresponds to
the frequency ω1, thus v2 to ω2 and so on. Suppose that,
for fixed ∆x, a time range ∆t′ and thus a frequency ω′ ex-
ist such that the right hand side turns into a unique constant
velocity, whose physical meaning will appear soon; then, us-
ing again the differential formalism, d(λ−1) = −λ−2dλ and
λdω′ + ω′dλ = 0 combined into λ(dω′ − λω′d(λ−1)) = 0
yield v′/2π = dω′/dk where k = 2π/λ. Being v′ arbitrary
like ∆x, including the trivial factor 2π in v′′ = v′/2π yields
v′′ = dω′/dk. So are defined the phase and group velocities v
and v′′ of a wave, which of course coincide if v does not de-
pend on ω; this is possible because ∆x and ∆t are independent
ranges that can fulfil or not this last particular case. Moreover
eqs. (2,1) also yield immediately ∆ε/∆p = dν/d(λ−1) = v.
Eventually, dividing both sides of ∆x∆px = nℏ by ∆t yields
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F∆x = nℏω; since dF/dν has physical dimension of momen-
tum, being all range sizes arbitrary the last equation reads
in general p = h/λ. These reasonable results are distinc-
tive features of quantum mechanics, here found as corollaries
by trivial manipulations of eqs. (2,1). If both corpuscle and
wave formalisms are obtained from a unique starting point,
eqs. (2,1), then one must accept the corpuscle/wave dual be-
havior of particles, as already inferred in [9]. This justifies
why these equations have been successfully exploited in the
early papers [7,8] to describe the quantum systems.

After having checked the compliance of eqs. (2,1) with
the fundamental principles of both quantum mechanics and
special relativity, we are now justified to proceed further to-
wards the connection between the theories. Eqs. (2,1) al-
low describing various properties of quantum systems, e.g.
in the frame of space/time uncertainty or energy/momentum
uncertainty, as better specified in the next subsection. Note
that the invariant interval, inferred itself from eqs. (2,1) only,
is compliant with the non-locality and non-reality simply re-
garding the space and time intervals as uncertainty ranges; by
consequence merging quantum mechanics and special rela-
tivity simply requires abandoning the deterministic meaning
of intervals defined by local coordinates, which have classi-
cal character and thus are exactly known in principle. Indeed
we show below that the invariant interval consists of ranges
having fully quantum meaning of space-time uncertainty. In
the frame of eqs. (2,1) only, the concept of time derivative
necessarily involves the time uncertainty range; an example
is ∆x/∆t previously identified with the velocity vx. This lat-
ter, even though handled as dx/dt for computational purposes
only, still keeps however its physical meaning of average ve-
locity.

These considerations hold in the reference system R whe-
re are defined eqs. (2,1) and suggest a remark on the alge-
braic formalism; once trusting on eqs. (2,1) only, the concept
of derivative is replaced by that of ratio between uncertainty
ranges. These latter indeed represent the chance of variabil-
ity of local quantities; so the derivative takes here the mean-
ing of correlation between these allowed chances. Of course
being the ranges arbitrary and unknown, this chance is ex-
tended also to the usual computational concept of derivative,
as shown before. Once having introduced through the un-
certainty the requirements of quantum non-locality and non-
reality into the relativistic formulae, a problem seems arising
at this point, i.e. that of the covariancy.

This point will be concerned in the next section 4, aimed
to discuss the transformations between inertial and non-inerti-
al reference systems. For clarity of exposition, however, it is
better to continue the present introductory discussion trusting
to the results so far exposed; it is enough to anticipate here
that the arbitrariness of the quantum range boundaries, and
thus that of the related reference systems as well, is the key
topic to merge the requirements of uncertainty and covari-
ancy.

3.1 The space-time uncertainty

This section aims to show that the concept of space-time is
straightforward corollary of the space/momentum and time/
energy uncertainties. Eqs. (2,1) represent the general way of
correlating the concepts of space, momentum, time and en-
ergy by linking their uncertainties through the number n of
allowed states; just their merging defines indeed the eigenval-
ues of any physical observable. On the one side, therefore, the
necessity of considering concurrently both time and space co-
ordinates with analogous physical meaning appears because
of the correlation of their uncertainties; for instance the par-
ticular link underlying time and space ranges through c al-
lows to infer the invariant interval and the relativistic expres-
sions of momentum and energy. On the other side the concept
of quantization appears strictly related to that of space-time,
since the concurrence of both ∆x and ∆t that defines n also
introduces in fact a unique space-time uncertainty. These el-
ementary considerations highlight the common root between
relativity and quantum theory, which also accounts for the
non-locality and non-reality of the latter according to the con-
clusions emphasized in [9].

Eqs. (2,1) consist of two equations that link four ranges;
for any n, two of them play the role of independent variables
and determine a constrain for the other two, regarded there-
fore as dependent variables. In principle this means that two
independent ranges introduce eqs. (2,1) via n. As ∆px and ∆ε
include local values of physical observables while ∆x and ∆t
include local values of dynamical variables, it is reasonable
to regard as a first instance just these latter as arbitrary inde-
pendent variables to which are related momentum and energy
as dependent variables for any n; however any other choice
of independent variables would be in principle identically ad-
missible.

For instance, let us concern ∆ε∆x/(vx/c) = nℏc consid-
ering fixed the energy and coordinate ranges. Two limits
of this equation are particularly interesting: (i) vx/c → 0,
which requires in turn n → ∞, and (ii) vx <∼ c, which requires
∆x<∼nℏc/∆ε for any given n. Consider the former limit rewrit-
ing identically (∆px/vx)vx∆x = nℏ, which reads vx∆x∆m = nℏ
according to eq (3,2); since for a free particle vx is a constant,
then ∆(mvx) = ∆px i.e. px ≈ mvx. Guess the related classical
energy regarding again ∆ε/∆px = vx as dε/dpx = vx, whence
dε = vxmdvx i.e. ε = mv2

x/2 + const. As expected, these ex-
pressions of energy and momentum result to be just the non-
relativistic limits of eqs. (3,3) for vx ≪ c. This is because we
have considered here the space coordinate separately from the
time coordinate: despite the time range has been somehow in-
troduced into the previous reasoning through the definition of
vx, yet it occurred in the way typical of the Newtonian me-
chanics, i.e. regarding the time as an entity separated from
the space coordinate, and not through the link between ∆px

and ∆ε provided by n.
We also know that the classical physics corresponds to
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the limit n → ∞ [9]; thus eqs. (2,1) require that the non-
relativistic limit vx ≪ c and the classical physics limit n→ ∞
are actually correlated. Indeed, eqs. (3,3) have been obtained
handling the ranges as differentials just thanks to small val-
ues of n. Of course such a correlation is not required when
regarding quantum theory and relativity separately, it appears
instead here as a consequence of their merging. Since for n→
∞ the difference between n and n+1 becomes more and more
negligible with respect to n, this latter tends to behave more
and more like a continuous variable. It has been shown in [9]
that just the quantization entails the non-real and non-local
features of the quantum world; instead locality and reality
are asymptotic limit properties of the classical world attained
by the continuous variable condition n → ∞. Now it appears
that just the same quantization condition of n requires also the
relativistic properties of the particles, which indeed are well
approximated by the corresponding equations of Newtonian
physics in the limit n → ∞ i.e. vx ≪ c. Otherwise stated, the
special relativity rests itself on the quantization condition re-
quired by the space/momentum and time/energy uncertainties
merged together; these latter are therefore the sought unique
fundamental concept on which are rooted quantum proper-
ties, non-reality, non-locality and special relativity.

3.2 Energy-momentum uncertainty and Maxwell equa-
tions

Let us start from ∆ε = vx∆px; being as usual ∆ε = ε − εo

and ∆px = px − po, this uncertainty equation splits into two
equations ε = vx px and εo = vx po defined by the arbitrary
boundary values of energy and momentum. Consider first the
former equation; dividing both sides by an arbitrary volume
V and by an arbitrary velocity component v§x, the uncertainty
equation turns dimensionally into the definition J§x = C§vx

of a mass flow; indeed J§x is the flux of the mass m initially
defining momentum and energy of the particle, C§ is the cor-
responding amount of mass per unit volume. Calculating
the flux change between any x and x + δx during δt, one
finds δJ§x = vxδC§ + C§δvx. This result can be exploited in
various ways. For instance in a previous paper it has been
shown that eqs. (2,1) lead under appropriate hypotheses to
the result J§x = −D∂C§/∂x [10], being D the diffusion co-
efficient of m. The particular case of constant vx in the ab-
sence of an external force field acting on m during the time
range δt = δx/vx yields δJ§x = −[∂(D∂C§/∂x)/∂x]δx. Since
δJ§x/δx = −δC§/δt, because δJ§x/δx and δC§/δt have oppo-
site sign under the hypothesis of gradient driven mass flow
in the absence of sinks or sources in the diffusing medium,
one obtains the 1D Fick law δC§/δt = ∂(D∂C§/∂x)/∂x, triv-
ially extensible to the 3D case. In general, under the con-
strain of constant vx only, the vector equations corresponding
to J§x = C§vx and δJ§x = −vxδC§ read

J§ = C§v, ∇ · J§ = −∂C§/∂t. (3,4)

Multiplying by e/m both sides of these expressions, one

obtains the corresponding equations for the flux of charge
density Ce, i.e. Je = Cev. An analogous result holds for
the second part εo = vx po of the initial uncertainty equation,
rewritten now as Jm = Cmv with Cm = C§em/m; the physical
meaning of em will be remarked below. Put now C = Ce +Cm

and J = Je + Jm; then, replacing J§ and C§ of the mass con-
centration gradient equation with J and C, it is possible to
introduce an arbitrary vector U− such that the second equa-
tion eq (3,4) reads

∇ · ∇ × U− = ∇ · J +
∂C
∂t

(3,5)

as it is clear because the left hand side is null. So one obtains

∇ × U− =
∂U+
∂t
+ J, ∇ · U+ = C,

J = Je + Jm, C = Ce +Cm.
(3,6)

The second equation defines U+. Since C = Ce + Cm, the
vector U+ must reasonably have the form U+ = H+E, where
H and E are arbitrary vectors to be defined. As also J is sum
of two vectors, U− is expected to be itself sum of two vec-
tors too. For mere convenience let us define these latter again
through the same H and E; there is no compelling reason to
introduce necessarily further vectors about which additional
hypotheses would be necessary to solve the first eq (3,6). Ap-
pears now sensible to guess U− = c(H − E), with c mere di-
mensional factor, for four reasons: (i) U+ + c−1U− = 2H and
U+ − c−1U− = 2E, i.e. U− and U+ can be expressed through
the same vectors they introduce; (ii) the same holds for the
scalars c−1U+ · U− = H2 − E2 and U2

+ − c−2U2
− = 4E · H;

(iii) the same holds also for c−1U− × U+ = 2E × H and (iv)
U2
+ + c−2U2

− = 2(H2 + E2). If H and E are now specified
in particular as vectors proportional to magnetic and electric
fields, then the proposed definitions of U− and U+ entail a
self-consistent set of scalars and vectors having some interest-
ing features: the scalars (ii) define two invariants with respect
to Lorentz transformations, whereas the vector (iii) is propor-
tional to the Poynting vector and defines the energy density
flux; moreover the point (iv) defines a scalar proportional to
the energy density of the electromagnetic field; eventually the
integral ∫ U+ · U−dV over the volume previously introduced
is proportional to the Lagrangian of a free field.

Although eqs. (3,5) and (3,6) are general equations stra-
ightforward consequences of charge flows, simply specifying
purposely them to the case of the electromagnetic field fol-
lows the validity of the form assigned to U− because of such
sensible outcomes. The first eq (3,6) reads thus c∇×(H−E) =
∂(H + E)/∂t + (Je + Jm). In principle the terms of this equa-
tion containing H, E, Je and Jm can be associated in various
ways, for instance is admissible c∇ × H = ∂H/∂t + Jm; in-
tegrating this equation is certainly possible but the solution
H = H(x, y, z, t, Jm) would be of scarce interest, i.e. one
would merely find the space and time profile of a possible
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H consistent with Jm. The same would hold considering the
analogous equation for E. A combination of mixed terms that
appears more interesting is

∇ · E = Ce, ∇ ·H = Cm,

−c∇ × E =
∂H
∂t
+ Jm, c∇ ×H =

∂E
∂t
+ Je.

(3,7)

In this form, the interdependence of the magnetic and
electric field vectors H and E through Je and Jm yields the
Maxwell equations formulated in terms of charge and current
densities. These equations, also inferred from eqs. (2,1), have
been written having in mind the maximum generality; Ce

and Cm are proportional to the electric charge and magnetic
charge densities, Je and Jm to the charge and magnetic current
densities. While Ce is known, an analogous physical mean-
ing for Cm is doubtful because the magnetic “monopoles” are
today hypothesized only but never experimentally observed.
Although it is certainly possible to regard these equations
with Cm = 0 and Jm = 0, nevertheless seems formally at-
tractive the symmetric character of the four equations (3,7).
Note however in this respect that rewriting E = Eo + Q and
H = Ho +W, where W and Q are further field vectors whose
physical meaning is to be defined, with the positions

C′e = ∇ ·Q, ∇ ×Q = 0, J′e =
∂Q
∂t
,

ρm = −∇ ·W, ∇ ×W = 0, J′m =
∂W
∂t

,

the equations (3,7) turn into

∇ · Eo = Ce −C′e, ∇ ·Ho = ρm,

−c∇ × Eo =
∂Ho

∂t
+ J′m, c∇ ×Ho =

∂Eo

∂t
− J′e + Je,

having put here Cm = 0 and Jm = 0. In practice rewriting H
and E as a sum of vectors Ho and Eo parallel to them plus W
and Q fulfilling the aforesaid conditions one obtains a new set
of Maxwell equations whose form, even without reference to
the supposed magnetic monopoles, is however still the same
as if these latter would really exist. Note eventually that be-
side eqs. (3,7) there is a further non-trivial way to mix the
electric and magnetic terms, i.e.

∇ · E = Ce, ∇ ·H = Cm,

−c∇ × E =
∂H
∂t
+ Je, c∇ ×H =

∂E
∂t
+ Jm,

(3,8)

expectedly to be read with Cm = 0 and Jm = 0. Work is in
progress to highlight the possible physical meaning of Q and
W and that of the eqs. (3,8) still consistent with eq (3,6).

3.3 Uncertainty and wave formalism

Start now from eqs. (3,3) that yield ε2 = (cpx)2 + (mc2)2; so
the positions (2,3) define the known 2D Klein-Gordon equa-
tion −∂2ψo/c2∂t2 = −∂2ψo/∂x2+(mc/ℏ)2ψo, whose extension
to the 4D case is trivial simply assuming ψo = ψo(x, y, z, t)

∂2ψo

c2∂t2 − ∇
2ψo + k2ψo = 0, k2 =

(mc
ℏ

)2
. (3,9)

Eq. (3,9) is equivalent to O2
5ψo = 0 inferred from O5ψo =

0, where the total momentum operator O5 is defined as

O5 = a j
ℏ

i
∂

∂x j
+ a4

i
c
ℏ

i
∂

∂t
+ a5mc,

j = 1, 2, 3; a j · a j′ = δ j, j′ .

Thus O5 is the sought linear combination a jP j+(a4i/c)H+
a5mc of the momentum P j and energy H operators (2,3) via
orthogonal unit vector coefficients a j and a4i/c and a5; this
combination of space and time operators defines the wave
equation corresponding to the relativistic eqs. (3,3).

Replace now ψo with ψ = ψo+a·A+bφ in eq (3,9); a and b
are arbitrary constants, A and φ are functions of x j, t that must
still fulfill eq (3,9). Assuming constant both modulus and
direction of a with respect to A, trivial calculations yield three
equations. One is once again the Klein-Gordon equation for
ψo; moreover subtracting and summing to the two remainder
terms the amount a · J/c, where J is a further arbitrary vector,
the condition a ·J/cb = −ρ yields the following two equations

∂2φ

c2∂t2 − ∇
2φ + k2φ − ρ = 0,

∂2A
c2∂t2 − ∇

2A + k2A − J
c
= 0.

(3,10)

In principle this result is anyway formally possible with
the given b, which links the equations through ρ and J = ρv
according to eqs. (3,4). The condition on b requires a ·J/cρ =
a′ · J′/cρ′; so in general J is not necessarily a constant. Let
us specify now this result. If A and φ are proportional to
the magnetic and electric potentials, then ρ and J are charge
density and flux; in effect the particular case φ ∝ r−1 agrees
with the physical meaning of the former, whence the meaning
of the latter as well. The fact that ψo differs from ψ = ψo + a ·
(A − Jφ/cρ) by the vector A − Jφ/cρ , 0 suggests defining
a = ξJ′/c in order obtain the scalar J′ · A/c − φJ′ · J/ρc2,
i.e. J′ · A/c − ρ′φv′ · v/c2; ξ is a proportionality factor. So
putting φ = φ′q, with q proportionality factor, the result is
J′ · A/c − ρ′φ′ with q−1 = v′ · v/c2. In this way one obtains
ψ = ψo + ξ(J′ · A/c − ρ′φ′), while eqs. (3,10) are the well
known Proca’s equations in vector form.

Note that ξ has physical dimension f ield−2, which indeed
justifies the particular way of defining a, while the scalar
in parenthesis characterizes the wave function of a particle
moving in the presence of magnetic and electric potentials.
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Since a free particle has by definition kinetic energy only,
the scalar additive to ψo is a perturbative term due to the
magnetic and electric potentials; so it should reasonably rep-
resent a kinetic energy perturbation due to the presence of
magnetic and electric fields. This suggests that the complete
Lagrangian T − U of the particle moving in the electromag-
netic field should be therefore given by the linear combination
of the scalar just found and the free field scalar cU− · U+ =
H2 − E2, i.e. it should be obtained by volume integration of
J′ · A/c − ρ′φ′ + χ(E2 − H2), being χ an appropriate coeffi-
cient of the linear combination of potential and kinetic energy
terms.

This topic is well known and does not deserve further
comments. It is worth noticing instead that eqs. (3,10) can be
also obtained introducing the extended space-time momen-
tum operator O7 collecting together the space and time op-
erators of the positions (2,3) in a unique linear combination
expressed as follows

O7 = a j∂/∂x j + a4i∂/∂(ct) + a5i/x5 + a6∂/∂x6 + a7∂/∂x7,

where x5, x6 and x7 are to be regarded as extra-coordinates.
Putting x5 = ℏ/mc, the wave function that yields directly both
eqs. (3,10) with this operator reads accordingly

ψ = ψo + a · (A − Jx2
5/c)x6 + (φ − ρx2

5)x7.

Still holds the position a j ·a j′ = δ j, j′ that regards again the
various a j, with j = 1..7, as a set of orthogonal unit vectors in
a 7D dimensional space where is defined the equation O2

7ψ =
0 containing as a particular case the Klein-Gordon equation.
The sixth and seventh addends of O7 are ineffective when
calculating O2

7ψo, which indeed still yields the free particle
equation; however just these addends introduce the non-null
terms of Proca’s equations in the presence of fields.

In summary, the free particle eq (3,9) is nothing else but
the combination of the two eqs. (3,3) expressed through the
wave formalism of quantum mechanics; its successive manip-
ulation leads to define the Lagrangian of the electromagnetic
field in the presence of magnetic and electric potentials while
introducing additional extra-dimensions. It appears however
that the chance of defining 3 extra-dimensions to the familiar
ones defining the space-time is suggested, but not required in
the present model, by the relativistic wave formalism only.

3.4 Uncertainty and invariant interval

In [9] has been inferred the following expression of invariant
interval

∆x2 − c2∆t2 = δs2 = ∆x′2 − c2∆t′2 (3,11)

in two inertial reference systems R and R′. Owing to the
fundamental importance of this invariant in special relativ-
ity, from which can be inferred the Lorentz transformations
[11], we propose here a further instructive proof of eq (3,11)
based uniquely on the invariance of c. Consider then the un-
certainty range ∆x = x − xo and examine how its size might

change during a time range ∆t if in general x = x(∆t) and
xo = xo(∆t).

Let be δ± = ∆x ± v∆t the range in R that generalizes the
definition ∆x/∆t = vx to δ± , 0 through a new velocity com-
ponent v , vx taking also into account the possible signs of v.
Regard both δ± as possible size changes of ∆x during the time
range ∆t in two ways: either (i) with xo replaced by xo ± v∆t
while keeping fixed x or (ii) with x replaced by x ± v∆t while
keeping fixed xo. Of course the chances (i) or (ii) are equiva-
lent because of the lack of hypotheses on ∆x and on its bound-
ary coordinates. In both cases one finds indeed δ+ = ∆x+ v∆t
and δ− = ∆x − v∆t, which yield δ = (δ+ + δ−)/2 = ∆x;
so the range size ∆x, seemingly steady in R, is actually a
mean value resulting from random displacements of its lower
or upper boundaries from xo or x at average rates v = ẋo or
v = ẋ as a function of time. Of course v is in general arbi-
trary. The actual space-time character of the uncertainty, hid-
den in δ , appears instead explicitly in the geometric mean
< δ >=< δ−δ+ >= (∆x2 − v2∆t2)1/2 of both time deforma-
tions allowed to ∆x. Note however that the origin O of the
reference system R where is defined ∆x appears stationary in
(ii) to an observer sitting on xo because is x that displaces, but
in (i) O appears moving to this observer at rate ∓ẋo. Consider
another reference system R′ solidal with xo, thus moving in
R at rates ±ẋo. In R′ is applicable the chance (ii) only, as xo

is constant; it coincides with the origin in R′ and, although
it does not in R, yet anyway ẋo = 0. So the requirement
that both (i) and (ii) must be equivalent to describe the defor-
mation of ∆x in R and R′, otherwise these reference systems
would be distinguishable, requires concluding that the chance
(ii) must identically hold itself both in R and R′. This is pos-
sible replacing v = ẋ = c in < δ >, which indeed makes in
this particular case the deformation rate (ii) of ∆x indistin-
guishable in R and R′: in both systems ẋo = 0, as xo is by
definition constant, whereas ẋ also coincides because of the
invariancy of c; when defined through this particular position,
therefore, < δ(c) > is invariant in any R and R′ in agreement
with eqs. (3,11). These equations have been written consider-
ing spacelike intervals; of course an identical reasoning holds
also writing eqs. (3,11) as timelike intervals.

3.5 The invariancy of eqs. (2,1)

The following considerations concern the invariancy of eqs.
(2,1) in different inertial reference systems. The proof is ba-
sed on the arbitrariness of the range sizes and on the fact that
in any R and R′ actually n is indistinguishable from n′ perti-
nent to the different range sizes resulting from the Lorentz
transformations; indeed neither n nor n′ are specified and
specifiable by assigned values, rather they symbolize arbi-
trary numbers of states. Admitting different range sizes in
inertial reference systems in reciprocal motion, the chance of
any n in R corresponds to any other chance allowed to n′ in
R′. However the fact that the ranges are arbitrary compels
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considering the totality of values of n and n′, not their sin-
gle values, in agreement with the physical meaning of eqs.
(2,1). Hence, despite the individual numbers of states can be
different for specific ∆x∆px in R and ∆x′∆p′x in R′, the sets
of all arbitrary integers represented by all n and n′ remain in
principle indistinguishable regardless of how any particular n
might transform into another particular n′.

The fact of having inferred in [9] the interval invariant
in inertial reference systems, the Lorentz transformations of
time and length and the expression px = εvx/c2, should be
itself a persuasive proof of the compliance of eqs. (2,1) with
special relativity; now it is easy to confirm this conclusion
demonstrating the expression of px in a more straightforward
way, i.e. exploiting uniquely the concept of invariancy of c.
The present reasoning starts requiring an invariant link be-
tween ∆px = p1 − po and ∆ε = ε1 − εo in ∆ε = ∆px∆x/∆t.
This is possible if ∆x/∆t = c, hence ∆pxc = ∆ε is a sensi-
ble result: it means of course that any local value ε within
∆ε must be equal to cpx calculated through the correspond-
ing local value px within ∆px although both are unknown. If
however ∆x/∆t < c, the fact that the arbitrary vx is not an
invariant compels considering for instance vk

x∆x/∆t = qck+1

with k arbitrary exponent and q < 1 arbitrary constant. Then
(∆pxv

−k
x )ck+1q = ∆ε provides in general an invariant link of

∆pxv
−k
x with ∆ε through ck+1q. Is mostly interesting the chan-

ce k = 1 that makes the last equation also consistent with the
previous particular case, i.e. (∆px/vx)c2q = ∆ε; so one finds
ε1v
′
x/c

2 − p1 = εov
′
x/c

2 − po with v′x = vx/q. The arbitrary fac-
tor q is inessential because vx is arbitrary itself, so it can be
omitted; hence px = εvx/c2 when considering any local val-
ues within the respective ranges because of the arbitrariness
of po, p1, εo, ε1. At this point holds identically the reasoning
of the previous subsection. Rewrite ∆ε − (∆px/vx)c2 = 0 as
δ± = ∆ε ± (∆px/v)c2 , 0 with v , vx to calculate δ = ∆ε

and < δε >= ±
√
∆ε2 − (∆px/v)2c4; one concludes directly

that the invariant quantity of interest is that with v = c, i.e.
δεc = ±

√
∆ε2 − ∆p2

xc2 that reads

∆ε2 = δε2
c + ∆p2

xc2. (3,12)

So ε2 = (mc2)2 + p2
xc2 once having specified δεc with the

help of eq (3,2). This is not a trivial way to obtain again eqs
(3,3). In general the ranges are defined by arbitrary boundary
values; then ε1 and εo can be thought in particular as arbitrary
values of ε, thus invariant themselves if calculated by means
of eqs. (3,3). So, despite the local values within their own
uncertainty ranges are unknown, the range ∆ε defined as the
difference of two invariant quantities must be invariant itself.
Consider thus in particular the interval of eq (3,11). It is in-
teresting to rewrite this result with the help of eqs. (2,1) as
(nℏ)2∆p−2

x − c2(nℏ)2∆ε−2 = δs2 = ∆x′2 − c2∆t′2, which yields
therefore

δpxδs = nℏ = δp′xδs, (3,13)

δpx = ±
∆px∆ε√
∆ε2 − (c∆px)2

, δp′x = ±
∆p′x∆ε

′√
∆ε′2 − (c∆p′x)2

.

So δpx = δpx(∆px,∆ε), whereas δp′x = δp′x(∆p′x,∆ε
′)

as well. Both δs and δpx at left hand side are invariant: the
former by definition, the latter because formed by quantities
∆ε and ∆px defined by invariant boundary quantities ε1, εo,
p1, po of the eqs. (3,3). Being the range sizes arbitrary and
not specifiable in the present theoretical model, the first eq.
(3,13) is nothing else but the first eqs. (2,1) explicitly rewrit-
ten twice with different notation in invariant form. This fea-
ture of the first eq. (3,13) confirms not only the previous rea-
soning on n and n′, thus supporting the relativistic validity
of eqs. (2,1) in different inertial reference systems, but also
the necessity of regarding the ranges of special relativity as
uncertainty ranges; in other words the concept of invariancy
merges with that of total arbitrariness of n, on which was
based the previous reasoning. In conclusion: (i) disregard-
ing the local coordinates while introducing the respective un-
certainty ranges according to the positions (2,2) is enough to
plug the classical physics into the quantum world; (ii) replac-
ing the concepts of space uncertainty and time uncertainty
with that of space-time uncertainty turns the non-relativistic
quantum physics into the relativistic quantum physics; (iii)
the conceptual step (ii) is fulfilled simply considering time
dependent range sizes; (iv) if the deterministic intervals of
special relativity are regarded as uncertainty ranges, then the
well known formulae of special relativity are in fact quantum
formulae that, as a consequence of eqs. (2,1), also fulfil the
requirements of non-locality and non-reality. Accordingly, it
is not surprising that the basic postulates of special relativity
are in fact corollaries of eqs. (2,1) only, without the need of
any further hypothesis.

3.6 The angular momentum

Let us show how the invariant interval of eq (3,11) leads to the
relativistic angular momentum. Expand in series the range
δs =

√
∆x2 − c2∆t2 noting that in general

√
a2 − b2 = a −

(
b/a + (b/a)3/4 + (b/a)5/8 + ··

)
b
/
2.

Calculated with an arbitrary number of terms, the series
expansion can be regarded as an exact result. Thus write
δs = δrx − δrt/2 where δrt = c∆t

[
c∆t/∆x + (c∆t/∆x)3/4 + ··

]
and δrx = ∆x. Being ∆t and ∆x both arbitrary, δrx and δrt

are independent ranges. Regard δs as the x-component of an
arbitrary uncertainty vector range δs = δrs − δrt/2 and re-
peat identically the reasoning introduced in [7] and shortly
sketched here; the subscripts stand for “space” and “time”.
Insert δs in the classical component Mw = δs × δp · w of an-
gular momentum M along the arbitrary unit vector w. The
analytical form of the function expressing the local value p
does not need to be specified; according to the positions (2,2)
p is a random value to be replaced by its own uncertainty
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range δp to find the eigenvalues of the angular momentum.
For the mere fact of having introduced an invariant interval
into the definition of angular momentum, therefore, Mw re-
sults defined by the sum of two scalars Mw,s = δrs × δp · w
and Mw,t = −δrt × δp · w/2. So Mw,s = w × δrs · δp, i.e.
Mw,s = δp·δIs with δIs = w×δrs. If δp and δIs are orthogonal
then Mw,s = 0; else Mw,s = δpIsδIs, defined by the conjugate
dynamical variables δpIs = δp·δIs/ |δIs| and δIs = |δIs|, yields
immediately by virtue of eqs. (2,1) Mw,s = ±lℏ with l arbi-
trary integer including zero; instead of n, we have used the
standard notation l for the eigenvalues of angular motion of
the particle. Identically one finds also Mw,t = ±l′ℏ/2, with l′

arbitrary integer including zero too. Hence Mw = ±lℏ± l′ℏ/2.
The first addend is clearly the non-relativistic component

lℏ of angular momentum already found in [7], the latter yields
an additional component l′ℏ/2 of angular momentum. Hav-
ing considered the invariant range δs rather than the space
range ∆x only, the further number l′ of states is due to the
time term of the space-time uncertainty; putting ∆t = 0, i.e.
omitting the time/energy uncertainty and thus the time coor-
dinate, δrt = 0 and Mw coincides with the non-relativistic
quantum component of angular momentum only.

Four important remarks concern:
(i) the number l of states allowed for the non-relativistic

angular momentum component coincides with the quantum
number of the eigenvalue of the non-relativistic angular mo-
mentum wave equation;

(ii) the concept of space-time uncertainty defines the se-
ries development of the particular invariant range δs as sum
of two terms, the second of which introduces a new non-
classical component of angular momentum l′/2;

(iii) the local momentum p and local coordinate s within
the ranges δp and δs are not really calculated, rather they
are simply required to change randomly within the respective
ranges of values undetermined themselves; (iv) the bound-
ary coordinates of both δp and δs do not appear in the result,
rather is essential the concept of delocalization ranges only to
infer the total component as a sum of both eigenvalues.

The component Mw = ±lℏ ± sℏ, with s = l′/2, requires
introducing M = L + S. In [7] the non-relativistic M2

nr has
been calculated summing its squared average components be-
tween arbitrary values −L and +L allowed for ±l, with L
by definition positive, thus obtaining M2

nr = 3 < (ℏl)2 >=
L(L + 1)ℏ2. Replace now ±l with ±l ± s; with j = l ± s rang-
ing between arbitrary −J and J, then M2 = 3 < (ℏ j)2 >=

3(2J + 1)−1
J∑
−J

(ℏ j)2 = ℏ2J(J + 1) being J positive by defini-

tion. The obvious identity
J∑
−J

j2 ≡ 2
J∑
0

j2 requires that J con-

sistent with M2 takes all values allowed to | j| from |l − s| up
to |l + s| with l ≤ L and s ≤ S . Since no hypothesis has been
made on L and S, this result yields in general the addition rule
of quantum vectors. Also, holds for S the same reasoning car-

ried out for L in [7], i.e. only one component of S is known,
whereas it is immediate to realize that S 2 = ℏ2(L′/2+1)L′/2.

The physical meaning of S appears considering that: (i)
l′ℏ/2 is an angular momentum, inferred likewise as and con-
textually to lℏ; (ii) l′ results when considering the invariant
space-time uncertainty range into the definition of Mw; (iii)
l and l′ are independent, indeed they concern two indepen-
dent uncertainty equations; the former is related to the angular
motion of the particle, the latter must be instead an intrinsic
property of the particle, as l′ is defined regardless of whether
l = 0 or l , 0. Since in particular l′ , 0 even though the or-
bital angular momentum is null, S can be nothing else but the
intrinsic property of the particle we call spin angular momen-
tum. Indeed it could be also inferred in the typical way of rea-
soning of the special relativity i.e. introducing observers and
physical quantities in two different inertial reference systems
R and R′ in relative constant motion; so, exploiting exactly the
same procedure considering couples δr and δp together with
δr′ and δp′ fulfilling the Lorentz transformation one finds of
course the same result.

It is significant the fact that here the spin is inferred thro-
ugh the invariant interval of eq (3,13), i.e. exploiting eqs.
(2,1) only. This is another check of the conceptual compli-
ance of these equations with the special relativity.

3.7 The hydrogenlike atom/ion

The following example of calculation concerns first the non-
relativistic hydrogenlike atom/ion. Assume first the origin O
of R on the nucleus, the energy is thus ε = p2/2m − Ze2/r
being m the electron mass. Since p2 = p2

r + M2/r2, the po-
sitions (2,2) pr → ∆pr and r → ∆r yield ε = ∆p2

r/2m +
M2/2m∆r2 − Ze2/∆r. Two numbers of states, i.e. two quan-
tum numbers, are expected because of the radial and angu-
lar uncertainties. Eqs. (2,1) and the results of section 3.3
yield ε = n2ℏ2/2m∆r2 + l(l+ 1)ℏ2/2m∆r2 −Ze2/∆r that reads
ε = εo + l(l + 1)ℏ2/2m∆r2 − Eo/n2 with Eo = Z2e4m/2ℏ2 and
εo = (nℏ/∆r − Ze2m/nℏ)2/2m. Minimize ε putting εo = 0,
which yields ∆r = n2ℏ2/Ze2m and εtot = [l(l+1)/n2−1]Eo/n2;
so l ≤ n − 1 in order to get ε < 0, i.e. a bound state.
Putting thus n = no + l + 1 one finds the electron energy
levels εel = −Eo/(no + l + 1)2 and the rotational energy εrot =

l(l + 1)Eo/n4 of the atom/ion as a whole around O. So εrot =

εtot − εel. Repeat the same reasoning putting O on the cen-
ter of mass of the system nucleus + electron; it is trivial to
infer E′o = Z2e4mr/2ℏ2 and ∆r′ = n2ℏ2/Ze2mr, being mr the
electron-nucleus reduced mass. If instead O is fixed on the
electron, i.e. the nucleus moves with respect to this latter, then
E′′o = Z2e4A/2ℏ2 and ∆r′′ = n2ℏ2/Ze2A, being A the mass of
the nucleus. Thus various reference systems yield the same
formula, and then again ε′rot = ε

′
tot−ε′el and ε′′rot = ε

′′
tot−ε′′el, yet

as if the numerical result would concern particles of different
mass.

The ambiguity between change of reference system and
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change of kind of particle is of course only apparent; it de-
pends merely on the erroneous attempt of transferring to the
quantum world dominated by the uncertainty the classical
way of figuring an “orbital” system of charges where one of
them really rotates around the other. Actually the uncertainty
prevents such a phenomenological way of thinking: instead
the correct idea is that exists a charge located somewhere
with respect to the nucleus and interacting with it, without
chance of specifying anything else. This is shown noting that
anyway one finds Eel = −Ze2/2∆ρ with ∆ρ symbolizing any
radial range of allowed distances between the charges, regard-
less of which particle is actually in O. Since the total uncer-
tainty range 2∆ρ is the diameter of a sphere centered on O,
the different energies are mere consequence of different de-
localization extents of a unique particle with respect to any
given reference point.

This reasoning shows that different ranges of allowed ra-
dial momenta entail different allowed energies: if the particle
of mass m is replaced for instance by one of lower mass, then
∆ρ increases while therefore ∆pρ decreases; i.e. Eo reason-
ably decreases along with the range of allowed radial mo-
menta. Of course it is not possible to infer “a priori” if these
outcomes concern the motion of three different particles or
the motion of a unique particle in three different reference
systems; indeed no specific mass appears in the last conclu-
sion. The allowed radial momenta only determine εel, de-
fined as −Eo of two charges −Ze and e at diametric distance
with respect to O times n−2; this latter is the fingerprint of the
quantum delocalization meaning of ∆ρ. So Eo is defined by
the mass m of the particle whose energy levels are of interest;
for instance in the case of a mesic atom m would be the mass
of a negative muon.

Note that εel is the intrinsic energy of the system of two
charges, regardless of the kinetic energy of the atom as a
whole and the rotational energy, i.e. ∆ε = εtot − εel = l(l +
1)Eo/n2. The physical meaning of the boundary coordinates
of ∆x and ∆t has been already emphasized.

Let us consider now the boundary values of other uncer-
tainty ranges, examining also the harmonic oscillator and the
angular momentum. The vibrational and zero point energies
of the former nℏω and ℏω/2 define ∆ε = εtot −εzp = nℏω; i.e.
the lower boundary of the range is related to an intrinsic en-
ergy not due to the oscillation of the mass, likewise as that of
the hydrogenlike atom was the binding energy. In the case of
angular momentum ∆Mw = Mw − l′ℏ = lℏ, with Mw ≡ Mtot,w,
i.e. the lower boundary of the range is still related to the in-
trinsic angular momentum component of the particle; from
this viewpoint, therefore, the spin is understandable as the in-
trinsic property not dependent on the specific state of motion
of the particle with respect to which the arbitrary values of l
define the range size ∆Mw. The same holds for the relativis-
tic kinetic energy of a free particle; the series development of
the first eq (3,3) shows that its total energy is the rest energy
plus higher order terms, i.e. one expects ∆ε = ε − mc2; also

now the lower boundary of the range is an intrinsic feature of
the particle, not related to its current state of motion. Classi-
cally, the energy is defined an arbitrary constant apart; here it
appears that this constant is actually an intrinsic property of
the particle, not simply a mathematical requirement, and that
a similar conclusion should hold in general, thus expectedly
also for the relativistic hydrogenlike energy. Let us concern
the relativistic case specifying the energy ranges in order to
infer the binding energy εel < 0 through trivial manipulations
of eq (3,12) ∆ε2 = c2∆p2 + δε2

c . This expression is the 4D
extension of that considering the component ∆px only; what-
ever the three space components and their link to ∆p might
be, their arbitrariness allows to write again ∆p = p1 − po

and ∆ε = ε1 − εo. The first steps of calculations are truly
trivial: consider c∆p/δεc then calculate (c∆p − ∆ε)/δεc, so
that (cp1 − ∆ε)/δεc = b +

√
a2 − 1 − a with a = ∆ε/δεc and

b = cpo/δεc. Next (cp1 − ∆ε)2/δε2
c yields trivially

∆ε2

(cp1 − ∆ε)2 −
(c∆p)2

(cp1 − ∆ε)2 =
1(

b +
√

a2 − 1 − a
)2 .

A reasonable position is now (cp1 − ∆ε)2 = (c∆p)2: in-
deed the left hand side ∆ε2/(c∆p)2 = 1 for b → ∞, i.e. for
δεc → 0, agrees with the initial equation. Trivial manipula-
tions yield

cp1

∆ε
= 1 ± 1√

1 +
(
b +
√

a2 − 1 − a
)−2

,

c∆p = ±(cp1 − ∆ε), a =
∆ε

δεc
, b =

cpo

δεc
.

This result has not yet a specific physical meaning be-
cause it has been obtained simply manipulating the ranges
∆ε, δεc and c∆p. Physical information is now introduced tak-
ing the minus sign and calculating the non-vanishing first or-
der term of series development of the right hand side around
b = ∞, which is 1/2b2; the idea that specifies the result is
thus the non-relativistic hydrogenlike energy −(αZ/n)2mc2/2
previously found. Requiring b = n/αZ, the limit of the ratio
cp1/∆ε is thus the energy in mc2 units gained by the electron
in the bound state with respect to the free state. To infer a
recall that n = l + 1 and note that the second equation ±∆ε =
cpo − cp1± cp1 reads ±∆ε = cpo or ±∆ε = cpo−2cp1; divid-
ing both sides by δεc, the latter suggests cp1/δεc = (2αZ)−1

in order that ±a = n/αZ or ±a = (n− 1)/αZ read respectively
±a = (l + 1)/αZ or ±a = l/αZ, i.e. a = (l + 1/2 ± 1/2)/αZ.

In conclusion the relativistic form of the binding energy
εel is

εel

mc2 =

√√√√√√√1 +
(αZ)2(

n +
√

( j + 1/2)2 − 1 − ( j + 1/2)
)2 − 1

with j = l ± s. If n → ∞ then εel → 0, while the non-
relativistic limit previously found corresponds to αZ → 0.
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3.8 The pillars of quantum mechanics

Let us show now that the number of allowed states introduced
in eqs. (2,1) leads directly to both quantum principles of ex-
clusion and indistinguishability of identical particles. The re-
sults of the previous section suggest the existence of different
kinds of particles characterized by their own values of l′. If
this conclusion is correct, then the behavior of the particles
should depend on their own l′. Let us consider separately ei-
ther possibility that l′ is odd or even including 0.

If l′/2 is zero or integer, any change of the number N of
particles is physically indistinguishable in the phase space:
are indeed indistinguishable the sums

∑N
j=1 l j + Nl′/2 and∑N+1

j=1 l∗j + (N + 1)l′/2 controlling the total value of Mw be-
fore and after increasing the number of particles; indeed the
respective l j and l∗j of the j-th particles are arbitrary. In other
words, even after adding one particle to the system, Mw and
thus M2 replicate any possible value allowed to the particles
already present in the system simply through a different as-
signment of the respective l j; so, in general a given number
of allowed states determining Mw in not uniquely related to a
specific number of particles.

The conclusion is different if l′ is odd and l′/2 half-inte-
ger; the states of the phase space are not longer indistinguish-
able with respect to the addition of particles since Mw jumps
from . . . integer, half-integer, integer... values upon addition
of each further particle, as any change of the number of par-
ticles necessarily gives a total component of Mw, and then a
resulting quantum state, different from the previous one. In
other words any odd-l′ particle added to the system entails a
new quantum state distinguishable from those previously ex-
isting, then necessarily different from that of the other parti-
cles. The conclusion is that a unique quantum state is consis-
tent with an arbitrary number of even-l′ particles, whereas a
unique quantum state characterizes each odd-l′ particle. This
is nothing else but a different way to express the Pauli ex-
clusion principle, which is thus corollary itself of quantum
uncertainty. Recall also the corollary of indistinguishability
of identical particles, already remarked; eqs. (2,1) concern
neither the quantum numbers of the particles themselves nor
their local dynamical variables but ranges where any particle
could be found, whence the indistinguishability.

We have shown that a unique formalism based on eqs.
(2,1) only is enough to find the basic principles of both spe-
cial relativity and quantum mechanics; also, quantum and rel-
ativistic results have been concurrently inferred. The only es-
sential requirement to merge special relativity and quantum
mechanics is to regard the intervals of the former as the un-
certainty ranges of the latter. The next step concerns of course
the general relativity.

4 Uncertainty and general relativity

In section 3 the attempt to generalize the non-relativistic re-
sults of the papers [7,8] was legitimated by the possibility of

obtaining preliminarily the basic postulates of special rela-
tivity as straightforward corollaries of eqs. (2,1). Doing so,
the positions (2,2) ensure that the special relativity is com-
pliant with the concepts of quantization, non-reality and non-
locality of quantum mechanics [9]. At this point, the attempt
of extending further an analogous approach to the general rel-
ativity is now justified by showing two fundamental corollar-
ies: (i) the equivalence of gravitational and inertial forces and
(ii) the coincidence of inertial and gravitational mass. These
concepts, preliminarily introduced in [9], are so important to
deserve being sketched again here.

Once accepting eqs. (2,1) as the unique assumption of the
present model, the time dependence of the uncertainty range
sizes ∆x = x − xo and ∆px = px − po rests on their link to
∆t through n; for instance it is possible to write d∆x/d∆t in
any R without contradicting eqs. (2,1); this position simply
means that changing ∆t, e.g. the time length allowed for a
given event to be completed, the space extent ∆x necessary
for the occurring of that event in general changes as well. In
other words there is no reason to exclude that ∆t → ∆t + ∆t§,
with ∆t§ arbitrary, affects the sizes of ∆x and ∆px although
n remains constant; in fact eqs. (2,1) do not prevent such a
possibility. Hence, recalling that here the derivative is the ra-
tio of two uncertainty ranges, the rate ∆ẋ with which changes
∆x comes from the chance of assuming ẋ = δx/d∆t and/or
ẋo = δxo/d∆t; also, since analogous considerations hold for
d∆px/d∆t one finds similarly ṗx and ṗo. Also recall that the
boundary values of the ranges are arbitrary, so neither po and
px nor their time derivatives need to be specified by means
of assigned values. Since ṗo and ṗx are here simply defi-
nitions, introduced in principle but in fact never calculated,
the explicit analytical form of the momentum p of general
relativity does not need to be known; the previous examples
of angular momentum and hydrogenlike atoms elucidate this
point. The following reasoning exploits therefore the mere
fact that a local force is related to a local momentum change,
despite neither the former nor the latter are actually calculable
functions of coordinates.

Let us define ∆t and the size change rates d∆x/d∆t and
d∆px/d∆t in an arbitrary reference system R as follows

d∆px/d∆t = F = −nℏ∆x−2d∆x/d∆t (4,1)

with F , 0 provided that ẋ , ẋo and ṗx , ṗo. At left hand
side of eqs. (4,1) the force component F involves explicitly
the mass of the particle through the change rate of its momen-
tum; at the right hand side F concerns the range ∆x and its
size change rate only, while the concept of mass is implicitly
inherent the physical dimensions of ℏ. It is easy to explain
why a force field arises when changing the size of ∆x: this
means indeed modifying also the related size of ∆px and thus
the extent of values allowed to the random px; the force field
is due to the resulting ṗx throughout ∆x whenever its size is
altered. After having acknowledged the link between ∆ẋ and
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F intuitively suggested by eqs. (2,1), the next task is to check
the conceptual worth of eqs. (4,1). Let xo be the coordi-
nate defined with respect to the origin O of R where hold eqs.
(2,1). If ∆t = t − to with to = const, then the previous expres-
sion reads d∆px/dt = F = −nℏ∆x−2d∆x/dt. Formally eqs.
(4,1) can be rewritten in two ways depending on whether xo

or x, and likewise po or px, are considered constants: either
(i) ∆ṗx ≡ ṗx so that ṗx = Fx = −nℏ∆x−2 ẋ or (ii) ∆ ṗx ≡ ṗo so
that ṗo = Fo = −nℏ∆x−2 ẋo.

The physical meaning of these results is realized imagin-
ing in R the system observer + particle: the former is sitting
on xo, the latter is fixed on x. In (i) the observer is at rest with
respect to O and sees the particle accelerating according to
ṗx by effect of Fx generated in R during the deformation of
the space-time range ∆x. In (ii) the situation is different: now
∆x deforms while also moving in R at rate ẋo with respect
to O, the deformation occurs indeed just because the parti-
cle is at rest with respect to O; thus the force Fo displaces
the observer sitting on xo, which accelerates with respect to
the particle and to O according to −ṗo. In a reference system
Ro solidal with xo, therefore, a force F′o still acts on the ob-
server although he is at rest; the reason is clearly that Ro is
non-inertial with respect to R because of its local acceleration
related to −ṗo. Although the reasoning is trivially simple, the
consequence is important: both situations take place in the
presence of a force component because both cases (i) and (ii)
are equally allowed and conceptually equivalent; however the
force in R is real, it accelerates a mass, that in Ro does not;
yet Fx , 0 compels admitting in R also Fo , 0, which in turn
reads F′o , 0 in Ro. Whatever the transformation rule from Fo

to F′o might be, the conclusion is that an observer in an accel-
erated reference frame experiences a force similar to that able
to accelerate a massive particle with respect to the observer
at rest. Of course Fx is actually the component of a f orce
f ield, because it is an average value defined throughout a fi-
nite sized range ∆x deforming as a function of time, whereas
Fo and F′o are by definition local forces in xo; if however the
size of ∆x is smaller and smaller, then Fx is better and better
defined itself like a classical local force.

Now we are also ready to find the equivalence between
inertial and gravitational mass. Note indeed that Fx has been
defined through a unique mass m only, that appearing in the
expression of momentum; hence from the standpoint of the
left hand side of eqs. (4,1) we call m inertial mass. Con-
sider in this respect that just this mass must somehow ap-
pear also at right hand side of eqs. (4,1) consisting of un-
certainty ranges only, which justifies the necessary position
nℏ∆ẋ∆x−2 = m

∑∞
j=2 a j∆x− j according which the mass is also

an implicit function of ∆x, ∆ẋ, ℏ and n; the lower summa-
tion index is due to the intuitive fact that ∆ẋ cannot be func-
tion of or proportional to ∆x otherwise it would diverge for
∆x→ ∞, hence the power series development of the quantity
at left hand side must start from ∆x−2. So, putting as usual the
coefficient of the first term of the series a2 = kG, eqs. (4,1)

yields F = −kGm∆x−2 +ma3∆x−3 + ··. Three remarks on this
result are interesting: (i) the first term is nothing else but the
Newton gravity field, where now the same m plays also the
expected role of gravitational mass generating a radial force
that vanishes with x−2 law if expressed through the local ra-
dial distance x from m; (ii) F is in general additive at the first
order only, as it is evident considering the sum of ∆ẋ1 due to
F1 related to m1 plus an analogous ∆ẋ2 due to F2 in the pres-
ence of another mass m2; (iii) gravitational mass generating F
and inertial mass defined by ṗo coincide because in fact m is
anyway that uniquely defined in eqs. (4,1). By consequence
of (ii) force and acceleration are co-aligned at the first order
only. The proportionality factor kG has physical dimensions
l3t−2; multiplying and dividing the first term at right hand side
by a unit mass mu and noting that mum can be equivalently
rewritten as m′m′′ because m is arbitrary like m′ and m′′, the
physical dimensions of kG turn into l3t−2m−1 while

F = −Gm′m′′∆x−2 + m′m′′a3∆x−3 + · · ·. (4,2)

In conclusion eqs. (2,1) allow to infer as corollaries the
two basic statements of general relativity, the arising of iner-
tial forces in accelerated systems and the equivalence princi-
ple.

This result legitimates the attempt to extend the approach
hitherto outlined to the general relativity, but requires intro-
ducing a further remark that concerns the concept of covari-
ance; this concept has to do with the fact that eqs. (4,1) in-
troduce in fact two forces Fx and Fo in inertial, R, and non-
inertial, Ro, reference systems. This early idea introduced by
Einstein first in the special relativity and then extended also
to the general relativity, aimed to exclude privileged reference
systems by postulating the equivalence principle and replac-
ing the concept of gravity force with that of space-time curved
by the presence of the mass; Gaussian curvilinear coordinates
and tensor calculus are thus necessary to describe the local
behavior of a body in a gravity field. This choice allowed on
the one side to explain the gedankenexperiment of light beam
bending within an accelerated room and on the other side to
formulate a covariant theory of universal gravitation through
space-time Gaussian coordinates.

Yet the covariancy requires a mathematical formalism that
generates conflict with the probabilistic basis of the quantum
mechanics: the local metric of the space-time is indeed deter-
ministic, obviously the gravity field results physically differ-
ent from the quantum fields. It makes really difficult to merge
such a way of describing the gravitation with the concepts
of non-locality and non-reality that characterize the quantum
world. In the present model the concept of force appears in-
stead explicitly: without any “ad hoc” hypothesis the Newton
law is obtained as approximate limit case, whereas the trans-
formation from an inertial reference system R to a non-inertial
reference system Ro correctly describes the arising of an in-
ertial force.
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Hence the present theoretical model surely differs in prin-
ciple from the special and general relativity; yet, being de-
rived from eqs. (2,1), it is consistent with quantum mechanics
as concerns the three key requirements of quantization, non-
reality, non-locality. Also, the previous discussion exploits
a mathematical formalism that despite its extreme simplicity
efficiently bypasses in the cases examined the deterministic
tensor formalism of special relativity. In the next sub-section
4.1 attention will be paid to the concept of covariancy, not
yet explicitly taken into consideration when introducing the
special relativity and apparently skipped so far. Actually this
happened because, as shown below, the concept of covari-
ance is already inherent “per se” in the concept of uncertainty
once having postulated the complete arbitrariness of size and
boundary coordinates of the delocalization ranges.

Let us conclude this introductory discussion rewriting the
eqs. (4,1) as ∆ṗx = F = µ∆ẍ, where

µ = −nℏ
∆ẋ
∆x2∆ẍ

has of course physical dimensions of mass; indeed ∆ṗx en-
sures that effectively µ must somehow be related to the mass
of a particle despite it is defined as a function of space delo-
calization range and its proper time derivatives only.

It is worth noticing that in eq (3,2) the mass was defined
regarding the particle as a delocalized corpuscle confined wi-
thin ∆x, here the quantum of uncertainty ℏ introduces the
mass µ uniquely through its physical dimension. Also note
that µ/ℏ has dimension of a reciprocal diffusion coefficient
D, so the differential equation ∆ẋ/(∆x2∆ẍ) = ∓(Dn)−1 admits
the solution ∆x = (L(ξ) + 1)

√
Dτo, where L is the Lambert

function and ξ = ±n exp(∓n∆t/τo); the double sign is due to
that possibly owned by µ, the integration constants are −to
defining ∆t = t − to and τo. In conclusion we obtain in the
same R of eqs. (4,1)

F = ±n2 ℏ/τo√
Dτo

L(ξ)
(L(ξ) + 1)3 ,

∆x
∆xD

= L(ξ) + 1,

µ = ±ℏ/D, ξ = ±n exp(∓n∆t/τo),

∆xD =
√

Dτo.

(4,3)

Note that the ratio ∆ẋ/∆ẍ = ∓(L(ξ) + 1)2τo/n inferred
from the given solution never diverges for n > 0; moreover
∆x defined by this solution is related to the well known FLRW
parameter q = −äa/ȧ2, where a is the scale factor of the uni-
verse. Replacing this latter with ∆x thanks to the arbitrariness
of ∆xD and ∆x itself, one finds that q = ∓L(ξ)−1.

The importance of eqs. (4,3) rests on the fact that ∆x =
∆xD for n = 0 whereas instead, selecting the lower sign,
∆x < ∆xD for any n > 0; the reason of it will be clear in
the next section 4.3 dealing with the space-time curvature.

It is worth remarking here the fundamental importance
of n: (i) in [9] its integer character was proven decisive to
discriminate between reality/locality and non-reality/non-
locality of the classical and quantum worlds; (ii) previously
small or large values of n were found crucial to describe rela-
tivistic or non-relativistic behavior; (iii) here the values n = 0
and n > 0 appear decisive to discriminate between an un-
physical world without eigenvalues and a physical world as
we know it. This last point will be further remarked in the
next subsection 4.2.

Eventually µ deserves a final comment: µ is a mass de-
fined within ∆x uniquely because of its ∆ẋ and ∆ẍ; its sign
can be in principle positive or negative depending on that of
the former or the latter.

Relate ∆x to the size of our universe, which is still ex-
panding so that ∆ẋ , 0; also, since there is no reason to ex-
clude that the dynamics of the whole universe corresponds to
∆ẍ , 0 too, assume in general an expansion rate not neces-
sarily constant.

It follows for instance µ < 0 if the universe expands at
increasing rate, i.e. with ∆ẋ > 0 and ∆ẍ > 0. Eqs. (4,3)
show that a mass is related to non-vanishing ∆x and ∆ẋ, ∆ẍ.
This result appears in fact sensible recalling the dual corpus-
cle/wave behavior of quantum particles, i.e. imagining the
particle as a wave propagating throughout the universe.

It is known that a string of fixed length L vibrates with two
nodes L apart, thus with fundamental frequency νo = v/2L
and harmonics νn = nνo = nv/2L; the propagation velocity of
the wave is v = νnλn =

√
T/σ, being T and σ the tension and

linear density of the string. If L changes as a function of time
while the string is vibrating and the wave propagating, then
νn and λn become themselves functions of time.

Let the length change occur during a time δt; it is trivial to
find δνn/νn = (v̇/v−L̇/L)δt, i.e. the frequency change involves
L, L̇ and v̇. Put now L equal to the diameter of the universe at a
given time, i.e. identify it with ∆x; then propagation rate and
frequency of the particle wave clearly change in an expanding
universe together with its dynamic delocalization extent.

This therefore means changing the energy ℏδνn of the par-
ticle wave, which in turn corresponds to a mass change δm =
ℏδνnc−2. All this agrees with the definition µ = µ(∆x,∆ẋ,∆ẍ)
and supports the analogy with the vibrating string. If so the
mass µ results related itself to the big-bang energy, early re-
sponsible of the expansion. Once again is the uncertainty the
key to highlight the origin of µ: likewise as the time change
of ∆x entails the rising of a force, see eqs. (4,1), correspond-
ingly the time change of the size of the universe changes the
delocalization extent of all matter in it contained and thus its
internal energy as well.

Two questions arise at this point: has µ so defined some-
thing to do with the supposed “dark mass“? If this latter is
reasonably due to the dynamics of our universe and if the
kind of this dynamics determines itself both space-time cur-
vature and sign of ±µ, has this sign to do with the fact that
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our universe is preferentially made of matter rather than of
antimatter? Work is in advanced progress to investigate these
points, a few preliminary hints are sketched below.

4.1 Uncertainty and covariancy

In general the laws of classical mechanics are not covariant
by transformation from inertial to non-inertial reference sys-
tems. Their form depends on the arbitrary choice of the ref-
erence system describing the time evolution of local coordi-
nates, velocities and accelerations; this choice is subjectively
decided for instance to simplify the formulation of the spe-
cific problem of interest.

A typical example is that of a tethered mass m rotating
frictionless around an arbitrary axis: no force is active in R
where the mass rotates, whereas in Ro solidal with the mass
is active the centrifugal force; also, if the constrain restrain-
ing the mass to the rotation axis fails, the motion of the mass
becomes rectilinear and uniform in R but curved in Ro, where
centrifugal and Coriolis forces also appear. Let in general
the non-covariancy be due to a local acceleration aR in R,
to which corresponds a combination aRo of different accel-
erations in Ro. This dissimilarity, leading to fictitious forces
appearing in Ro only, suggested to Einstein the need of a co-
variant theory of gravitation. Just in this respect however the
theoretical frame of the present model needs some comments.

First, the local coordinates are conceptually disregarded
since the beginning and systematically eliminated according
to the positions (2,2), whence the required non-locality and
non-reality of the present model; accordingly the functions
of coordinates turn into functions of arbitrary ranges, i.e. in
2D aR(x, t) → aR(∆x,∆ε,∆p,∆t, n), whereas the same holds
for aRo . So the classical x-components of aR and aRo trans-
form anyway into different combinations of the same ranges
∆x,∆ε,∆p,∆t; the only information is that the local aR and
aRo become random values within ranges ∆aR = a(2)

R −a(1)
R and

∆aRo = a(2)
Ro
− a(1)

Ro
. Yet being these range sizes arbitrary and

unpredictable by definition, maybe even equal, is still phys-
ically significant now the formal difference between aR and
aRo ?

Second, eqs. (4,1) introduce explicitly a force component
F via ∆ ṗx consequence of ∆ẋ , 0; still appears also in the
present model the link between force and deformation of the
space-time, hitherto intended however as expansion or con-
traction of a 2D space-time uncertainty range.

Third, the positions (2,2) discriminate non-inertial, Ro,
and inertial, R, reference systems; from the arbitrariness of
xo and po follows that of ẋo and ṗo as well. For instance
the previous discussion on the 2D eqs. (4,1) leads directly to
Einstein’s gedankenexperiment of the accelerated box; in the
present model the expected equivalence between gravity field
in an inertial reference system, Fx, and inertial force in accel-
erated frames, F′o, is indeed obtained simply considering the
time dependence of both boundary coordinates of ∆x; with-

out specifying anything, this also entails the equivalence of
gravitational and inertial mass. Being all space-time ranges
arbitrary, the equivalence principle previously inferred is ex-
tensible to any kind of acceleration through a more general,
but conceptually identical, 4D transformation from any R to
any other Ro; indeed defining appropriately xo j and their time
derivatives ẋo j and ẍo j times m, with j = 1, 2, 3, one could
describe in principle also the inertial forces of the example
quoted above through the respective p j, po j and ṗ j, ṗo j.

The key point of the present discussion is just here: the
arbitrariness of both x j and xo j generalizes the chances of
accounting in principle for any aR and any aRo . A typical
approach of classical physics consists of two steps: to intro-
duce first an appropriate R according which are defined the
local coordinates and to examine next the same problem in
another Ro via a suitable transformation of these coordinates,
whence the necessity of the covariancy. The intuitive con-
siderations just carried out suggest instead that the classical
concept of coordinate transformation fails together with that
of local coordinates themselves. Imagine an observer able to
perceive a range of values only, without definable boundaries
and identifiable coordinates amidst; when possibly changing
reference system, he could think to the transformation of the
whole range only. This is exactly what has been obtained
from eqs. (4,1) through the arbitrary time dependence of both
x and xo: the classical physics compels deciding either R or
Ro, the quantum uncertainty requires inherently both of them
via the two boundary coordinates of space-time ranges. The
ambiguity of forces appearing in either of them only becomes
in fact completeness of information, paradoxically just thanks
to the uncertainty: the classical freedom of deciding “a priori”
either kind of reference system, inertial or not, is replaced by
the necessary concurrency of both of them simply because
each couple of local dynamical variables is replaced by a cou-
ple of ranges.

As shown in the 2D eqs. (4,1), in the present model R-
like or Ro-like reference systems are not alternative options
but complementary features in describing any physical sys-
tem that involves accelerations. Accordingly eqs. (4,1) have
necessarily introduced two forces, Fx and Fo, related to the
two standpoints that entail the equivalence principle as a par-
ticular case. After switching the concept of local dynamical
variables with that of space-time uncertainty, the physical in-
formation turns in general into two coexisting perspectives
contextually inferred; inertial and non-inertial forces are no
longer two unlike or fictitious images of a unique law of na-
ture merely due to different formulations in R or Ro, but, since
each one of them requires the other, they generalize the equiv-
alence principle itself. Just this intrinsic link surrogates here
the concept of covariancy in eliminating a priori the status of
privileged reference system. On the one hand, the chance of
observers sitting on accelerated xo or x excludes by necessity
a unique kind of reference system; on the other hand, avoid-
ing fictitious forces appearing in Ro only testifies the ability
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of the present approach to incorporate all forces into a unique
formulation regardless of their inertial and non-inertial na-
ture.

Instead of bypassing the ambiguity of unlike forces ap-
pearing in either reference system only by eliminating the
forces, the present model eliminates instead the concept it-
self of privileged reference system in the most general way
possible when describing a physical system, i.e. through the
concomitant introduction of both R and Ro. The total ar-
bitrariness of both boundary coordinates of the uncertainty
ranges on the one side excludes a hierarchical rank of R or
Ro in describing the forces of nature, while affirming instead
the complementary nature of their unique physical essence;
on the other side it makes this conclusion true in general, re-
gardless of whether xo or x is related to the origin O of R and
to the size of ∆x.

4.2 Uncertainty and space-time curvature

The concept of curvature is well known in geometry and in
physics; it is expressed differently depending on the kind of
reference system. In general relativity the space-time curva-
ture radius is given by ρ = gikRik, being gik the contravariant
metric tensor and Rik the Ricci tensor. As already empha-
sized, however, the central issue to be considered here is not
the mathematical formalism to describe the curvature but the
conceptual basis of the theoretical frame hitherto exposed; the
key point is again that the positions (2,2) exclude the chance
of exploiting analytical formulae to calculate the local curva-
ture of the space-time. So, once having replaced the concept
of space-time with that of space-time uncertainty, the way to
describe its possible curvature must be accordingly reviewed.
Just at this stage, eqs. (2,1) are exploited to plug also the
quantum non-locality and non-reality in the conceptual struc-
ture of the space-time, i.e. into the general relativity.

In a previous paper [9] these features of the quantum wo-
rld were introduced emphasizing that the measurement pro-
cess perturbs the early position and momentum of the ob-
served particle, assumed initially in an unphysical state not
yet related to any number of states and thus to any observ-
able eigenvalue. Owing to the impossibility of knowing the
initial state of the particle, the early conjugate dynamical vari-
ables were assumed to fall within the respective ∆x§ and ∆p§x;
the notation emphasizes that before the measurement process
these ranges are not yet compliant with eqs. (2,1), i.e. they are
unrelated. These ranges, perturbed during the measurement
process by interaction with the observer, collapse into the re-
spective ∆x and ∆px mutually related according to the eqs.
(2,1) and thus able to define eigenvalues of physical observ-
ables through n; this also means that ∆x§ and ∆p§x were mere
space uncertainty ranges, whereas after the measurement pro-
cess only they turn into the respective ∆x and ∆px that take
by virtue of eqs. (2,1) the physical meaning of space-time
uncertainty ranges of position and momentum. The paper

[9] has explained the reason and the probabilistic character
of such a collapse to smaller sized ranges, thanks to which
the measurement process creates itself the number of states:
the non-reality follows just from the fact that after the mea-
surement process only, the particle leaves its early unphysical
state to attain an allowed physical state characterized by the
n-th eigenvalue.

This kind of reasoning is now conveyed to describe how
and why a particle while passing from an unphysical state to
any allowed physical state also curves concurrently the space-
time. In this way the basic idea of the general relativity, i.e.
the space-time curvature, is conceived itself according the
concepts of non-reality and non-locality; the latter also fol-
lows once excluding the local coordinates and exploiting the
uncertainty ranges of eqs. (2,1) only.

To start the argument, note that the arbitrary boundaries
of the range ∆x§ = x§ − xo control the actual path traveled by
a particle therein delocalized. Let the space reference system
be an arbitrary 1D x-axis about which nothing is known; in-
formation like flat or curled axis is inessential. Thus the fol-
lowing considerations are not constrained by any particular
hypothesis on the kind of possible curvature of the early 1D
reference system. Consider first the space range ∆x§ alone;
changing by an arbitrary amount dx§ the actual distance of
x§ from xo on the x-axis, the size of ∆x§ changes as well so
that d∆x§/dx§ = 1, i.e. d∆x§ = dx§. This implicitly means
that the range ∆x§ overlaps to, i.e. coincides with, the ref-
erence x-axis. Thus the delocalization motion of the particle
lies by definition between the aforesaid boundary coordinates
just on this axis, whatever its actual geometry before the mea-
surement process might be. In principle this reasoning holds
for any other uncertainty range corresponding to ∆x§, e.g. the
early local energy of a particle delocalized within ∆x§ could
be a function of its local coordinate along the x-axis; however
such a local value of energy is inconsequential, being in fact
unobservable in lack of n and thus by definition unphysical.

Consider again the aforesaid 1D space range, yet assum-
ing now that a measurement process is being carried out to in-
fer physical information about the particle; as a consequence
of the perturbation induced by the observer, the actual corre-
lation of ∆x = x − xo with its conjugate range ∆px = px − po

of allowed momenta introduces n too; now, by virtue of eqs.
(2,1), these ranges take the physical meaning of space-time
uncertainties and concur to define allowed eigenvalues ac-
cording to the concept of quantum non-reality. Although ∆x
is still expressed by two arbitrary coordinates on the x-axis, it
is no longer defined by these latter only; rather ∆x is defined
taking into account also its correlation with ∆px through n.
In other words eqs. (2,1) compel regarding the change of x,
whatever it might be, related to that of ∆px; this does not
contradict the concept of arbitrariness of the ranges so far as-
sumed, as x remains in fact arbitrary like ∆px itself and un-
known like the function x(∆px) correlating them. Yet, when
calculating d∆x/dx with the condition ∆x∆px = nℏ, we ob-
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tain in general d∆x/dx = −(nℏ)−1∆x2d∆px/dx , 1.
To summarize, ∆x§ and ∆x have not only different sizes

but also different physical meaning, i.e. the former is mere
precursor of the latter: before the measurement process ∆x§

overlapped to the x-axis and had mere space character, the
early path length of the particle lay on the reference axis, i.e.
d∆x§ = dx§; after the measurement process ∆x§ shrinks into
the new ∆x such that in general d∆x , dx, thus no longer co-
incident with the x-axis and with space-time character. In this
way the measurement process triggers the space-time uncer-
tainty, the space-time curvature and the allowed eigenvalues
as well.

Let us visualize for clarity why the transition from space
to space-time also entails curved Gaussian coordinates as a
consequence of the interaction of the particle with the ob-
server. If ∆x§ shrinks to ∆x, then the early boundary coor-
dinates of the former must somehow approach each other to
fit the smaller size of the latter; thus the measurement driven
contraction pushes for instance x§ towards a new x closer to
xo along the reference axis previously coinciding with the
space range ∆x§ and its possible dx§. So, after shrinking,
∆x§ turns into a new bowed space-time range, ∆x, forcedly
decoupled from the reference x-axis because of its acquired
curvature, whence dx , dx§ as well. If length of the x-axis
and size of the uncertainty range physically allowed to de-
localize the particle do no longer coincide, the particle that
moves between xo and x follows actually a bowed path re-
producing the new curvature of ∆x, no longer that possibly
owned by the 1D reference system itself, whence the curva-
ture of the 2D space-time uncertainty range.

This is possible because nothing is known about the actual
motion of the particle between the boundary coordinates xo

and x of the reference x-axis; moreover it is also possible to
say that the new curvature is due to the presence of a mass in
∆x§, as in lack of a particle to be observed the reasoning on
the measurement process would be itself a non-sense.

The last remark suggests correctly that the space-time is
actually flat in the absence of matter, as expected from the
original Einstein hypothesis, so is seemingly tricky the pre-
vious specification that even the early ∆x§ could even owe
a possible curvature coincident with that of the x-reference
axis; this specification, although redundant, was deliberately
introduced to reaffirm the impossibility and uselessness of hy-
potheses on the uncertainty ranges and to avoid confusion be-
tween arbitrariness of the uncertainty ranges and Einstein’s
hypothesis.

Eventually, the probabilistic character of the shrinking of
delocalization range, emphasized in [9], guarantees the prob-
abilistic nature of the origin of space-time and its curvature.
Indeed all above is strictly related to the time uncertainty: a
time range ∆t is inevitably necessary to carry out the mea-
surement process during which ∆x§ and ∆p§x collapse into ∆x
and ∆px.

As found in the previous section, the correlation of the

range deformation with the time involves change of momen-
tum of the particle within ∆px, i.e. the rising of a force com-
ponent as previously explained. This reasoning therefore col-
lects together four concepts: (i) introduces the space-time as
a consequence of the measurement process starting from an
unphysical state of the particle in a mere space range and in
an unrelated momentum range, both not compliant separately
with observable eigenvalues; (ii) introduces the non-reality
into the space-time curvature, triggered by the measurement
process; (iii) links a force field to this curvature by conse-
quence of the measurement process; (iv) introduces the un-
certainty into the concepts of flat space and curved space-
time: the former is replaced by the idea of an early space
uncertainty range where is delocalized the particle coincident
with the coordinate axis, whatever its actual geometry might
be; the latter is replaced by the idea of early geometry modi-
fied by the additional curvature acquired by the new ∆x with
respect to that possibly owned by the x-axis during their de-
coupling. Of course just this additional curvature triggered
by the measurement process on the particle present in ∆x§ is
anyway that experimentally measurable.

In conclusion, the measurement process not only gen-
erates the quantum eigenvalues of the particle, and thus its
observable properties described by their number of allowed
states, but also introduces the space-time inherent eqs. (2,1)
concurrently with new size and curvature with respect to the
precursor space delocalization range. Hence the particle is
effectively confined between xo and x during the time range
∆t; yet, in the 2D feature of the present discussion, it moves
outside the reference axis. Actually these conclusions have
been already inferred in eqs. (4,3); it is enough to identify
∆x§ with the previous ∆xD for n = 0 to find all concepts so
far described.

Note that the existence of a curved space-time was not ex-
plicitly mentioned in section 3, in particular when calculating
the orbital and spin angular momenta or hydrogenlike energy
in subsection 3.3, simply because it was unnecessary and in-
consequential: the eigenvalues do not depend on the proper-
ties of the uncertainty ranges, e.g. on their sizes and possible
curvature, nor on the random values of local dynamical vari-
ables therein defined. To evidence either chance of flat or
curved space-time uncertainty, the next sub-section 4.3.2 de-
scribes the simulation of a specific physical experiment, the
light beam bending in the presence of a gravitational mass,
whose outcome effectively depends on the kind of path fol-
lowed by the particle.

This “operative” aspect of the model is indeed legitimate
now; after having introduced the basic requirements of spe-
cial and general relativity and a possible explanation of the
space-time curvature, we are ready to check whether or not
some significant outcomes of general relativity can be effec-
tively obtained in the conceptual frame of eqs. (2,1) through
the positions (2,2) only. Once again, the essential require-
ment to merge relativity and quantum mechanics is to regard

Sebastiano Tosto. Quantum Uncertainty and Relativity 75



Volume 2 PROGRESS IN PHYSICS April, 2012

the deterministic intervals of the former as the quantum un-
certainty ranges of the latter.

4.3 Some outcomes of general relativity

Before proceeding on, it is useful a preliminary remark. De-
spite the conceptual consistency of eqs. (2,1) with the special
relativity, extending an analogous approach to the general rel-
ativity seems apparently difficult.

Consider for instance the time dilation and the red shift
in the presence of a stationary gravitational potential φ. As
it is known, the general relativity achieves the former result
putting dx1 = dx2 = dx3 = 0 in the interval −ds2 = gikdxidxk;
calculating the proper time in a given point of space as τ =
c−1 ∫

√−g00dx0, the integration yields τ = c−1x0
√

1 + 2φ/c2,
i.e. τ = c−1x0(1 + φ/c2).

In an analogous way is calculated the red shift ∆ω =
c−2ω∆φ between two different points of space where exists
a gap ∆φ of gravitational potential φ. Are the ranges of eqs.
(2,1) alone suitable and enough to find similar results once
having discarded the local conjugate variables?

Appears encouraging in this respect the chance of having
obtained as corollaries the fundamental statements of special
and general relativity. Moreover is also encouraging the fact
that some qualitative hints highlight reasonable consequences
of eqs. (2,1).

Put m′ = ℏω/c2 to describe a system formed by a photon
in the gravity field of the mass m; thus ∆ṗx = F of eq (4,1)
is now specified as the momentum change of the photon be-
cause of the force component F due to m acting on m′. Since
the photon moves in the vacuum at constant velocity c there
are two possibilities in this respect: the photon changes its
wavelength or its propagation direction.

These chances correspond to two relevant outcomes of
general relativity, i.e. the red shift and the light beam bending
in the presence of a gravity field; the former occurs when the
initial propagation direction of the photon coincides with the
x-axis along which is defined the force component ∆ ṗx, i.e.
radial displacement, the latter when the photon propagates
along any different direction. The bending effect is of course
closely related to the previous considerations about the actual
curvature of the space-time uncertainty range that makes ob-
servable the path of the photon; this means that in fact the
deflection of the light beam replicates the actual profile of ∆x
with respect to the x-axis.

Eventually, also the perihelion precession of orbiting bod-
ies is to be expected because of non-Newtonian terms in eq
(4,2); it is known indeed that the mere gravitational potential
of Newton law allows closed trajectories only [12].

From a qualitative point of view, therefore, it seems that
the results of general relativity should be accessible also in
the frame of the present theoretical approach. It is necessary
however to explain in detail how the way of reasoning early
introduced by Einstein is replaced here to extend the previous

results of special relativity. The following subsections aim to
show how to discuss the curvature of the space-time uncer-
tainty range and then how to describe time dilation, red shift
and light beam bending exploiting uniquely the uncertainty
ranges of eqs. (2,1) only, exactly as done at the beginning of
section 3.

4.3.1 The time dilation and the red shift

Infer from eqs. (2,1) ∆x∆px/∆t = nℏ/∆t, which also reads
m∆x∆vx/∆t = nℏ/∆t. Holds also here the remark introduced
about eqs. (4,1), i.e. the particular boundary values of po

and px determining the size of the momentum range ∆px =

px − po are arbitrary, not specifiable in principle and indeed
never specified; therefore, since neither po nor px need being
calculated, the actual expression of local momentum is here
inessential. So, merely exploiting the physical dimensions of
momentum, it is possible to replace ∆px with m∆vx and write
m∆vx∆x/∆t = nℏ/∆t, whatever ∆vx and m might in fact be.
Hence, the energy at right hand side can be defined as follows

mφx = −
nℏ
∆t
, φx = −∆x

∆vx

∆t
, φx < 0. (4,4)

Being the range sizes positive by definition, φx has been
intentionally introduced in the first equation with the negative
sign in order that mφx = −∆ε correspond to an attractive force
component F = −∆ε/∆x of the same kind of the Newton
force, in agreement with the conceptual frame of relativity.
Also, φx does not require specifying any velocity because for
the following considerations is significant its definition as a
function of ∆vx only. This result can be handled in two ways.

In the first way, the first eq. (4,4) is rewritten as follows

− ℏ
∆t
= ε

φx

c2 , ε = (m/n)c2, (4,5)

in which case one finds

∆t − to
∆t

= 1 +
φx

c2 ,
ℏ

ε
= to,

mφx

∆x
= −m

∆vx

∆t
= −FN . (4,6)

Note that to is a proper time of the particle, because it
is defined through the energy of this latter. In this case the
number n is unessential and could have been omitted: being
the mass m arbitrary, m/n is a new mass arbitrary as well.
The third result defines φx as a function of the expected New-
ton force component FN ; hence φx corresponds classically
to a gravitational potential. The first equation is interesting:
it correlates through φx the time ranges ∆t′ = ∆t − to and
∆t. Note that if φx → 0 then ∆t → ∞ according to eqs.
(4,4) or (4,5), i.e. ∆t′ → ∆t; hence the gravitational poten-
tial φx provides a relativistic correction of ∆t, which indeed
decreases to ∆t′ for φx , 0. Eq. (4,6) is thus just the known
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expression τ = (x0/c)(1+φx/c2) previously reported once re-
placing τ/(c−1x0) with ∆t′/∆t; indeed in the present approach
the local quantities are disregarded and replaced by the corre-
sponding ranges of values. The first eq (4,6) shows that time
slowing down ∆t− to occurs in the presence of a gravitational
potential with respect to ∆t pertinent to φx = 0.

The second way to handle eqs. (4,4) consists of consider-
ing two different values of φx at its right hand side and a parti-
cle that climbs the radial gap corresponding to the respective
values of gravitational potential with respect to the origin of
an arbitrary reference system; moreover, being ε constant by
definition because to is fixed, the proper times of the particle
t1 and t2 define the corresponding time ranges ∆t1 and ∆t2
necessary for the particle to reach the given radial distances.
So eqs. (4,5) yield with obvious meaning of symbols

− ℏ/ε
∆t(1) =

φ(1)
x

c2 − ℏ/ε
∆t(2) =

φ(2)
x

c2 .

Hence, putting ω = ∆t−1, one finds

ω1 − ω2

ωo
=
φ(2)

x − φ(1)
x

c2 , ωo =
ε

ℏ
. (4,7)

Here ωo is the proper frequency of the free photon with
respect to which are calculated ω1 and ω2 at the respective
radial distances. This expression yields the frequency change
between two radial distances as a function of ωo

∆ω =
∆φx

c2 ωo.

Since φx is negative, the sign of ∆ω is opposite to that of
∆φx: if φ(2)

x is stronger than φ(1)
x , then φ(2)

x − φ(1)
x < 0, which

means that ω2 > ω1. One finds the well known expression of
the red shift occurring for decreasing values of gravitational
potential. We have inferred two famous result of general rel-
ativity through uncertainty ranges only. Now we can effec-
tively regard these results as outcomes of quantum relativity.

4.3.2 The light beam bending

Rewrite eq (4,2) as FN∆x/(ℏω/c2) = −Gm/∆x; here FN is
due to the mass m acting along the x direction on a photon
having frequency ω and traveling along an arbitrary direc-
tion; the notation emphasizes that the photon energy ℏω/c2

replaces the mass of a particle in the gravity field of m. The
distance between photon and m is of course included within
∆x. Introduce with the help of eq (4,4) the gravitational po-
tential φx = −FN∆x/m, so that φx/c2 = Gm/(c2∆x). Now it is
possible to define the beam deflection through φx, according
to the idea that the beam bending is due just to the gravita-
tional potential; we already know why this effect is to be in
fact expected. Of course, having discarded the local coordi-
nates, the reasoning of Einstein cannot be followed here; yet

since δϕ = δϕ(φx), with notation that emphasizes the depen-
dence of the bending angle δϕ of the photon upon the field φx,
it is certainly possible to express the former as series devel-
opment of the latter, i.e. δϕ = α + β(φx/c2) + γ(φx/c2)2 + · · ·;
α, β and γ are coefficients to be determined. Clearly α = 0
because δϕ = 0 for m = 0, i.e. there is no bending effect; so

δϕ ≈ Gmβ
c2∆x

,
Gm
c2∆x

≈ −β +
√
β2 + 4γδϕ
2γ

. (4,8)

The former expression is simpler but more approximate
than the latter, because it account for one term of the series
development of δϕ(φx) only; the latter calculates instead φx

as a function of δϕ at the second order approximation for rea-
sons that will appear below. Consider first the former ex-
pression and note that even in lack of local coordinates the
deflection can be expressed as the angle between the tangents
to the actual photon path at two arbitrary ordinates y− and
y+ along its way: i.e., whatever the path of the photon might
be, we can figure m somewhere on the x-axis and the pho-
ton coming from −∞, crossing somewhere the x axis at any
distance within ∆x from m and then continuing a bent tra-
jectory towards +∞. Let the abscissas of the arbitrary points
y− and y+ on the x-axis be at distances ∆x− and ∆x+ from
m; the tangents to these points cross somewhere and define
thus an angle δϕ′. The sought total deflection δϕ of the pho-
ton corresponds thus to the asymptotic tangents for y− and
y+ tending to −∞ and ∞. Note now that the same reason-
ing holds also for a reversed path, i.e. for the photon coming
from infinity and traveling towards minus infinity; the intrin-
sic uncertainty affecting these indistinguishable and identi-
cally allowed chances suggests therefore a boundary condi-
tion to calculate the change of photon momentum h/λ during
its gravitational interaction with the mass. The impossibility
of distinguishing either chance requires defining the total mo-
mentum range of the photon as ∆p = h/λ − (−h/λ) = 2h/λ,
i.e. ∆p = (2/c)ℏω. Since the momentum change depends on
c/2, and so also the interaction strength ∆p/∆t correspond-
ing to FN , it is reasonable to assume that even δϕ should de-
pend on c/2; so putting β = 4 in the former expression of
δϕ and noting that the maximum deflection angle calculated
for y− → −∞ and y+ → +∞ corresponds to the minimum
distance range ∆x, one finds the well known result

δϕ ≈ 4Gm
c2∆xmin

.

The numerical factor 4 appears thus to be the fingerprint
of the quantum uncertainty, whereas the minimum approach
distance of the Einstein formula is of course replaced here by
its corresponding uncertainty range ∆xmin. It is also interest-
ing to consider the second equation (4,8), which can be iden-
tically rewritten as follows putting γ = γ′β and again β = 4 to
be consistent with the previous result as a particular case; so

ρ =

√
1 + γ′δϕ − 1

γ′
, ρ =

rS chw

∆xmin
, rS chw =

2Gm
c2 ,
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with the necessary convergence condition of the series that
reads

∣∣∣γ′φx/c2
∣∣∣ < 1 and requires√

1 + γ′δϕ − 1
2

< 1.

This condition requires −δϕ−1 ≤ γ′ < 8δϕ−1, and there-
fore rS chwδϕ

−1 ≤ ∆xmin < 4rS chwδϕ
−1. Replace in this result

δϕ = π and consider what happens when a photon approaches
m at distances rbh between π−1rS chw < rbh < 4π−1rS chw: (i)
the photon arrives from −∞ and makes half a turn around m;
(ii) after this one half turn it reaches a position diametrically
opposite to that of the previous step; (iii) at this point the
photon is still in the situation of the step (i), i.e. regardless
of its provenience it can make a further half a turn, and so
on. In other words, once arriving at distances of the order of
2Gm/c2 from m the photon starts orbiting without possibility
of escaping; in this situation m behaves as a black body. Here
the event horizon turns actually into a range of event horizons,
i.e. into a shell surrounding m about ∼ 3π−1rS chw thick where
the gravitational trapping is allowed to occur; this result could
be reasonably expected because no particle, even the photon,
can be exactly localized at some deterministic distance from
an assigned point of space-time, i.e. the event horizon is re-
placed by a range of event horizons. Note however that the
reasoning can be repeated also imposing δϕ = 2π and, more
in general, δϕ = 2 jπ where j describe the number of turns of
the photon around m. In principle the reasoning is the same
as before, i.e. after j revolutions required by δϕ the photon is
allowed to continue again further tours; yet now trivial calcu-
lations yield ( jπ)−1rS chw < rbh < 4( jπ)−1rS chw. At increasing
j the shell allowing the turns of the photon becomes thinner
and thinner while becoming closer and closer to m. As con-
cerns the ideal extrapolation of this result to approach dis-
tances rbh < π

−1rS chw one can guess for j→ ∞ the chance of
photons to spiral down and asymptotically fall directly on m
without a stable orbiting behavior.

4.3.3 The Kepler problem and the gravitational waves

The problem of perihelion precession of planets is too long to
be repeated here even in abbreviated form. It has been fully
concerned in a paper preliminarily submitted as preprint [13].
We only note here how this problem is handled in the frame
of the present model. It is known that the precession is not
explained in the frame of classical mechanics. If the potential
energy has the form −α/r the planet follows a closed trajec-
tory; it is necessary a form of potential energy like α/r + δU
to describe the perihelion precession. The Newton law en-
tails the former kind of potential energy, but does not justifies
the correction term δU. In our case, however, we have found
the Newton law as a particular case of a more general force
containing additional terms, eq (4,2); thanks to these latter,
therefore, it is reasonable to expect that the additional poten-
tial term enables the perihelion precession to be described.

Also in this case the formula obtained via quantum uncer-
tainty ranges coincides with the early Einstein formula. The
same holds for the problem of the gravitational waves, also
concerned together with some cosmological considerations
in the quoted preprint. Both results compel regarding once
again the intervals of relativity as uncertainty ranges.

4.3.4 Preliminary considerations on eqs. (4,3)

This subsection introduces preliminary order of magnitude
estimates on the propagation wave corresponding to the mass
µ = ℏ/D; the ± sign is omitted because the following consid-
erations concern the absolute value of µ only.

Consider a wave with two nodes at a diametric distance
du on a sphere simulating the size of universe; the first har-
monic has then wavelength λu = 2du. Let the propagation
rate v of such a wave be so close to c, as shown below, that
for brevity and computational purposes only the following es-
timates are carried out replacing directly v with c. Guess the
quantities that can be inferred from D by means of elemen-
tary considerations on its physical dimensions in a reference
system R fixed on the center of the whole universe. Calculate
D as λu times c, i.e. D = 2duc, and define τ as

√
Dτ = du/2,

i.e. as the time elapsed for µ to cover the radial distance of
the universe; so τ describes the growth of the universe from
a size ideally tending to zero at the instant of the big-bang
to the current radius

√
Dτ. Since λu = 0 at τ = 0 and

λu = 2du at the current time τ, then du = 8cτ and D = 16c2τ.
Moreover, considering that G times mass corresponds to D
times velocity, guess that mu = 16c3τ/G introduces the mass
mu to which correspond the rest energy εu = 16c5τ/G and
rest energy density ηu = 3c2/(16πGτ2) calculated in the vol-
ume Vu = 4π(du/2)3/3 of the universe. Also, the frequency
ωµ = ξc2/D of the µ-wave defines the zero point energy

εzp = ℏωµ/2 = µ′c2/2 µ′ = ξµ

of oscillation of µ; the proportionality constant ξ will be jus-
tified below. At right hand side appears the kinetic energy
of the corpuscle corresponding to ℏωµ/2, in agreement with
the mere kinetic character of the zero point energy. Note that
with trivial manipulations D = 16c2τ reads also in both forms

ℏ2

2µ(du/2)2 =
ℏ

2τ
λµ = du/2 =

ℏ

µc
(4,9)

The left hand side of the first equation yields εzp of the µ-
corpuscle, also calculable from ∆p2

zp/2µ i.e. ℏ2/2µ∆x2
zp re-

placing ∆xzp with du/2; this means that the momentum of a
free unbounded particle initially equal to an arbitrary value p1
increases to p2 after confinement in a range ∆xzp, whence the
conjugate range ∆pzp = p2− p1. Equating this result to µc2/2
one finds the second equation, which shows that the Comp-
ton length of the µ-particle is the universe radius. Also ℏ/2τ
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must describe a zero point energy; this compels introducing
the frequency ωu = 1/τ so that it reads ℏωu/2.

Define now the ratio σµ = µD/Vµωµ to express the lin-
ear density of µ as a function of its characteristic volume Vµ

and length ∆xµ = Vµωµ/D: since the squared length inher-
ent D concerns by definition a surface crossed by the particle
per unit time, ∆xµ lies along the propagation direction of µ.
This way of defining σµ = µ/∆xµ is thus useful to calculate
the propagation velocity of the µ-wave exploiting the anal-
ogy with the string under tension T ; so v =

√
T/σµ yields

T = ℏc2/Vµωµ, which in fact regards the volume Vµ as a
physical property of the mass µ. This expression of T appears
reasonable recalling that µ is defined by the ratio ∆ẋ∆ẍ−1∆x−2

of uncertainty ranges, which supports the idea of calculat-
ing its mass linear density within the space-time uncertainty
range ∆xµ that defines σµ through Vµ. Consider that also the
ratio v2/G has the dimension of mass/length; replacing again
v with c we obtain c2 = TG/c2, i.e. the tension of the string
corresponds to a value of F of eqs. (4,3) of the order of the
Planck force acting on µ; so, comparing with the previous ex-
pression of T , one infers Vµ ≈ ℏG/ωµc2, i.e. Vµ ≈ ℏDG/c4.
Thus Vµ has a real physical identity defined by the fundamen-
tal constants of nature and specified to the present problem by
ω−1
µ .

Before commenting this point, let us show that the ac-
tual propagation velocity of the µ-wave is very close to c.
Exploit the wave and corpuscle formulae of the momentum
of µ putting h/λu = µv/

√
1 − (v/c)2 i.e. 2π

√
1 − (v/c)2 =

(v/c); then v ≈ 0.99c justifies the expressions inferred above,
whereas εµ = µc2/

√
1 − (v/c)2 is about 6.4 times the rest

value µc2. Call ξ this kinetic correction factor. In principle
all expressions where appears explicitly µ still hold, replac-
ing however this latter with µ′ = ξµ as done before; it ex-
plains why ωµ has been defined just via ξ. This is also true
for ε′µ = µ

′c2, for ε′zp = εzp(µ′) and for the effective Compton
length λ′µ, which result therefore slightly smaller than du/2
because it is the Loretz contraction of the proper length λµ,
but not for ωu, whose value is fixed by τ and du. Indeed at this
point is intuitive to regard τ as a time parameter as a function
of which are calculated all quantities hitherto introduced.

Before considering this problem let us introduce the par-
ticular value of τ equal to the estimated age of our universe,
commonly acknowledged as about 4 × 1017s; this yields the
following today’s time figures:

du = 9.6 × 1026m, mu = 2.6 × 1054kg,

ωu = 2.5 × 10−18s−1, εu = 2.3 × 1071J,

ηu = 5.0 × 10−10Jm−3, ℏωu/2 = 1.3 × 10−52J,

and also

D = 5.8 × 1035m2s−1, ωµ = 9.9 × 10−19s−1,

µ = 1.8 · 10−70kg, µ′ = 1.2 × 10−69kg,

ε′µ ≈ 1.0 × 10−52J, ℏωµ/2 = 5.2 × 10−53J.

It is interesting the fact that the results split into two
groups of values: the quantities with the subscript u do not
contain explicitly µ and are in fact unrelated to D, ωµ and
εµ. Are easily recognized the diameter du and the mass mu of
matter in the universe, which support the idea that just the dy-
namics of the universe, i.e. ∆ẋ and ∆ẍ, concur together with
its size, i.e. ∆x, to the mass in it present.

This was indeed the main aim of these estimates. The av-
erage rest mass density mu/Vu is about 5.6 × 10−27Kg/m3. Is
certainly underestimated the actual energy εu, here calculated
without the kinetic Lorentz factor taking into account the dy-
namic behavior of mu, i.e. the average velocity of the masses
in the universe; εu and thus ηu are expected slightly greater
than the quoted values. However this correction factor can be
neglected for the present purposes because it would be of the
order of a few % only at the ordinary speed with which moves
the matter. The order of magnitude of the energy density ηu,
of interest here, is close to that expected for the average vac-
uum energy density ηvac; it suggests ηu = ηvac, i.e. the idea
that matter and vacuum are a system at or near to the dynamic
equilibrium based on creation and annihilation of virtual par-
ticles and antiparticles. This way of linking the energy den-
sities of µ and matter/vacuum emphasizes that the dynamic
of the universe, regarded as a whole system, concerns neces-
sarily its total size and life time; this clearly appears in eqs.
(4,9) and is not surprising, since µ is consequence itself of the
space-time evolution ∆ẋ∆ẍ−1∆x−2 of the universe.

Note now the large gap between the values of µ and mu:
this is because the former is explicit function of D, the latter
does not although inferred in the frame of the same reason-
ing. Despite the different values and analytical form that re-
veal their different physical nature, a conceptual link is there-
fore to be expected between them. Let the characteristic vol-
ume Vµ be such that ε′zp/Vµ = ηvac = ηu, which requires
Vµ = 8πGτ2µ′/3. This means that the universe evolves keep-
ing the average energy density due to the ordinary matter, ηu,
in equilibrium with that of the vacuum, ηvac, in turn triggered
by the zero point energy density of µ′ delocalized in it: in this
way both ηvac and ηu result related to the early big-bang en-
ergy and subsequent dynamics of the universe described by
µ. To verify this idea, get some numbers: Vµ = 8πGτ2µ′/3
results about 1.0 × 10−43m3, whereas Vµ = ℏG/ωµc2 yields
the reasonably similar value 7.9×10−44m3. Moreover there is
a further significant way to calculate Vµ. Define the volume
Vµ = π(du/2)2∆xµ and rewrite identically ∆xµ = ℏG/Dc2,
having put T just equal to the Planck force; one finds Vµ =

πℏGτ/c2 i.e. Vµ = 9.8×10−44m3 that agrees with the previous
values although it does not depend on µ and thus on the cor-
rection factor ξ. In other words, ξ could have been also calcu-
lated in order that ω and µ′ fit this last value of Vµ; of course
the result would agree with the relativistic wave/corpuscle be-
havior of µ.
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These outcomes confirm the consistency of the ways to
calculate Vµ and the physical meaning of µ′, in particular
the considerations about T . Yet the most intriguing result
is that the size of Vµ also comes from a very large number,
the area of a diametric cross section of the universe, times an
extremely small number, the thickness ∆xµ = 8.6 × 10−97m
used to calculate the linear density σµ and thus T . Of course
any diametric section is indistinguishable from and thus phys-
ically unidentifiable with any other section, otherwise should
exist some privileged direction in the universe; so the vol-
ume Vµ, whatever its geometrical meaning might be, must be
regarded as permeating all universe, in agreement with the
concept of delocalization required by eqs. (2,1).

Despite µ′c2/2 is a very small energy, its corresponding
energy density accounts in fact for that of the vacuum be-
cause of the tiny value of Vµ. Compare this estimate with
that of muc2 intuitively regarded in the total volume Vu of the
universe: so as Vu is the characteristic volume of ordinary
matter, likewise Vµ is the characteristic volume of µ i.e. a
sort of effective physical size of this latter. Since µ′ > µ, the
first eq (4,9) includes in Vµ an excess of zero point energy
with respect to that previously calculated with µ′; just for this
reason indeed ℏωu/2 > ℏω′µ/2. The previous expressions of
ε′zp account for the actual kinetic mass µ′ by replacing the rest
mass µ. Yet in the first eq (4,9) this is not possible because τ,
once fixed, is consistent with µ and not with µ′. The simplest
idea to explain this discrepancy is that actually ℏ/2τ accounts
for two forms of energy: the zero point energy, which can
be nothing else but ξµc2/2 previously inferred, plus an extra
quantity

δε = ℏ2µ−1(du/2)−2/2 − ξµc2/2

accounting for the dynamic behavior of both µ-particle and
universe. Hence the energy balance per unit volume of uni-
verse consists of four terms: ηu, ηvac, ηzp and δηzp = δε/Vµ.
The first two terms, equal by hypothesis, are also equal to
the third by definition and have been already calculated; δε
amounts to about 7.9×10−53J, so that δηzp = 8.7×10−10J/m3.
Hence δηzp is about 64% of δηzp + ηvac and about 35% of the
total energy density δηzp + ηvac + ηu + ηzp = 2.4 × 10−9J/m3.

The former estimate is particularly interesting because
neither ηvac nor δηzp are directly related to the matter present
in the universe; rather the picture so far outlined suggests that
ηvac is related to µ within Vµ randomly delocalized through-
out the whole physical size of the universe, whereas the or-
dinary matter is in turn a local coalescence from the vacuum
energy density precursor. This idea explains why µ′c2/Vµ =

1.1 × 10−9Jm−3 is twice ηu; actually this result must be in-
tended as µ′c2/Vµ = ηvac + ηu. As concerns the negative sign
of µ, see eqs. (4,3), note that actually the second eq (4,9)
reads λµ = ±ℏ/µc and that ξ turns into −ξ replacing v with
−v; it is easy to realize that this leaves unchanged λµ and the
quantities that depend on mu′, e.g. ωµ and Vµ, while the uni-
verse time τ of eq (4,9) changes its sign. Also σµ change its

sign, so the tension T must be replaced by −T .
The last remark concerns the physical meaning of δε; it is

neither vibrational or zero point energy of µ, nor vacuum or
matter energy. If so, what then is it? Is it the so called dark
energy?

5 Discussion

The discussion of the results starts emphasizing the concep-
tual path followed in the previous sections to merge relativ-
ity and quantum physics via the basic eqs. (2,1). The pre-
requisites of the present model rest on three outstanding key
words: quantization, non-locality, non-reality. Without shar-
ing all three of these features together, the search of a unified
theory would be physically unconvincing and intrinsically in-
complete. The first result to be noted is that the present model
of quantum relativity finds again formulae known since their
early Einstein derivation, which indeed agree with the experi-
mental results, although with a physical meaning actually dif-
ferent; instead of deterministic intervals, the relativistic for-
mulae must be regarded as functions of the corresponding
uncertainty ranges. On the one side, this coincidence ensures
the consistency of the present theoretical model with the ex-
perience. On the other side, the sought unification unavoid-
ably compels transferring the acknowledged weirdness of the
quantum world to the relativistic phenomena: it requires re-
garding the intervals and distances likewise the ranges of eqs.
(2,1), i.e. as a sort of evanescent entities, undefined and ar-
bitrary, not specified or specifiable by any hypothesis, whose
only feature and role rests on their conceptual existence and
ability to replace the local dynamical variables, in no way
defined and definable too. For instance the invariant inter-
val of special relativity turns into a space-time uncertainty
range whose size, whatever it might be, remains effectively
unchanged in all inertial reference systems; in other words,
this well known concept still holds despite its size is actually
indeterminable.

Strictly speaking, it seems understandable that nothing
else but an evanescent idea of uncertainty ranges could ex-
plain counterintuitive quantum features like the non-reality
and non-locality; the former has been described in subsection
4.2 as a consequence of the measurement driven compliance
of the eigenvalues with eqs. (2,1), the latter has been related
in [9] to the elusiveness of concepts like local distances that
hide the ultimate behavior of the matter. The EPR paradox or
the dual corpuscle/wave behavior or the actual incomplete-
ness of quantum mechanics testify in fact different appear-
ances of the unique fundamental concept of uncertainty; the
approach of sections 3 and 4 is so elementary and straightfor-
ward to suggest that the present way of reasoning focuses just
on the limited degree of knowledge we can in fact afford, i.e.
only on the physical outcome that waives any local informa-
tion.

Despite this statement represents the most agnostic start-

80 Sebastiano Tosto. Quantum Uncertainty and Relativity



April, 2012 PROGRESS IN PHYSICS Volume 2

ing point possible, nevertheless it paradoxically connects qua-
ntum theory and relativity in the most profound way expecta-
ble: from their basic postulates to their most significant re-
sults. In this respect the section 4 shows an alternative con-
ceptual path, less geometrical, towards some relevant out-
comes of general relativity: Einstein’s way to account for
the gravity through the geometrical model of curved space-
time is replaced by simple considerations on the uncertainty
ranges of four fundamental dynamical variables of eqs. (2,1).
In this way the approach is intrinsically adherent to the quan-
tum mechanics, which rests itself on the same equations. For
this reason even the general relativity is compliant with the
non-locality and non-reality of the quantum world, as it has
been sketched in section 3.

This conclusion seems surprising, because usually the rel-
ativity aims to describe large objects on a cosmological scale;
yet its features inferred in the present paper can be nothing
else but a consequence of quantum properties consistent with
well known formulae early conceived for other purposes. A
more detailed and complete treatment is exposed in the paper
[13], including also the gravitational waves and the perihelion
precession of the Kepler problem.

The quantization of the gravity field is regarded as the
major task in several relativistic models; although this idea is
in principle reductive alone, because also the non-reality and
non-locality deserve equal attention, examining the present
results this way of thinking appears in fact acceptable. Indeed
the number of states n accounts not only for the quantization
of the results, as it is obvious, but also for the non-locality
and non-reality themselves; as highlighted in [9] the reality
and locality of the classical world appear for n→ ∞ only, i.e.
when n tends to behave like a continuous variable so that the
Bell inequality is fulfilled. So it is reasonable to think that the
quantization has in effect a hierarchical role predominant on
the other quantum properties. Yet this actually happens if n
is never exactly specified because of its arbitrariness, thus en-
suring the invariancy of eqs. (2,1); its effectiveness in describ-
ing both quantum and relativistic worlds appears due indeed
to its lack of specific definition and to its twofold meaning
of number of states and quantum number. Just this ambiva-
lence is the further feature that remarks the importance of n;
on the one side it represents an essential outcome of the quan-
tum mechanics, on the other side it assigns its quantum fin-
gerprint to any macroscopic system necessarily characterized
by a number of allowed states. Of course the incomplete-
ness of information governing the quantum world compels an
analogous limit to the relativity; yet, without accepting this
restriction since the beginning into the sought unified model
through eqs. (2,1), the elementary considerations of sections
3 and 4 would rise topmost difficulties in formulating cor-
rect outcomes. Moreover, typical ideas of quantum mechan-
ics provide a possible explanation of experiments that involve
relativistic concepts. An example in this respect has been pro-
posed in the paper [9] as concerns the possibility of a super-

luminal velocity under investigation in a recent experiment
carried out with neutrinos and still to be confirmed. A rel-
ativistic quantum fluctuation hypothesized in the quoted pa-
per appears compatible with a superluminal velocity transient
that, just because of its transitory character, can be justified
without violating any standard result of the deterministic for-
mulae of early relativity. Other problems are presently under
investigation.

Regardless of the results still in progress, seems however
significant “per se” the fact itself that the quantum character
of the relativistic formulae widens in principle the descriptive
applicability of the standard relativity.

Submitted on March 16, 2012 / Accepted on March 21, 2012

References
1. Einstein A., Podolski B., Rosen N. Can quantum mechanics description

of Physical Reality be considered Complete? Physical Review, 1935,
v. 47, 777–780.

2. Polcinski J. String theory, Cambridge University Press, 1998, Cam-
bridge.

3. Green M.B., Schwarz J.H. and Witten E. Superstring Theory, Cam-
bridge University Press, (1987).

4. Carlip S., Quantum gravity: a progress report. Reports on Progress in
Physics, 2001, v. 64, p. 885.

5. Becker K, Becker M., Schwarz J. String theory and M-Theory: a mod-
ern introduction. Cambridge University Press, Cambridge, 2007.

6. Wess J., Bagger J. Supersimmetry and Supergravity, Princeton Univer-
sity Press, Princeton, 1992.

7. Tosto S. An analysis of states in the phase space: the energy levels of
quantum systems. Il Nuovo Cimento B, 1996, v. 111(2), 193–215.

8. Tosto S. An analysis of states in the phase space: the diatomic
molecules. Il Nuovo Cimento D, 1996, v. 18(12), 1363–1394.

9. Tosto S. Spooky action at a distance or action at a spooky distance?
Progress in Physics, 2012, v. 1, 11–26.

10. Tosto S. An analysis of states in the phase space: uncertainty, entropy
and diffusion. Progress in Physics, 2011, v. 4, 68–78.

11. Landau L., Lifchits E. Theorie du Champ, MIR, Moscow, 1966.

12. Landau L., Lifchits E. Mechanique, MIR Moscow, 1969.

13. Tosto S. An analysis of states in the phase space: from quantum me-
chanics to general relativity, arXiv gr-qc/0807.1011.

Sebastiano Tosto. Quantum Uncertainty and Relativity 81



Volume 2 PROGRESS IN PHYSICS April, 2012

On a Fractional Quantum Potential

Robert Carroll
University of Illinois, Urbana, IL 61801, USA

Fractional quantum potential is considered in connection to the fractal calculus and
the scale relativity.

1 Introduction

For fractals we refer to [1, 2] and for differential equations
cf. also [3–7]. The theme of scale relativity as in [8–15]
provides a profound development of differential calculus in-
volving fractals (cf. also the work of Agop et al in the journal
Chaos, Solitons, and Fractals) and for interaction with frac-
tional calculus we mention [6,16–19]. There are also connec-
tions with the Riemann zeta function which we do not discuss
here (see e.g. [20]). Now the recent paper [21] of Kobelev de-
scribes a Leibnitz type fractional derivative and one can relate
fractional calculus with fractal structures as in [16,18,19,25]
for example. On the other hand scale relativity with Haus-
dorff dimension 2 is intimately related to the Schrödinger
equation (SE) and quantum mechanics (QM) (cf. [12]). We
show now that if one can write a meaningful Schrödinger
equation with Kobelev derivatives (α-derivatives) then there
will be a corresponding fractional quantum potential (QP)
(see e.g. [4, 6, 18, 19] for a related fractional equation and
recall that the classical wave function for the SE has the form
ψ = R exp(iS/ℏ)).

Going now to [21] we recall the Riemann-Liouville (RL)
type fractional operator (assumed to exist here)

cDα
z [ f (z)] =



1
Γ(−α)

∫ z

c
(z − ζ)−α−1 f (ζ)dζ

c ∈ R, Re(α) < 0
dm

dzm cDα−m
z [ f (z)]

m − 1 ≤ ℜα < m

(1.1)

(the latter for m ∈ N = {1, 2, 3, . . .}). For c = 0 one writes
(1A) 0Dα

z [ f (z)] = Dα
z [ f (z)] as in the classical RL operator

of order α (or −α). Moreover when c → ∞ (1.1) may be
identified with the familiar Weyl fractional derivative (or inte-
gral) of order α (or −α). An ordinary derivative corresponds
to α = 1 with (1B) (d/dz)[ f (z)] = Dα

z [ f (z)]. The binomial
Leibnitz rule for derivatives is

D1
z [ f (z)g(z)] = g(z)D1

z [ f (z)] + f (z)D1
z [g(z)] (1.2)

whose extension in terms of RL operators Dα
z has the form

Dα
z [ f (z)g(z)] =

∞∑
n=0

(
α
n

)
Dα−n

z [ f (z)]Dn
z [g(z)]; (1.3)

(
α
k

)
=

Γ(α + 1)
Γ(α − k + 1)Γ(k + 1)

; α, k ∈ C.

The infinite sum in (1.3) complicates things and the bi-
nomial Leibnitz rule of [21] will simplify things enormously.
Thus consider first a momomial zβ so that

Dα
z [zβ] =

Γ(β + 1)
Γ(β − α + 1)

zβ−α; ℜ(α) < 0; ℜ(β) > −1. (1.4)

Thus the RL derivative of zβ is the product

Dα
z [zβ] = C∗(β, α)zβ−α; C∗(β, ga) =

Γ(β + 1)
Γ(β − α+)

. (1.5)

Now one considers a new definition of a fractional deriva-
tive referred to as an α derivative in the form

dα
dz

[zβ] = dα[zβ] = C(β, α)zβ−α. (1.6)

This is required to satisfy the Leibnitz rule (1.2) by def-
inition, given suitable conditions on C(β, α). Thus first (1C)
zβ = f (z)g(z) with f (z) = zβ−ϵ and g(z) = zϵ for arbitrary ϵ the
application of (1.3) implies that

dα
dz

[zβ] = zϵ
dα
dz

zβ−ϵ + zβ−ϵ
dα
dz

zϵ

= zϵC(β − ϵ, α)zβ−ϵ−α + zβ−ϵC(ϵ, α)zϵ−α

= [C(β − ϵ, α) +C(ϵ, α)]zβ−α.

(1.7)

Comparison of (1.6) and (1.7) yields (1D) C(β − ϵ, α) +
C(ϵ, α) = C(β, α). To guarantee (1.2) this must be satisfied for
any β, ϵ, α. Thus (1D) is the basic functional equation and its
solution is (1E) C(β, α) = A(α)β. Thus for the validity of the
Leibnitz rule the α-derivative must be of the form

dα[zβ] =
dα
dz

[zβ] = A(α)βzβ−α. (1.8)

One notes that C∗(β, α) in (1.5) is not of the form (1E)
and the RL operator Dα

z does not in general possess a Leibnitz
rule. One can assume now that A(α) is arbitrary and A(α) = 1
is chosen. Consequently for any β

dα
dz

zβ = βzβ−α;
dα
dz

zα = α;
dα
dz

z0 = 0. (1.9)

Now let K denote an algebraically closed field of char-
acteristic 0 with K[x] the corresponding polynomial ring and
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K(x) the field of rational functions. Let F(z) have a Laurent
series expansion about 0 of the form

F(z) =
∞∑
−∞

ckzk;

F+(z) =
∞∑
0

ckzk;

F−(z) =
−1∑
−∞

ckzk; ck ∈ K

(1.10)

and generally there is a k0 such that ck = 0 for k ≤ k0.
The standard ideas of differentiation hold for F(z) and for-
mal power series form a ring K[[x]] with quotient field K((x))
(formal Laurent series). One considers now the union (1F)
K ≪ x ≫= ∪∞1 K((x1/k)). This becomes a field if we set

x1/1 = x, xm/n = (x1/n)m. (1.11)

Then K ≪ x ≫ is called the field of fractional power
series or the field of Puiseux series. If f ∈ K ≪ x ≫ has
the form (1G) f =

∑∞
ko

ck xmk/nk where c1 , 0 and mk, nk ∈
N = {1, 2, 3, . . .}, (mi/ni) < (m j/n j) for i < j then the order is
(1H) O( f ) = m/n where m = m1, n = n1 and f (x) = F(x1/n).
Now given n and z complex we look at functions

f (z) =
∞∑
−∞

ck(z − z0)k/n = f+(z) + f−(z);

f+(z) =
∞∑
0

ck(z − z0)k/n,

f−(z) =
−1∑
−∞

ck(z − z0)k/n; ck = 0 (k ≤ k0)

(1.12)

(cf. [21] for more algebraic information - there are some mis-
prints).

One considers next the α-derivative for a basis (1I) α =
m/n; 0 < m < n; m, n ∈ N = {1, 2, 3, · · ·}. The α-derivative
of a Puiseux function of order O( f ) = 1/n is again a Puiseux
function of order (1 − m)/n. For α = 1/n we have

f+ =
∞∑
0

ckzk/n =

∞∑
0

ckzβ; β = β(k) =
k
n

(1.13)

leading to

dα
dz

f+(z) =
∞∑
1

αβckz(k−1)/n =

∞∑
0

cp+1αβzp/m; (1.14)

dα
dz

f−(z) =

−1∑
−∞

ckαβz(k−1)/n =

−2∑
−∞

cp+1αβzp/n

=

−1∑
−∞

ĉpzp/n; ĉ−1 = 0.

Similar calculations hold for α = m/n (there are numer-
ous typos and errors in indexing in [21] which we don’t men-
tion further). The crucial property however is the Leibnitz
rule

dα
dz

( fg) = g
dα
dz

f + f
dα
dz
g; (dα ∼

dα
dz

) (1.15)

which is proved via arguments with Puiseux functions. This
leads to the important chain rule

dα
dz

F(gi(z)) =
∑ ∂F

∂gk

dα
dz
gk(z). (1.16)

Further calculation yields (again via use of Puiseux func-
tions)

dm
α

dzm

[
dℓα
dzℓ

f
]
=

dℓα
dzℓ

[
dm
α

dzm f
]
, (1.17)

∫
f (z)dαz =

∞∑
0

∫
zβdαz;

∫
zβdαz =

zβ+α

β + α
, (1.18)

dα
dz

∫
f (z)dαz = f (z) =

∫
dα
dz

dαz, (1.19)

where dαz here is an integration symbol here).
The α-exponent is defined as

Eα(z) =
∞∑
0

(zα/α)k

Γ(α + 1)
= exp

(
zα

α

)
;

E1(z) = ez; Eα(0) = 1 (0 < α, 1).

(1.20)

The definition is motivated by the fact that Eα(z) satisfies
the α-differential equation (1J) (dα/dz)Eα(z) = Eα(z) with
Eα(0) = 1. This is proved by term to term differentiation of
(1.20). It is worth mentioning that Eα(z) does not possess the
semigroup property (1K) Eα(z1 + z2) , Eα(z1)Eα(z2).

2 Fractals and fractional calculus

For relations between fractals and fractional calculus we re-
fer to [16, 18, 19, 24, 25, 27, 28]. In [16] for example one as-
sumes time and space scale isotropically and writes [xµ] = −1
for µ = 0, 1, · · · ,D − 1 and the standard measure is replaced
by (2A) dDx → dρ(x) with [ρ] = −Dα , −D (note [ ] de-
notes the engineering dimension in momentum units). Here
0 < α < 1 is a parameter related to the operational defi-
nition of Hausdorff dimension which determines the scaling
of a Euclidean volume (or mass distribution) of characteris-
tic size R (i.e. V(R) ∝ RdH ). Taking ρ ∝ d(rDα) one has
(2B) V(R) ∝

∫
dρEuclid(r) =∝

∫ R
0 drrDα−1 ∝ RDα, showing

that α = dH/D. In general as cited in [16] the Hausdorff di-
mension of a random process (Brownian motin) described by
a fractional differintegral is proportional to the order α of the
differintegral. The same relation holds for deterministic frac-
tals and in general the fractional differintegration of a curve
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changes its Hausdorff dimension as dH → dH + α. More-
over integrals on “net fractals” can be approximated by the
left sided RL fractional of a function L(t) via∫ t̄

0
dρ(t)L(t) ∝ 0Iαt̄ L(t) =

1
Γ(t)

∫ t̄

0
dt(t̄ − t)α−1L(t);

ρ(t) =
t̄α − (t̄ − t)α

Γ(α + 1)
,

(2.1)

where α is related to the Hausdorff dimension of the set (cf.
[24]). Note that a change of variables t → t̄ − t transforms
(2.1) to

1
Γ(α)

∫ t

0
dttα−1L(t̄ − t). (2.2)

The RL integral above can be mapped into a Weyl inte-
gral for t̄ → ∞. Assuming limt̄→∞ the limit is formal if the
Lagrangian L is not autonomous and one assumes therefore
that limt̄→∞L(t̄ − t) = L[q(t), q̇(t)] (leading to a Stieltjes field
theory action). After constructing a “fractional phase space”
this analogy confirms the interpretation of the order of the
fractional integral as the Hausdorff dimension of the underly-
ing fractal (cf. [18]).

Now for the SE we go to [4, 6, 18, 19]. Thus from [4]
(1009.5533) one looks at a Hamiltonian operator

Hα(p, r) = Dα|p|α + V(r) (1 < α ≤ 2). (2.3)

When α = 2 one has D2 = 1/2m which gives the stan-
dard Hamiltonian operator (2C) Ĥ( p̂, r̂) = (1/2m)p̂2 + V̂(r̂).
Thus the fractional QM (FQM) based on the Levy path inte-
gral generalizes the standard QM based on the Feynman in-
tegral for example. This means that the path integral based
on Levy trajectories leads to the fractional SE. For Levy in-
dex α = 2 the Levy motion becomes Brownian motion so that
FQM is well founded. Then via (2.2) one obtains a fractional
SE (GSE) in the form

iℏ∂tψ = Dα(−ℏ2∆)α/2ψ + V(r)ψ (1 < α ≤ 2) (2.4)

with 3D generalization of the fractional quantum Riesz
derivative (−ℏ2∆)α/2 introduced via

(−ℏ2∆)α/2ψ(r, t) =
1

(2πℏ)3

∫
d3 pe

ipr
ℏ |p|αϕ(p, t) (2.5)

where ϕ and ψ are Fourier transforms. The 1D FSE has the
form

iℏ∂tψ(x, t) = −Dα(ℏ∇)αψ + Vψ (1 < α ≤ 2). (2.6)

The quantum Riesz fractional derivative is defined via

(ℏ∇)αψ(x, t) = − 1
2piℏ

∫ ∞

−∞
dp e

ipx
ℏ |p|αϕ(p, t) (2.7)

where

ϕ(p, t) =
∫ ∞

−∞
dx e

−ixt
ℏ ψ(x, t) (2.8)

with the standard inverse. Evidently (2.6) can be written in
operator form as (2D) iℏ∂tψ = Hαψ; Hα = −Dα(ℏ∇)α +V(x)

In [6] (0510099) a different approach is used involving
the Caputo derivatives (where +c D(x)k = 0 for k = constant.
Here for (2E) f (kx) =

∑∞
0 an(kx)nα one writes (D→ D̄)

+
c f (kx) = kα

∞∑
0

an+1
Γ(1 + (n + 1)α)
Γ(1 + nα)

(kx)nα. (2.9)

Next to extend the definition to negative reals one writes

x→ χ̄(x) = sgn(x)|x|α; D̄(x) = sgn(x)+c D(|x|). (2.10)

There is a parity transformation Π satisfying (2F) Πχ̄(x)
= −χ̄(x) and ΠD̄(x) = −D̄(x). Then one defines (2G)
f (χ̄(kx)) =

∑∞
0 anχ̄

n(kx) with a well defined derivative

D̄ f (χ̄(kx))=sgn(k)|k|α
∞∑
0

an+1
Γ(1+(n+1)α)
Γ(1+nα)

χ̄n(kx). (2.11)

This leads to a Hamiltonian Hα with

Hα = −1
2

mc2
(
ℏ

mc

)2α

D̄iD̄i + V(X̂1, . . . , X̂i, . . . , X̂3N) (2.12)

with a time dependent SE

HαΨ =−1
2

mc2
(
ℏ

mc

)2α

D̄iD̄i + V(X̂1, . . . , X̂i, . . . X̂3N)

Ψ
= iℏ∂tΨ.

(2.13)

3 The SE with α-derivative

Now we look at a 1-D SE with α-derivatives dα ∼ dα/dx
(without motivational physics). We write dαxβ = βxβ−α as in
(1.9) and posit a candidate SE in the form

iℏ∂tψ = Dαℏ
2d2

αψ + V(x)ψ. (3.1)

In [11, 12] for example (cf. also [29]) one deals with a
Schrödinger type equation

D2∆ψ + iD∂tψ −
W
2m

ψ = 0 (3.2)

where D ∼ (ℏ/2m) in the quantum situation. Further D is
allowed to have macro values with possible application in bi-
ology and cosmology (see Remark 3.1 below).

Consider a possible solution corresponding to ψ =

R exp(iS/ℏ) in the form (3A) ψ = REα (iS/ℏ) with Eα as in
(1.20). Then one has for S = S (x, t) (3B) ψt = RtEα + R∂tEα

and via (1.15)-(1.16)

dα
[
REα

( iS
ℏ

)]
= (dαR)Eα + REα

i
ℏ

(dαS ); (3.3)
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d2
α

[
REα

( iS
ℏ

)]
= (d2

αR)Eα + 2(dαR)Eα
i
ℏ

dαS+

+REα

( i
ℏ

dαS
)2

+ REα
i
ℏ

d2
αS ;

(3.4)

∂tEα(z) = ∂t

∞∑
0

(zα/α))k

Γ(k + 1
=

zt

α

∞∑
1

(zα/α)
Γ(k)

=

=
zt

α

∞∑
0

(zα/α)m

Γ(m + 1)
=

zt

α
Eα.

(3.5)

Then from (3B), (3.4), (3.3), and (3.5) we combine real
and imaginary parts in

iℏ
[
RtEα +

iS t

αℏ
REα

]
= VREα + Dαℏ

2
[
(d2
αR)Eα+

2(dαR)Eα
i
ℏ

dαS − RS Eα

ℏ2 (dαS )2 +
iREα

ℏ
d2
αS

] (3.6)

leading to

RtEα = −2DαdαREα(dαS ) − DαREαd2
αS ; (3.7)

− 1
α

S tREα = VREα + Dαℏ
2d2

αREα − REα(dαS )2.

Thus Eα cancels and we have

Rt = −2Dα(dαR)(dαS ) − DαRd2
αS ; (3.8)

− 1
α

S tR = VR + Dαℏ
2d2

αR − R(dαS )2.

Now recall the classical situation here as (cf. [30, 31])

S t +
S 2

x

2m
+ V − ℏ

2R′′

2mR
= 0; ∂t(R2) +

1
m

(R2S ′)′ = 0. (3.9)

This gives an obvious comparison:

1. Compare 2RRt + (1/m)(2RR′S ′ + R2S ′′) = 0 ∼ 2Rt +

(1/m)(2R′S ′ + RS ′′) = 0 with Rt = −2Dα(dαR)(dαS ) −
DαRd2

αS

2. Compare S t + (S 2
x/2m) + V − ℏ2R′′

2mR = 0 with − 1
α

S t =

V − Dαℏ
2d2

αR
R + (dαS )2

which leads to
THEOREM 3.1

The assumption (3.1) for a 1-D α-derivative Schrödinger type
equation leads to a fractional quantum potential

Qα = −
Dαℏ

2d2
αR

R
(3.10)

For the classical case with dαR ∼ R′ (i.e. α = 1) one has
Dα = 1/2m and one imagines more generally that Dαℏ

2 may
have macro values. ■

REMARK 3.1
We note that the techniques of scale relativity (cf. [11, 12])
lead to quantum mechanics (QM). In the non-relativistic case

the fractal Hausdorff dimension dH = 2 arises and one can
generate the standard quantum potential (QP) directly (cf.
also [29]). The QP turns out to be a critical factor in under-
standing QM (cf. [30–32, 35–37]) while various macro ver-
sions of QM have been suggested in biology, cosmology, etc.
(cf. [8, 11, 12, 38, 39]). The sign of the QP serves to distin-
guish diffusion from an equation with a structure forming en-
ergy term (namely QM for Dα = 1/2m and fractal paths of
Hausdorff dimension 2). The multi-fractal universe of [16,23]
can involve fractional calculus with various degrees α (i.e.
fractals of differing Hausdorff dimension). We have shown
that, given a physical input for (3.1) with the α-derivative of
Kobelev ( [21]), the accompanying α-QP could be related to
structure formation in the related theory. ■
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A Model Third Order Phase Transition in Fe – Pnictide Superconductors

Chinedu E. Ekuma and Ephraim O. Chukwuocha

Department of Physics, University of Port Harcourt, PMB 053 Choba, Port Harcourt, Rivers, Nigeria
E-mail: panaceamee@yahoo.com

By identifying the orders of phase transition through the analytic continuation of the
functional of the free energy of the Ehrenfest theory, we have developed a theory for
studying the dependence of the local magnetic moment, M on the Fe – As layer sep-
aration in the third order phase transition regime. We derived the Euler – Lagrange
equation for studying the dynamics of the local magnetic moment, and tested our model
with available experimental data.

1 Introduction

Since the discovery of superconductivity in Fe – based pnic-
tides oxides [1], there has been enormous research activities
to understand the origin of their superconductivity. This im-
mense interest in the physics and chemistry communities is
reminiscent of the excitement that accompanied the discov-
ery of high – Tc cuprate superconductors in the early 1980s.
Normally, in Fe – based superconductors, antiferromagnetic
(AFM) order is suppressed by charge (hole) doping but spin
interactions still exist [2]. It should be noted that supercon-
ductivity can still be induced in the pnictides without charge
doping through either isoelectric doping, non-stoichiometry,
or by use of non-thermal control parameters such as applica-
tion of non-hydrostatic pressure. Also it should be noted that
the parent compounds of the iron pnictides are metallic, albeit
highly dissipative, bad metals [3]. Most striking is the spec-
troscopy evidence that Fe based superconductors are weakly
correlated electronic system [4, 5]. Thus, the origin of the
observed superconductivity may not be due to Mott physics.
Put differently, for the fact that spin is relevant in Fe pnic-
tide superconductors, they are basically itinerant magnetism
suggesting that the Mott – Hubbard physics may be irrele-
vant in physics of Fe pnictide superconductors. We can thus
speculate that the superconductivity observed in Fe pnictides
are locally and dynamically spin polarized due to strong Fe
spin fluctuations with the itinerant nature of Fe providing the
“glue”. Hence, spin-fluctuation mediated through the spin
channel may be relevant in understanding the origin and na-
ture of the observed superconductivity in Fe pnictide.

Fe pnictide superconductors have layered structure. The
Fe atom layers of these pnictide systems are normally sand-
wiched by pnictogen, for example, Arsenic (As). Hence, the
magnetic moment of Fe depends strongly on the inter-layer
distances of Fe-As [6]. The magnetic moment of transition
metals also depends on volume [7]. This leads to the so-called
lattice anharmonicity.

In quasi 2D layered materials, a state with some rather
unexpected properties (new mean field solution) is observed
at non-zero [8]. This new mean field property observed in
these layered systems cannot be described by the ordinary

phenomenological Ginzburg – Landau theory. Also, the ther-
modynamic relation

∫ Tc

0 [δCe(H,T )/T]dT = 0 which holds for
2nd order phase transition is violated in some materials with
Bose – Einstein condensate (BEC)-like phase transition (see
for example as in spin glasses [9], ferromagnetic and anti-
ferromagnetic spin models with temperature driven transi-
tions [10]). We speculate that the normal Landau theory de-
veloped for 2nd order phase transition may not adequately ac-
count for the physics of the phase transitions and associated
phenomena, for example, magneto-volume effect due to lat-
tice anharmonicity in Fe pnictide superconductors. This mo-
tivated us to develop a new Landau-like mean field theory for
studying Fe-pnictide superconductors. The theory is based on
the Ehrenfest classification of orders of phase transitions [11].
Specifically, we will study the dependence of the local mag-
netic moment, M on the Fe-As layer separation, z.

2 Theoretical Framework

According to Hilfer [12], rewriting the singular part of the
local free energy within a restricted path through the critical
point in terms of the finite difference quotient, and analyti-
cally continuing in the orders, allows one to classify continu-
ous phase transitions precisely according to their orders. We
speculate that there exist phase transition of orders greater
than two as there is no known physical reason why such tran-
sitions should not exist in nature since they certainly exist in
a number of theoretical models like quantum chromodynam-
ics (QCD), lattice field theory and statistical physics [13].
At least, higher order phase transitions (≥2) are tenuous at
best and their non-detection might have been due to the hasty
generalization that all that departs from phase transition of
order two can always be explained in terms of field fluctua-
tion [13, 14].

The dependence of the magnetic moment, M on the Fe-As
layer separation is completely determined by the functional
(the magnetic free energy functional), F[z, ⟨M⟩] where ⟨M⟩
is the local magnetic moment. However, F must be invariant
under the symmetry group (e.g. Abelian Higg’s model) [15]
of the disordered phase in order to minimize the total energy
[13]. In general, F is a very complex functional of ⟨M⟩. To
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make ⟨M⟩ to be spatially continuous in equilibrium, in the
ordered phase, we essentially for all cases, redefine it. This
suggests that F be expressed in terms of a local free energy
density, f [z, ⟨M⟩ ] (the local magnetic free energy) which is
a function of the field at the point “z”. After coarse graining,
in its simplest form [13, 14], F is give (for orders of phase
transition > 2) by,

Fp(M, z) =
∫

ddr|M|2(p−2){−ap|M|2 + bp|M|4+

cp|∇M|2 + |M|2α(z − zc)2(p−2)},∀p > 2
(1)

where p is the order of the phase transition, ap = ao(1−H/Hc),
bp≫1, z is the Fe-As layer distance (inter-atomic separation),
zc is the critical point, and α < 0 (a typical material dependent
parameter).

Equation 1 is the model equation we are proposing for
studying the dependence of M on the Fe-As inter-atomic sep-
aration. For 3rd order phase transition, p = 3, Eq. 1 reduces
to,

F3(M, z) =
∫

ddr|M|2{−a3|M|2 + b3|M|4+

c3|∇M|2 + |M|2α(z − zc)2}
(2)

If we neglect the gradient term, and minimize the local
magnetic free energy with respect to M, Eq. 2 reduces to

M2 =
2

3b3
[a3 + |α|(z − zc)2] (3)

which basically leads (i.e., substituting Eq. 3 into 2) to the
local free energy

⟨ f3⟩ = [
2

3b3
(a3 + |α|(z − zc)2)]2{5

3
|α|(z − zc)2 − 1

3
a3}. (4)

In the presence of the gradient term to the local magnetic
free energy, using variational principle, after scaling, we ob-
tain the Euler – Lagrange equation for M as,

φ5 − φ3[1 − α(z − zc)2] − φ|∇2φ| = 0. (5)

3 Model Application

Using the data of Egami et al. [16], we calculated the mag-
netic moment, M using our model Eq. 3. The plot of ex-
perimentally determined critical temperature against our cal-
culated M (µB) are as shown in Fig. 1. Observe that there
is strong correlation between Tc and M. Most significantly,
our model predicted correctly the range of values of magnetic
moment of Fe, in Fe pnictide superconductors. As it is evi-
dence from the plot, the magnetic moment range from 0.59 to
0.73 µB. The experimentally measured value for the magnetic
moment of Fe in LaOFeAs for instance, range from 0.30 to
0.64 µB [17, 18].

We speculate that the observed strong correlation between
Tc and M stems from the fact that the superconducting criti-
cal temperature Tc depends very sensitively on the iron pnic-
togen (i.e., Fe-As-Fe) bond angle which in turn, depends on

Fig. 1: Color-online. Superconducting experimental critical tem-
perature, Tc from Ref. [16] against the calculated M obtained using
Eq. 3 at the critical point.

the Fe-As layer separation [19]. This present observation is
in tandem with the understanding that the bonding of the ar-
senic atoms changed dramatically as a function of magnetic
moment [20] and the core-level spectroscopy measurements
on CeFeAsO0.89F0.11 [21] which showed very rapid spin fluc-
tuation dependent magnetic moment. Since from our model
Eq. 3, M is proportional to z (for a3≪ 1), the observed strong
correlation is to be expected. This observation confirms our
earlier assertion that spin mediated fluctuations may be the
major dominant mediator in the superconductivity of Fe pnic-
tide superconductors. However, electron-phonon coupling
through the spin-channel is also to be expected.
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On the Exact Solution Explaining the Accelerate Expanding Universe
According to General Relativity

Dmitri Rabounski

A new method of calculation is applied to the frequency of a photon according to the tra-
velled distance. It consists in solving the scalar geodesic equation (equation of energy)
of the photon, and manifests gravitation, non-holonomity, and deformation of space as
the intrinsic geometric factors affecting the photon’s frequency. The solution obtained
in the expanding space of Friedmann’s metric manifests the exponential cosmological
redshift: its magnitude increases, exponentially, with distance. This explains the acce-
lerate expansion of the Universe registered recently by the astronomers. According to
the obtained solution, the redshift reaches the ultimately high valuez= eπ − 1= 22.14 at
the event horizon.

During the last three years, commencing in 2009, I published
a series of research papers [1–5] wherein I went, step-by-
step, in depth of the cosmological redshift problem. I tar-
geted an explanation of the non-linearity of the cosmological
redshift law and, hence, the accelerate expansion of the Uni-
verse. I suggested that the explanation may be found due to
the space-time geometry, i.e. solely with the use of the geo-
metric methods of the General Theory of Relativity.

Naturally, this is the most promising way to proceed in
this problem. Consider the following: in 1927, Lemaı̂tre’s
theory [6] already predicted the linear reshift law in an expan-
ding space of Friedmann’s metric (a Friedmann universe). As
was then shown by Lemaı̂tre, this theoretical result matches
the linear redshift law registered in distant galaxies∗. The ano-
malously high redshift registered in very distant Ia-type su-
pernovae in the last decade [7–9] manifests the non-linearity
of the redshift law. It was then interpreted as the accelerate
expansion of our Universe. Thus, once the space-time ge-
ometry has already made Lemaı̂tre successful in explaining
the linear redshift, we should expect a success with the non-
linear redshift law when digging more in the theory.

Lemâıtre deduced the cosmological redshift on the basis
of Einstein’s field equation. The left-hand side of the equation
manifests the space curvature, while the right-hand side des-
cribes the substance filling the space. In an expanding space,
all objects scatter from each other with the velocity of the
space expansion. Lemaı̂tre considered the simplest case of
deforming spaces — the space of Friedmann’s metric. Such a
space is free of gravitational fields and rotation, but is curved
due to its deformation (expansion or compression). Solving
Einstein’s equation for Friedmann’s metric, Lemaı̂tre obtai-
ned the curvature radiusR of the space and the speed of its

∗According to the astronomical observations, spectral lines of distant
galaxies and quasars are redshifted as if these objects scatter with the radial
velocity u=H0 d, which increases 72 km/sec per each megaparsec of the
distanced to the object.H0= 72±8 km/sec×Mpc= (2.3±0.3)×10−18 sec−1 is
known as the Hubble constant. 1 parsec= 3.0857×1018 cm' 3.1×1018 cm.

changeṘ. Then he calculated the redshift, assuming that it is
a result of the Doppler effect on the scattering objects of the
expanding Friedmann universe.

Lemâıtre’s method of deduction would remain quite good,
except for three drawbacks, namely —

1) It works only in deforming spaces, i.e. under the as-
sumption that the cosmological redshift is a result of
the Doppler effect in an expanding space. In static
(non-deforming) spaces, this method does not work. In
other words, herein is not a way to calculate how the
frequency of a photon will change with the distance of
the photon’s travel in the space of a static cosmological
metric (which is known to be of many kinds);

2) In this old method, the Doppler effect does not follow
from the space (space-time) geometry but has the same
formula as that of classical physics. Only the speed of
change of the curvature radius with timeṘ (due to the
expansion of space) is used as the velocity of the light
source. In other words, the Doppler formula of clas-
sical physics is assumed to be the same in an expan-
ding Friedmann universe. This is a very serious sim-
plification, because it is obvious that the Doppler effect
should have a formula, which follows from the space
geometry (Friedmann’s metric in this case);

3) This method gives the linear redshift law — a straight
line z= Ṙ

c , which “digs” in the wall Ṙ= c. As a re-
sult, the predicted cosmological redshift is limited by
the numerical valuezmax= 1. However, we know do-
zens of much more redshifted galaxies and quasars. In
2011, the highest redshift registered by the astronomers
is z= 10.3 (the galaxy UDFj-39546284).

So, in his theory, Lemaı̂tre calculated the cosmological
redshift in a roundabout way: by substituting, into the Dop-
pler formula of classical physics, the speed of change of the
curvature radiuṡR he obtained his redshift law, i.e., by sol-
ving Einstein’s equation for Friedmann’s metric.
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In contrast to Lemâıtre, I suggested that the cosmologi-
cal redshift law can be deduced in a more direct and pro-
found way. It is as follows. The generally covariant geode-
sic equation — the four-dimensional equation of motion of a
particle — can be projected onto the time line and the three-
dimensional spatial section of an observer. As a result, we
obtain the scalar geodesic equation, which is the equation of
energy of the particle, and the vectorial geodesic equation (the
three-dimensional equation of motion). The in-depth mathe-
matical formalism of the said projection was introduced in
1944 by Zelmanov [10, 11], and is known as the theory of
chronometric invariants∗. Solving the scalar geodesic equa-
tion (equation of energy) of a photon, we shall obtain how
the photon’s energy and frequency change according to the
remoteness of the signal’s source to the observer. This is the
frequency shift law, particular forms of which we can deduce
by solving the scalar geodesic equation of a photon in the
space of any particular metric.

The same method of deduction may be applied to mass-
bearing particles. By solving the scalar geodesic equation for
a mass-bearing particle (“stone-like objects”), we shall obtain
that the relativistic mass of the object changes according to
the remoteness to the observer in the particular space.

First, following this new way of deduction, I showed that
the redshift, observed by the astronomers, should be present
in a space which rotates at the velocity of light [1, 2]. In this
case, the Hubble constant plays a rôle of the frequency of
the rotation. The redshift due to the space rotation should be
present even if the space is static (non-deforming).

The light-speed rotation is only attributed to the so-called
isotropic region of space (home of the trajectories of light).
This can be shown by “adapting” the space metric to the iso-
tropic space condition (equality of the metric to zero), which
makes a replacement among the componentsg00 andg0i of
the fundamental metric tensorgαβ. In Minkowski’s space,
this replacement means that the isotropic region has a non-
diagonal metric, whereg00= 0, g0i = 1, g11= g22= g33=−1.
Such isotropic metrics were studied in the 1950’s by Petrov:
see§25 and the others in hisEinstein Spaces[12]. More in-
sight into this subject is provided in my third paper on the
redshift problem [3].

On the other hand, a regular sublight-speed observer shall
observe all events according to the components of the funda-
mental metric tensorgαβ of his own (non-isotropic) space —
home of “solid objects”. Therefore, I then continued the rese-
arch study with the regular metrics, which are not “adapted”
to the isotropic space condition.

In two recent papers [4, 5], I solved the scalar geode-
sic equation for mass-bearing particles and massless particles
(photons), in the most studied particular spaces: in the space
of Schwarzschild’s mass-point metric, in the space of an elec-

∗The property of chronometric invariance means that the quantity is in-
variant along the three-dimensional spatial section of the observer.

trically charged mass-point (the Reissner-Nordström metric),
in the rotating space of G̈odel’s metric (a homogeneous dis-
tribution of ideal liquid and physical vacuum), in the space of
a sphere of incompressible liquid (Schwarzschild’s metric), in
the space of a sphere filled with physical vacuum (de Sitter’s
metric), and in the deforming space of Friedmann’s metric
(empty or filled with ideal liquid and physical vacuum).

Herein I shall go into the details of just one of the ob-
tained solutions — that in an expanding Friedmann universe,
— wherein I obtained the exponential cosmological redshift,
thus giving a theoretical explanation to the accelerate expan-
sion of the Universe registered recently by the astronomers.

The other obtained solutions shall be omitted from this
presentation. The readers who are curious about them are
directly referred to my two recent publications [4,5].

So, according to Zelmanov’s chronometrically invariant
formalism [10, 11], any four-dimensional (generally covari-
ant) quantity is presented with its observable projections onto
the line of time and the three-dimensional spatial section of
an observer. This is as well true about the generally covari-
ant geodesic equation. As Zelmanov obtained, the projected
(chronometrically invariant) geodesic equations of a mass-
bearing particle, whose relativistic mass ism, are

dm
dτ
−

m
c2

Fi v
i +

m
c2

Dik vivk = 0 , (1)

d(mvi)
dτ

−mFi + 2m
(
Di

k + A∙ik∙
)
vk + m4i

nkvnvk = 0 , (2)

while the projected geodesic equations of a massless particle-
photon, whose relativistic frequency isω, have the form

dω
dτ
−
ω

c2
Fi c

i +
ω

c2
Dik cick = 0 , (3)

d(ωci)
dτ

− ωFi + 2ω
(
Di

k + A∙ik∙
)
ck + ω4i

nkcnck = 0 . (4)

Heredτ=
√
g00 dt− 1

c2 vi dxi is the observable time, which
depends on the gravitational potential w= c2 (1−

√
g00 ) and

the linear velocityvi =−
cg0i√
g00

of the rotation of space. Four
factors affect the particles: the gravitational inertial forceFi ,
the angular velocityAik of the rotation of space, the deforma-
tion Dik of space, and the Christoffel symbolsΔi

jk (expressing
the space non-uniformity). According to the scalar geodesic
equation (equation of energy), two factors,Fi andDik, affect
the energy of the particle. They are determined [10,11] as

Fi =
1
√
g00

(
∂w
∂xi
−
∂vi
∂t

)

,
√
g00 = 1−

w
c2
, (5)

Dik =
1

2
√
g00

∂hik

∂t
, Dik =−

1
2
√
g00

∂hik

∂t
, D=

∂ ln
√

h
√
g00 ∂t

, (6)

whereD= hikDik, while hik is the chr.inv.-metric tensor

hik = −gik +
1
c2
vi vk , hik = −gik, hi

k = δ
i
k . (7)
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The geodesic equations of mass-bearing and massless
particles have the same form. Only the sublight velocity vi

and the relativistic massm are used for mass-bearing parti-
cles, instead of the observable velocity of lightci and the fre-
quencyω of the photon. Therefore, they can be solved in the
same way to yield similar solutions.

My suggestion is then self-obvious. By solving the scalar
geodesic equation of a mass-bearing particle in each of the
so-called cosmological metrics, we should obtain how the ob-
served (relativistic) mass of the particle changes according to
the distance from the observer in each of these universes. I
will further refer to it as thecosmological mass-defect. The
scalar geodesic equation of a photon should give the formula
of the frequency shift of the photon according to the travelled
distance (thecosmological frequency shift).

Consider the space of Friedmann’s metric

ds2 = c2dt2 − R2

[
dr2

1− κ r2
+ r2

(
dθ2 + sin2θ dϕ2

)]

, (8)

wherein Lemâtre [6] deduced the linear redshift law. Here
R=R(t) is the curvature radius of the space, whileκ= 0,±1
is the curvature factor. Ifκ=−1, the three-dimensional subs-
pace possesses hyperbolic (open) geometry. Ifκ= 0, its geo-
metry is flat. Ifκ=+1, it has elliptic (closed) geometry.

As is seen from the metric, such a space — a Friedmann
universe — is free of (g00= 1) and rotation (g0i = 0), but is
deforming, which reveals the functionsgik = gik (t). It may
expand, compress, or oscillate. Such a space can be empty, or
filled with a homogeneous and isotropic distribution of ideal
(non-viscous) liquid in common with physical vacuum (Λ-
field), or filled with one of the media.

Friedmann’s metric is expressed through a “homogene-
ous” radial coordinater. This is the regular radial coordinate
divided by the curvature radius, whose scales change accor-
ding to the deforming space. As a result, the homogeneous
radial coordinater does not change its scale with time.

The scalar geodesic equation for a photon travelling along
the radial direction in a Friedmann universe takes the form

dω
dτ

+
ω

c2
D11c1c1 = 0 , (9)

wherec1 [sec−1] is the solely nonzero component of the ob-
servable “homogeneous” velocity of the photon. The square
of the velocity ish11c1c1 = c2 [cm2/sec2]. We calculate the
components of the chr-inv.-metric tensorhik according to Fri-
edmann’s metric. After some algebra, we obtain

h11 =
R2

1− κ r2
, h22 = R2r2, h33 = R2r2 sin2θ , (10)

h = det‖hik‖ = h11h22h33 =
R6r4 sin2θ

1− κ r2
, (11)

h11 =
1− κ r2

R2
, h22 =

1
R2r2

, h33 =
1

R2r2 sin2θ
. (12)

With these formulae of the components ofhik, we obtain
the tensor of the space deformationDik in a Friedmann uni-
verse. According to the definition (6), we obtain

D =
3Ṙ
R
, D11 =

RṘ
1− κ r2

, D1
1 =

Ṙ
R
. (13)

The curvature radius as a function of time,R=R(t), can
be found by assuming a particular type of the space defor-
mation. The trace of the tensor of the space deformation,
D= hikDik, is by definition the speed of relative deformation
of the volume. A volume, which is deforming freely, expands
or compresses so that its volume undergoes equal relative
changes with time

D = const, (14)

which, in turn, is a world-constant of the space. This is the
primary type of space deformation: I suggest referring to it as
theconstant(homotachydioncotic) deformation∗.

Consider a constant-deformation (homotachydioncotic)
Friedmann universe. WithD= 3Ṙ

R according to Friedmann’s

metric, we haveṘ
R =A= const in this case. We thus arrive

at the equation1
R dR=Adt, which isd ln R=Adt. Assuming

the curvature radius at the moment of timet= t0 to bea0, we
obtain

R= a0eAt, Ṙ= a0 AeAt , (15)

and, therefore,

D = 3A , D11 =
a2

0 Ae2At

1− κ r2
, D1

1 = A . (16)

Return now to the scalar geodesic equation of a photon in
a Friedmann universe, which is formula (9). Becauseg00= 1
andg0i = 0 according to Friedmann’s metric, we havedτ= dt.
Therefore, becauseh11c1c1 = c2, the scalar geodesic
equation transforms intoh11

dω
dt +ωD11= 0. From here we ob-

tainh11
dω
ω
=−D11dt, and, finally, the equation

h11 d lnω = −D11dt . (17)

By substitutingh11 andD11, we obtain

d lnω = −A dt, (18)

whereA= Ṙ
R is a world-constant of the Friedmann space.

As is seen, this equation is independent of the curvature
factor κ. Therefore, its solution will be common for the hy-
perbolic (κ=−1), flat (κ= 0), and elliptic (κ=+1) geometry
of the Friedmann space.

This equation solves as lnω=−At+ ln B, where B is
an integration constant. So forth, we obtainω= B e−At. We
calculate the integration constantB from the conditionω=ω0

∗I refer to this kind of universe ashomotachydioncotic(in Greek —
oμoταχυδιoγκωτικó). This term originates fromhomotachydioncosis—
oμoταχυδιóγκωσης— volume expansion with a constant speed, fromóμo
which is the first part of́oμoιoς (omeos) — the same,ταχύτητα — speed,
διóγκωση — volume expansion, while compression can be considered as
negative expansion.
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at the initial moment of timet= t0 = 0. We haveB=ω0. Thus,
we obtain the final solutionω=ω0 e−At of the scalar geodesic
equation. Expanding the world-constantA= Ṙ

R and the dura-
tion of the photon’s travelt= d

c , we have

ω = ω0 e
− Ṙ

R
d
c , (19)

whered= ct [cm] is the distance to the source emitting the
photon. At small distances (and durations) of the photon’s
travel, the obtained solution takes the linearized form

ω ' ω0

(

1−
Ṙ
R

d
c

)

. (20)

The obtained solution manifests that photons travelling in
a constant-deformation (homotachydiastolic) Friedmann uni-
verse which expands (A> 0) should lose energy and frequen-
cy with each mile of the travelled distance. The energy and
frequency loss law is exponential (19) at large distances of
the photon’s travel, and is linear (20) at small distances.

Accordingly, the photon’s frequency should be redshifted.
The magnitude of the redshift increases with the travelled dis-
tance. This is acosmological redshift, in other words.

Let a photon have a wavelengthλ0 =
c
ω0

being emitted by
a distantly located source, while its frequency registered at
the arrival isλ= c

ω
. Then we obtain the magnitudez= λ−λ0

λ0
=

=
ω0−ω
ω

of the redshift in an expanding constant-deformation
(homotachydiastolic) Friedmann universe. It is

z= e
Ṙ
R

d
c − 1 , (21)

which is anexponential redshift law. At small distances of
the photon travel, it takes the linearized form

z'
Ṙ
R

d
c
. (22)

which manifests alinear redshift law.
If such a universe compresses (A< 0), this effect changes

its sign, thus becoming acosmological blueshift.
Our linearized redshift formula (22) is the same asz= Ṙ

R
d
c

obtained by Lemâıtre [6], the “father” of the theory of an
expanding universe. He followed, however, another way of
deduction which limited him only to the linear formula. He
therefore was confined to believing in the linear redshift law
alone.

The ultimately high redshiftzmax, which could be registe-
red in our Universe, is calculated by substituting the ultima-
tely large distance into the redshift law. If following Lemaı̂-
tre’s theory [6],zmax should follow from the linear redshift
law z= Ṙ

R
d
c =Ad

c . BecauseA= Ṙ
R is the world-constant of the

Friedmann space, the ultimately large curvature radiusRmax

is determined by the ultimately high velocity of the space
expansion which is the velocity of lighṫRmax= c. Hence,
Rmax=

c
A
. The ultimately large distancedmax (the event ho-

rizon) is regularly determined from the linear law for scat-
tering galaxies, which isu=H0d: the scattering velocityu

should reach the velocity of light (u= c) at the event horizon
(d= dmax).∗ The law u=H0d is known due to galaxies and
quasars whose scattering velocities are much lower than the
velocity of light. Despite this fact, the empirical linear law
u=H0d is regularly assumed to be valid upto the event hori-
zon. Thus, they obtaindmax=

c
H0

= (1.3±0.2)×1028 cm. Then
they assume the linear coefficient H0 of the empirical law of
the scattering galaxies to be the world-constantA= Ṙ

R, which
follows from the space geometry. As a result, they obtain
dmax=Rmax and zmax=H0

dmax

c = 1 due to the linear redshift
law. How then to explain the dozens of very distant galaxies
and quasars, whose redshift is much higher thanz= 1?

On the other hand, it is obvious that the ultimately high
redshift zmax, ensuing from the space (space-time) geome-
try, should be a result of the laws of relativistic physics. In
other words,z= zmax should follow from not a straight line
z= Ṙ

R
d
c =H0

d
c =

u
c , which digs in the vertical “wall”u= c, but

from a non-linear relativistic function.
In this case, the Hubble constantH0 remains a linear coef-

ficient only in the pseudo-linear beginning of the real redshift
law arc, wherein the velocities of scattering are small in com-
parison with the velocity of light. At velocities of scattering
close to the velocity of light (close to the event
horizon), the Hubble constantH0 loses the meaning of the
linear coefficient and the world-constantA due to the increa-
sing non-linearity of the real redshift law.

Such a non-linear formula has been found in the frame-
work of our theory alluded to here. This is the exponen-
tial redshift law (21), which then gives the Lemaı̂tre linear
redshift law (22) as an approximation at small distances.

We now use the exponential redshift law (21) to calculate
the ultimately high redshiftzmax, which could be conceivable
in an expanding Friedmann space of the constant-deformation
type. The event horizond= dmax is determined by the world-
constantA= Ṙ

R of the space. Thus, the ultimately large cur-
vature radius isRmax=

c
A, while the distance corresponding to

Rmax on the hypersurface isdmax= πRmax=
πc
A . Suppose now

that a photon has arrived from a source, which is located at
the event horizon. According to the exponential redshift law
(21), the photon’s redshift at the arrival should be

zmax = e
Ṙ
R

dmax
c − 1 = eπ − 1 = 22.14, (23)

which is the ultimately high redshift in such a universe.
The deduced exponential increase of the redshift implies

the accelerate expansion of space. This “key prediction” of
our theory was surely registered by the astronomers in the
last decade: the very distant Ia-type supernovae manifested
the increasing non-linearity of the redshift law and, hence,
the accelerate expansion of our Universe [7–9].

∗The law for scattering galaxies dictates that distant galaxies and quasars
scatter with the radial velocityu=H0d, increasing as 72 km/sec per each
megaparsec. The linear coefficient of the law,H0= 72±8 km/sec×Mpc=
= (2.3±0.3)×10−18 sec−1, is known as the Hubble constant.
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We therefore can conclude that the observed non-linear
redshift law and the accelerate expansion of space have been
explained in the constant-deformation (homotachydioncotic)
Friedmann universe.

The deduced exponential law points out the ultimately
high redshiftzmax= 22.14 for objects located at the event ho-
rizon. The highest redshifted objects, registered by the astro-
nomers, are now the galaxies UDFj-39546284 (z= 10.3) and
UDFy-38135539 (z= 8.55). According to our theory, they
are still distantly located from the “world end”. We therefore
shall expect, with years of further astronomical observation,
more “high redshifted surprises” which will approach the up-
per limit zmax= 22.14.

In analogy to massless particles-photons, we can consider
the scalar geodesic equation of a mass-bearing particle. In
a Friedmann universe this equation takes the form

dm
dτ

+
m
c2

D11v1v1 = 0 , (24)

which, alone, is non-solvable. This is because mass-bearing
particles can travel at any sub-light velocity, which is there-
fore an unknown variable of the equation.

This problem vanishes in a constant-deformation Fried-
mann universe, by the assumption according to which mas-
sive bodies travel not arbitrarily, but are only being carried
out with the expanding (or compressing) space. In this parti-
cular case, particles travel with the velocity of space deforma-
tion, v= Ṙ. Because v2= hikvivk, we havehikvivk= Ṙ2. Thus,
and withdτ= dt according to Friedmann’s metric, the scalar
geodesic equation of mass-bearing particles transforms into
h11

dm
dt +

m
c2 D11Ṙ2= 0, i.e.h11

dm
m =− Ṙ2

c2 D11dt. We obtain

h11 d ln m= −
Ṙ2

c2
D11dt . (25)

Then, expandingR, Ṙ (15), andD11 (16) according to
a constant-deformation space, we obtain the scalar geodesic
equation in the form

d ln m= −
a2

0 A3e2At

c2
dt , (26)

where A= Ṙ
R = const. It solves as lnm=−

a2
0 A2

2c2 e2At+ ln B,
where the integration constantB can be found from the con-
dition m=m0 at the initial moment of timet= t0 = 0. After
some algebra, we obtain the final solution of the scalar geo-
desic equation. It is the double-exponential function

m= m0 e
−

a2
0 A2

2c2
(e2At−1)

, (27)

which, at a small distance to the object, takes the linearized
form

m' m0


1−

a2
0 A3 t

c2


 . (28)

The obtained solution manifests thecosmological mass-
defectin a constant-deformation (homotachydiastolic) Fried-
mann universe: the more distant an object we observe in an
expanding universe is, the less should be its observed massm
to its real massm0. Contrarily, the more distant an object we
observe in a compressing universe, the heavier should be this
object according to observation.

Our Universe seems to be expanding. This is due to the
cosmological redshift registered in the distant galaxies and
quasars. Therefore, according to the cosmological mass-
defect deduced here, we should expect distantly located cos-
mic objects to be much heavier than we estimate on the basis
of astronomical observations. The magnitude of the expected
mass-defect should be, according to the obtained solution, in
the order of the redshift of the objects.

The cosmological mass-defect complies with the cosmo-
logical redshift. Both of these effects are deduced in the same
way, by solving the scalar geodesic equation for mass-bearing
and massless particles, respectively. One effect cannot be in
the absence of the other, because the geodesic equations have
the same form. This is a basis of the space (space-time) ge-
ometry, in other words. Therefore, once the astronomers re-
gister the linear redshift law and its non-linearity in very dis-
tant cosmic objects, they should also find the corresponding
cosmological mass-defect according to the solution presented
here. Once the cosmological mass-defect is discovered, we
will be able to say, surely, that our Universe is an expanding
Friedmann universe of the constant-deformation (homotachy-
diastolic) type.
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LETTERS TO PROGRESS IN PHYSICS

Social Aspects of Cold Fusion: 23 Years Later

Ludwik Kowalski

The field of Cold Fusion, now called Condensed Matter Nuclear Science (CMNS), re-
mains controversial. The original 1989 claim made by M. Fleischmann and S. Pons was
that a chemical process in an electrolytic cell could initiate a nuclear reaction–fusion of
two deuterium nuclei. More recent CMNS claims, made by experimental scientists,
are: emission of charged nuclear projectiles during electrolysis; accumulation of 4He;
production of radioactive isotopes; and transmutation of elements. In the US, CMNS
claims have been evaluated in two Department of Energy (DOE) investigations, in 1989
and 2004, as summarized in this article. These investigations did not lead to any resolu-
tion of the controversy. Scientists and adminstrators are not ideal; competition among
them, as among other groups of people, tends to have both positive and negative influ-
ences.

1 Introduction

The so-called “scientific methodology”, a set of norms deve-
loped to deal with difficulties, especially with mistakes and
controversies, is well known. Most scientific mistakes are re-
cognized when new results are discussed with colleagues, or
via the peer review process. Occasional errors in published
papers are subsequently discovered during replications con-
ducted by other researchers. Scientific results, if valid, wrote
Huizenga [1], must be reproducible on demand. “When er-
rors are discovered, acknowledged and corrected, the scien-
tific process moves quickly back on track, usually without
either notice or comment in the public press.” The scientific
process, in other words, is self-corrective. The purpose of this
presentation is to analyze an ongoing controversy about the
so-called “cold fusion” (CF). The author of this article, and
three other researchers, tried to verify one recent CF claim
– emission of alpha particles during electrolysis. The results
were negative, as described in [2]. Critical analysis of some
CF claims, as illustrated in [3], can enrich nuclear physics
courses, even at the undergraduate level.

Why is the CMNS controversy started in 1989 unresol-
ved? Because CF claims are still not reproducible on de-
mand, and because they conflict with accepted theories. A
theory, in this context, is not just a hypothesis, or only a
logical/mathematical argument. It is a logical structure that
is known to agree with a wide range of already verified ex-
perimental data. Researchers know the rule–theories guide
but experiments decide. But they are very reluctant to aban-
don accepted theories. To be reluctant means to insist on
additional verifications of new experimental results. Refer-
ring to such situations, Huizenga wrote: “There are occa-
sionally surprises in science and one must be prepared for
them.” Theories are not carved in stone; scientists do not
hesitate to modify or reject theories when necessary. Rejec-
ting a highly reproducible experimental result “on theoreti-
cal grounds” would not be consistent with scientific metho-

dology. Unlike mathematics, science is based, in the final
analysis, on experimental data, not on logical proofs.

2 The Original Claim

It is well known that two hydrogen nuclei can fuse, releasing
energy. But this happens only at extremely high temperatu-
res. At ordinary temperatures the probability of the reaction
is practically zero, due to the well known coulomb repulsion
of positive nuclei. This has been confirmed by reliable expe-
rimental data. But two scientists – Steven Jones, a physicist,
and Martin Fleischmann, a chemist – independently specula-
ted that this might not always be true. The term CF was in-
troduced by them to identify the claimed fusion of hydrogen
nuclei (ionized atoms dissolved in solid metals). The DOE
supported Jones’ work long before Fleischmann and his colle-
ague Pons (F&P) applied for similar support. That is why the
DOE asked Jones to evaluate the new research proposal. He
was later accused (by the administration of Utah University)
of stealing the idea of CF from F&P. Trying to establish prio-
rity, Utah University organized a press conference (March 23,
1989) at which the discovery of generation of nuclear heat in
an electrolytic cell was announced to the world. The released
heat was declared to be due to fusion of deuterium nuclei –
ionized atoms dissolved in palladium. At that time Jones and
his co-workers had already authored numerous peer-reviewed
articles [4]. But their claim was not excess heat; it was emis-
sion of neutrons.

3 The First DOE Investigation

Most scientists immediately rejected claims conflicting with
well-known facts and theories. But many attempts to repli-
cate F&P’s poorly-described experiments were made. Some
attempts were successful (unaccounted heat was generated at
rates close to one watt), while others were not [5]. That was
the beginning of the controversy. Fleischmann and Pons wan-
ted to study the CF phenomenon for another year or so but
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were forced to announce the discovery by the university ad-
ministrators [6]. They had no evidence that the measured heat
was due to a nuclear reaction. The only thing they knew was
that it could not be attributed to a known chemical reaction.

Suppose their experimental results had been described
without any interpretation, and the phenomenon had been
named “anomalous electrolysis”. Such a report would not
have led to a sensational press conference; it would have
been made in the form of an ordinary peer review publication.
Only electrochemists would have been aware of the claim;
they would have tried to either confirm or refute it. The issue
of “how to explain excess heat” would have been addressed
later, if the reported phenomenon were confirmed. But that
is not what happened. Instead of focusing on experimental
data (in the area in which F&P were recognized authorities)
most critics focused on the disagreements with the coulomb
barrier theory. Interpretational mistakes were quickly recog-
nized and this contributed to the premature skepticism toward
their experimental data.

But the significance of CF, if real, was immediately re-
cognized. Some believed that ongoing research on high-tem-
perature fusion, costing billions of dollars, should be stopped
to promote research on CF. Others concluded, also prematu-
rely, that such a move would be opposed by “vested interests”
of mainstream scientists. Responding to such considerations,
the US government quickly ordered a formal investigation. A
panel of scientists, named ERAB (Energy Research Advisory
Board), and headed by John Huizenga, was formed to inves-
tigate CF in 1989. The final report, submitted to the DOE
several months later, interfered with the normal development
of the field. It should be noted that ERAB scientists inves-
tigating the CF claims were not personally involved in repli-
cations of experiments. Their report [7], based on visits to
several laboratories rather than participation in experiments,
can be summarized by the following statements:
Conclusions:

1. There is no evidence that a nuclear process is responsi-
ble for excess heat.

2. Lack of experimental reproducibility remains a serious
concern.

3. Theoretically predicted fusion products were not found
in expected quantities.

4. There is no evidence that CF can be used to produce
useful energy.

5. The CF interpretation is not consistent with what is
known about hydrogen in metals.

6. The CF interpretation is not consistent with what is
known about nuclear phenomena.

Recommendations:

7. We recommend against any extraordinary funding.

8. We recommend modest support for more experiments.

9. We recommend focusing on excess heat and possible
errors.

10. We recommend focusing on correlations between fu-
sion products and excess heat.

11. We recommend focusing on the theoretically predicted
tritium in electrolytic cells.

12. We recommend focusing on theoretically predicted
neutrons.

Note that only one conclusion (item 2) refers to CF ex-
periments. Conclusion 4 is about anticipated practical uses
of CF while the remaining four conclusions (1, 3, 5, and 6)
are about various aspects of the suggested interpretation of
experimental results. Instead of focusing on reality of ex-
cess heat critics focused on the fact that the hypothesis was
not consistent with what was known about hot nuclear fu-
sion. The same observation can be made about recommen-
dations. Only one of them (item 9) refers to possible errors
in experiments. Items 7 and 8 refer to future funding while
items 10, 11, and 12 refer to what was expected on the ba-
sis of the suggested hot-fusion interpretation. It is clear that
the ERAB observations were based mostly on ”theoretical
grounds,”and not on identified errors in experimental data.
Recommendations about future financial support for CF were
very important. But they were ignored by the DOE. Support
for CF research practically stopped in 1989. Another result of
the first DOE investigation was that editors of some scientific
journals stopped accepting articles dealing with CF research.
Why was the scientific methodology of validation of claims –
theories guide but experiments decide – not followed by the
DOE-appointed scientists? Why did “rejections on theoreti-
cal grounds” prevail?

4 The Second DOE Investigation

The second DOE investigation of CF was announced in
March 2004, nearly 15 years after the first one. Links to
three online documents related to that investigation – Con-
ference Agenda, Meeting Agenda, and DOE CF Report – can
be found in [8]. The six most important scientific questions,
based on new experimental claims, were:

a) Is it true that unexpected protons, tritons, and alpha par-
ticles are emitted [9, 10] in some CF experiments?

b) Is it true that generation of heat, in some CF experi-
ments, is linearly correlated with the accumulation of
4He and that the rate of generation of excess heat is
close to the expected 24 MeV per atom of 4He [9, 11]?

c) Is it true that highly unusual isotopic ratios [9, 12] have
been observed among the reaction products?

d) Is it true that radioactive isotopes [9, 13] have been
found among reaction products?

e) Is it true that transmutation of elements [10, 14] has
occurred?
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f) Are the ways of validating of claims made by CF re-
searchers (see conference reports presened at [16, 17,
18]) consistent with accepted methodologies in other
areas of science?

A positive answer to even one of these questions would
be sufficient to justify an official declaration that cold fusion,
in light of recent data, should be treated as a legitimate area
of research. But only the (b) question was addressed by the
selected referees [8]. They were asked to review the availa-
ble evidence of correlation between the reported excess heat
and production of fusion products. One third of them stated
that the evidence for such correlation was conclusive. That
was not sufficient; the attitude of the scientific establishment
toward cold fusion research did not change.

5 Conclusion

The CF controversy is unprecedented in terms of its duration,
intensity, and caliber of adversaries on both sides of the di-
vide. Huizenga and Fleischmann were indisputable leaders
in nuclear science and electrochemistry. CMNS researchers
are mostly also Ph.D. level scientists. The same is true for
those scientists who believe that the announced discovery of
CF was a “scientific fiasco”. We are still waiting for at least
one reproducible-on-demand demonstration of a nuclear ef-
fect resulting from a chemical (atomic) process. In the case
of CF the self-correcting process of scientific development
emphasized by Huizenga has not worked. This fiasco seems
to be due to the fact that scientists appointed to investigate CF
claims did not follow the rules of scientific methodology.
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Characterisation of Low Frequency Gravitational Waves from Dual RF
Coaxial-Cable Detector: Fractal Textured Dynamical 3-Space

Reginald T. Cahill

School of Chemical and Physical Sciences, Flinders University, Adelaide 5001, Australia
E-mail: Reg.Cahill@flinders.edu.au

Experiments have revealed that the Fresnel drag effect is not present in RF coaxial
cables, contrary to a previous report. This enables a very sensitive, robust and compact
detector, that is 1st order in v/c and using one clock, to detect the dynamical space
passing the earth, revealing the sidereal rotation of the earth, together with significant
wave/turbulence effects. These are “gravitational waves”, and previously detected by
Cahill 2006, using an Optical-Fibre – RF Coaxial Cable Detector, and Cahill 2009,
using a preliminary version of the Dual RF Coaxial Cable Detector. The gravitational
waves have a 1/f spectrum, implying a fractal structure to the textured dynamical 3-
space.

1 Introduction

Data from a new gravitational wave experiment is reported∗,
revealing a fractal 3-space, flowing past the earth at∼500
km/s. The wave/turbulence or “gravitational waves” have a
significant magnitude, and are now known to have been de-
tected numerous times over the last 125 years. The detector
uses a single clock with RF EM waves propagating through
dual coaxial cables, and is 1st order inv/c. The detector
is sensitive, simple to operate, robust and compact. It uses
the surprising discovery that there is no Fresnel drag effect
in coaxial cables, whereas there is in gases, optical fibres,
liquids etc. Data from an analogous detector using optical
fibres and single coaxial cables was reported in 2006 [1, 2].
Because of the discovery reported herein that detector cali-
bration has now been correctly redetermined. Results from
Michelson-Morley [3, 4], Miller [5], Torr and Kolen [6] and
DeWitte [7], are now in remarkable agreement with the ve-
locity of absolute motion of the earth determined from NASA
spacecraft earth-flyby Doppler shift data [8,9], all revealing a
light/EM speed anisotropy of some 486km/s in the direction
RA=4.29h, Dec=-75.0◦: that speed is∼300,000-500 km/s
for radiation travelling in that direction, and∼300,000+500
km/s travelling in the opposite, northerly direction: a signifi-
cant observed anisotropy that physics has ignored. The actual
daily average velocity varies with days of the year because of
the orbital motion of the earth - the aberration effect discov-
ered by Miller, but shows fluctuations over all time scales.

In 2002 it was discovered that the Michelson-Morley
1887 light-speed anisotropy experiment, using the interfer-
ometer in gas mode, had indeed detected anisotropy, by tak-
ing account of both the Lorentz length contraction effect for
the interferometer arms, and the refractive index effect of the
air in the light paths [3,4]. These gas-mode interferometer ex-

∗This report is from the Gravitational Wave Detector Project at Flinders
University.

periments show the difference between Lorentzian Relativity
(LR) and Special Relativity (SR). In LR the length contrac-
tion effect is caused by motion of a rod, say, through the dy-
namical 3-space, whereas in SR the length contraction is only
a perspective effect, supposedly occurring only when the rod
is moving relative to an observer. This was further clarified
when an exact mapping between Galilean space and time co-
ordinates and the Minkowski-Einstein spacetime coordinates
was recently discovered [10].

The Michelson interferometer, having the calibration con-
stantk2 = (n2−1)(n2−2) wheren is the refractive index of the
light-path medium, has zero sensitivity to EM anisotropy and
gravitational waves when operated in vacuum-mode (n = 1).
Fortunately the early experiments had air present in the light
paths†. A very compact and cheap Michelson interferomet-
ric anisotropy and gravitational wave detector may be con-
structed using optical fibres [11], but for most fibresn ≈

√
2

near room temperature, and so needs to be operated at say
0◦C. The (n2 − 2) factor is caused by the Fresnel drag [12].
The detection of light speed anisotropy - revealing a flow of
space past the detector, is now entering an era of precision
measurements, as reported herein. These are particularly im-
portant because experiments have shown large turbulence ef-
fects in the flow, and are beginning to characterise this turbu-
lence. Such turbulence can be shown to correspond to what
are, conventionally, known as gravitational waves, although
not those implied by General Relativity, but more precisely
are revealing a fractal structure to dynamical 3-space.

†Michelson and Morley implicitly assumed thatk2 = 1, which consid-
erably overestimated the sensitivity of their detector by a factor of∼ 1700
(air hasn = 1.00029). This error lead to the invention of “spacetime” in
1905. Miller avoided any assumptions about the sensitivity of his detector,
and used the earth orbit effect to estimate the calibration factork2 from his
data, although even that is now known to be incorrect: the sun 3-space inflow
component was unknown to Miller. It was only in 2002 that the design flaw
in the Michelson interferometer was finally understood [3,4].
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2 Fresnel Drag

The detection and characterisation of these wave/turbulence
effects requires only the development of small and cheap de-
tectors, as these effects are large. However in all detectors the
EM signals travel through a dielectric, either in bulk or op-
tical fibre or through RF coaxial cables. For this reason it is
important to understand the so-called Fresnel drag effect. In
optical fibres the Fresnel drag effect has been established, as
this is important in the operation of Sagnac optical fibre gy-
roscopes, for only then is the calibration independent of the
fibre refractive index, as observed. The Fresnel drag effect
is a phenomenological formalism that characterises the effect
of the absolute motion of the propagation medium, say a di-
electric, upon the speed of the EM radiation relative to that
medium.

The Fresnel drag expression is that a dielectric in abso-
lute motion through space at speedv, relative to space itself,
causes the EM radiation to travel at speed

V(v) =
c
n
+ v

(

1−
1
n2

)

(1)

wrt the dielectric, whenV andv have the same direction. Here
n is the dielectric refractive index. The 2nd term is known as
the Fresnel drag, appearing to show that the moving dielec-
tric “drags” the EM radiation, although this is a misleading
interpretation; see [13] for a derivation∗. If the Fresnel drag
is always applicable then, as shown herein, a 1st order inv/c
detector requires two clocks, though not necessarily synchro-
nised, but requiring a rotation of the detector arm to extract
the v-dependent term. However, as we show herein, if the
Fresnel drag is not present in RF coaxial cables, then a de-
tector 1st order inv/c and using one clock, can detect and
characterise the dynamical space. In [13] it was incorrectly
concluded that the Fresnel effect was present in RF coaxial
cables, for reasons related to the temperature effects, and dis-
cussed later.

3 Dynamical 3-Space

We briefly outline the dynamical modelling of 3-space. It
involves the space velocity fieldv(r , t), defined relative to an
observer’s frame of reference.

∇ ∙

(
∂v
∂t

+ (v ∙ ∇) v
)

+
α

8

(
(trD)2−tr(D)2

)
+ .. = −4πGρ (2)

∇ × v = 0 and Di j = ∂vi∂xj . The velocity fieldv de-
scribes classically the time evolution of the substratum quan-
tum foam. The bore holeg anomaly data has revealedα =

1/137, the fine structure constant. The matter acceleration
is found by determining the trajectory of a quantum matter

∗The Fresnel Drag in (1) can be “derived” from the Special Relativity
velocity-addition formula, but therev is the speed of the dielectric wrt to the
observer, and as well common to both dielectrics and coaxial cables.

Fig. 1: South celestial pole region. The dot (red) at RA=4.29h,
Dec=-75◦, and with speed 486 km/s, is the direction of motion of the
solar system through space determined from spacecraft earth-flyby
Doppler shifts [9], revealing the EM radiation speed anisotropy. The
thick (blue) circle centred on this direction is the observed velocity
direction for different days of the year, caused by earth orbital mo-
tion and sun space inflow. The corresponding results from Miller
gas-mode interferometer are shown by 2nd dot (red) and its aber-
ration circle (red dots) [5]. For March the velocity is RA=2.75h,
Dec=-76.6◦, and with speed 499.2 km/s, see Table 2 of [9].

wavepacket. This is most easily done by maximising the
proper travel timeτ:

τ =

∫
dt

√

1−
v2

R(r0(t), t)

c2
(3)

wherevR(ro(t), t) = vo(t) − v(ro(t), t), is the velocity of the
wave packet, at positionr0(t), wrt the local space – a
neo-Lorentzian Relativity effect. This ensures that quantum
waves propagating along neighbouring paths are in phase, and
so interfere constructively. This maximisation gives the quan-
tum matter geodesic equation forr0(t)

g =
∂v
∂t

+ (v ∙ ∇)v+ (∇× v)× vR−
vR

1−
v2

R

c2

1
2

d
dt



v2

R

c2


+ ... (4)

with g ≡ dvo/dt = d2ro/dt2. The 1st term ing is the Eu-
ler space accelerationa, the 2nd term explains the Lense-
Thirring effect, when the vorticity is non-zero, and the last
term explains the precession of orbits. While the velocity
field has been repeatedly detected since the Michelson-
Morley 1887 experiment, the best detection has been using
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Fig. 2: Schematic layout for measuring the one-way speed of light
in either free-space, optical fibres or RF coaxial cables, without re-
quiring the synchronisation of the clocksC1 andC2: hereτ is the
unknown offset time between the clocks.V is the speed of EM ra-
diation wrt the apparatus, with or without the Fresnel drag in (1),
and v is the speed of the apparatus through space, in directionθ.
DeWitte used this technique in 1991 with 1.5 km RF cables and Ce-
sium atomic clocks [7]. In comparison with data from spacecraft
earth-flyby Doppler shifts [9] this experiments confirms that there is
no Fresnel drag effect in RF coaxial cables.

the spacecraft earth-flyby Doppler shift data [9], see Fig1.
The above reveals gravity to be an emergent phenomenon
where quantum matter waves are refracted by the time de-
pendent and inhomogeneous 3-space velocity field. Theα-
term in (2) explains the so-called “dark matter” effects: if
α → 0 andvR/c→ 0 we recover Newtonian gravity, for then
∇∙g = −4πGρ [12]. Note that the relativistic term in (4) arises
from the quantum matter dynamics – not from the space dy-
namics.

4 Gravitational Waves: Dynamical Fractal 3-Space

Eqn. (3) for the elapsed proper time maybe written in differ-
ential form as

dτ2 = dt2 −
1
c2

(dr (t) − v(r (t), t)dt)2 = gμν(x)dxμdxν (5)

which introduces a curved spacetime metricgμν for which
the geodesics are the quantum matter trajectories when freely
propagating through the dynamical 3-space. Gravitational
wave are traditionally thought of as “ripples” in the space-
time metricgμν. But the discovery of the dynamical 3-space
means that they are more appropriately understood to be tur-
bulence effects of the dynamical 3-space vectorv, because it
is v that is directly detectable, whereasgμν is merely an in-
duced mathematical artefact. When the matter densityρ = 0,
(2) will have a time-dependent fractal structured solutions, as
there is no length scale. The wave/turbulence effects reported
herein confirm that prediction, see Fig. 9.

5 First Order in v /c Speed of EMR Experiments

Fig. 2 shows the arrangement for measuring the one-way
speed of light, either in vacuum, a dielectric, or RF coaxial
cable. It is usually argued that one-way speed of light mea-
surements are not possible because the clocksC1 andC2 can-
not be synchronised. However this is false, and at the same
time shows an important consequence of (1). In the upper part

Fig. 3: Top: Data from the 1991 DeWitte NS horizontal coaxial
cable experiment,L = 1.5 km, n = 1.5, using the arrangement
shown in Fig. 2. The time variation of∼ 28 ns is consistent with
the Doppler shift results with speed 500 km/s, but using Dec=-65◦:
the month for this data is unknown, and the vertical red lines are at
RA=5h. If a Fresnel drag effect is included the speed would have to
be 1125 km/s, in disagreement with the Doppler shift data, demon-
strating that there is no Fresnel drag in coaxial cables. Bottom: Dual
coaxial cable detector data from May 2009 using the technique in
Fig. 5 and without looping:L = 20 m, Doppler shift data predicts
Dec= −77◦, v = 480 km/s giving a sidereal dynamic range of 5.06
ps, very close to that observed. The vertical red lines are at RA=5h.
In both data sets we see the earth sidereal rotation effect together
with significant wave/turbulence effects.

of Fig. 2 the actual travel timetAB from A to B is determined
by

V(v cos(θ))tAB = L + v cos(θ)tAB (6)

where the 2nd term comes from the endB moving an addi-
tional distancev cos(θ)tAB during time intervaltAB. Then

tAB =
L

V(v cos(θ)) − v cos(θ)
=

nL
c

+
v cos(θ)L

c2
+ .. (7)

tCD =
L

V(v cos(θ)) + v cos(θ)
=

nL
c
−
v cos(θ)L

c2
+ .. (8)

on using (1), i.e. assuming the validity of the Fresnel effect,
and expanding to 1st oder inv/c. However if there is no Fres-
nel drag effect then we obtain

tAB=
L

V(v cos(θ)) − v cos(θ)
=

nL
c
+
v cos(θ)Ln2

c2
+ .. (9)

tCD=
L

V(v cos(θ))+v cos(θ)
=

nL
c
−
v cos(θ)Ln2

c2
+ .. (10)

The important observation is that thev/c terms are inde-
pendent of the dielectric refractive indexn in (7) and (8), but
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Fig. 4: Data from the 1981 Torr-Kolen experiment at Logan, Utah
[6]. The data shows variations in travel times (ns), for local side-
real times, of an RF signal travelling through 500 m of coaxial ca-
ble orientated in an EW direction. The red curve is sidereal effect
prediction for February, for a 3-space speed of 480 km/s from the
direction, RA=5h, Dec=−70◦.

have ann2 dependence in (9) and (10), in the absence of the
Fresnel drag effect.

If the clocks are not synchronised thentAB is not known,
but by changing direction of the light path, that is varying
θ, the magnitude of the 2nd term may be separated from the
magnitude of the 1st term, andv and its direction determined.
The clocks may then be synchronised. For a small detector
the change inθ can be achieved by a direct rotation. Results
(7) and (8), or (9) and (10), have been exploited in various
detector designs.

6 DeWitte 1st Order in v/c Detector

The DeWitteL = 1.5 km RF coaxial cable experiment, Brus-
sels 1991, was a double 1st order inv/c detector, using the
scheme in Fig.2, and employing 3 Caesium atomic clocks at
each end, and overall measuringtAB − tCD. The orientation
was NS and rotation was achieved by that of the earth [7].

tAB− tCD =
2v cos(θ)Ln2

c2
(11)

The dynamic range of cos(θ) is 2 sin(λ− β) cos(δ), caused
by the earth rotation, whereλ is the latitude of the detector
location,β is the local inclination to the horizontal, hereβ =
0, andδ is the declination ofv. The data shows remarkable
agreement with the velocity vector from the flyby Doppler
shift data, see Fig. 3. However if there is Fresnel drag in the
coaxial cables, there would be non2 factor in (11), and the
DeWitte data would give a much larger speedv = 1125 km/s,
in strong disagreement with the flyby data.

7 Torr and Kolen 1st Order in v /c Detector

A one-way coaxial cable experiment was performed at the
Utah University in 1981 by Torr and Kolen [6]. This in-

S N

A B

D C

Rb

DS
O

� L -
FSJ1-50A

FSJ1-50A

-

�
HJ4-50

HJ4-50

�

- 	

�

�

�

66

Fig. 5: Because Fresnel drag is absent in RF coaxial cables this dual
cable setup, using one clock, is capable of detecting the absolute mo-
tion of the detector wrt to space, revealing the sidereal rotation effect
as well as wave/turbulence effects. In the 1st trial of this detector this
arrangement was used, with the cables laid out on a laboratory floor,
and preliminary results are shown in Figs. 3. In the new design the
cables in each circuit are configured into 8 loops, as in Fig. 6, giv-
ing L = 8 × 1.85 m = 14.8 m. In [1] a version with optical fibres
in place of the HJ4-50 coaxial cables was used, see Fig. 11. There
the optical fibre has a Fresnel drag effect while the coaxial cable
did not. In that experiment optical-electrical converters were used to
modulate/demodulate infrared light.

volved two Rb clocks placed approximately 500 m apart with
a 5 MHz sinewave RF signal propagating between the clocks
via a nitrogen filled coaxial cable buried in the ground and
maintained at a constant pressure of∼2 psi. Torr and Kolen
observed variations in the one-way travel time, as shown in
Fig.4 by the data points. The theoretical predictions for the
Torr-Kolen experiment for a cosmic speed of 480 km/s from
the direction, RA=5h, Dec=-70◦, as shown in Fig. 4. The
maximum/minimum effects occurred, typically, at the pre-
dicted times. Torr and Kolen reported fluctuations in both
the magnitude, from 1–3 ns, and time of the maximum varia-
tions in travel time, just as observed in all later experiments,
namely wave effects.

8 Dual RF Coaxial Cable Detector

The Dual RF Coaxial Cable Detector exploits the Fresnel
drag anomaly, in that there is no Fresnel drag effect in RF
coaxial cables. Then from (9) and (10) the round trip travel
time is, see Fig. 5,

tAB + tCD =
2nL

c
+
v cos(θ)L(n2

1 − n2
2)

c2
+ .. (12)

wheren1 and n2 are the effective refractive indices for the
two different RF coaxial cables, with two separate circuits
to reduce temperature effects. Shown in Fig. 6 is a photo-
graph. The Andrews Phase Stabilised FSJ1-50A hasn1 =

1.19, while the HJ4-50 hasn2 = 1.11. One measures the
travel time difference of two RF signals from a Rubidium
frequency standard (Rb) with a Digital Storage Oscilloscope
(DSO). In each circuit the RF signal travels one-way in one
type of coaxial cable, and returns via a different kind of coax-
ial cable. Two circuits are used so that temperature effects
cancel - if a temperature change alters the speed in one type
of cable, and so the travel time, that travel time change is the
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Fig. 6: Photograph of the RF coaxial cables arrangement, based upon 16×1.85 m lengths of phase stabilised Andrew HJ4-50 coaxial cable.
These are joined to 16 lengths of phase stabilised Andrew FSJ1-50A cable, in the manner shown schematically in Fig. 5. The 16 HJ4-50
coaxial cables have been tightly bound into a 4×4 array, so that the cables, locally, have the same temperature, with cables in one of the
circuits embedded between cables in the 2nd circuit. This arrangement of the cables permits the cancellation of temperature differential
effects in the cables. A similar array of the smaller diameter FSJ1-50A cables is located inside the grey-coloured conduit boxes.

same in both circuits, and cancels in the difference. The travel
time difference of the two circuits at the DSO is

Δt =
2v cos(θ)L(n2

1 − n2
2)

c2
+ .. (13)

If the Fresnel drag effect occurred in RF coaxial cables,
we would use (7) and (8) instead, and then then2

1 − n2
2 term

is replaced by 0, i.e. there is no 1st order term inv. That is
contrary to the actual data in Figs. 3 and 7.

The preliminary layout for this detector used cables laid
out as in Fig.5, and the data is shown in Fig.3. In the com-
pact design the Andrew HJ4-50 cables are cut into 8× 1.85 m
shorter lengths in each circuit, corresponding to a net length
of L = 8 × 1.85 = 14.8 m, and the Andrew FSJ1-50A ca-
bles are also cut, but into longer lengths to enable joining.
However the curved parts of the Andrew FSJ1-50A cables
contribute only at 2nd order inv/c. The apparatus was hor-
izontal, β = 0, and orientated NS, and used the rotation of
the earth to change the angleθ. The dynamic range of cos(θ),
caused by the earth rotation only, is again 2 sin(λ − β) cos(δ),
whereλ = −35◦ is the latitude of Adelaide. Inclining the de-
tector at angleβ = λ removes the earth rotation effect, as now
the detector arm is parallel to the earth’s spin axis, permitting
a more accurate characterisation of the wave effects.

9 Temperature Effects

The cable travel times and the DSO phase measurements are
temperature dependent, and these effects are removed from
the data, rather than attempt to maintain a constant tempera-
ture, which is impractical because of the heat output of the Rb
clock and DSO. The detector was located in a closed room in
which the temperature changed slowly over many days, with
variations originating from changing external weather driven
temperature changes. The temperature of the detector was
measured, and it was assumed that the timing errors were pro-
portional to changes in that one measured temperature. These
timing errors were some 30ps, compared to the true signal of
some 8ps. Because the temperature timing errors are much
larger, the temperature inducedΔt = a+bΔT was fitted to the
timing data, and the coefficientsa andb determined. Then

this Δt time series was subtracted from the data, leaving the
actual required phase data. This is particularly effective as the
temperature variations had a distinctive signature. The result-
ing data is shown in Fig.8. In an earlier test for the Fresnel
drag effect in RF coaxial cables [13] the technique for remov-
ing the temperature induced timing errors was inadequate, re-
sulting in the wrong conclusion that there was Fresnel drag in
RF coaxial cables.

10 Dual RF Coaxial Cable Detector: Data

The phase data, after removing the temperature effects, is
shown in Fig. 8 (top), with the data compared with predictions
for the sidereal effect only from the flyby Doppler shift data.
As well that data is separated into two frequency bands (bot-
tom), so that the sidereal effect is partially separated from the

Fig. 7: Log-Log plot of the data (top) in Fig. 7, with the straight
line beingA ∝ 1/ f , indicating a 1/ f fractal wave spectrum. The
interpretation for this is the 3-space structure shown in Fig. 9.

Cahill R.T. Characterisation of Low Frequency Gravitational Waves from Dual RF Coaxial-Cable Detector 7
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Fig. 8: Top: Travel time differences (ps) between the two coaxial cable circuits in Fig. 5, orientated NS and horizontal, over 9 days (March
4-12, 2012, Adelaide) plotted against local sidereal time. Sinewave, with dynamic range 8.03 ps, is prediction for sidereal effect from
flyby Doppler shift data for RA=2.75h (shown by red fudicial lines), Dec=-76.6◦, and with speed 499.2 km/s, see Table 2 of [9], also
shown in from Fig. 1. Data shows sidereal effect and significant wave/turbulence effects. Bottom: Data filtered into two frequency bands
3.4× 10−3 mHz < f < 0.018 mHz (81.4 h > T > 15.3 h) and 0.018 mHz< f < 0.067 mHz (15.3 h > T > 4.14 h), showing more clearly
the earth rotation sidereal effect (plus vlf waves) and the turbulence without the sidereal effect. Frequency spectrum of top data is shown in
Fig. 7.

gravitational wave effect,viz3-space wave/turbulence. Being
1st order inv/c it is easily determined that the space flow is
from the southerly direction, as also reported in [1]. Miller
reported the same sense, i.e. the flow is essentially from S to
N, though using a 2nd order detector that is more difficult to
determine. The frequency spectrum of this data is shown in
Fig. 7, revealing a fractal 1/ f form. This implies the fractal
structure of the 3-space indicated in Fig. 9.

11 Optical Fibre RF Coaxial Cable Detector

An earlier 1st order inv/c gravitational wave detector design
is shown in Fig. 11, with some data shown in Fig. 10. Only
now is it known why that detector also worked, namely that
there is a Fresnel drag effect in the optical fibres, but not in the
RF coaxial cable. Then the travel time difference, measured
at the DSO is given by

Δt =
2v cos(θ)L(n2

1 − 1)

c2
+ .. (14)

wheren1 is the effective refractive index of the RF coaxial
cable. Again the data is in remarkable agreement with the
flyby determinedv.

12 2nd Order in v/c Gas-Mode Detectors

It is important that the gas-mode 2nd order inv/c data from
Michelson and Morley, 1887, and from Miller, 1925/26, be

Fig. 9: Representation of the fractal wave data as a revealing the
fractal textured structure of the 3-space, with cells of space having
slightly different velocities, and continually changing, and moving
wrt the earth with a speed of∼500 km/s.

reviewed in the light of the recent experiments and flyby data.
Shown in Fig. 12 (top) is Miller data from September 16,
1925, 4h40′ Local Sidereal Time (LST) - an average of data
from 20 turns of the gas-mode Michelson interferometer. Plot
and data after fitting and then subtracting both the tempera-
ture drift and Hicks effects from both, leaving the expected si-
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Fig. 10: Phase difference (ps), with arbitrary zero, versus local time
data plots from the Optical Fibre - Coaxial Cable Detector, see
Fig. 11 and [1, 2], showing the sidereal time effect and significant
wave/turbulence effects. The plot (blue) with the most easily identi-
fied minimum at∼17 hrs local Adelaide time is from June 9, 2006,
while the plot (red) with the minimum at∼8.5 hrs local time is from
August 23, 2006. We see that the minimum has moved forward in
time by approximately 8.5 hrs. The expected sidereal shift for this
65 day difference, without wave effects, is 4.3 hrs, to which must be
added another∼1h from the aberration effects shown in Fig. 1, giv-
ing 5.3hrs, in agreement with the data, considering that on individual
days the min/max fluctuates by±2hrs. This sidereal time shift is a
critical test for the detector. From the flyby Doppler data we have for
August RA=5h, Dec=-70◦, and speed 478 km/s, see Table 2 of [9],
the predicted sidereal effect dynamic range to be 8.6 ps, very close
to that observed.
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Fig. 11: Layout of the optical fibre - coaxial cable detector, with
L = 5.0 m. 10 MHz RF signals come from the Rubidium atomic
clock (Rb). The Electrical to Optical converters (EO) use the RF
signals to modulate 1.3μm infrared signals that propagate through
the single-mode optical fibres. The Optical to Electrical converters
(OE) demodulate that signal and give the two RF signals that finally
reach the Digital Storage Oscilloscope (DSO), which measures their
phase difference. The key effects are that the propagation speeds
through the coaxial cables and optical fibres respond differently to
their absolute motion through space, with no Fresnel drag in the
coaxial cables, and Fresnel drag effect in the optical fibres. Without
this key difference this detector does not work.

nusoidal form. The error bars are determined as the rms error
in this fitting procedure, and show how exceptionally small
were the errors, and which agree with Miller’s claim for the
errors. Best result from the Michelson-Morley 1887 data - an

average of 6 turns, at 7h LST on July 11, 1887, is shown in
Fig.12 (bottom). Again the rms error is remarkably small. In
both cases the indicated speed isvP - the 3-space speed pro-
jected onto the plane of the interferometer. The angle is the
azimuth of the 3-space speed projection at the particular LST.
Fig. 13 shows speed fluctuations from day to day significantly
exceed these errors, and reveal the existence of 3-space flow
turbulence - i.e gravitational waves. The data shows consid-
erable fluctuations, from hour to hour, and also day to day,
as this is a composite day. The dashed curve shows the non-
fluctuating best-fit sidereal effect variation over one day, as
the earth rotates, causing the projection onto the plane of the
interferometer of the velocity of the average direction of the
space flow to change. The predicted projected sidereal speed
variation for Mt Wilson is 251 to 415 km/s, using the Casinni
flyby data and the STP air refractive index ofn = 1.00026 ap-
propriate atop Mt. Wilson, and the min/max occur at approx-
imately 5hrs and 17hrs local sidereal time (Right Ascension).
For the Michelson-Morley experiment in Cleveland the pre-
dicted projected sidereal speed variation is 239 to 465 km/s.
Note that the Cassini flyby in August gives a RA= 5.15h,
close to the RA apparent in the above plot. The green data
points, showing daily fluctuation bars, at 5h and 13h, are from
the Michelson-Morley 1887 data, from averaging (excluding
only the July 8 data for 7h because it has poor S/N), and with
same rms error analysis. The fiducial time lines are at 5h

and 17h. The data indicates the presence of turbulence in the
3-space flow, i.e gravitational waves, being first seen in the
Michelson-Morley experiment.

13 Conclusions

The Dual RF Coaxial Cable Detecto, exploits the Fresnel drag
anomaly in RF coaxial cables,viz the drag effect is absent in
such cables, for reasons unknown, and this 1st order inv/c
detector is compact, robust and uses one clock. This anomaly
now explains the operation of the Optical-Fibre - Coaxial Ca-
ble Detector, and permits a new calibration. These detectors
have confirmed the absolute motion of the solar system and
the gravitational wave effects seen in the earlier experiments
of Michelson-Morley, Miller, DeWitte and Torr and Kolen.
Most significantly these experiments agree with one another,
and with the absolute motion velocity vector determined from
spacecraft earth-flyby Doppler shifts. The observed signifi-
cant wave/turbulence effects reveal that the so-called “gravi-
tational waves” are easily detectable in small scale laboratory
detectors, and are considerably larger than those predicted by
GR. These effects are not detectable in vacuum-mode Michel-
son terrestrial interferometers, nor by their analogue vacuum-
mode resonant cavity experiments.

The new Dual RF Coaxial Cable Detector permits a de-
tailed study and characterisation of the wave effects, and with
the detector having the inclination equal to the local latitude
the earth rotation effect may be removed, as the detector is

Cahill R.T. Characterisation of Low Frequency Gravitational Waves from Dual RF Coaxial-Cable Detector 9
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Fig. 12: Top: Typical Miller data from 1925/26 gas-mode Michelson
interferometer, from 360◦ rotation. Bottom: Data from Michelson-
Morley 1887 gas-mode interferometer, from 360◦ rotation.

then parallel to the earth’s spin axis, enabling a more accu-
rate characterisation of the wave effects. The major discovery
arising from these various results is that 3-space is directly de-
tectable and has a fractal textured structure. This and numer-
ous other effects are consistent with the dynamical theory for
this 3-space. We are seeing the emergence of fundamentally
new physics, with space being a a non-geometrical dynami-
cal system, and fractal down to the smallest scales describable
by a classical velocity field, and below that by quantum foam
dynamics [12]. Imperfect and incomplete is the geometrical
model of space.
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Fig. 13: Miller data for composite day in September 1925, and also
showing Michelson-Morley 1887 July data at local sidereal times
of 7h and 13h. The waved/turbulence effects are very evident, and
comparable to data reported herein from the new detector.
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Synchronous Measurements of Alpha-Decay of239Pu Carried out at North Pole,
Antarctic, and in Puschino Confirm that the Shapes of the Respective Histograms

Depend on the Diurnal Rotation of the Earth and on the Direction
of the Alpha-Particle Beam
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Dependence of histogram shapes from Earth diurnal rotation, and from direction of
alpha-particles issue at239Pu radioactive decay is confirmed by simultaneous measure-
ments of fluctuation amplitude spectra — shapes of corresponding histograms. The
measurements were made with various methods and in different places: at the North
Pole, in Antarctic (Novolazarevskaya station), and in Puschino.

1 Introduction

Fine structure of an amplitude fluctuation spectrum (i.e., that
of “data spread”) can be determined during measurements of
different nature changes with the Earth rotation around its
axis and its movement along its orbit.

This follows from the regular changes in the shape of the
respective histograms with diurnal and annual periods. Well-
defined periods are observed: those of “stellar” (1,436 min-
utes) and “solar” (1,440 minutes) days, “calendar” (365 av-
erage solar days), “tropical” (365 solar days 5 hours 48 min-
utes) and “sidereal” (365 days 6 hours 9 minutes) years [1].

Experiments with collimators that allow studies of alpha-
particle beams with definite directions indicate that this regu-
larity is related to non-uniformity (anisotropy) of space [1, 6].

Dependence on the diurnal Earth rotation shows in high
probability of shape similarity of histograms obtained during
measurements in different locations at the same local time, as
well as in the disappearance of diurnal periods near the North
Pole [2]. However, together with synchronous changes in his-
togram shapes according to the local time, some experiments
show changes in histogram changes simultaneously accord-
ing to an absolute time [2]. It was discovered that synchro-
nism with regard to absolute time (e.g. during measurements
in Antarctic and in Puschino, Moscow Region) observed dur-
ing measurements of alpha-decay of239Pu, depends on the
spatial orientation of the collimators [1, 3, 5].

In order to study dependences of the absolute synchro-
nism phenomenon, experiments carried out near the North
Pole, which would minimize effects of the Earth’s diurnal ro-
tation, were required,.

The first such attempt was undertaken in 2001 by joint
efforts of Inst. Theor. & Experim. Biophysics of Russ. Acad.

Fig. 1: Measuring device at North Pole.

Sciences (ITEB RAS) and Arctic & Antarctic Res. Inst.
(AARI), when twenty-four-hour measurements of239Pu
alpha-decay with a counter without collimator were carried
out continuously during several days in a North Pole expedi-
tion on the “Akademik Fedorov” research vessel.

However, the ship was not able to come closer than lati-
tude 82◦ North to the North Pole. But even this incomplete
approaching to the North pole has shown almost complete
disappearance of diurnal changes in the histogram shapes that
were observed during the same period of time in Puschino
(latitude 54◦ North) [2].

In 2003, we found out that diurnal changes in histogram
shapes also disappear when alpha-radioactivity is measured
with collimators that issue alpha-particle beams directed to-
wards the Pole star. This indicated that histogram shapes de-
pend on a space direction of a process[1, 6].

This conclusion was later repeatedly confirmed by exper-
iments with collimators directed westward, eastward, north-
ward, or rotated in the horizontal plane counterclockwise with
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Fig. 2: During the239Pu alpha-decay measurements at the North Pole, the effect of the daily period disappearance is more pronounced
for the vertical detector (device no. 3) than for the horizontal one (device no. 4). For comparison, daily period is shown for synchronous
measurements in Puschino with a westward-directed collimator (device no. 2). The abscissa axis shows minutes. The ordinate axis shows
the number of the similar pairs obtained during this period with a total number of the compared rows of 360.

periods of 1, 2, 3, 4, 5, 6, 12 hours. The histogram shape
changed with the respective periods.

In 2011, we were able to carry out synchronous experi-
ments on239Pu alpha-decay using nine different devices, two
of which were located at the North Pole during the period
of work at the Pan-Arctic ice drifting station (latitude 89◦ 01
— 89◦ 13 North, longitude 121◦ 34 —140◦ 20 East), one in
Antarctic (the Novolazarevskaia station, latitude 70◦ South,
longitude 11◦ East), and six more having different collima-
tors in Puschino (latitude 54◦ North, longitude 37◦ East).

As a result of this project, we were able to confirm the
conclusion that histogram shapes depend on the diurnal rota-
tion of the Earth, and to show that, when alpha-particle beam
is directed along the meridian, the histogram shape changes
synchronously from the North Pole to the Antarctic.

2 Materials and methods

The device was installed on the surface of drifting ice near
the geographic North Pole (Fig. 1) and worked continuously
since April 5, 11 till April 12, 11, until its accumulators were
out of charge.

The measurement results obtained at the North Pole since
April 5, 11 till April 12, 11 were analyzed in the ITEB RAS
in Puschino. The analysis was, as usual, comparison of his-
togram shapes for measurements made with different devices.
A detailed description of the methods of histogram construc-
tion and shape comparison can be found in [1].

This paper is based on the results obtained from the si-
multaneous measurements of alpha-activity of the239Pu sam-
ples with the activity of 100–300 registered decay events per
second using 9 different devices with semiconductor alpha-

particle detectors constructed by one of the authors (I. A. Ru-
binshtein) with and without collimators [6] and registration
system constructed by M. E. Astashev (see [7]).

The main characteristics of the devices used in this study
are given in Table 1.

Because of special complications presented by the condi-
tions at the North Pole (no sources of electricity, significant
temperature variations) a special experimental system with
autonomous electricity source, thermostat, and time record-
ing was created by M. E. Astashev. This device contained two
independent alpha-particle counters (I. A. Rubinshtein), one
directed upwards and another one directed sidewards, which
were combined with a special recording system.

A system based on the computing module Arduino Nano
V.5 [7–1] was used for registering the signals from the alpha-
particle counter. The software provided all service functions
for impulse registration, formation of the text data for the
flash card, obtaining the time data, regulation of the heater,
obtaining the temperature and the battery charge data. The
data were recorded onto a 1 Gb microSD card, and the func-
tion library Fat16.h, real time clock were implemented using
the DS1302 chip [7–2] with a lithium battery CR2032 inde-
pendent power supply [7–3]. Power supply of the registering
system and alpha-particle counters was provided by four wa-
terproof unattended geleous lead batteries of 336 W× h total
capacity [7–3]. To provide working conditions for the bat-
teries and stability of the system, a 12 W electric heater with
pulse-duration control and temperature detector AD22100
was added [7–4]. Pulse counters were implemented by pro-
cessing external hardware interruptions of the computing
module. The data were recorded onto the card as plain text.
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Number Device type Coordinates The expected purpose, i.e. registration of the
histogram shape changes caused by:

1 Collimator, directed eastward Puschino, lat. 54◦ North, long. 37◦ East diurnal Earth rotation

2 Collimator, directed westward Puschino, lat. 54◦ North, long. 37◦ East diurnal Earth rotation

3 Flat detector without collimator, di-
rected “upwards”

North Pole Earth circumsolar rotation

4 Flat detector without collimator, di-
rected “sidewards”

North Pole combined, diurnal and circumsolar, Earth
rotation

5 Collimator, directed towards the
Polar Star

Puschino, lat. 54◦ North, long. 37◦ East circumsolar Earth rotation

6 Polar Star directed collimator-free
flat detector

Puschino, lat. 54◦ North, long. 37◦ East combined, diurnal and circumsolar, Earth
rotation

7 Sun directed collimator, clockwise
rotation

Puschino, lat. 54◦ North, long. 37◦ East circumsolar Earth rotation

8 Collimator-free flat detector, di-
rected “upwards”

Puschino, lat. 54◦ North, long. 37◦ East combined, diurnal and circumsolar, Earth
rotation

9 Horizontal collimator, directed
northward

Puschino, lat. 54◦ North, long. 37◦ East combined, diurnal and circumsolar, Earth
rotation

Table 1: The devices for the measurements of239Pu alpha-decay used in this study.

3 Results

3.1 Daily periods of the histogram shape changes de-
pend on the detector orientation

Fig. 2 shows that measurement of239Pu alpha-activity in
Puschino with a westward-directed collimator (device no. 2)
leads to appearance of similar histograms with two clearly
distinguished periods, which are equal to a sidereal day
(1,436 min) and a solar day (1,440 min). During measure-
ments at the North Pole with flat detectors, daily periods al-
most disappear. It can be noticed, however, that daily peri-
ods are slightly more pronounced for the flat detector directed
sidewards (horizontally; device no. 4). The periods disappear
for measurements at the North Pole with a detector directed
upwards (vertically; device no 3).

Dependence of the effects observed at the North Pole on
the detector orientations, which was revealed while looking
for the diurnal periods, indicates that these effects were not
caused by any influence by some “geophysic” impacts on the
studied processes or on the measurement system. Not loca-
tion of the device but rather orientation of the detector deter-
mines the outcome. A similar result was observed for two
other Pole Star-directed detectors in Puschino, one of which
was flat and another had a collimator (data not shown). The
main effect, disappearance of the daily period, was signifi-
cantly more pronounce with a collimator-equipped detector.

3.2 The absolute time synchronism of the changes in the
histogram shapes, in the239Pu alpha-activity mea-
surements in Antarctic, at the North Pole and in Pu-
schino depends on the orientation of the detectors

The main role of the spatial orientation rather than geographi-
cal localization in the studied phenomena is clearly seen from

the high probability of the histogram similarity if they are
measured simultaneously at the same absolute time using a
vertical detector at the North Pole and a Pole Star-directed
detector with a collimator in Puschino (Fig. 3A, B)

Dependence of the synchronism with regard to the abso-
lute time on the spatial orientation of the detectors was partic-
ularly clearly revealed during comparison of the histograms
constructed on the basis of239Pu alpha-activity measurements
in Antarctic, at the North Pole, and in Puschino.

In Fig. 4 A and B, we can see high probability of absolute
synchronism for measurements performed on April 8, 2011
and on April 9, 2011 in Antarctic (no. 8) with a vertical de-
tector located at the North Pole (no. 3), and in Puschino with
a collimator directed at the Sun (no. 7). There is no synchro-
nism for experiments with a horizontal detector at the North
Pole (no.4) and detector in Antarctic (no. 8).

Therefore, during measurements at the North Pole with a
vertical detector, or with collimator-equipped detectors aimed
at the Sun or at the Pole Star in Puschino, that is both de-
tectors cannot depend upon Earth diurnal rotation, there was
an absolute synchronism of the histogram shape change with
histogram shape changes in Antarctic.

Another illustration of the role of detector orientation for
the measurements at the North Pole is given in Fig.5. Ab-
solute synchronism of the histogram shape change is more
pronounced for comparison of the239Pu alpha-activity mea-
surements in Puschino with a collimator constantly directed
at the Sun and at the North Pole with a vertically-directed
collimator.

4 Discussion

The results of the present study confirm that the changes in
the histogram shape depend on the diurnal rotation of the
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Fig. 3: Two experiments were performed on April 8, 2011(A) and April 9, 2011(B). High probability of the histogram shape similarity at
the same absolute time is observed for measurements in Puschino using Pole Star-directed detector with a collimator (device no. 5) and at
the North Pole with a vertical detector (device no. 3). There is no similarity during similar measurements in Puschino (the same device
no. 5) and at the North Pole with a horizontal detector (device no. 4). X-axis is numbers of intervals between similar histograms, min.;
Y-axis is correspondent numbers of similar pairs.

Earth and that this dependence is caused by anisotropy of our
space. Daily periods of the changes in the histogram shapes
are not observed when alpha-particle beams are parallel to the
Earth axis.

Absolute synchronism of the changes in the histogram
shapes is observed in experiments with collimators directed at
the Pole Star and at the Sun in Puschino (latitude 54◦ North)
(no. 5). and for measurements at the North Pole (latitude 90◦

North) with a “vertical” detector only (no. 3). There is no
absolute synchronism with the “horizontal” counter (no. 4).
By analogy, absolute synchronism of the changes in the his-
togram shapes for measurements in Antarctic is observed
only for measurements at the North Pole with a “vertical”
detector and a Sun-directed detector in Puschino.

Comparison of these data with the “local time effect”, i.e.
synchronous changes in the histogram shape in different ge-
ographical locations at the same local time, allows to suggest
that changes in the histogram shapes, which are synchronous
in different geographical locations with regard to the absolute

time, are caused by the movement of the laboratory with the
Earth along the solar orbit, and synchronism with regard to
the absolute time is caused by Earth rotations. This conclu-
sion should be a subject of additional studies.
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Fig. 4: The experiments, A and B. The shapes of the histograms change synchronously with regard to the absolute time during measurements
of the 239Pu alpha-activity in Antarctic and at the North Pole with a vertical detector (no. 8 — no. 3) and in Puschino with a collimator
directed at the Sun (no. 8 — no. 7). During measurements at the North Pole with a horisontally-directed collimator, there is no synchronism
with Antarctic (no. 8 — no. 4).

Fig. 5: Absolute synchronism of the changes in the historgram shapes for measurements of239Pu alpha-activity in Puschino with a colli-
mator directed at the Sun (no. 7) and measurements at the North Pole with a vertical (no. 3) and a horizontal (no. 4) detectors. Absolute
synchronism is more pronounced for measurements with a vertical detector.
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The paper tells that spectra of fluctuation amplitudes, that is, shapes of corresponding
histograms, resulting measurements of intensity of light fluxes issued by a light-diode
and measurements of intensity of239Pu alpha-particles issues change synchronously.
Experiments with light beams show the same diurnal periodicity and space direction
dependencies as experiments with radioactivity. Thus new possibilities for investigation
of “macroscopic fluctuations” come.

1 Introduction

Previous papers [1] have shown that shapes of fluctuation
amplitudes spectra, i.e. shapes of corresponding histograms,
constructed by results of measurements of various nature pro-
cesses — from electronic device noises, rates of chemical and
biochemical reactions, and Brownian movement to radioac-
tive decay of various types — are determined by cosmophys-
ical factors: diurnal and circumsolar rotations of the Earth.
A histogram shape depends on geographical coordinates and
space direction. Shapes of histograms of different nature pro-
cesses taking place in different geographical locations but at
the same local times are the same.

A histogram shape depends on a direction which
alpha-particles issued at radioactive decay follow; this was
shown in measurements of239Pu alpha-radioactivity fluctu-
ations. Study of dependence between fluctuations and an-
gle orientation of their source benefits a lot from focusing
a source. When diameter of net collimator holes decreases,
registered activity of particles flow falls crucially, preventing
statistical reliability of results. This adverse effect compli-
cates construction and use of a focused collimator-equipped
239Pu source. For that matter, we have examined similar time
and space direction dependencies at measurements of fluc-
tuations of light beams intensity. Regularities of histogram
shape changes at measurements of light flux intensity fluctu-
ations were shown to be absolutely the same as those at mea-
surements of radioactive alpha-decay. Use of this fact makes
it possible to increase substantially accuracy of spatial reso-
lution at increase of a light beam and to set out a lot of other
experiment versions.

2 Devices and methods

2.1 Measurements of variously directed light flows.
Sources and detectors of light flows

We measured fluctuations of intensity of light beams provided
by a light diode and measured with a photo diode. Values
to register were numbers of events, i.e. exceedings of a set
threshold of light intensity per a time unit.

AL 307D light diode with∼630 nm wave length and 8
mA direct current was used as source of light. A224 photo
diode by FGUP “PULSAR” Federal State Unitary Enterprise
was used as a detector. Light and photo diodes were fastened
in a tube with light channel; diameter of the tube was 3 mm,
and space between diodes was 35 mm (Fig. 1).

The collimator with light and photodiodes can be ori-
ented in a desired direction. Alternate component of the photo
diode current comes through the low-noise amplifier to the in-
put of the comparator registering signals that exceed a preset
threshold value. The value should provide 200-500 exceeding

Fig. 1: Functional diagram of device measuring light beam fluctu-
ations 1 — light diode 2 — collimator 3 — photo diode 4 — low-
noise amplifier 5 — comparator 6 — impulse counter 7 — stabilizer
of mean-square voltage value at amplifier (4) output 8 — light diode
current generator
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Fig. 2: Illustration of a time series image at measurements of fluctuations of light flow intensity. X-axis is time in seconds. Y-axis is
numbers of light flow fluctuations with heights exceeding the device noise.

signals per a second. Besides counting impulses, the device
can examine fluctuations of distribution of an amplifier sig-
nal heights by digitizing signals with a preset frequency, for
example, 300 Hz. Nature of amplifier signal height distri-
bution is electric noise. Its fluctuations can be examined by
AD of noise signal followed with histograming of equal time
periods.

Impacts of photons falling to photodiode were determined
with measurements of mean-square values of amplifier sig-
nals, the amplifier being connected to source of current equal
to photo diode CD without lighting (1.4 mcA). It equals to 5.6
mV, whereas mean-square value of signals at photons falling
is 36 mV. If an electronic device noise consists of two com-
ponents, its value can be determined by the following expres-
sion:

Un =

√
U2

n1
+ U2

n2
.

In our case:Un1 is photon noise signal,Un2 is noise signal
of current equal to photo diode one, and Un is total noise sig-
nal. From here:Un1 = 32.2 mV, that is�6 folds higher than
current noise.

2.2 Results of measurements of numbers of discrimina-
tor threshold exceedings per a second

They were saved in a computer archive. Histograms were
constructed, usually, by 60 results of measurements during
one minute total time.

2.3 Computing histograms and analysis of their shapes

They have been multiply described earlier [1]. Shapes of his-
tograms were compared by Edwin Pozharsky auxiliary com-
puter program requiring further expert-made “similar-
nonsimilar” diagnosis and by completely automated comp-
uter program by Vadim Gruzdev [2].

3 Results

Most of measurements were made at the Institute of Theo-
retical and Experimental Biophysics of Russian Academy of
Sciences (ITEB RAS) in Puschino and in AARI Novolaza-
revskaya station in Antarctic. In Puschino we used a device
with three light beam collimators directed towards West, East,
and Polar Star and devices with alpha-activity measuring col-
limators directed the same towards West, East, and Polar Star.
In Novolazarevskaya station we measured alpha-activity with

Fig. 3: Change of shapes of non-smoothed summed distributions
according to stepwise increase of amount of light flow intensity
measurements. 172,800 one-second measurements during two days:
May 4 and 5, 2011. The collimator is East-directed. Layer lines
mark each 6,000 measurements. X-axis is intensity (amounts of
events per a second); Y-axis is amounts of measurements corre-
sponding to the fluctuations intensity.

18 I. A. Rubinshtein et al. Dependence of Changes of Histogram Shapes from Time and Space Direction



July, 2012 PROGRESS IN PHYSICS Volume 3

Fig. 4: Fragment of a computer log. Histograms constructed by sixty results of one-second measurements of East-directed light flow
fluctuations on May 4, 2011. The histograms are seven times smoothed.

a collimator-free device.
Fig. 2 presents a section of a time series — results of reg-

istration of fluctuations of light flows from a West-directed
beam. This is a typical stochastic process — white noise.

At this figure a regular fine structure, the same as in in-
vestigation of any other process, can be seen. The structure,
different in different time periods, does not disappear but be-
comes more distinct when amount of measurements increase.
The nature of this fine structure should become a subject of
some special investigations (see in [1]).

The main material of this work is shape of sample distri-
butions, histograms constructed by small (30–60) amount of
measurements. The general shape of such histograms was at
examination of light flux fluctuations the same as at exami-
nation of radioactivity and other processes. This can be seen
from Fig. 4.

Similarity of shapes of histograms resulting measure-
ments during other processes is conditioned by a reason
shared by all of them. This follows from high probability of
histogram shapes similarity at synchronous independent mea-
surements of processes with different nature.

3.1 High probability of similarity of histograms comp-
uted by results of simultaneous measurements of
light and alpha-decay intensities

Fig. 5 shows high probability of histograms similarity at syn-
chronous measurements of light and alpha-decay intensities.

Comparing series of 360 (1) and 720 (2) histogram pairs
we found that shapes of histograms resulting two different
processes are high probably similar; this is shown at Fig. 6.
Considering the “mirrorness” effect, that is coincidence of
shapes of histograms that become similar after mirror over-
lapping (line 3 at Fig. 5), one can see the same similarity. This

Fig. 5: High probable similarities of shapes of histograms con-
structed by sixty results of synchronous measurements of alpha-
decay fluctuations, and light-beam intensity fluctuations. The mea-
surements were made at West-directions of both 239Pu alpha-
particles and light beams. X-axis is values of interval (minutes)
between similar histograms. Y-axis is numbers of similar pairs of
histograms corresponding to the values. Measurements dated April
4–5, 2011.

and similar experiments confirm the conclusion on the inde-
pendence of a histogram shape from nature of a process under
examination (239Pu alpha-decay and flow of photons from a
light diode).

Fig. 6 presents pairs of histograms, comprising the peak
corresponding to the maximal probability of histograms sim-
ilarity at measurements of light and alpha-activity. Shapes of
all kinds can be found here. No shapes typical just for syn-
chronism phenomenon are available.

Fig. 7 presents a larger scale of a Fig. 6 part to illustrate

I. A. Rubinshtein et al. Dependence of Changes of Histogram Shapes from Time and Space Direction 19



Volume 3 PROGRESS IN PHYSICS July, 2012

Fig. 6: Fragment of a computer log. Pairs of synchronous his-
tograms from the central peak of Fig. 4. Indicated are numbers of
histograms in series.

more visually similarity of shapes of histograms constructed
by results of synchronous measurements ofα-radioactivity
and light intensity fluctuations.

Fig. 7: Enlarged part of Fig. 6.

3.2 Near-a-day periods of similar shape histograms re-
alization at measurements of light intensity fluctua-
tions and their dependence from space direction of a
light beam

Fig. 9 presents dependence between a period of similar his-
tograms occurrence and a light beam direction. One can see
that star and Sun periods appear equally both at West and East
directions of a beam, and disappear completely when a beam
is directed towards the Polar Star.

Therefore, changes of histogram shapes at measurements
of light flow fluctuation are again related with axial rotation
of the Earth. Distinct separation of near-a-day periods into
“star” and “Sun” ones, the same as in other cases, means high
degree of space anisotropy of observed effects. Difference
between star and Sun days is only four minutes, correspond-
ing to 1◦ in angular measure. These near-a-day periods from
Fig. 10 are solved with approximately 20 angular minutes ac-
curacy. Discrimination power of our method may, probably
be determined by a collimator aperture, that is narrowness of
a light beam.

The absolute lack of near-a-day periods when a light beam
is directed towards the Polar Star is the same rather corre-
sponds to ideas on relation of histogram shapes with diurnal
Earth rotation. Moreover, the phenomenon means, as was
earlier mentioned, that a histogram shape is provided not by
some “effects” on a process under examination but only by
space anisotropy.

20 I. A. Rubinshtein et al. Dependence of Changes of Histogram Shapes from Time and Space Direction



July, 2012 PROGRESS IN PHYSICS Volume 3

Fig. 8: Shapes of histograms resulting measurements of light inten-
sity, the same as measurements of other nature processes, change
with distinct day periods: star (1,436 minutes) and Sun (1,440 min-
utes) ones. A light beam is directed towards the West. Measure-
ments were made on May 4–5, 2011. Distributions at comparison
of lines from 1) 360, 2) 720, and 3) mirror similar pairs only at 760
histograms per a line. X-axis is periods (minutes); Y-axis is numbers
of similar pairs after the correspondent time interval.

Fig. 9: It can be seen that when a light beam is directed towards
the Polar Star no day period presents, and when it is West- or East-
directed day periods (“star days” — 1,436 minutes and “Sun Days”
— 1,440 minutes) are expressed very distinctly. X-axis is periods
(minutes); Y-axis is numbers of similar histogram pairs correspon-
dent to the period value.

3.3 Palindrome effect

A palindrome effect has been presented in [3, 4] when
changes of histograms in different days periods were exam-
ined. The effect is that succession of histogram shapes since
6 am till 6 pm of accurate local time is like a reverse (inverse)
histograms succession since 6 pm till 6 am of a following day.
The effect was explained as follows: these are the moments
when Earth axial rotation changes its sign relatively its cir-

Fig. 10: A palindrome effect in an experiment with light beams.
Presence of high similarity of synchronous one-minute histograms at
comparison of “daytime” ones with those “nighttime” with inversion
of one series and absence of the similarity without inversion. The
measurements were made on March 27–28, 2011.

cumsolar rotation: since 6 am till 6 pm (“the day time”) these
rotations have opposite directions, and 6 pm till 6 am they
are co-directed. This implies that a histogram shape is deter-
mined by a direction of laboratory rotation corresponding to
that of Earth at its diurnal rotation.

As can be seen from Fig. 10, at examination of histogram
shapes in experiments with light beams rather distinct palin-
drome effect can be seen. When 6 am to 6 pm series of
histograms (“day-time histograms”) are compared with direct
succession of “night-time” histograms their similarity is low
probable (a number of similar pairs is little). And when day-
time histograms are compared with inverse histogram series
probability of synchronous histograms similarity is high.

The palindrome effect seems quite convincing evidence
for dependence of a histogram shape from space direction.
For this matter, we repeatedly tested its reproducibility at
comparison of one-minute histograms with our routine expert
method using GM and with just developed by V. A. Gruzdev
HC computer program. With the HC program, the palin-
drome effect was obtained at comparison of ten-minute his-
tograms. 72 “daytime” ten-minute histograms were com-
pared with 72 histograms of direct and inverse series of
“nighttime” histograms on “all with all” basis. As one can see
from Fig. 11, application of completely automated compari-
son of histogram shapes with the help of HC program finds
the same highly distinct palindrome effect.

3.4 When a light beam is West- or East-directed, similar
western histograms are realized 720 minutes later
than eastern ones

One of the evidences for relation of a histogram shape with
diurnal Earth rotation was results of experiments with alpha-
activity measurements with West- and East-directed collima-
tors [5]. Nosynchronoussimilarity of the histograms could
be found in the experiments. When two series — western and
eastern ones — are compared, similar histograms occur in
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Fig. 11: The palindrome effect in experiments with light. A beam is directed towards West at comparison of ten-minutes histograms with
the help of HC computer program. Left: distribution of number of similar histogram pairs at comparison of “daytime” (since 6 am till 6
pm March 27, 2011) histogram series with inverse “nighttime” (since 6 pm March 27 till 6 am March 28, 2011) histogram series; right: the
same at comparison of inversion-free series.

Fig. 12: When a light beam is West- or East-directed, probability of synchronous occurrence of similar histograms is low (intervals are near
zero) and that with 720 minutes is high. Measurements from May 4–5, 2011.

720 minutes, that is, in half a day. More detailed investigation
allowed us to find a “time arrow” [6]: histograms registered at
measurements with eastern collimator were more similar with
western in 720 minutes of the following day. In experiments
with West- and East-directed light beams, occurrence of sim-
ilar histograms in 720 minutes and absence of similarity at
simultaneous (synchronous) measurements was observed the
same rather distinctly. This is illustrated by Figs. 11 and 12.

3.5 Histograms obtained when a light beam is directed
towards the Polar Star in Puschino are high proba-
bly similar by absolute time with those obtained at
measurements of alpha-activity in Antarctic

We observed the same phenomenon earlier at synchronous
measurements of alpha-activity in Puschino and in Novola-

zarevskaya (Antarctic). Histograms resulting measurements
of 239Pu alpha-activity in Puschino with a Polar Star directed
collimator or with a Sun-directed collimator were high prob-
ably similar at one the same time with histograms resulting
alpha-activity measurements in Novolazarevskaya with a col-
limator-free counter. When collimators were West and East
directed no synchronism by absolute time between Puschino
and Novolazarevskaya was noticed. Expression of synchro-
nism by absolute and local times and its dependence from a
space direction are extremely significant phenomena. Appro-
priate studies we began long ago [7] and continued them in
the previous work at simultaneous measurements of alpha-
activity in Puschino, Antarctic, and North Pole [8]. In this
study we just got added evidence that light beam fluctuations
along with alpha-activity measurements could be a quite ap-
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Fig. 13: At 720 minutes shift of eastern histograms measured since 6
am till 6 pm of exact local time to western histograms 6 pm — 6 am
of the following day high probable similarity is observed. Without
the shift eastern and western histograms are not similar.

propriate object for similar studies. This can be seen from the
results of the experiment presented at Figs. 14 and 15.

In this experiment we compared histograms resulting
measurements of intensity fluctuations of three light beams:
1) Polar Star, 2) West, and 3) East directed, made in Puschino,
with those resulting measurements of alpha-activity with a
collimator-free counter, made in Novolazarevskaya. From
Figs. 13 and 14 it can be seen that when a light beam is di-
rected highly probable absolute time synchronism of histo-
gram shapes changes in Puschino and in Novolazarevskaya
is observed. No synchronism is observed when light beams
are West and East directed. The result obtained earlier with
collimators and alpha-activity is repeated.

More detailed examinations of these phenomena should
become an object for special study.

4 Discussion

Evidence of identical regularities observed at comparison of
histogram shapes — spectra of fluctuation amplitudes — of
alpha-decay and light diode generated light flow intensities,
proves previous conclusion on universality of the phenom-
enon under examination [1, 9]. This result is not more sur-
prising than identity of regularities at measurements of Brow-
nian movement and radioactivity; or radioactivity and noises
in semiconductor schemes [10, 11]. The most significant is
an arising possibility to make, with the help of the developed
method, more accurate and various examinations of depen-
dence between observed effects and space directions.

As the paper shows, at use of a Polar Star directed light
beam absolute (not local) time synchronism in different geo-
graphical points — Puschino (54◦ NL) and Novolazarevskaya
(Antarctic, 70◦ SL) is the same observed. It means that at
measurements in such directions factors determining shapes
of histograms are expressed, being the same all over
the Earth. These regularities, seeming us rather significant,
along with others obtained earlier should make body of some

Fig. 14: Time-dependence of numbers of similar pairs of histograms
resulting measurements of light beam fluctuations in Puschino and
of alpha-activity in Novolazarevskay (1) when a light beam is di-
rected towards Polar Star (3), West (2), and East (4). The origin of
X-axis is the moment of absolute time synchronism. Measurements
done in May 6, 2011.

Fig. 15: High probability of absolute time synchronous changes of
similarity of shapes of histograms resulting measurements of fluctu-
ations of Polar Star directed light beam in Puschino and fluctuations
of alpha-decay in Antarctic. No synchronous similarity can be seen
when a light beam is West or East directed. Measurements from
May 6, 2011.

special publication.
In conclusion, it should be once more mentioned that to

our opinion experiments with light — near-a-day periods,
palindrome effects, dependence from a beam direction — also
cannot be explained with somewhat universal “effects”. Some
“external power” equally affecting alpha-activity, Brownian
movement, and fluctuations of photons flow seems unbeliev-
able. The same as earlier, we suppose unevenness and aniso-
tropy of different areas of space-time continuum where ex-
amined processes (“laboratories”) get in the result of Earth
movement at its diurnal and circumsolar rotations, to be the
only general factor determining shapes of histograms of so
different processes [1].
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Algorithmization of Histogram Comparing Process.
Calculation of Correlations after Deduction of Normal Distribution Curves
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A newly established computer program for histogram comparing can reproduce main
features of the “macroscopic fluctuations” phenomenon: diurnal and yearly periodicity
of histogram shapes changing; synchronism of their changing by local and absolute
times and “palindrome” phenomenon. The process is comparing of histogram shapes
by correlation coefficients and figure areas resulting reducing of picked normal curves
from histograms.

1 Introduction

Discovery of macroscopic fluctuations in stochastic processes
provided actuality of a computer able to compare shapes of
histograms releasing an expert from this labor [1]. Fuzziness
of examined shapes and difficulties in their grouping, that is,
forming of similar shapes “clusters” made a computer com-
parison of histogram shapes a rather hard task [1].

Our paper presents a brief of Histogram Comparer (HC),
a computer program replacing an expert essentially. Calcula-
tion of correlation coefficients of curves resulting deduction
of an appropriate normal distribution from a smoothed his-
togram is taken as a basis for the algorithm. To compare
such curves, the same as with expert comparison, maximal
correlation coefficients are obtained after the correlations are
shifted relatively each other and mirrored, if necessary. The
idea of such a transformation of histograms has been used in
N. V. Udaltsova’s PhD theses [2].

Main effects revealed at visual expert comparison could
be reproduced with the help of the HC program [4, 5].

The HC should be run together with E. V. Pozharsky His-
togram Manager program (GM) as a whole complex [3]. In
this complex GM performs operations of conversion of time
series into histograms and construction of distribution of in-
tervals between histograms marked in results of HC compar-
ison as similar. A histogram massif obtained with GM is ex-
ported into HC, which performs their comparison. The result
is reloaded into GM for construction of interval distributions.

2 Main stages of histograms comparison with the GM-
HC program complex

Fig. 1 shows a GM conversion of a time series of results of
successive measurements of239Pu alpha-activity into series
of correspondent histograms, illustrating the work of GM
program.

Further the histograms are exported into HC. After the
histograms are loaded, preprocessing starts — a correspond-
ing normal distribution is calculated for each histogram. Cal-

culation is made according to equation

f (x) =
1

σ
√

2π
exp

(

−
(x− μ)2

2σ2

) L∑

i=1

ai . (1)

Conversion of histograms following deduction of appro-
priately picked normal distribution is shown at Fig. 2.

As one can see from Fig. 2, histogram structural features
essential for our analysis in “replicas” remain unchanged and
become more distinct. Comparison of “replicas” in a sug-
gested program is realized in two versions: simple and de-
tailed. A simple comparison implies relative shift and mirror-
ing in a pair of “replicas”.

Detailed comparisonimplies additionally compressing-
stretching of one of the “replicas” — from 0.5 to 1.5 of an ini-
tial length in 10% increment. Consequently, a detailed com-
parison requires higher consumption of computing time.

Fig. 3 demonstrates process of replicas coinciding nec-
essary for following determination of correlation coefficient
maximal achievable for this pair.

2.1 Picking of correlation coefficients range

Results of comparison of each pair are entered into a table
as values of maximal achievable correlation coefficient and
curve areas ratio. A pair is regarded as similar when values
of its correlation coefficient and curve areas ratio overshoot
corresponding values of a threshold filter. Threshold values
are set by a user. Criterion of threshold meanings is presence
or absence of expressed intervals of reoccurrence of similar
pairs in a result of comparison. Experience of using the pro-
gram tells there are not more than 2 versions of combinations
of threshold values allowing expressiveness of correspond-
ingly 2 alternately expressed intervals, or expressed intervals
are absent.

2.2 Analysis of comparison results and construction of
similar pairs numbers distribution according to val-
ues of time intervals separating them in GM

A result of program comparison is entered into a binary file of
a histograms similarity table in GM-supported GMA format
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Fig. 1: Steps of histograming with GM program [1] exemplified
by measurements of radioactivity a — a fragment of time series
of measurement results. X-axis is time (sec.); Y-axis is numbers
of alpha-decays per a second b — a time series is divided into non-
overlapping sections, 100 successive numbers each c — each section
is followed by a histogram (X-axis is value of activity (imp/sec); Y-
axis is numbers of measurements corresponding to a value) d —
the histograms from 1-c are seven-times smoothed with “moving
summation” or with “a window” equal, for example, to 4; typical
histogram shapes can be seen.

(description of GMA format ia a courtesy of the GM author,
E. V. Pozharsky). GM calculates time interval separating each
histogram pair marked as similar in the table and constructs a
graphical display of intervals occurrence, i.e. histogram.

3 Examples of GM-HC complex use at determination of
near-a-day periods of similar shape histograms reoc-
currence and examination of “palindrome phen-
omenon”

3.1 Near-a-day periods

Fig. 4 presents an example of visual (“expert”) comparison of
histograms resulting measurements of 239Pu alpha-activity.
Each histogram was constructed by 60 results of one-minute
measurements. Comparison with total mixing (randomiza-
tion) was made by T. A. Zenchenko. A whole series contained
143 one-hour histograms. 1,592 similar pairs were picked.
The figure shows distribution of numbers of similar pairs ac-
cording to values of time intervals separating them.

There are sharp extremes at the intervals equal to 1, 24
and 48 hours at the figure. These extremes correspond to a

Fig. 2: The upper line is histograms with applied correspondent nor-
mal curves; the lower line is results of normal curves deduction from
histograms; the resulting curves are, in fact, “replicas” of fine struc-
tures of fluctuation amplitudes spectrum.

Fig. 3: Illustration of “simple” comparison. Direction of shift is
pointed by arrows. Two these experiments were performed on April
8, 2011 (the left histogram arc) and April 9, 2011 (the right his-
togram arc).

Fig. 4: Results of comparison of one-hour histograms constructed
by results of239Pu alpha-activity measurements from July 7 to July
15, 2000, in Puschino. X-axis is intervals (hours); Y-axis is number
of similar pairs corresponding to value of interval. (Taken from [1].)

“near zone effect” — maximal probability of realization of
similar histograms in nearest, neighboring, intervals and their
realization with near-a-day periods. Total mixing (random-
ization) of histogram series guaranties reliability of regulari-
ties revealed in expert comparison [1].

Fig. 5 presents result of automatic comparison, performed
by HC computer program in the same task. It is clear that in
reproduction of main effects the program is rather inferior to
the expert in quality of histograms comparison.

3.2 “Palindrome effect” [1]

Figs. 7 and 8 show one of the main phenomena of “macro-
scopic fluctuations” — a palindrome effect — reproduced
with HC program.

A “palindrome effect” is conditioned by dependence of a
histogram shape from correlation of Earth motion directions:
at its axial rotation and circumsolar movement. In a day-time
axial rotation of Earth is antisircumsolar. In night-time the
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Fig. 5: Diurnal periods revealed at comparison of non-smoothed one-hour histograms by HC program. The histograms are computed by
measurements of239Pu alpha-activity with a collimator-free counter since February 10 till March, 1, 2010.

both movements are co-directed. Succession of “day-time”
histograms shapes was shown to repeat inversely in nights.
In other words, one the same “text” is “read” forward and
backward forming a palindrome. The moments of day-night
transitions are 6 pm by local time and of night-day transitions
are 6 am. Comparison of forward and backward sequences
gives a valuable possibility to verify objectiveness of obtained
distributions. The same histograms are compared. Result of
comparison depends on direction of sequences only.

Figs. 6–8 present results of “palindrome effect” examina-
tion at measurements of fluctuations of intensities of light
beam and239Pu alpha-decay in two ways: at expert (visual)
estimation of histograms similarity (Fig. 6) and at HC com-
parison (Figs. 7 and 8). Fig. 6 is an expert comparison of his-
tograms constructed by 60 one-second measurements (that is,
during 1 minute). Figs. 7 and 8 show the results of compari-
son of 10-minute histograms with the HC program.

As one can see from Figs. 6–8, when histograms con-
structed by measurements of a light beam fluctuations [4]
or fluctuations of239Pu alpha-decay intensities [1] are com-
pared, a distinct palindrome effect can be observed. There is
high probability of synchronous similarity of “day-time” his-
tograms series with inverse series of night-time histograms.
There is no similarity of synchronous histograms when a day-
time series is compared with a direct (non-inverted) night-
time series. Nevertheless comparison of histograms with HC
programs gives “coarser” results, with 10 minutes interval,
versus one-minute intervals at expert comparison.

The illustrations show principal availability of the HC
program for examination of fine structure of histograms. But
expert comparison determines similar histograms more spe-
cially, HC gives much higher “background” of stochastic
shapes. Besides, these figures show similarity of palindrome
effects at measurements of fluctuations of alpha-decay inten-
sity, that is, independence of a macroscopic fluctuations phe-
nomenon from nature of processes under examination [1].

Fig. 6: Expert comparison. A palindrome effect in an experiment
with measurements of fluctuations of light-diode light beam intensi-
ties. High similarity of synchronous one-minute histograms at com-
parison of “day-time” and “night-time” histograms when one series
is inverted and absence of similarity at the absence of inversion.
Measurements on April 6, 2011. X-axis is one-minute intervals;
Y-axis is number of similar pairs corresponding to an interval.

4 Conclusions

1. Application of HC program allows reproduction of main
effects of “macroscopic fluctuations” phenomenon.
2. Nevertheless, range of correlation coefficients values is to
be picked up each time complicating the work.
3. The optimal way is combination of expert analysis with
estimation of confidence of main conclusion with GM-HC
combination.

You can get text and manual of the program from its au-
thor after e-mail request via: 2801218@gmail.com
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Fig. 7: Comparison of 10-minute histograms by the HC computer program. A palindrome effect in experiments with measurements of
fluctuations of light-diode light beam intensities. Left is distribution of numbers of similar histogram pairs at comparison of “day-time”
(since 6 am till 6 pm April 6, 2011) series histograms with inverse “night-time” (since 6 pm April, 27 till 6 am April 7, 2011). Right — the
same at comparison of series without inversion.

Fig. 8: Comparison of 10-minute histograms by computer HC program. Palindrome effect in experiments on measurements of239Pu alpha-
activity with West-directed collimator. Left — distribution of numbers of similar histograms at comparison of histograms of “day-time”
series (from 6 am to 6 pm May 27, 2005) with inverse “night-time” series of histograms (from 6 pm May 27 to 6 am May 28, 2005); right
— the same at comparison of series without inversion.
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The radial electron distribution in the Hydrogen atom was analyzed for the ground state
and low-lying excited states by means of a fractal scaling model originally published
by Müller in this journal. It is shown that M̈uller’s standard model is not fully adequate
to fit these data and an additional phase shift must be introduced into its mathematical
apparatus. With this extension, the radial expectation values could be expressed on
the logarithmic number line by very short continued fractions where all numerators are
Euler’s number. Within the rounding accuracy, no numerical differences between the
expectation values (calculated from the wavefunctions)and the corresponding modeled
values exist, so the model matches these quantum mechanical data exactly. Besides that,
Müller’s concept of proton resonance states can be transferred to electron resonances
and the radial expectation values can be interpreted as both, proton resonance lengths
and electron resonance lengths. The analyzed data point to the fact that Müller’s model
of oscillations in a chain system is compatible with quantum mechanics.

1 Introduction

The radial electron probability density in the Hydrogen atom
was analyzed by a new fractal scaling model, originally pub-
lished by M̈uller [1–3] in this journal. This model is basing
on four principal facts:

1. The proton is interpreted as an oscillator.

2. Most matter in the universe is provided by protons,
therfore the proton isthe dominant oscillation statein
all the universe.

3. Space is not considered as completely empty, conse-
quently all proton oscillators are somehow coupled to
each other. A quite simple form to consider such a cou-
pling is the formation of a chain of proton harmonic
oscillators.

4. Provided that items 1–3 are correct, every process or
state in the universe which is abundantly realized or
allowed to exist over very long time scales, is conse-
quently coupled to the proton oscillations, and should
retain some properties that can be explained from the
mathematical structure of a chain of proton harmonic
oscillators.

Müller has shown that a chain of similar harmonic oscil-
lators generates a spectrum of eigenfrequencies, that can be
expressed by a continued fraction equation [2]

f = fp expS, (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton andS the con-
tinued fraction corresponding tof . S was suggested to be in
the canonical form with all partial numerators equal 1 and the

partial denominators are positive or negative integer values:

S = n0 +
1

n1 +
1

n2 +
1

n3 + ...

. (2)

Besides the canonical form, M̈uller proposed fractions
with all numerators equal 2 and all denominators are divisible
by 3. Such fractions divide the logarithmic scale in allowed
values and empty gaps, i.e. ranges of numbers which cannot
be expressed with this type of continued fractions.

In three previous articles [4–6] it was shown that the
model works quite well when all the numerators were sub-
stituted by Euler’s number, so that

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (3)

In this work, the attention has been focused to the spatial
electron distribution in the Hydrogen atom, considering the
ground state (n= 1) and the first low-lying excited electronic
states (n= 2–6).

In the Hydrogen atom, the distance between the electron
and the proton is always very small and quantum mechanics
allows to calculate the exact spatial electron density distribu-
tion. If the proton is somehow oscillating and Müller’s model
applies, one can expect a characteristic signature in the set of
radial expectation values.

Actually these values compose an extremely interesting
data set to analyze, since the expectation values can be cal-
culated by quantum mechanics from exact analytical wave-
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functions and do not have any measurement error (errors in
physical constants such asa0 and~ can be neglected).

Therefore, it can be requested that Müller’s model must
reproduce these expectation valuesexactly, which is indeed
possible, but only when introducing a further modification to
the model.

2 Data sources and computational details

When considering polar coordinates, the solutions of the non-
relativistic Schr̈odinger equationĤΨ = EΨ for a spherical
potential can be written in the form

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ),

whereR(r) is the so-called radial part of the wavefunctionΨ,
and the functionsΘ(θ) andΦ(φ) are the angular parts.

For every orbital or wavefunction, the probability to find
the electron on a shell with inner radiusr and outer radius
r + dr is proportional tor2R2dr (note that the functions as
given in Table 1 are not normalized). Following the formal-
ism of quantum mechanics, the average or expectation value
〈r〉 was calculated by numerical integration

〈r〉 = N

∞∫

0

r3R2dr, (4)

where N is the normalization constant so that holds:

N

∞∫

0

r2R2dr = 1.

Table 1 displays the radial partR(Z, r) for the orbitals 1s
to 6h of hydrogen-like atoms together with the correspond-
ing radial expectation values (forZ = 1, wavefunctions taken
from reference [7]). The expectation values are given in Å
and were rounded to three significant digits after decimal
point.

In a second step, these numerical values were expressed
on the logarithmic number line by continued fractions. Nu-
merical values of continued fractions were always calculated
using the the Lenz algorithm as indicated in reference [8].

3 Results and discussion

3.1 The standard model is insufficient

In order to interpret the expectation values〈r〉 as proton res-
onance lengths, following strictly the formalism of previous
articles, it must be written:

ln
〈r〉
λC

= p+ S, (5)

whereS is the continued fraction as given in equation 3,λC =
h

2πmc is the reduced Compton wavelength of the proton with

the numerical value 2.103089086×10−16 m. In the following
tables,p+S is abbreviated as [p; n0 | n1,n2,n3, . . . ]. The free
link n0 and the partial denominatorsni are integers divisible
by 3. For convergence reason, one has to include|e+1| as
allowed partial denominator. This means the free linkn0 is
allowed to be 0,±3,±6,±9 . . . and all partial denominatorsni

can take the valuese+1,−e−1,±6,±9,±12. . . .
For consistency with previous publications, the follow-

ing conventions hold: a data point is considered as an out-
lier (i.e. does not fit into M̈uller’s model), when its continued
fraction representation produces a numerical error higher than
1%. The numerical error is always understood as the absolute
value of the difference between〈r〉 from quantum mechanics
(given in Table 1), and the value obtained from the evaluation
of the corresponding continued fraction.

It was found that the complete set of radial expectation
values can be interpreted as proton resonance lengths with-
out any outliers according to equation 5 (results not shown).
However, small numerical errors were still present. Having in
mind that this is a data set without measurement errors, this
result is not satisfying.

From the obvious fact that the wavefunction is an electron
property, it arouse the idea to interpret the data set as electron
resonance lengths. Then, a fully analogous equation can be
set up:

ln
〈r〉
λCelectron

= p+ S, (6)

whereλCelectron is the reduced Compton wavelength of the elec-
tron with the numerical value 3.861592680× 10−13 m.

Again the expectation values could be interpreted as elec-
tron resonance lengths according to equation 6 without the
presence of outliers, but some numerical errors remained (re-
sults not shown).

Since the aforementioned equations do not reproduce the
dataset exactly as proton or electron resonance lengths, pos-
sible changes of the numerator were investigated.

Müller had already proposed continued fractions with all
numerators equal 2 in one of his publications [9]. As a first
numerical trial, the number of outliers was determined when
modeling the data set with numerators from 2.0 to 3.0 (step-
size 0.05). Figure 1 displays the results for both, proton and
electron resonances. It turned out that number 2 must be ex-
cluded from the list of possible numerators, as outliers are
present. Moreover, the results suggest that the whole range
from 2.55 to 2.85 can be used as numerator in equations 5 and
6 without producing outliers, thus, another criterium must be
applied to determine the correct numerator.

Considering only the range of numerators which did not
produce outliers, the sum of squared residuals (or squared nu-
merical errors) was calculated. It strongly depends on the nu-
merator (see Figure 2). Again the results are not satisfying.
As can be seen, considering electron resonances, the “best
numerator” is 2.70, while for proton resonances it is 2.78, de-
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Table 1: Radial wavefunctionsR(Z, r) of different orbitals for hydrogen-like atoms together with the corresponding radial expectation values
according to equation 4 (Z= 1 assumed).ρ = 2Zr

na0
, n= main quantum number,a0 = Bohr radius,Z = atomic number.

Radial wavefunctionR(Z, r) 〈r〉 [Å]

R1s = (Z/a0)
3
2 2e−

ρ
2 0.794

R2s =
(Z/a0)

3
2

2
√

2
(2− ρ)e−

ρ
2 3.175

R2p =
(Z/a0)

3
2

2
√

6
ρe−

ρ
2 2.646

R3s =
(Z/a0)

3
2

9
√

3

(
6− 6ρ + ρ2

)
e−

ρ
2 7.144

R3p =
(Z/a0)

3
2

9
√

6
(4− ρ) ρe−

ρ
2 6.615

R3d =
(Z/a0)

3
2

9
√

30
ρ2e−

ρ
2 5.556

R4s =
(Z/a0)

3
2

96

(
24− 36ρ + 12ρ2 − ρ3

)
e−

ρ
2 12.700

R4p =
(Z/a0)

3
2

32
√

15

(
20− 10ρ + ρ2

)
ρe−

ρ
2 12.171

R4d =
(Z/a0)

3
2

96
√

5
(6− ρ) ρ2e−

ρ
2 11.113

R4 f =
(Z/a0)

3
2

96
√

35
ρ3e−

ρ
2 9.525

R5s =
(Z/a0)

3
2

300
√

5

(
120− 240ρ + 120ρ2 + 20ρ3 + ρ4

)
e−

ρ
2 19.844

R5p =
(Z/a0)

3
2

150
√

30

(
120− 90ρ + 18ρ2 − ρ3

)
ρe−

ρ
2 19.315

R5d =
(Z/a0)

3
2

150
√

70

(
42− 14ρ + ρ2

)
ρ2e−

ρ
2 18.257

R5 f =
(Z/a0)

3
2

300
√

70
(8− ρ) ρ3e−

ρ
2 16.669

R5g =
(Z/a0)

3
2

900
√

70
ρ4e−

ρ
2 14.552

R6s =
(Z/a0)

3
2

2160
√

6

(
720− 1800ρ + 1200ρ2 + 300ρ3 + 30ρ4 − ρ5

)
e−

ρ
2 28.576

R6p =
(Z/a0)

3
2

432
√

210

(
840− 840ρ + 252ρ2 − 28ρ3 + ρ4

)
ρe−

ρ
2 28.046

R6d =
(Z/a0)

3
2

864
√

105

(
336− 168ρ + 24ρ2 − ρ3

)
ρ2e−

ρ
2 26.988

R6 f =
(Z/a0)

3
2

2592
√

35

(
72− 18ρ + ρ2

)
ρ3e−

ρ
2 25.401

R6g =
(Z/a0)

3
2

12960
√

7
(10− ρ) ρ4e−

ρ
2 23.284

R6h =
(Z/a0)

3
2

12960
√

77
ρ5e−

ρ
2 20.638

spite presenting a local minimum at 2.70 too. However, nu-
merators different frome are inconsistent with previous pub-
lications. The fact that these “best numerators” are numeri-
cally very close to Euler’s number, suggests that the choice of
e as numerator is probably correct and something else in the
model must be changed for this particular dataset.

For any common experimental data set, the here found
numerical inconsistencies could be explained with measure-
ment errors. One could even think that Müller’s model is just
too simple to reproduce nature’s full reality; then the numeri-
cal deviations could also be explained by the insufficiency of
the model itself. Fortunately the high accuracy of the expec-
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Fig. 1: Determination of the correct numerator for the dataset of
expectation values (equations 5 and 6): the number of outliers as a
function of the tested numerator.

Fig. 2: Determination of the correct numerator for the dataset of
expectation values (equations 5 and 6): the sum of squared residuals
as a function of the tested numerator.

tation values creates the opportunity to test Müller’s model
very critically and to extend it.

3.2 Extending Müller’s model

It is now shown that the following extension provides a solu-
tion, so that (i) Euler’s number can be persist as numerator,
and (ii) the whole dataset can be expressed by short contin-
ued fractions without any numerical errors, which means, this
extended model reproduces the datasetexactly.

An additional phase shiftδ was introduced in equations 5
and 6. For proton resonances, it can then be written:

ln
〈r〉
λC

= δ + p+ S. (7)

And analogously for electron resonances:

ln
〈r〉
λCelectron

= δ + p+ S. (8)

As shown in previous articles, the phase shiftp varies
among the dataset, so that some data points takep= 0 and
othersp= 3/2. Contrary to this, the phase shiftδ must be
equal for all data points in the set. This means the fractal
spectrum of resonances is shifted on the logarithmic number
line and the principal nodes are not more at 0,±3,±6,±9 . . . ,
but now at 0+ δ,±3+ δ,±6+ δ,±9+ δ . . . .

The underlying physical idea is thatδ should be a small
positive or negative number, characterizing a small deviation
from Müller’s standard model. To guarantee that the model
does not become ambiguous, values of|δ| must always be
smaller than 3/2.

For the here considered data set, the phase shiftδ could
be determined as avery small number, with the consequence
that all numerical errors vanished (were smaller than 0.001
Å). The numerical values wereδ= 0.017640 when interpret-
ing the data as proton resonances andδ= 0.002212 in case of
electron resonances. Tables 2 and 3 show the continued frac-
tion representations when interpreting the expectation values
as proton and electron resonances, respectively.

3.3 Interpretation

As can be seen, when accepting asmallphase shiftδ, the ra-
dial expectation values can be perfectly interpreted as both,
proton and electron resonances. Besides that, the continued
fraction representations are equal for proton and electron res-
onances, only the free link and the phase shiftp differ. This is
unavoidable due to the fact that different reference Compton
wavelengths were used; so the logarithmic number line was
calibrated differently.

The free link and the phase shiftp are parameters which
basically position the data point on the logarithmic number
line, indicating the principal node. Then the first partial de-
nominator determines whether the data point is located before
or after this principal node. So the data point can be either in
a compression or expansion zone, thus, now a specific prop-
erty of its oscillation state is indicated. The equality of the set
of partial denominators in the continued fraction representa-
tions is a necessary requirement for interpreting the expec-
tation values as both, proton and electron resonances. Both
oscillators must transmit at least qualitatively the same “os-
cillation property information” to the wavefunction.

However, when accepting the phase shift idea, it is al-
ways mathematically possible to interpreteanyset of proton
resonances as a set of phase-shifted electron resonances. So
what are the physical arguments for associating the expecta-
tion values to both oscillators?

• In an atom, electrons and the nucleus share a very small
volume of space. The electron wavefunction is most
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Table 2: Continued fraction representation of the radial expectation
values of Hydrogen orbitals according to equation 7, considering
proton resonances (δ = 0.017640).

Orbital Continued fraction representation
of 〈r 〉

1s [0; 12 | e+1, -6, -6]
[1.5; 12| -e-1, -9]

2s [0; 15 | -e-1, 9, e+1]
[1.5; 12| e+1, 24, 6]

2p [0; 15 | -e-1, e+1, -e-1, 12, e+1]
[1.5; 12| 6, -e-1, 6, -e-1]

3s [0; 15 | 132, -e-1]

3p [0; 15 | -48, -6]

3d [0; 15 | -12, 12, e+1]

4s [0; 15 | e+1, e+1, -6, 6]
[1.5; 15| -e-1, e+1, 27, -e-1]

4p [1.5; 15| -e-1, e+1, -6, e+1, e+1, e+1]

4d [0; 15 | 6, -21, -e-1, e+1]

4f [0; 15 | 9, -15, 9]

5s [1.5; 15| -6, 45]

5p [1.5; 15| -6, 6, e+1, -e-1, 6]

5d [0; 15 | e+1, -e-1, e+1, 6, -e-1, -12]
[1.5; 15| -6, e+1, -e-1, e+1, -9]

5f [0; 15 | e+1, -e-1, -e-1, e+1, -33]
[1.5; 15| -e-1, -e-1, -e-1, e+1, -6]

5g [0; 15 | e+1, -471]
[1.5; 15| -e-1, 15, 9, e+1]

6s [1.5; 15| -30, e+1, -18]

6p [1.5; 15| -24, -9, e+1, -e-1]

6d [1.5; 15| -18, -27]

6f [1.5; 15| -12, -e-1, e+1, 12]

6g [1.5; 15| -9, -21]

6h [1.5; 15| -6, -6, 6, -e-1, 6]

basically an electron property, always existing in close
proximity to the nucleus (protons). From this it would
not be a surprise that both oscillators contribute to the
properties of the wavefunction. In general, one can now
speculate that particularly physical parameters related
to an atomic wavefunction are hot candidates to be in-
terpretable as electron resonances.

• The phase shift was not invented to justify electron res-
onances, it is also required for an exact reproduction of
the data set through proton resonances.

• When considering M̈uller’s standard model (equations
5 and 6), the sum of squared residuals is much lower
when interpreting the data as electron resonances. In
this case the “best numerator” is also closer to Euler’s

Table 3: Continued fraction representation of the radial expectation
values of Hydrogen orbitals according to equation 8, considering
electron resonances (δ = 0.002212).

Orbital Continued fraction representation
of 〈r 〉

1s [0; 6 | -e-1, -9]
[1.5; 3 | e+1, -6, -6]

2s [0; 6 | e+1, 24, 6]
[1.5; 6 | -e-1, 9, e+1]

2p [0; 6 | 6, -e-1, 6, -e-1]
[1.5; 6 | -e-1, e+1, -e-1, 12, e+1]

3s [1.5; 6 | 132, -e-1]

3p [1.5; 6 | -48, -6]

3d [1.5; 6 | -12, 12, e+1]

4s [0; 9 | -e-1, e+1, 27, -e-1]
[1.5; 6 | e+1, e+1, -6, 6]

4p [0; 9 | -e-1, e+1, -6, e+1, e+1, e+1]

4d [1.5; 6 | 6, -21, -e-1, e+1]

4f [1.5; 6 | 9, -15, 9]

5s [0; 9 | -6, 45]

5p [0; 9 | -6, 6, e+1, -e-1, 6]

5d [0; 9 | -6, e+1, -e-1, e+1, -9]
[1.5; 6 | e+1, -e-1, e+1, 6, -e-1, -12]

5f [0; 9 | -e-1, -e-1, -e-1, e+1, -6]
[1.5; 6 | e+1, -e-1, -e-1, e+1, -33]

5g [0; 9 | -e-1, 15, 9, e+1]
[1.5; 6 | e+1, -471]

6s [0; 9 | -30, e+1, -18]

6p [0; 9 | -24, -9, e+1, -e-1]

6d [0; 9 | -18, -27]

6f [0; 9 | -12, -e-1, e+1, 12]

6g [0; 9 | -9, -21]

6h [0; 9 | -6, -6, 6, -e-1, 6]

number (see Fig. 2). Therefore, the wavefunction is
principally governed by the electron oscillations. Cer-
tainly the proton oscillations influence the system too,
they can be interpreted as a perturbation. The system
tends to adjust to both oscillators and this seems to be
the cause of the observed phase shifts. Hopefully, sim-
ilar data will confirm this in near future.

4 Conclusions

Müller’s model must be extended in two ways. First, it must
be recognized that electron resonances exist in the universe as
proton resonances do, and the same mathematical formalism
for a chain of proton oscillators can be applied to a chain of
electron oscillators. Second, an additional phase shiftδ is
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proposed to provide a reasonable mathematical extension of
the model.

Of course, much more data must be analyzed and the fu-
ture will show if this extended model can stand and give use-
ful results when applying to other data sets. Particularly inter-
esting for analyses would be quite accurate data from quan-
tum mechanics.

Now one has to ask regarding previously published pa-
pers on this topic [4–6]: are there any results that must be re-
considered? The answer is definitively yes. In reference [4],
masses of elementary particles were analyzed and only for
86% of the particles a continued fraction expression could
be found. There is high probability that this exceptional high
number of outliers (14%, nowhere else found) can be reduced
considering a phase shiftδ; or different phase shiftsδ can put
the elementary particles into different groups. In another pa-
per [6], half-lifes of excited electronic states of atoms were
found to be proton resonance periods, however, a possible
interpretation as electron resonance periods has not been at-
tempted yet. Possibly a small phase shift could here also re-
duce the number of outliers. This everything is now subject
of future research.
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Gravitational Acceleration and the Curvature Distortion of Spacetime
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The Crothers solution to the Einstein vacuum field consists of a denumerable infinity of
Schwarzschild-like metrics that are non-singular everywhere except at the point mass
itself. When the point-mass distortion from the Planck vacuum (PV) theory is inserted
into the Crothers calculations, the combination yields a composite model that is phys-
ically transparent. The resulting static gravitational field using the Crothers metrics is
calculated and compared to the Newtonian gravitational field and the gravitational field
associated with the black hole model.

1 Newtonian Introduction

When a test massm′ travels in the gravitational field of a point
massm situated atr = 0, the Newtonian theory of gravity
predicts that the acceleration experienced by the test mass

d2r
dt2

= −
mG
r2

(1)

is independent of the mass m′. In this theory the relative mag-
nitudes ofm′ andm are arbitrary and lead to the following
equation for the magnitude of the gravitational force between
the two masses

m′mG
r2

=
(m′c2/r)(mc2/r)

c4/G

=

(
m′c2/r
c4/G

) (
mc2/r
c4/G

)
c4

G
(2)

when expressed in terms of the ratioc4/G.
In the PV theory [1] the forcemc2/r represents the curva-

ture distortion the massm exerts on the PV state (and hence
on spacetime), and the ratio

c4

G
=

m∗c2

r∗
(3)

represents the maximum such curvature force, wherem∗ and
r∗ are the mass and Compton radius of the Planck particles
constituting the PV. The corresponding relative curvature
force is represented by the n-ratio

nr ≡
mc2/r
c4/G

=
mc2/r

m∗c2/r∗
(4)

which is a direct measure of the curvature distortion exerted
on spacetime and the PV by the point mass. Since the mini-
mum distortion is 0 (m = 0 or r → ∞) and the maximum is
1, the n-ratio is physically restricted to the range 0≤ nr ≤ 1
as are the equations of general relativity [2].

The important fiducial point atnrs = 0.5 is the Schwarz-
schild radiusrs = 2mr∗/m∗, where

rnr =
mc2

m∗c2/r∗
= rsnrs = 0.5rs . (5)

The acceleration (1) can now be expressed exclusively in
terms of the relative curvature distortionnr :

a(nr ) = −
d2r
dt2

=
mc4

r2c4/G
=

c2

r
mc2/r

m∗c2/r∗

=
c2

r
nr =

c2

rnr
n2

r =
2c2

rs
n2

r (6)

whose normalized grapha/(2c2/rs) is plotted in the first
figure.

2 Affine Connection

The conundrum posed by equation (1), that the acceleration
of the test particle is independent of its massm′, is the prin-
ciple motivation behind the general theory of relativity [3, p.
4]; an important ramification of which is that, in a free-falling
local reference frame, the acceleration vanishes as in equation
(7). That result leads to the following development. Given the
two coordinate systemsxμ = xμ(ξν) andξμ = ξμ(xν) and the
differential equation

d2ξμ

dτ2
= 0 (7)

Fig. 1: The graph plots the normalized Newtonian acceleration
a/(2c2/rs) as a function ofnr (0 ≤ nr ≤ 1).
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applying the chain law to the differentials gives

d2ξμ

dτ2
=
∂ξμ

∂xν
d2xν

dτ2
+
∂2ξμ

∂xα∂xν
dxα

dτ
dxν

dτ
= 0 . (8)

Then using

xα(ξμ(xβ)) = xα =⇒
∂xβ

∂ξμ
∂ξμ

∂xν
= δ
β
ν (9)

to eliminate the coefficient ofd2xν/dτ2 in (8) leads to

d2xβ

dτ2
+
∂xβ

∂ξμ
∂2ξμ

∂xα∂xν
dxα

dτ
dxν

dτ
= 0 . (10)

Rearranging indices in (10) finally yields

d2xμ

dτ2
+ Γ

μ
νρ

dxν

dτ
dxρ

dτ
=

duμ

dτ
+ Γ

μ
νρu
νuρ = 0 (11)

whereuμ = dxμ/dτ is a typical component of the test-mass
4-velocity and

Γ
μ
νρ ≡

∂xμ

∂ξα
∂2ξα

∂xν∂xρ
(12)

is theaffine connection. The affine connection vanishes when
there is no gravitational distortion; so for the point massm,
it should be solely a function of the curvature distortionnr

given by (4).
The affine connection can be related to the the metric co-

efficientsgαβ via [3, p. 7]

Γ
μ
νρ =

gμα

2

[
∂gρα

∂xν
+
∂gνα
∂xρ
−
∂gνρ

∂xα

]

(13)

which, for a metric with no cross terms (gαβ = 0 for α , β),
reduces to

2Γ1
νρ

g11
=
∂gρ1

∂xν
+
∂gν1
∂xρ
−
∂gνρ

∂x1
(14)

with μ = 1 for example.
Since only radial effects are of interest in the present pa-

per, only thex0 andx1 components of the spherical polar co-
ordinate system (xμ) = (x0, x1, x2, x3) = (ct, r, θ, φ) are re-
quired. Then the affine connection in (11) for theμ = 1 com-
ponent reduces to

du1

dτ
= −Γ1

νρu
νuρ

= −
[
Γ1

00(u
0)2 + 2Γ1

01u
0u1 + Γ1

11(u
1)2

]
(15)

which under static conditions (u1 = dr/dτ = 0 for the test
mass) produces

du1

dτ
= −Γ1

00(u
0)2 . (16)

In the spherical system withdθ = dφ = 0, the metric
becomes

ds2 = c2dτ2 = g00 c2dt2 + g11 dr2 (17)

whereg00 andg11 are functions of the coordinate radiusx1 =

r. Under these conditions the only non-zero affine connec-
tions from (14) are:

Γ0
10 = Γ0

01 =
g00

2
∂g00

∂x1
(18)

Γ1
00 =

−g11

2
∂g00

∂x1
and Γ1

11 =
g11

2
∂g11

∂x1
. (19)

Using (17), the velocityu0 can be calculated from

cdτ = g1/2
00 dx0


1+

(
g11

g00

) (
dr/dt

c

)2

1/2

(20)

which for static conditions (dr/dt = 0) leads to

u0 =
dx0

dτ
=

c

g1/2
00

. (21)

Inserting (21) into (16) gives

du1

dτ
= −

c2Γ1
00

g00
=

c2

g00

(
g11

2
∂g00

∂r

)

(22)

along with its covariant twin

du1

dτ
= g11

du1

dτ

=
g11c2

g00

(
g11

2
∂g00

∂r

)

=
c2

g00

(
∂g00

2∂r

)

. (23)

Then combining (22) and (23) leads to the static acceler-
ation ∣∣∣∣∣∣

du1

dτ
du1

dτ

∣∣∣∣∣∣

1/2

=
(
−g11

)1/2
(

c2

g00

) (
∂g00

2∂r

)

. (24)

3 Static Acceleration

The metric coefficientsg00 andg11 for a point massmat r = 0
are given by (A6) and (A7) in the Appendix. After some
straightforward manipulations, (24) leads to the (normalized)
static gravitational acceleration (0≤ nr ≤ 1)

an(nr )
2c2/rs

=

∣∣∣∣∣∣
(du1/dτ)(du1/dτ)

(2c2/rs)2

∣∣∣∣∣∣

1/2

=
n2

r

(1− rs/Rn)1/2(1+ 2nnn
r )2/n

(25)

=
n2

r

[(1 + 2nnn
r )1/n − 2nr ]1/2(1+ 2nnn

r )3/2n
(26)

=
n2

r

[(1 + 1/2nnn
r )1/n − 1]1/2(2nr )1/2(1+ 2nnn

r )3/2n
(27)
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Fig. 2: The graph plotsan/(2c2/rs) as a function ofnr for the indices
n = 1,2,3,4,5,8,10,20,40 from bottom-to-top of the graph. The
curve that intersects (1,1) is the normalized Newtonian acceleration
from (6). Then = 3 curve is the original Schwarzschild result [5]
(0 ≤ nr ≤ 1).

Fig. 3: The graph is a lin-log plot ofan/(2c2/rs) as a function of
nr for the indicesn = 1,2,3,4,5,8,10,20,40 from bottom-to-top of
the graph (0≤ nr ≤ 1).

in terms of the relative curvature forcenr , all of which vanish
for nr = 0. Formally, the acceleration in the denominator on
the left of (25)

Δv

Δt
=

c
(rs − rs/2)/c

=
2c2

rs
(28)

is the acceleration of a test mass starting from rest atr = rs

(nr = 0.5) and accelerating to the speed of lightc in its fall to
rs/2 (nr = 1) in the time interval (rs − rs/2)/c.

The limits of (26) and (27) asn→ ∞ are easily seen to be

a∞(nr )
2c2/rs

=

{
n2

r /(1− 2nr )1/2 , 0 ≤ nr ≤ 0.5
∞ , 0.5 ≤ nr ≤ 1

(29)

wherenr < 0.5 andnr > 0.5 are used in (26) and (27) respec-
tively. Equations (26) and (27) are plotted in Figures 2 and
3 for various indicesn, all plots of which are continuous in
the entire range 0≤ nr ≤ 1. The curve that runs through the

point (1,1) in Figure 2 is the Newtonian result from (6). It is
clear from Figure 3 that the acceleration diverges in the range
0.5 ≤ nr ≤ 1 for the limit n→ ∞. In the range 0≤ nr ≤ 0.5
the acceleration is given by the upper equation in (29) — this
result is identical with the static black-hole acceleration [3, p.
43].

4 Summary and Comments

The nature of the vacuum state provides a force constraint
(nr ≤ 1) on any theory of gravity, whether it’s the Newto-
nian theory or the general theory of relativity [2]. This effect
manifests itself rather markedly in the equation for the Kerr-
Newman black-hole areaA for a charged spinning mass [4]:

A =
4πG
c4
×

[
2m2G−Q2 + 2(m4G2−c2J2−m2Q2G)1/2

]
(30)

whereQ andJ are the charge and angular momentum of the
massm. Using the relation in (3) andG = e2

∗/m
2
∗ [1], it is

straightforward to transform (30) into the following equation

A

4πr2
∗
= 2

(
m
m∗

)2

−

(
Q
e∗

)2

+

+2




(
m
m∗

)4

−

(
J

r∗m∗c

)2

−

(
m
m∗

)2 (
Q
e∗

)2

1/2 (31)

where all of the parameters (e∗, m∗, r∗, exceptc of course)
in the denominators of the terms are PV parameters; and all
of the terms are properly normalized to the PV state, the area
A by the area 4πr2

∗ , the angular momentumJ by the angular
momentumr∗m∗c, and so forth.

The “dogleg” in Figure (4) at the Schwarzschild radiusrs

(nr = 0.5) and the pseudo-singularity in the black-hole met-
ric at rs are features of the Einstein differential geometry ap-
proach to relativistic gravity — how realistic these features
are remains to be seen. At this point in time, though, as-
trophysical measurements have not yet reached thenr = 0.5
point (see below) where the dogleg and the black-hole re-
sults can be experimentally checked, but that point appears
to be rapidly approaching. Whatever future measurements
might show, however, the present calculations indicate that
the point-mass-PV interaction that leads tonr may point to
the physical mechanism that underlies gravity phenomenol-
ogy.

The evidence for black holes with allm/r ratios appears
to be growing [3, Ch. 6]; so it is important to see if the present
calculations can explain the experimental black-hole picture
that is prevalent in today’s astrophysics. The salient feature of
a black hole is the event horizon [3, pp. 2, 152], that pseudo-
surface atr = rs at which strange things are supposed to hap-
pen. A white dwarf of mass 9×1032gm and radius 3×108cm
exerts a curvature force on the PV equal to 2.7 × 1045dyne,
while a neutron star of mass 3×1033gm and radius 1×106cm
exerts a force of 2.7 × 1048dyne [2]. Dividing these forces
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Fig. 4: The graph plotsRn/r as a function ofnr for the indicesn =

1,2,3,4,6,8,10,20,40. The straight line is then = 1 curve (0≤
nr ≤ 1).

by the 1.21× 1049dyne force in the denominator of (4) leads
to the n-ratiosnr = 0.0002 andnr = 0.2 at the surface of
the white dwarf and neutron star respectively. The surfaces
of these two objects are real physical surfaces — thus they
cannot be black holes.

On the other hand, SgrA∗ [3, p. 156] is thought to be a
supermassive black-hole with a mass of about 4.2× 106 solar
masses and a radius confined tor < 22×1011 [cm], leading to
the SgrA∗ n-rationr > 0.28. For an n-ratio of 0.28, however,
the plots in Figures 2–4 show that the behavior of spacetime
and the PV is smooth. To reach thenr = 0.5 value and the
dogleg, the SgrA∗ radius would have to be about 12× 1011

[cm], a result not significantly out of line with the measure-
ments.

Finally, it should be noted that the black-hole formalism
is the result of substitutingRn = r in the metric (A1) of the
Appendix. Unfortunately, sinceRn/r > 1 signifies a response
of the vacuum to the perturbationnr at the coordinate radius
r, the effect of this substitution is to eliminate that response.
This is tantamount to settingnr = 0 in the second-to-last ex-
pression of (A3).

Appendix: Crothers Vacuum Metrics

The general solution to the Einstein vacuum field [5] [6] for
a point massm at r = 0 consists of the infinite collection
(n = 1,2,3, ∙ ∙ ∙) of Schwarzschild-like metrics that arenon-
singularfor all r > 0:

ds2 = (1− rs/Rn) c2dt2 −
(r/Rn)2n−2 dr2

1− rs/Rn
−

−R2
n(dθ2 + sin2 θdφ2)

(A1)

where

rs = 2
mG
c2

= 2
mc2

m∗c2/r∗
= 2rnr (A2)

Rn = (rn + rn
s)

1/n = r(1+ 2nnn
r )1/n = rs

(1+ 2nnn
r )1/n

2nr
(A3)

and wherer is the coordinate radius from the point mass to
the field point of interest andrs is the Schwarzschild radius.
The ratioRn/r as a function ofnr is plotted in Figure 4 for
various indicesn. The n-ratios 0, 0.5, and 1 correspond to the
r valuesr → ∞, rs, andrs/2 respectively.

All the metrics in (A1) forn ≥ 2 reduce to

ds2 = (1− 2nr ) c2dt2 −
dr2

1− 2nr
− r2(dθ2 + sin2 θdφ2) (A4)

for nr � 1.
It is clear from the expressions in (A3) that the require-

ment of asymptotic flatness [3, p.55] is fulfilled for all finite
n. On the other hand, the proper radiusRn from the point
mass atr = 0 to the coordinate radiusr is not entirely calcu-
lable:

Rn(r) =
∫ r

0
(−g11)

1/2dr

=

∫ rs/2

0
(?)dr +

∫ r

rs/2
(−g11)

1/2dr (A5)

due to the failure of the general theory in the region 0< r <
rs/2 [2].

The metric coefficients of interest in the text fordθ =

dφ = 0 are
g00 = (1− rs/Rn) (A6)

g11 = −
(r/Rn)2n−2

1− rs/Rn
=

1
g11
. (A7)

From (A3)
∂Rn

∂r
=

1
(1+ 2nnn

r )(1−1/n)
(A8)

and from (A8)
∂g00

∂r
=

rs

R2
n

∂Rn

∂r
. (A9)
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Currently, whole of the measured “cosmological-red-shift” is interpreted as due to the
“metric-expansion-of-space”; so for the required “closer-density” of the universe, we
need twenty times more mass-energy than the visible baryonic-matter contained in the
universe. This paper proposes a new mechanism, which can account for good per-
centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of
dark matter-energy. Also, this mechanism can cause a new kind of blue-shift reported
here, and their observational evidences. These spectral-shifts are proposed to result due
to cumulative phase-alteration of extra-galactic-light because of vector-addition of: (i)
electric-field of extra-galactic-light and (ii) that of thecosmic-microwave-background
(CMB). Since the center-frequency of CMB is much lower than extra-galactic-light,
the cumulative-phase-alteration results inred-shift, observed as an additional contribu-
tor to the measured “cosmological red-shift”; and since thecenter-frequency of CMB
is higher than the radio-frequency-signals used to measurevelocity of space-probes
like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cumulative-phase-alteration re-
sulted in blue-shift, leading to the interpretation of deceleration of these space-probes.
While the galactic-light experiences the red-shift, and the ranging-signals of the space-
probes experienceblue-shift, they are comparable in magnitude, providing a supportive-
evidence for the new mechanism proposed here. More confirmative-experiments for this
new mechanism are also proposed.

1 Introduction

Currently, whole of the “cosmological red-shift” is interpre-
ted in terms of “metric-expansion-of-space”, so for the re-
quired “closer-density” of the universe, we need twenty times
more mass-energy than the visible baryonic-matter contained
in the universe. This paper proposes a new mechanism, which
can account for good percentage of the red-shift in the extra-
galactic-light, greatly reducing the requirement of dark
matter-energy. Prior to this, many scientists had proposed
alternative-interpretations of “the cosmological red-shift”,
but the alternatives proposed so far were rather speculative;
for example, speculating about possible presence of iron-
particles in the inter-galactic-space, or presence of atoms of
gas, or electrons, or virtual-particles. . . etc. How can we say
for sure that such particles are indeed there in the inter-
galactic-space? Even if they are there, is the “cross-section”
of their interactions sufficient? Whereas a mechanism pro-
posed here is based on experimentally established facts,
namely the presence of “cosmic-microwave-background”
(CMB), we are sure that CMB is indeed present in the inter-
galactic-space. And we know for sure that electric-field-
vectors of light and CMB are sure to get added.

This mechanism predicts both kids of spectral-shifts,red-
shift as well asblue-shift. The solar-system-astrometric-
anomalies [1, 2] are indicated here to arise due to theblue-
shift caused by the cumulative-phase-alteration-mechanism

proposed here. These anomalies are actually providing
supportive-evidences for the new mechanism proposed here.

Brief reminder of the “solar system astrometric anoma-
lies” will be in order here: (a) Anomalous secular increase of
the eccentricity of the orbit of the moon [3–7] (b) the fly-by-
anomaly [8–10] (c) precession of Saturn [11–12], (d) secu-
lar variation of the gravitational-parameterGM (i.e. G times
massM of the Sun) [13–16] (e) secular variation of the Astro-
nomical-Unit [17–23] and (f) the Pioneer anomaly. For de-
scription of Pioneers see: [24] for general review of Pioneer-
anomaly see: [25]. Of course, the traditional constant partof
the anomalous-acceleration does not show up in the motion
of major bodies of the solar system [26–44]. For the attempts
of finding explanations for the Pioneer-anomaly in terms of
conventional physics see: [45–52].

In this new mechanism for the spectral-shift, proposed
here, there is no loss of energy; energy lost by cosmic-pho-
tons get transferred to CMB; so, it is in agreement with the
law of conservation of energy. More verification-experiments
for this new mechanism are also proposed here, so it is a
testable proposal.

Moreover, this proposal is not in conflict with the ex-
isting theories, because it does not claim that whole of the
measured “cosmological red-shift” is due to this “cumulative-
phase-alteration-mechanism”; some 5% of the red-shift must
be really due to “metric-expansion-of-space”, reducing re-
quirement of total-mass-of-the-universe to the observable
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baryonic matter, making it sufficient for the required “closer-
density”. Thus this new mechanism is likely to resolve many
of the problems of the current Standard Model of Cosmology.

2 Cumulative phase-alteration of the Extra-Galactic-
Light passing through the Cosmic-Microwave-Back-
ground (CMB)

Let us imagine a horizontal arrow of three centimeter length
representing instantaneous magnitude and direction of elec-
tric-field of the “extra-galactic-light”. Then add a small arrow
of just five mm length at an angle minus thirty degrees, rep-
resenting instantaneous magnitude and direction of the “cos-
mic-microwave-background”. We can see that the resultant
vector has increased in magnitude, but lagged behind by a
small angle theta. As the wave of extra-galactic-light trav-
els in space, a new arrow representing CMB keeps on getting
added to the previous resultant-vector. This kind of phase
and amplitude-alterations continue for billions of years in the
case of “extra-galactic-light”; producing a cumulative-effect.
Since the speed of rotation of the vector representing CMB is
much slower than that of light, the CMB-vector pulls-back the
Light-vector resulting in reduction of cyclic-rotations.This
process can be mathematically expressed as follows:

Electric field of pure light-wave can be expressed as:

Ψ(X, t) = Aexpi(ωt − kX)

whereω represents the angular-frequency of light, andk the
wave-number. Taking into consideration only the time-
varying-part, at a point p :

Ψ(t) = A [cosωt + i sinωt] (1)

When electric-fields of CMB get added to light, the resul-
tant-sum can be expressed as:

Ψ(t) = A
[

N(t) cosωt + iN̂(t) sinωt
]

(2)

Where:N(t) represents instantaneous magnitude of alteration
caused by CMB, and̂N(t) represents its Hilbert-transform.
When all the spectral-components ofN(t) are phase-shifted
by+90 degrees, we get its Hilbert-transform̂N(t).

As a communications-engineer we use band-pass-filter to
remove out-of-band noise. This author has also developed a
noise-cancelling-technique, to reduce the effect of even in-
band-noise by up-to 10 dB. But in the extra-galactic-space
there are no band-pass-filters, so the phase-alterations caused
by CMB keep on getting accumulated. After billions of years,
when this light reaches our planet earth there is a cumulative-
phase-alteration in the extra-galactic-light, observed as a part
of “the cosmological red-shift”. Since the center-frequency of
CMB is much lower than extra-galactic-light, the cumulative-
phase-alteration results in red-shift; and since the center-
frequency of CMB is higher than the radio-frequency-signals
(2110 MHz for the uplink from Earth and 2292 MHz for the

downlink to Earth) used to measure velocity of Pioneer-10,
Pioneer-11, Galileo and Ulysses space-probes, the cumula-
tive-phase-alteration resulted in blue-shift, leading tothe in-
terpretation of deceleration of these space-probes. C. Johan
Masreliez [53] has presented a “cosmological explanation for
the Pioneer-anomaly”, in terms of expansion of space,
whereas here it is proposed that the expansion-of-space ap-
pears mostly due to the “cumulative-phase-alteration”of light
due to CMB. This shows that there is a co-relation between
the magnitudes of anomalous-accelerations of the Pioneer-
10-11 space-probes and the “cosmological red-shift”. Al-
though, one of the shifts is red-shift, and the other isblue-
shift, their magnitudes, in terms of decelerations, are strik-
ingly the same; as described in detail in the next paragraph:

We can express the cosmological red-shiftzc in terms of
de-acceleration experienced by the photon, as follows
[54–55]: Forzc smaller than one:

zc =
f0 − f

f
=

H0D
c

i.e.
h∆ f
h f
=

H0D
c

i.e.

h∆ f =
h f
c2

(H0c)D (3)

That is, the loss in energy of the photon is equal to its mass
(h f/c2) times the accelerationa = H0c, times the distanceD
travelled by it. Where:H0 is Hubble-parameter. And the
value of constant accelerationa is:

a = H0c, a = 6.87× 10−10 m/s2.

And now, we will see that the accelerations experienced
by the Pioneer-10, Pioneer-11, Galileo and Ulysses space-
probes do match strikingly with the expression (3):

Carefully observed values of de-accelerations [27]:
For Pioneer-10:
a = (8.09± 0.2)× 10−10 m/s2 = H0c ± local-effect.
For Pioneer-11:
a = (8.56± 0.15)× 10−10 m/s2 = H0c± local-effect.
For Ulysses:
a = (12± 3)× 10−10 m/s2 = H0c± local-effect.
For Galileo:
a = (8± 3)× 10−10 m/s2 = H0c ± local-effect.
And: as we already derived earlier, for the “cosmologically-
red-shifted-photon”,a = 6.87× 10−10 m/s2 = H0c.
The “critical acceleration” of modified Newtonian dynamics
MOND: a0 = H0c. The rate of “accelerated-expansion” of
the universe:aexp= H0c.

Perfect matching of values of decelerations of all the four
space-probes is itself an interesting observation; and its
matching with the deceleration of cosmologically-red-
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shifting-photons can not be ignored by a scientific mind as
a coincidence.

There is one more interesting thing about the value of
this deceleration as first noticed by Milgrom, that: with this
value of deceleration, an object moving with the speed of light
would come to rest exactly after the timeT0 which is the age
of the universe.

The attempt proposed by this author refers only to the
constant part of the PA. It should be acknowledged that also
a time-varying part has been discovered as well.

3 Possible verification-experiments

Vector-addition of light and CMB can be simulated using
computers. The vector to be added to light-vector can be de-
rived from the actual CMB received. Every time new and new
CMB-vector can be added to the resultant vector of previous
addition.

Secondly, we know that there is certain amount of un-
isotropy in the CMB. Microwaves coming from some direc-
tions are more powerful than others. So, we can look for any
co-relation between the strength of CMB from a given direc-
tion and value of cosmological-red-shift.

Thirdly, we can establish a reverberating-satellite-link, in
which we can first transmit a highly-stable frequency to geo-
synchronous-satellite; receive the signal back; re-transmit the
CMB-noise-corrupted-signal back to satellite, and continue
such repetitions for an year or longer and compare the fre-
quency of the signal with the original source.

4 Conclusion

After getting the results of verification-experiments, thenew
mechanism proposed here namely: “Cumulative Phase-
Alteration of the Extra-Galactic-Light passing through Cos-
mic-Microwave-Background (CMB)” it seems possible to ex-
plain: not only the large percentage of “cosmological red-
shift”, but also the Pioneer-anomaly. Quantitative analysis
may leave 5% of the measured value of the “cosmological
red-shift” for the standard explanation in terms of “metric-
expansion-of-space”, reducing the requirement of total-mass
of the universe to the already-observable baryonic matter;
thus it is likely to resolve many of the problems of current
standard-model-cosmology. This author also proposes to in-
vestigate if this new mechanism of spectral-shifts will be able
to accommodate some of the solar-system-astrometric-
anomalies.
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The 1991 DeWitte double one-way 1st order in v/c experiment successfully measured
the anisotropy of the speed of light using clocks at each end of the RF coaxial cables.
However Spavieri et al., Physics Letters A (2012), have reported that (i) clock effects
caused by clock transport should be included, and (ii) that this additional effect cancels
the one-way light speed timing effect, implying that one-way light speed experiments
“do not actually lead to the measurement of the one-way speed of light or determination
of the absolute velocity of the preferred frame”. Here we explain that the Spavieri et al.
derivation makes an assumption that is not always valid: that the propagation is subject
to the usual Fresnel drag effect, which is not the case for RF coaxial cables. As well
DeWitte did take account of the clock transport effect. The Spavieri et al. paper has
prompted a clarification of these issues.

1 Introduction

The enormously significant 1991 DeWitte [1] double one-
way 1st order in v/c experiment successfully measured the
anisotropy of the speed of light using clocks at each end of
the RF coaxial cables. The technique uses rotation of the light
path to permit extraction of the light speed anisotropy, despite
the clocks not being synchronised. Data from this 1st order
in v/c experiment agrees with the speed and direction of the
anisotropy results from 2nd order in v/c Michelson gas-mode
interferometer experiments by Michelson and Morley and by
Miller, see data in [2], and with NASA spacecraft earth-flyby
Doppler shift data [3], and also with more recent 1st order
in v/c experiments using a new single clock technique [2],
Sect. 5. However Spavieri et al. [4] reported that (i) clock
effects caused by clock transport should be included, and (ii)
that this additional effect cancels the one-way light speed tim-
ing effect, implying that one-way light speed experiments “do
not actually lead to the measurement of the one-way speed of
light or determination of the absolute velocity of the preferred
frame”. Here we explain that the Spavieri et al. derivation
makes an assumption that is not always valid: that the propa-
gation is subject to the usual Fresnel drag effect, which is not
the case for RF coaxial cables. The Spavieri et al. paper has
prompted a clarification of these issues. In particular DeWitte
took account of both the clock transport effect, and also that
the RF coaxial cables did not exhibit a Fresnel drag, though
these aspects were not discussed in [1].

2 First Order in v/c Speed of EMR Experiments

Fig. 1 shows the arrangement for measuring the one-way
speed of light, either in vacuum, a dielectric, or RF coaxial
cable. It is usually argued that one-way speed of light mea-
surements are not possible because the clocks C1 and C2 can-
not be synchronised. However this is false, although an im-
portant previously neglected effect that needs to be included
is the clock offset effect caused by transport when the appara-

tus is rotated [4], but most significantly the Fresnel drag effect
is not present in RF coaxial cables. In Fig. 1 the actual travel
time tAB = tB − tA from A to B, as distinct from the clock
indicated travel time TAB = TB − TA, is determined by

V(v cos(θ))tAB = L + v cos(θ)tAB (1)

where the 2nd term comes from the end B moving an ad-
ditional distance v cos(θ)tAB during time interval tAB. With
Fresnel drag V(v) = c

n + v
(
1 − 1

n2

)
, when V and v are parallel,

and where n is the dielectric refractive index. Then

tAB =
L

V(v cos(θ)) − v cos(θ)
=

nL
c
+
v cos(θ)L

c2 + .. (2)

However if there is no Fresnel drag effect, V = c/n, as is the
case in RF coaxial cables, then we obtain

tAB=
L

V(v cos(θ)) − v cos(θ)
=

nL
c
+
v cos(θ)Ln2

c2 + .. (3)

It would appear that the two terms in (2) or (3) can be
separated by rotating the apparatus, giving the magnitude and
direction of v. However it is TAB = TB − TA that is mea-
sured, and not tAB, because of an unknown fixed clock offset
τ, as the clocks are not a priori synchronised, and as well
an angle dependent clock transport offset ∆τ, at least until
we can establish clock synchronisation, as explained below.
Then the clock readings are TA = tA and TB = tB + τ, and
T ′B = t′B + τ + ∆τ, where ∆τ is a clock offset that arises from
the slowing of clock C2 as it is transported during the rotation
through angle ∆θ, see Fig. 1.

3 Clock Transport Effect

The clock transport offset ∆τ follows from the clock motion
effect

∆τ = dt

√
1 − (v + u)2

c2 − dt

√
1 − v2

c2 = −dt
v · u
c2 + ..., (4)
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Fig. 1: Schematic layout for measuring the one-way speed of light
in either free-space, optical fibres or RF coaxial cables, without re-
quiring the synchronisation of the clocks C1 and C2. Here τ is the,
initially unknown, offset time between the clocks. Times tA and tB

are true times, without clock offset and clock transport effects, while
TA = tA, TB = tA + τ and T ′B = t′B + τ + ∆τ are clock readings.
V(v cos(θ)) is the speed of EM radiation wrt the apparatus before ro-
tation, and V(v cos(θ − ∆θ)) after rotation, v is the velocity of the
apparatus through space in direction θ relative to the apparatus be-
fore rotation, u is the velocity of transport for clock C2, and ∆τ < 0
is the net slowing of clock C2 from clock transport, when apparatus
is rotated through angle ∆θ > 0. Note that v · u > 0.

when clock C2 is transported at velocity u over time interval
dt, compared to C1. Now v · u = vu sin(θ) and dt = L∆θ/u.
Then the change in TAB from this small rotation is, using (3)
for the case of no Fresnel drag,

∆TAB =
v sin(θ)Ln2∆θ

c2 − v sin(θ)L∆θ
c2 + ... (5)

as the clock transport effect appears to make the clock-deter-
mined travel time smaller (2nd term). Integrating we get

TB − TA =
nL
c
+
v cos(θ)L(n2 − 1)

c2 + τ, (6)

where τ is now the constant offset time. The v cos(θ) term
may be separated by means of the angle dependence. Then
the value of τ may be determined, and the clocks synchro-
nised. However if the propagation medium is vacuum, liquid,
or dielectrics such as glass and optical fibres, the Fresnel drag
effect is present, and we then use (2), and not (3). Then in (6)
we need make the replacement n → 1, and then the 1st order
in v/c term vanishes, as reported by Spavieri et al.. However,
in principle, separated clocks may be synchronised by using
RF coaxial cables.

4 DeWitte 1st Order in v/c Detector

The DeWitte L = 1.5 km 5 MHz RF coaxial cable experi-
ment, Brussels 1991, was a double 1st order in v/c detector,
using the scheme in Fig. 1, but employing a 2nd RF coax-
ial cable for the opposite direction, giving clock difference
TD − TC , to cancel temperature effects, and also used 3 Cae-
sium atomic clocks at each end. The orientation was NS and

Fig. 2: Top: Data from the 1991 DeWitte NS RF coaxial cable ex-
periment, L = 1.5 km, using the arrangement shown in Fig. 1, with
a 2nd RF coaxial cable carrying a signal in the reverse direction.
The vertical red lines are at RA=5h and 17h. DeWitte gathered data
for 178 days, and showed that the crossing time tracked sidereal
time, and not local solar time, see Fig. 3. DeWitte reported that
v ≈ 500 km/s. If a Fresnel drag effect is included no effect would
have been seen. Bottom: Dual coaxial cable detector data from May
2009 using the technique in Fig. 4 with L = 20 m. NASA Spacecraft
Doppler shift data predicts Dec= −77◦, v = 480 km/s, giving a side-
real dynamic range of 5.06 ps, very close to that observed. The verti-
cal red lines are at RA=5h and 17h. In both data sets we see the earth
sidereal rotation effect together with significant wave/turbulence ef-
fects.

rotation was achieved by that of the earth [1]. Then

TAB − TCD =
2v cos(θ)L(n2 − 1)

c2 + 2τ (7)

For a horizontal detector the dynamic range of cos(θ) is
2 sin(λ) cos(δ), caused by the earth rotation, where λ is the
latitude of the detector location and δ is the declination of
v. The value of τ may be determined and the clocks syn-
chronised. Some of DeWitte’s data and results are in Figs. 2
and 3. DeWitte noted that his detector produced no effect at
RF frequency of 1GHz, suggesting that the absence of Fres-
nel drag in RF coaxial cables may be a low frequency effect.
This means that we should write the Fresnel drag expression
as V(v) = c

n + v
(
1 − 1

m( f )2

)
, where m( f ) is RF frequency f

dependent, with m( f )→ n at high f .

5 Dual RF Coaxial Cable Detector

The single clock Dual RF Coaxial Cable Detector exploits the
absence of the Fresnel drag effect in RF coaxial cables [2].
Then from (3) the round trip travel time for one circuit is, see
Fig. 4,
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Fig. 3: DeWitte collected data over 178 days and demonstrated that
the zero crossing time, see Fig. 2, tracked sidereal time and not local
solar time. The plot shows the negative of the drift in the crossing
time vs local solar time, and has a slope, determined by the best-
fit straight line, of -3.918 minutes per day, compared to the actual
average value of -3.932 minutes per day. Again we see fluctuations
from day to day.

S N

A B

D C

RF

DS
O

� L -
FSJ1-50A

FSJ1-50A

-

�
HJ4-50

HJ4-50

�

- 	
�
�
�
66

Fig. 4: Because Fresnel drag is absent in RF coaxial cables this dual
cable setup, using one clock (10 MHz RF source) and Digital Stor-
age Oscilloscope (DSO) to measure and store timing difference be-
tween the two circuits, as in (9)), is capable of detecting the absolute
motion of the detector wrt to space, revealing the sidereal rotation
effect as well as wave/turbulence effects. Results from such an ex-
periment are shown in Fig. 2. Andrews phase-stablised coaxial ca-
bles are used. More recent results are reported in [2].

tAB + tCD =
(n1 + n2)L

c
+
v cos(θ)L(n2

1 − n2
2)

c2 + .. (8)

where n1 and n2 are the effective refractive indices for the two
different RF coaxial cables. There is no clock transport effect
as the detector is rotated. Dual circuits reduce temperature
effects. The travel time difference of the two circuits at the
DSO is then

∆t =
2v cos(θ)L(n2

1 − n2
2)

c2 + .. (9)

A sample of data is shown in Fig. 2, using RF=10 MHz, and
is in excellent agreement with the DeWitte data, the NASA
flyby Doppler shift data, and the Michelson-Morley and
Miller results.

6 Conclusions

The absence of the Fresnel drag in RF coaxial cables enables
1st order in v/c measurements of the anisotropy of the speed
of light. DeWitte pioneered this using the multiple clock tech-
nique, and took account of the clock transport effect, while
the new dual RF coaxial cable detector uses only one clock.
This provides a very simple and robust technique to detect
motion wrt the dynamical space. Experiments by Michel-
son and Morley 1887, Miller 1925/26, DeWitte 1991, Cahill
2006, 2009, 2012, and NASA earth-flyby Doppler shift data
now all agree, giving the solar system a speed of ∼ 486 km/s
in the direction RA=4.3h, Dec= -75.0◦. These experiments
have detected the fractal textured dynamical structure of
space - the privileged local frame [2]. This report is from the
Gravitational Wave Detector Project at Flinders University.
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Additional versions of the location of the isotopes and element No.155 are suggested to
the Periodic Table of Elements.

As was pointed out recently [1], the Periodic Table of Ele-
ments ends with element No.155 which manifests the upper
limit of the Table after whom no other elements exist. In
this connexion the number of the isotopes contained in each
single cell of the Nuclear Periodic Table could be interested.
(The Nuclear Periodic Table is constructed alike the Periodic
Table of Elements, including Periods, Groups, Lanthanides,
and Actinides.) Therefore, it is absolutely lawful to compare
these two tables targeting the location of element No.155 [2].

Fig. 1 shows an S-shaped arc of the isotopes, whose form
changes being dependent on the number of Period, and the
number of the isotopes according to the summation of them.
As seen, the arc is smooth up to element No.118, where the
number of the isotopes of the cell equals to 4468. This is the
known last point, after whom the arc transforms into the hor-
izontal straight. In the region of the numbers 114–118, the
rate of change of the isotopes in the arc decreases very rapid
(4312–4468), upto element No.118 whose cell contains just
one isotope. Hence we conclude that only the single isotope
is allowed for the number higher than No.118. This was veri-
fied for the points No.118, No.138 and No.155, who are thus
located along the strict horizontally straight. The commonarc
can be described by the equation, whose truth of approxima-
tion is R2 = 1.

The next version of the graph is constructed by logarith-
mic coordinates, where thex-coordinate is lnX and they-
coordinate is lnY (see Fig. 2). The original data are: the num-
ber Z of each single element (the axisX), and the summary
number of the isotopes (the axisY). Once the graph created,
we see a straight line ending by a curve. As seen, the last
numbers form a horizontally located straight consisting ofthe
10 last points. The obtained equation demonstrates the high
degree of precision (R2 = 0.997).

The most interesting are the structures, where the two arcs
(No.55–No.118) coincide completely with each other. The
left side of the parabolas in the tops forms two horizontal ar-
eas of 10 points. The two dotted lines at the right side are
obtained by the calculations for elements being to 0.5 unit for-
ward. The both equations posses the coefficientR2 = 0.992.

All three presented versions of the distribution of the iso-
topes in the cell No.155 show clearly that this number should
exist as well as element No.155.
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Fig. 1: Dependency of the summary number of the isotopes on the number of the element.

Fig. 2: Dependency of Ln (y) on Ln (x).

Fig. 3: Dependency of Ln (y) on Ln (x).
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Formation and energy emission of quasars are investigated in accord with the black hole
universe, a new cosmological model recently developed by Zhang. According to this
new cosmological model, the universe originated from a star-like black hole and grew
through a supermassive black hole to the present universe by accreting ambient matter
and merging with other black holes. The origin, structure, evolution, expansion, and
cosmic microwave background radiation of the black hole universe have been fully ex-
plained in Paper I and II. This study as Paper III explains how a quasar forms, ignites and
releases energy as an amount of that emitted by dozens of galaxies. A main sequence
star, after its fuel supply runs out, will, in terms of its mass, form a dwarf, a neutron
star, or a black hole. A normal galaxy, after its most stars have run out of their fuels
and formed dwarfs, neutron stars, and black holes, will eventually shrink its size and
collapse towards the center by gravity to form a supermassive black hole with billions
of solar masses. This collapse leads to that extremely hot stellar black holes merge each
other and further into the massive black hole at the center and meantime release a huge
amount of radiation energy that can be as great as that of a quasar. Therefore, when the
stellar black holes of a galaxy collapse and merge into a supermassive black hole, the
galaxy is activated and a quasar is born. In the black hole universe, the observed dis-
tant quasars powered by supermassive black holes can be understood as donuts from the
mother universe. They were actually formed in the mother universe and then swallowed
into our universe. The nearby galaxies are still very young and thus quiet at the present
time. They will be activated and further evolve into quasars after billions of years. At
that time, they will enter the universe formed by the currently observed distant quasars
as similar to the distant quasars entered our universe. The entire space evolves itera-
tively. When one universe expands out, a new similar universe is formed from its inside
star-like or supermassive black holes.

1 Introduction

Quasars are quasi-stellar objects, from which light is extreme-
ly shifted toward the red [1-5]. If their large redshifts are
cosmological, quasars should be extremely distant and thus
very luminous such that a single quasar with the scale of the
solar system can emit the amount of energy comparable to
that emitted by dozens of normal galaxies [6-7]. A highly
charged quasar may also have significant electric redshift [8].

Quasars are generally believed to be extremely luminous
galactic centers powered by supermassive black holes with
masses up to billions of solar masses [9-13]. It is usually sug-
gested that the material (e.g., gas and dust) falling into a su-
permassive black hole is subjected to enormous pressure and
thus heated up to millions of degrees, where a huge amount
of thermal radiation including waves, light, and X-rays give
off [14-16]. However, the density of the falling material, if it
is less dense than the supermassive black hole, is only about
that of water. In other words, the pressure of the falling gas
and dust may not go such high required for a quasar to emit
energy as amount of that emitted by hundred billions of the
Sun.

According to the Einsteinian general theory of relativ-
ity [17] and its Schwarzschild solution [18], the gravitational

field (or acceleration) at the surface of a black hole is in-
versely proportional to its mass or radius. For a supermas-
sive black hole with one billion solar masses, the gravitational
field at the surface is only about 1.5 × 104 m/s2. Although
this value is greater than that of the Sun (∼ 270 m/s2), it is
about two-order smaller than that of a white dwarf with 0.8
solar masses and 0.01 solar radii (∼ 2.2 × 106 m/s2), eight-
order smaller than that of a neutron star with 1.5 solar masses
and 10 km in radius (∼ 2.0 × 1012 m/s2), and eight-order
smaller than that of a star-like black hole with 3 solar masses
(∼ 5 × 1012 m/s2). Table 1 shows the gravitational field at the
surface of these typical objects. A black hole becomes less
violent and thus less power to the ambient matter and gases
as it grows. Therefore, a supermassive black hole may not
be able to extremely compress and heat the falling matter by
such relative weak gravitational field. It is still unclear about
how a quasar is powered by a supermassive black hole.

The Chandra X-ray observations of quasars 4C37.43 and
3C249.1 have provided the evidence of quasar ignition with
an enormous amount of gas to be driven outward at high
speed or a galactic superwind [19]. The observation of quasar
Q0957+561 has shown the existence of an intrinsic magnetic
moment, which presents an evidence that the quasar may not
have a closed event horizon [20]. In addition, the observations
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Object M (MSun) R (m) gR (m/s2)

Sun 1 7 × 108 270
White Dwarfs 0.8 7 × 106 2 × 104

Nneutron Stars 1.5 1 × 104 2 × 1012

Black Holes (BH) 3 3 × 103 5 × 1012

Spermassive BH 109 3 × 1012 1.5 × 104

Table 1: Mass, radius, and gravitational field at the surface of the
Sun, white dwarf, neutron star, star-like black hole (BH), and super-
massive black hole.

of the distant quasars have shown that some supermassive
black holes were formed when the universe was merely 1-2
billion years after the big bang had taken place [5, 21]. How
the supermassive black holes with billions of solar masses
were formed so rapidly during the early universe is a great
mystery raised by astronomers recently [22]. Theoretically,
such infant universe should only contain hydrogen and he-
lium, but observationally scientists have found a lot of heavy
elements such as carbon, oxygen, and iron around these dis-
tant quasars, especially the large fraction of iron was observed
in quasar APM 08279+5255 [23], which has redshift Z =
3.91. If the heavy ions, as currently believed, are produced
during supernova explosions when stars runs out of their fuel
supplies and start to end their lives, then quasars with heavy
elements should be much elder than the main sequence stars
and normal galaxies.

Recently, in the 211th AAS meeting, Zhang proposed a
new cosmological model called black hole universe [24]. In
Paper I [25], Zhang has fully addressed the origin, struc-
ture, evolution, and expansion of black hole universe (see also
[26]). In Paper II [27], Zhang has quantitatively explained the
cosmic microwave background radiation of black hole uni-
verse (see [28]), an ideal black body. Zhang [29] summarized
the observational evidences of black hole universe. Accord-
ing to this new cosmological model, the universe originated
from a hot star-like black hole with several solar masses, and
gradually grew through a supermassive black hole with bil-
lions of solar masses to the present state with hundred billion-
trillions of solar masses by accreting ambient material and
merging with other black holes. The entire space is hierar-
chically structured with infinite layers. The innermost three
layers are the universe in which we live, the outside space
called mother universe, and the inside star-like and supermas-
sive black holes called child universes. The outermost layer is
infinite in radius and limits to zero for both the mass density
and absolute temperature, which corresponds to an asymptot-
ically flat spacetime without an edge and outside space and
material. The relationship among all layers or universes can
be connected by the universe family tree. Mathematically,
the entire space can be represented as a set of all black hole
universes. A black hole universe is a subset of the entire

space or a subspace and the child universes are null sets or
empty spaces. All layers or universes are governed by the
same physics, the Einsteinian general theory of relativity with
the Robertson-Walker metric of spacetime, and expand phys-
ically in one way (outward). The growth or expansion of a
black hole universe decreases its density and temperature but
does not alter the laws of physics.

In the black hole universe model, the observed distant
quasars are suggested to be donuts from the mother universe.
They were formed in the mother universe from star-like black
holes rather than formed inside our universe. In other words,
the observed distant quasars actually were child universes of
the mother universe, i.e., little sister universes of our universe.
After they were swallowed, quasars became child universes
of our universe. In general, once a star-like black hole is
formed in a normal galaxy, the black hole will eventually
inhale, including merge with other black holes, most mat-
ter of the galaxy and grow gradually to form a supermassive
black hole. Therefore, quasars are supposed to be much el-
der than the normal stars and galaxies, and thus significantly
enriched in heavy elements as measured. Some smaller red-
shift quasars might be formed in our universe from the aged
galaxies that came from the mother universe before the distant
quasars entered. Nearby galaxies will form quasars after bil-
lions of years and enter the new universe formed from the ob-
served distant quasars as donuts. The entire space evolves it-
eratively. When one universe expands out, a new similar uni-
verse is formed from its inside star-like or supermassive black
holes. This study as Paper III develops the energy mechanism
for quasars to emit a huge amount of energy according to the
black hole universe model.

2 Energy Mechanism for Quasars

As a consequence of the Einsteinian general theory of rela-
tivity, a main sequence star, at the end of its evolution, will
become, in terms of its mass, one of the follows: a dwarf, a
neutron star, or a stellar black hole. A massive star ends its
life with supernova explosion and forms a neutron star or a
black hole. Recently, Zhang [30] proposed a new mechanism
called gravitational field shielding for supernova explosion.
For the evolution of the entire galaxy, many details have been
uncovered by astronomers, but how a galaxy ends its life is
still not completely understood. In the black hole universe, all
galaxies are suggested to eventually evolve to be supermas-
sive black holes. Galaxies with different sizes form supermas-
sive black holes with different masses. Quasars are formed
from normal galaxies through active galaxies as shown in
Figure 1.

Once many stars of a galaxy have run out of their fuels
and formed dwarfs, neutral stars, and black holes, the galaxy
shrinks its size and collapses toward the center, where a mas-
sive black hole with millions of solar masses may have al-
ready existed, by the gravity. During the collapse, the dwarfs,
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Fig. 1: Formation of quasars. A normal galaxy evolves into an active
one and ends by a quasar (Images of Hubble Space Telescope).

neutron stars, and stellar black holes are merging each other
and gradually falling into the massive black hole at the cen-
ter to form a supermassive black hole with billions of solar
masses. When stellar black holes merge and collapse into a
supermassive black hole, a huge amount of energies are re-
leased. In this situation, the galaxy is activated and a quasar
is born.

In a normal galaxy, such as our Milky Way, most stars
are still active and bright because they have not yet run out
of their fuels to form dwarfs, neutron stars, and black holes.
In the disk of a normal galaxy, there should be not much of
such hardly observed matter as shown by the measurements
[31-32]. In the center of a normal galaxy, a quiet massive
black hole with millions of solar masses may exist. Once
many stars have run out of their fuels and evolved into dwarfs,
neutron stars, and black holes, the disk of the galaxy becomes
dim, though intensive X-rays can emit near the neutron stars
and black holes, and starts to shrink and collapse. As the
galaxy collapses, the black holes fall towards (or decrease of
orbital radius) the center and merge with the massive black
hole at the center, where huge amounts of energies leak out
of the black holes through the connection region, where the
event horizons are broken. The galaxy first activates with a
luminous nucleus and then becomes a quasar in a short period
at the evolution end.

The inside space of a black hole is a mystery and can
never be observed by an observer in the external world. It
is usually suggested that when a star forms a Schwarzschild
black hole its matter will be collapsed to the singularity point
with infinite density. Material falling into the black hole will
be crunched also to the singularity point. Other regions under
the event horizon of the black hole with radius R = 2GM/c2

are empty. The inside space of the black hole was also con-
sidered to be an individual spacetime with matter and field
distributions that obeys the Einsteinian general theory of rel-
ativity. Gonzalez-Diaz [33] derived a spacetime metric for
the region of nonempty space within the event horizon from
the Einsteinian field equation.

In the black hole universe model, we have considered the
inside space of the Schwarzschild black hole as an individual
spacetime, which is also governed by the Friedmann equation

Fig. 2: The density of a black hole versus its mass or radius (solid
line). The dotted line refers to ρ = ρ0 the density of the present uni-
verse, so that the intersection of the two lines represents the density,
radius, and mass of the present universe.

with the Robertson-Walker metric of spacetime and where
matter is uniformly distributed rather than crunched into a
single point. Highly curved spacetime sustains the highly
dense matter and strong gravity. A black hole governed by the
Einsteinian general theory of relativity with the Robertson-
Walker metric of spacetime is usually static with a constant
mass-radius ratio called M-R relation or a constant density
when it does not eat or accrete matter from its outside space
[25]. The density of the matter is given by

ρ =
M
V
=

3c2

8πGR2 =
3c6

32πG3M2 , (1)

where V = 4πR3/3 is the volume. Figure 2 shows the density
of black hole as a function of its radius or mass. It is seen that
the density of the black hole universe is inversely proportional
to the square of radius or mass. At the present time, the mass
and radius of the universe are 9 × 1051 kg and 1.3 × 1026

m, respectively, if the density of the universe is chosen to be
ρ0 = 9 × 10−27 kg/m3.

The total radiation energy inside a black hole, an ideal
black body, is given by

U =
4
3
πβR3T 4 = µR3T 4, (2)

where T is the temperature and β is a constant [27]. The
constant µ is given by

µ =
4
3
πβ =

32π6k4
B

45h3c3 , (3)

where kB is the Boltzmann constant, h is the Planck constant,
and c is the light speed. Using the Robertson-Walker metric
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Fig. 3: A sketch for two star-like black holes to merge into a larger
one and release energy from the reconnection region where the event
horizons break.

with the curvature parameter k = 1 to describe the black hole
spacetime, we have obtained in Paper I, from the Einsteinian
field equation, that the black hole is stable dR/dt = 0 if no
material and radiation enter, otherwise the black hole enlarges
or expands its size at a rate dR/dt = RH and thus decrease its
density and temperature. Here H is the Hubble parameter.

When two black holes merge, their event horizons first
break and then reconnect to form a single enveloping horizon
and therefore a larger black hole. Brandt et al. [34] simulated
the merge and collision of black holes. During the period
of the reconnection of the event horizons, a huge amount of
radiation energy leak/emit out from the black holes through
the connection region, where the formed event horizon is still
concave and has negative curvature. As many star-like black
holes merge, a supermassive black hole or a quasar forms.

To illustrate the energy emission of a quasar, we first con-
sider two black holes with mass M1,M2 (or radius R1,R2) and
temperature T1,T2 to merge into a larger black hole with mass
M3 = M1+M2 (or radius R3 = R1+R2 because of the M-R re-
lation) and temperature T3. Figure 3 show a schematic sketch
for the merging of two black holes and the energy emission
from them. This is somewhat similar to the energy release by
fusion of two light nuclei. The total energy radiated from the
collision region can be estimated as

E = µR3
1T 4

1 + µR
3
2T 4

2 − µR3
3T 4

3 . (4)

It can be positive if the merged black hole is colder than
the merging black holes (i.e., E > 0, if T3 < T1,T2).

For N star-like black holes and one massive black hole
to merge into a supermassive black hole, the total radiation
energy that is emitted out can be written as

Etotal = µ

N∑
j=0

R3
jT

4
j − µR3

QT 4
Q, (5)

where R j and T j are the radius and temperature of the jth stel-
lar black hole ( j = 0 for the massive black hole existed at the

center), RQ and TQ are the radius and temperature of the su-
permassive black hole formed at the end, and N is the number
of the star-like black holes formed in the galaxy. The radius
of the supermassive black hole can be estimated as

RQ =

N∑
j=0

R j. (6)

Considering all the star-like black holes to have the same
size and temperature (for simplicity or in an average radius
and temperature), we have

Etotal = µR3
0T 4

0 + µNR3
jT

4
j − µN3R3

jT
4
Q. (7)

Here we have also considered that RQ >> R0 and

RQ = R0 + NR j ≃ NR j. (8)

Paper II has shown that the temperature of a black hole
including our black hole universe depends on its size or ra-
dius. For a child universe (i.e., star-like or supermassive black
hole), the relation is approximately power law,

T ∝ 1
Rδ
, (9)

where δ is a power law index less than about 3/4. Apply-
ing this temperature-radius relation into Eqs. (8) and (7), we
have,

TQ = T jN−δ, (10)

and
Etotal = µR3

jT
4
j N(1 − N2−4δ). (11)

The average luminosity of a collapsing galaxy (or quasar)
can be written as

L ≡ Etotal/τ (12)

where τ is the time for all star-like black holes in a galaxy to
merge into a single supermassive black hole.

It is seen that the luminosity of a quasar increases with δ,
N, R j, and T j, but decreases with τ. As an example, choosing
R j = 9 km (or M j ≃ 3Ms), T j = 1012 K, N = 109, and τ = 109

years, we obtain L ≃ 7.3 × 1037 W, which is ∼ 2 × 1011 times
that of the Sun and therefore about the order of a quasar’s
luminosity [35]. The formed supermassive black hole will
be three billion solar masses. Here δ is chosen to be greater
enough (e.g., 0.55). For a hotter T j, a shorter τ, or a larger N,
the luminosity is greater. Therefore, if quasars are collapsed
galaxies at their centers that star-like black holes are merging
into supermassive black holes, then the huge luminosities of
quasars can be understood. The extremely emitting of energy
may induce extensive shocks and produce jet flows of matter
outward along the strong magnetic field lines.

To see how the luminosity of a quasar depends on the pa-
rameters N, δ, T j, and τ, we plot the luminosity of a col-
lapsing galaxy (merging black holes or an ignited quasar) in
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Fig. 4: Quasar luminosity vs. δ with N = 108, 5 × 105, 2 × 109, 5 ×
109, 1010. δ should be greater than 0.5 for a quasar to emit energy.
The luminosity saturates when δ ≳ 0.52.

Figure 4 as a function of δ and in Figure 5 as a function of τ
with different N. In Figure 4, we let δ vary from 0.5 to 0.6 as
the x-axis and N be equal to 108, 2 × 108, 5 × 108, and 109,
where other parameters are fixed at R j = 9 km, T j = 1012 K,
and τ = 109 years. In Figure 5, we let τ vary from 108 years
to 1010 years as the x-axis and T j equal to 5 × 1011, 1012,
2 × 1012, and 4 × 1012 K, where other parameters are fixed at
R j = 9 km, N = 109, and δ = 0.55.

It is seen from Figure 4 that the luminosity of a quasar
increases with δ and N, and saturates when δ ≳ 0.52. For
a supermassive black hole to emit energy, δ must be greater
than about 0.5. Paper II has shown δ ≲ 3/4 = 0.75. From
Figure 5, we can see that the luminosity decreases with the
collapsing time τ and increases with T j.

Corresponding to the possible thermal history given by
Paper II, δ varies as the black hole universe grows. Figure 6
plots the parameters γ defined in Paper II and δ as functions
of the radius R. It is seen that when a supermassive black
hole grows up to R ≳ 1014 km (or M ≳ 3 × 105 billion solar
masses) it does not emit energy when it merges with other
black holes because δ < 0.5. In the observed distant voids, it
is possible to have this kind of objects called mini-black-hole
universes. The observed distant quasars may have grown up
to this size or mass now and so that quite at present. A cluster,
when most of its galaxies become supermassive black holes
or quasars, will merge into a mini-black-hole universe.

3 Discussions and Conclusions

If there does not pre-exist a massive black hole at the center
of a galaxy, a supermassive black hole can also be formed
from the galaxy. As the galaxy shrinks it size, a hot star-like
black hole enlarges its size when it swallows dwarfs or neu-

Fig. 5: Quasar luminosity vs. τ with N = 108, 5 × 105, 2 × 109, 5 ×
109, 1010. It increases with the temperature of star-like black holes
but decreases with the time for them to merge.

Fig. 6: Parameters γ and δ versus radius R. When a supermassive
black hole grows to R ≳ 3 × 1014 km or M ≳ 1014 solar masses, it
does not emit energy because δ < 0.5.

tron stars, which may also collapse to form black holes [36]
or merges with other black holes and forms a supermassive
black hole at the end.

As a summary, we proposed a possible explanation for
quasars to ignite and release a huge amount of energy in ac-
cord with the black hole universe model. General relativity
tells us that a main sequence star will, in terms of its mass,
form a dwarf, a neutron star, or a black hole. After many
stars in a normal galaxy have run out of their fuels and formed
dwarfs, neutron stars, and black holes, the gravity cause the
galaxy to eventually collapse and form a supermassive black
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hole with billions of solar masses. It has been shown that
this collapse can lead to the extremely hot stellar black holes
to merge each other and further into the massive black hole
at the center and release intense thermal radiation energy as
great as a quasar emits. When the stellar black holes of a
galaxy collapse and merge into a supermassive black hole,
the galaxy is activated and a quasar is born. The observed
distant quasars were donuts from the mother universe. They
were actually formed in the mother universe as little sisters
of our universe. After the quasars entered our universe, they
became our universe’s child universes. The results from this
quasar model are consistent with observations.
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Dr. Cai Wen defined in his 1983 paper: — the distance formula between a pointx0 and
a one-dimensional (1D) interval<a,b>; — and the dependence function which gives
the degree of dependence of a point with respect to a pair of included 1D-intervals.
His paper inspired us to generalize the Extension Set to two-dimensions, i.e. in plane
of real numbersR2 where one has a rectangle (instead of a segment of line), deter-
mined by two arbitrary pointsA(a1, a2) andB(b1,b2). And similarly in R3, where one
has a prism determined by two arbitrary pointsA(a1,a2, a3) and B(b1,b2,b3). We ge-
ometrically define the linear and non-linear distance between a point and the 2D and
3D-extension set and the dependent function for a nest of two included 2D and 3D-
extension sets. Linearly and non-linearly attraction point principles towards the optimal
point are presented as well. The same procedure can be then used considering, instead
of a rectangle, any bounded 2D-surface and similarly any bounded 3D-solid, and any
bounded (n − D)-body in Rn. These generalizations are very important since the Ex-
tension Set is generalized from one-dimension to 2, 3 and even n-dimensions, therefore
more classes of applications will result in consequence.

1 Introduction

Extension Theory (or Extenics) was developed by Professor
Cai Wen in 1983 by publishing a paper called Extension Set
and Non-Compatible Problems. Its goal is to solve contradic-
tory problems and also nonconventional, nontraditional ideas
in many fields. Extenics is at the confluence of three disci-
plines: philosophy, mathematics, and engineering. A con-
tradictory problem is converted by a transformation function
into a non-contradictory one. The functions of transformation
are: extension, decomposition, combination, etc. Extenics
has many practical applications in Management, Decision-
Making, Strategic Planning, Methodology, Data Mining, Ar-
tificial Intelligence, Information Systems, Control Theory,
etc. Extenics is based on matter-element, affair-element, and
relation-element.

2 Extension Distance in 1D-space

Let’s use the notation<a, b> for any kind of closed, open, or
half-closed interval [a, b], (a, b), (a, b], [a, b). Prof. Cai Wen
has defined the extension distance between a pointx0 and a
real intervalX = <a, b>, by

ρ (x0,X) =
∣

∣

∣

∣

∣

x0 −
a+ b

2

∣

∣

∣

∣

∣

−
b− a

2
, (1)

where in general:

ρ : (R,R2)→ (−∞,+∞) . (2)

Algebraically studying this extension distance, we find
that actually the range of it is:

ρ (x0,X) ∈

[

−
b− a

2
,+∞

]

(3)

Fig. 1:

Fig. 2:

or its minimum range value−
(

b−a
2

)

depends on the intervalX
extremitiesa andb, and it occurs when the pointx0 coincides
with the midpoint of the intervalX, i.e. x0 =

a+b
2 . The closer

is theinterior point x0 to the midpoint of the interval<a, b>,
the negatively larger isρ (x0,X).

In Fig. 1, for interior pointx0 betweena and a+b
2 , the ex-

tension distanceρ (x0,X) = a−x0 is thenegative length of the
brown line segment[left side]. Whereas for interior pointx0

betweena+b
2 andb, the extension distanceρ (x0,X) = x0 − b

is the negative length of the blue line segment[right side].
Similarly, the further isexterior point x0 with respect to the
closest extremity of the interval<a, b> to it (i.e. to eithera or
b), the positively larger isρ (x0,X).

In Fig. 2, for exterior pointx0<a, the extension distance
ρ (x0,X) = a − x0 is the positive length of the brown line
segment [left side]. Whereas for exterior pointx0>b, the ex-
tension distanceρ (x0,X) = x0−b is thepositive length of the
blue line segment[right side].

3 Principle of the Extension 1D-Distance

Geometrically studying this extension distance, we find the
following principle that Prof. Cai Wen has used in 1983
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defining it:

ρ (x0,X) is the geometric distance between the point x0

and the closest extremity point of the interval<a, b > to
it (going in the direction that connects x0 with the op-
timal point), distance taken as negative if x0 ∈ <a, b>,
and as positive if x0 ⊂ <a, b >.

This principle is very important in order to generalize the
extension distance from 1D to 2D (two-dimensional
real space), 3D (three-dimensional real space), andn−D
(n-dimensional real space).

The extremity points of interval< a, b> are the pointa
andb, which are also the boundary (frontier) of the interval
< a, b>.

4 Dependent Function in 1D-Space

Prof. Cai Wen defined in 1983 in 1D the Dependent Function
K(y). If one considers two intervalsX0 andX, that have no
common end point, andX0 ⊂ X, then:

K(y) =
ρ (y,X)

ρ (y,X) − ρ (y,X0)
. (4)

SinceK(y) was constructed in 1D in terms of the exten-
sion distanceρ (., .), we simply generalize it to higher dimen-
sions by replacingρ (., .) with the generalized in a higher di-
mension.

5 Extension Distance in 2D-Space

Instead of considering a segment of lineAB representing the
interval<a, b> in 1R, we consider a rectangleAMBN rep-
resenting all points of its surface in 2D. Similarly as for 1D-
space, the rectangle in 2D-space may be closed (i.e. all points
lying on its frontier belong to it), open (i.e. no point lyingon
its frontier belong to it), or partially closed (i.e. some points
lying on its frontier belong to it, while other points lying on
its frontier do not belong to it).

Let’s consider two arbitrary pointsA(a1, a2) andB(b1, b2).
Through the pointsA andB one draws parallels to the axes of
the Cartesian systemXY and one thus one forms a rectangle
AMBNwhose one of the diagonals is justAB.

Let’s note byO the midpoint of the diagonalAB, but O
is also the center of symmetry (intersection of the diagonals)
of the rectangleAMBN. Then one computes the distance be-
tween a pointP (x0, y0) and the rectangleAMBN. One can do
that following the same principle as Dr. Cai Wen did:

— compute the distance in 2D (two dimensions) between
the pointP and the centerO of the rectangle (intersec-
tion of rectangle’s diagonals);

— next compute the distance between the pointP and the
closest point (let’s note it byP′) to it on the frontier (the
rectangle’s four edges) of the rectangleAMBN.

Fig. 3: P is an interior point to the rectangleAMBNand the optimal
point O is in the center of symmetry of the rectangle.

Fig. 4: P is an exterior point to the rectangleAMBNand the optimal
point O is in the center of symmetry of the rectangle.

This step can be done in the following way: considering
P′ as the intersection point between the linePOand the fron-
tier of the rectangle, and taken among the intersection points
that pointP′ which is the closest toP; this case is entirely
consistent with Dr. Cai’s approach in the sense that when re-
ducing from a 2D-space problem to two 1D-space problems,
one exactly gets his result.

The Extension 2D-Distance, forP , O, will be:

ρ
(

(x0, y0),AMBN
)

= d
(

point P, rectangleAMBN
)

=

= |PO| − |P′O| = ±|PP′|, (5)

i) which is equal to the negative length of the red seg-
ment|PP′| in Fig. 3, whenP is interior to the rectangle
AMBN;

ii) or equal to zero, whenP lies on the frontier of the rect-
angleAMBN(i.e. on edgesAM, MB, BN, orNA) since
P coincides withP′;

iii) or equal to the positive length of the blue segment|PP′|
in Fig. 4, whenP is exterior to the rectangleAMBN,
where |PO| means the classical 2D-distance between
the pointP andO, and similarly for|P′O| and|PP′|.

The Extension 2D-Distance, for the optimal point, i.e.
P = O, will be

ρ (O,AMBN) = d(pointO, rectangleAMBN) =

= −maxd
(

pointO, point M on the frontier ofAMBN
)

. (6)
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The last step is to devise the Dependent Function in 2D-
space similarly as Dr. Cai’s defined the dependent function in
1D. The midpoint (or center of symmetry)O has the coordi-
nates

O

(

a1 + b1

2
,
a2 + b2

2

)

. (7)

Let’s compute the

|PO| − |P′O| . (8)

In this case, we extend the lineOP to intersect the frontier
of the rectangleAMBN. P′ is closer toP thanP′′, therefore
we considerP′. The equation of the linePO, that of course
passes through the pointsP (x0, y0) andO

(

a1+b1
2 ,

a2+b2
2

)

, is:

y − y0 =

a2+b2
2 − y0

a1+b1
2 − x0

(x− x0) . (9)

Since thex-coordinate of pointP′ is a1 becauseP′ lies on
the rectangle’s edgeAM, one gets they-coordinate of pointP′

by a simple substitution ofxP′ = a1 into the above equality:

yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0) . (10)

ThereforeP′ has the coordinates

P′
[

xP′ = a1, yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0)

]

. (11)

The distance

d(PQ) = |PQ| =

√

(

x0 −
a1 + b1

2

)2

+

(

y0 −
a2 + b2

2

)2

, (12)

while the distance

d(P′,Q) = |P′Q| =

=

√

(

a1 −
a1 + b1

2

)2

+

(

yP′ −
a2 + b2

2

)2

=

=

√

(

a1 − b1

2

)2

+

(

yP′ −
a2 + b2

2

)2

. (13)

Also, the distance

d(PP′) = |PP′| =
√

(a1 − x0)2 + (yP′ − y0)2 . (14)

Whence the Extension 2D-distance formula

ρ
[

(x0, y0), AMBN
]

=

= d
[

P (x0, y0), A(a1, a2) MB(b1, b2) N
]

=

= |PQ| − |P′Q| (15)

=

√

(

x0−
a1+b1

2

)2
+
(

y0−
a2+b2

2

)2
−

√

( a1−b1
2

)2
+
(

yP′−
a2+b2

2

)2 (16)

= ±|PP′| (17)

= ±

√

(a1 − x0)2 + (yP′ − y0)2 , (18)

where

yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0) . (19)

6 Properties

As for 1D-distance, the following properties hold in 2D:

6.1 Property 1

a) (x, y) ∈ Int (AMBN) if ρ [(x, y),AMBN] < 0, where
Int (AMBN) means interior ofAMBN;

b) (x, y) ∈ Fr (AMBN) if ρ [(x, y),AMBN] = 0, where
Fr (AMBN) means frontier ofAMBN;

c) (x, y) < AMBN if ρ [(x, y),AMBN] > 0.

6.2 Property 2

Let A0M0B0N0 andAMBNbe two rectangles whose sides are
parallel to the axes of the Cartesian system of coordinates,
such that they have no common end points, andA0M0B0N0 ⊂

AMBN. We assume they have the same optimal points
O1 ≡ O2 ≡ O located in the center of symmetry of the two
rectangles. Then for any point (x, y) ⊂ R2 one has
ρ [(x, y),A0M0B0N0] > ρ [(x, y),AMBN]. See Fig. 5.

Fig. 5: Two included rectangles with the same optimal pointsO1 ≡

O2 ≡ O located in their common center of symmetry.

7 Dependent 2D-Function

Let A0M0B0N0 andAMBNbe two rectangles whose sides are
parallel to the axes of the Cartesian system of coordinates,
such that they have no common end points, andA0M0B0N0 ⊂

AMBN.
The Dependent 2D-Function formula is:

K2D(x,y) =
ρ [(x, y),AMBN]

ρ [(x, y),AMBN, ] − ρ [(x, y),A0M0B0N0]
. (20)

7.1 Property 3

Again, similarly to the Dependent Function in 1D-space,
one has:

a) If (x, y) ∈ Int (A0M0B0N0), thenK2D(x,y) > 1;

b) If (x, y) ∈ Fr (A0M0B0N0), thenK2D(x,y) = 1;
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c) If (x, y) ∈ Int (AMBN− A0M0B0N0),
then 0< K2D(x,y) < 1;

d) If (x, y) ∈ Fr (AMBN), thenK2D(x,y) = 0;

e) If (x, y) < AMBN, thenK2D(x, y) < 0.

8 General Case in 2D-Space

One can replace the rectangles by any finite surfaces, bounded
by closed curves in 2D-space, and one can consider any op-
timal pointO (not necessarily the symmetry center). Again,
we assume the optimal points are the same for this nest of two
surfaces. See Fig. 6.

Fig. 6: Two included arbitrary bounded surfaces with the same opti-
mal points situated in their common center of symmetry.

9 Linear Attraction Point Principle

We introduce the Attraction Point Principle, which is the fol-
lowing:

Let S be a given set in the universe of discourseU, and
the optimal pointO ⊂ S. Then each pointP (x1, x2, . . . , xn)
from the universe of discourse tends towards, or is attracted
by, the optimal pointO, because the optimal pointO is an
ideal of each point. That’s why one computes the exten-
sion (n−D)-distance between the pointP and the setS as
ρ [(x1, x2, . . . , xn),S] on the direction determined by the point
P and the optimal pointO, or on the linePO, i.e.:

a) ρ [(x1, x2, . . . , xn),S] is the negative distance between
P and the set frontier, ifP is inside the setS;

b) ρ [(x1, x2, . . . , xn),S] = 0, if P lies on the frontier of the
setS;

c) ρ [(x1, x2, . . . , xn),S] is the positive distance betweenP
and the set frontier, ifP is outside the set.

It is a king of convergence/attraction of each point to-
wards the optimal point. There are classes of examples where
such attraction point principle works. If this principle isgood
in all cases, then there is no need to take into considerationthe
center of symmetry of the setS, since for example if we have
a 2D piece which has heterogeneous material density, then
its center of weight (barycenter) is different from the center
of symmetry. Let’s see below such example in the 2D-space:
Fig. 7.

Fig. 7: The optimal point O as an attraction point for all other points
P1,P2, . . . ,P8 in the universe of discourseR2.

10 Remark 1

Another possible way, for computing the distance between
the pointP and the closest pointP′ to it on the frontier (the
rectangle’s four edges) of the rectangleAMBN, would be by
drawing a perpendicular (or a geodesic) fromP onto the clos-
est rectangle’s edge, and denoting byP′ the intersection be-
tween the perpendicular (geodesic) and the rectangle’s edge.
And similarly if one has an arbitrary setS in the 2Dspace,
bounded by a closed urve. One computes

d(P,S) =Inf
Q∈S
|PQ| (21)

as in the classical mathematics.

11 Extension Distance in 3D-Space

We further generalize to 3D-space the Extension Set and the
Dependent Function. Assume we have two points (a1, a2, a3)
and (b1, b2, b3) in D. Drawing throughA endB parallel planes
to the planes’ axes (XY,XZ,YZ) in the Cartesian systemXYZ
we get a prismAM1M2M3BN1N2N3 (with eight vertices)
whose one of the transversal diagonals is just the line segment
AB. Let’s note byO the midpoint of the transverse diagonal
AB, butO is also the center of symmetry of the prism.

Therefore, from the line segmentAB in 1D-space, to
a rectangleAMBN in 2D-space, and now to a prism
AM1M2M3BN1N2N3 in 3D-space. Similarly to 1D- and 2D-
space, the prism may be closed (i.e. all points lying on its
frontier belong to it), open (i.e. no point lying on its frontier
belong to it), or partially closed (i.e. some points lying onits
frontier belong to it, while other points lying on its frontier
do not belong to it).

Then one computes the distance between a point
P (x0, y0, z0) and the prismAM1M2M3BN1N2N3. One can do
that following the same principle as Dr. Cai’s:

— compute the distance in 3D (two dimensions) between
the pointP and the centerO of the prism (intersection
of prism’s transverse diagonals);

— next compute the distance between the pointP and the
closest point (let’s note it byP′) to it on the frontier of
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the prismAM1M2M3BN1N2N3 (the prism’s lateral sur-
face); consideringP′ as the intersection point between
the line OP and the frontier of the prism, and taken
among the intersection points that pointP′ which is the
closest toP; this case is entirely consistent with Dr.
Cai’s approach in the sense that when reducing from
3D-space to 1D-space one gets exactly Dr. Cai’s result;

— the Extension 3D-Distanced(P,AM1M2M3BN1N2N3)
is d(P,AM1M2M3BN1N2N3) = |PO| − |P′O| = ±|PP′|,
where |PO| means the classical distance in 3D-space
between the pointP andO, and similarly for|P′O| and
|PP′|. See Fig. 8.

Fig. 8: Extension 3D-Distance between a point and a prism, where
O is the optimal point coinciding with the center of symmetry.

12 Property 4

a) (x, y, z) ∈ Int (AM1M2M3BN1N2N3)
if ρ [(x, y, z),AM1M2M3BN1N2N3] < 0,
where Int (AM1M2M3BN1N2N3) means interior
of AM1M2M3BN1N2N3;

b) (x, y, z) ∈ Fr (AM1M2M3BN1N2N3)
if ρ [(x, y, z),AM1M2M3BN1N2N3] = 0
means frontier ofAM1M2M3BN1N2N3;

c) (x, y, z) < AM1M2M3BN1N2N3

if ρ [(x, y, z),AM1M2M3BN1N2N3] > 0.

13 Property 5

Let A0M01M02M03B0N01N02N03 and AM1M2M3BN1N2N3

be two prisms whose sides are parallel to the axes of the
Cartesian system of coordinates, such that they have no
common end points, andA0M01M02M03B0N01N02N03 ⊂

AM1M2M3BN1N2N3. We assume they have the same opti-
mal pointsO1 ≡ O2 ≡ O located in the center of symmetry of
the two prisms.

Then for any point (x, y, z) ∈ R3 one has

ρ [(x, y, z),A0M01M02M03B0N01N02N]03 >

ρ [(x, y, z)AM1M2M3BN1N2N3] .

14 The Dependent 3D-Function

The last step is to devise the Dependent Function in 3D-space
similarly to Dr. Cai’s definition of the dependent function
in 1D-space. Let the prismsA0M01M02M03B0N01N02N03 and
AM1M2M3BN1N2N3 be two prisms whose faces are paral-
lel to the axes of the Cartesian system of coordinatesXYZ,
such that they have no common end points in such a way that
A0M01M02M03B0N01N02N03 ⊂ AM1M2M3BN1N2N3. We as-
sume they have the same optimal pointsO1 ≡ O2 ≡ O located
in the center of symmetry of these two prisms.

The Dependent 3D-Function formula is:

K3D(x,y,z) =
(

ρ [(x, y, z),AM1M2M3BN1N2N3]
)

×

×
(

ρ [(x, y, z),AM1M2M3BN1N2N3, ] −

− ρ [(x, y, z),A0M01M02M03BN01N02N03]
)−1
. (22)

15 Property 6

Again, similarly to the Dependent Function in 1D- and 2D-
spaces, one has:

a) If (x, y, z) ∈ Int (A0M01M02M03B0N01N02N03),
thenK3D(x, y, z) > 1;

b) If (x, y, z) ∈ Fr (A0M01M02M03B0N01N02N03),
thenK3D(x, y, z) = 1;

c) If (x, y, z) ∈ Int (AM1M2M3BN1N2N3−

−A0M01M02M03B0N01N02N03),
then 0< K3D(x, y, z) < 1;

d) If (x, y, z) ∈ Fr (AM1M2M3BN1N2N3),
thenK3D(x, y, z) = 0;

e) If (x, y, z) < AM1M2M3BN1N2N3,
thenK3D(x, y, z) < 0.

16 General Case in 3D-Space

One can replace the prisms by any finite 3D-bodies, bounded
by closed surfaces, and one considers any optimal pointO
(not necessarily the centers of surfaces’ symmetry). Again,
we assume the optimal points are the same for this nest of
two 3D-bodies.

17 Remark 2

Another possible way, for computing the distance between
the pointP and the closest pointP′ to it on the frontier (lateral
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surface) of the prismAM1M2M3BN1N2N3 is by drawing a
perpendicular (or a geodesic) fromP onto the closest prism’s
face, and denoting byP′ the intersection between the perpen-
dicular (geodesic) and the prism’s face.

And similarly if one has an arbitrary finite bodyB in the
3D-space, bounded by surfaces. One computes as in classical
mathematics:

d(P, B) =Inf
Q∈B
|PB|. (23)

18 Linear Attraction Point Principle in 3D-Space

Fig. 9: Linear Attraction Point Principle for any bounded 3D-body.

19 Non-Linear Attraction Point Principle in 3D-Space,
and in (n−D)-Space

There might be spaces where the attraction phenomena un-
dergo not linearly by upon some specific non-linear curves.
Let’s see below such example for pointsPi whose trajecto-
ries of attraction towards the optimal point follow some non-
linear 3D-curves.

20 (n−D)-Space

In general, in a universe of discourseU, let’s have an (n−D)-
set S and a pointP. Then the Extension Linear (n−D)-
Distance between pointP and setS, is:

ρ (P,S) =







































−d(P,P′)
P′∈Fr (S)

, P , 0, P ∈ |OP′|

d(P,P′)
P′∈Fr (S)

, P , 0, P′ ∈ |OP|

−maxd(P,M)
P′∈Fr (S)

, P = 0

(24)

whereO is the optimal point (or linearly attraction point);
d(P,P′) means the classical linearly (n−D)-distance between

Fig. 10: Non-Linear Attraction Point Principle for any bounded 3D-
body.

two pointsP andP′; Fr (S) means the frontier of setS; and
|OP′| means the line segment between the pointsO and P′

(the extremity pointsO andP′ included), thereforeP ∈ |OP′|
means thatP lies on the lineOP′, in between the pointsO
andP′.

For P coinciding with O, one defined the distance be-
tween the optimal pointOand the setS as the negatively max-
imum distance (to be in concordance with the 1D-definition).

And the Extension Non-Linear (n−D)-Distance between
point P and setS, is:

ρc(P,S) =







































−dc(P,P′)
P′∈Fr (S)

, P , 0, P ∈ c (OP′)

dc(P,P′)
P′∈Fr (S)

, P , 0, P′ ∈ c (OP)

−maxdc(P,M)
P′∈Fr (S), M∈c (O)

, P = 0

(25)

where means the extension distance as measured along the
curve c; O is the optimal point (or non-linearly attraction
point); the points are attracting by the optimal point on tra-
jectories described by an injective curvec; dc(P,P′) means
the non-linearly (n−D)-distance between two pointsP and
P′, or the arc length of the curve c between the pointsP and
P′; Fr (S) means the frontier of setS; andc (OP′) means the
curve segment between the pointsO and P′ (the extremity
pointsO andP′ included), thereforeP ∈ (OP′) means thatP
lies on the curvec in between the pointsO andP′.

For P coinciding with O, one defined the distance be-
tween the optimal pointO and the setS as the negatively
maximum curvilinear distance (to be in concordance with the
1D-definition).
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In general, in a universe of discourseU, let’s have a nest
of two (n−D)-sets,S1 ⊂ S2, with no common end points,
and a pointP. Then the Extension Linear Dependent (n−D)-
Function referring to the pointP (x1, x2, . . . , xn) is:

KnD(P) =
ρ (P,S2)

ρ (P,S2) − ρ (P,S1)
, (26)

where is the previous extension linear (n−D)-distance be-
tween the pointP and the (n−D)-setS2.

And the Extension Non-Linear Dependent (n−D)-Func-
tion referring to pointP (x1, x2, . . . , xn) along the curvec is:

KnD(P) =
ρc(P,S2)

ρc(P,S2) − ρc(P,S1)
, (27)

where is the previous extension non-linear (n−D)-distance
between the pointP and the (n−D)-setS2 along the curvec.

21 Remark 3

Particular cases of curvesc could be interesting to studying,
for example if c are parabolas, or have elliptic forms, or arcs
of circle, etc. Especially considering the geodesics wouldbe
for many practical applications. Tremendous number of ap-
plications of Extenics could follow in all domains where at-
traction points would exist; these attraction points couldbe in
physics (for example, the earth center is an attraction point),
economics (attraction towards a specific product), sociology
(for example attraction towards a specific life style), etc.

22 Conclusion

In this paper we introduced theLinear and Non-Linear At-
traction Point Principle, which is the following:

Let S be an arbitrary set in the universe of discourseU
of any dimension, and the optimal pointO ∈ S. Then each
point P (x1, x2, . . . , xn), n > 1, from the universe of discourse
(linearly or non-linearly) tends towards, or is attracted by, the
optimal pointO, because the optimal pointO is an ideal of
each point.

It is a king of convergence/attraction of each point to-
wards the optimal point. There are classes of examples and
applications where such attraction point principle may apply.

If this principle is good in all cases, then there is no need
to take into consideration the center of symmetry of the set
S, since for example if we have a 2D factory piece which
has heterogeneous material density, then its center of weight
(barycenter) is different from the center of symmetry.

Then we generalized in the track of Cai Wen’s idea
to extend 1D-set to an extension (n−D)-set, and thus de-
fined theLinear (or Non-Linear) Extension(n−D)-Distance
between a pointP (x1, x2, . . . , xn) and the (n−D)-set S as
ρ [(x1, x2, . . . , xn),S] on the linear (or non-linear) direction
determined by the pointP and the optimal pointO (the line
PO, or respectively the curvilinearPO) in the following way:

1) ρ [(x1, x2, . . . , xn),S] is the negative distance between
P and the set frontier, ifP is inside the setS;

2) ρ [(x1, x2, . . . , xn),S] = 0, if P lies on the frontier of the
setS;

3) ρ [(x1, x2, . . . , xn),S] is the positive distance betweenP
and the set frontier, ifP is outside the set.

We got the following properties:

4) It is obvious from the above definition of the extension
(n−D)-distance between a pointP in the universe of
discourse and the extension (n−D)-setS that:

i) Point P (x1, x2, . . . , xn) ∈ Int (S)
if ρ [(x1, x2, . . . xn),S] < 0;

ii) Point P (x1, x2, . . . , xn) ∈ Fr (S)
if ρ [(x1, x2, . . . xn),S] = 0;

iii) Point P (x1, x2, . . . , xn) < S
if ρ [(x1, x2, . . . xn),S] > 0.

5) Let S1 andS2 be two extension sets, in the universe
of discourseU, such that they have no common end
points, andS1 ⊂ S2. We assume they have the same
optimal pointsO1 ≡ O2 ≡ O located in their center
of symmetry. Then for any pointP (x1, x2, . . . , xn) ∈ U
one has:

ρ [(x1, x2, . . . xn),S2] > ρ [(x1, x2, . . . xn),S1] . (28)

Then we proceed to the generalization of the dependent
function from 1D-space to Linear (or Non-Linear) (n−D)-
space Dependent Function, using the previous notations.

TheLinear (or Non-Linear) Dependent(n−D)-Function
of pointP (x1, x2, . . . , xn) along the curvec, is:

KnD(x1, x2, . . . , xn) =
(

ρc[(x1, x2, . . . xn),S2]
)

×

×
(

ρc[(x1, x2, . . . xn),S2] − ρc[(x1, x2, . . . xn),S1]
)−1

(29)

(wherec may be a curve or even a line) which has the follow-
ing property:

6) If point P (x1, x2, . . . , xn) ∈ Int (S1),
thenKnD(x1, x2, . . . , xn) > 1;

7) If point P (x1, x2, . . . , xn) ∈ Fr (S1),
thenKnD(x1, x2, . . . , xn) = 1;

8) If point P (x1, x2, . . . , xn) ∈ Int (S2− S1),
thenKnD(x1, x2, . . . , xn) ∈ (0, 1);

9) If point P (x1, x2, . . . , xn) ∈ Int (S2),
thenKnD(x1, x2, . . . , xn) = 0;

10) If point P (x1, x2, . . . , xn) < Int (S2),
thenKnD(x1, x2, . . . , xn) < 0.
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E-mail: s.dumitru42@yahoo.com

The conclusive view of quantum mechanics theory depends on its routes in respect with
CIUR (Conventional Interpretation of Uncertainty Relations). As the CIUR is obli-
gatorily assumed or interdicted the mentioned view leads to ambiguous, deficient and
unnatural visions respectively to a potentially simple, mended and natural conception.
The alluded dependence is illustrated in the attached poster.

Specification

The announced poster is a collage where some scientific
ideas, suggested and argued in our papers [1,2], together with
the known traffic signs, are figuratively pasted on the Popescu
Gopo’s cartoon “Calea proprie” (“ Proper route”) [3].
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A Final Note on the Nature of the Kinemetric Unification
of Physical Fields and Interactions

(On the occasion of Abraham Zelmanov’s birthday
and the near centennial

of Einstein’s general theory of relativity)

Indranu Suhendro
www.zelmanov.org

A present-day category of approaches to unification (of the physical fields) lacks the
ultimate epistemological and scientific characteristics as I have always pointed out el-
sewhere. This methodological weakness is typical of a lot ofpost-modern “syllogism
physics” (and ultimately the solipsism of such scientism ingeneral). Herein, we shall
once again make it clear as to what is meant by a true unified field theory in the furthest
epistemological-scientific-dialectical sense, which must inevitably include also the na-
tural kinemetric unity of the observer and physical observables.

Herein, I shall state my points very succinctly. Apart from
the avoidance of absolutely needless verbosity, this is such as
to also encompass the scientific spirit of Albert Einstein, who
tirelessly and independently pursued a pure kind of geometri-
zation of physics as demanded by the real geometric quintes-
sence of General Relativity, and that of Abraham Zelmanov,
who formulated his theory of chronometric invariants and a
most all-encompassing classification of inhomogeneous, ani-
sotropic general relativistic cosmological models and whore-
vealed a fundamental preliminary version of the kinemetric
monad formalism of General Relativity for the unification of
the observer and observables in the cosmos.

1. A true unified field theory must not start with an arbi-
trarily concocted Lagrangian density (with merely the appea-
rance of the metric determinant

√
−g together with a sum of

variables inserted by hand), for this is merely a way to embed
— and not construct from first principles — a variational den-
sity in an ad hoc given space (manifold). In classical General
Relativity, in the case of pure vacuum, i.e.,Rαβ = 0, there
is indeed a rather unique Lagrangian density: the space-time
integral overR

√
−g, the variation of which givesRαβ = 0.

Now, precisely because there is only one purely geometric
integrand here, namely the Ricci curvature scalarR (apart
from the metric volume term

√
−g), this renders itself a valid

geometric-variational reconstruction of vacuum General Re-
lativity, and it is a mere tautology: thus it is valid rather in
a secondary sense (after the underlying Riemannian geome-
try of General Relativity is encompassed). Einstein indeed
did not primarily construct full General Relativity this way.
In the case of classical General Relativity with matter and fi-
elds, appended to the pure gravitational Lagrangian density
are the matter field and non-geometrized interactions (such
as electromagnetism), giving the relevant energy-momentum

tensor: this “integralism procedure” (reminiscent of classi-
cal Newtonian-Lagrangian dynamics) is again only tautologi-
cally valid since classical General Relativity does not geome-
trize fields other than the gravitational field. Varying sucha
Lagrangian density sheds no further semantics and informa-
tion on the deepest nature of the manifold concerned.

2. Post-modern syllogism physics — including string the-
ory and other toy-models (a plethora of “trendy salad approa-
ches”) — relies too heavily on such an arbitrary procedure.
Progress associated with such a mere “sticky-but-not-solid
approach” — often with big-wig politicized, opportunistic
claims — seems rapid indeed, but it is ultimately a mere fa-
cade: something which Einstein himself would scientifically,
epistemologically abhor (for him, in the pure Spinozan, Kan-
tian, and Schopenhauerian sense).

3. Thus, a true unified field theory must build the spin-
curvature geometry of space-time, matter, and physical fi-
elds from scratch (first principles). In other words, it must
be constructed from a very fundamental level (say, the diffe-
rential tetrad and metricity level), i.e., independently of mere
embedding and variationalism. When one is able to cons-
truct the tetrad and metricity this way, he has a pure the-
ory of kinemetricity for the universal manifold M: his ge-
nerally asymmetric, anholonomic metricgαβ, connection W,
and curvatureR will depend on not just the coordinates but
also on their generally non-integrable (asymmetric) differen-
tials: M(x, dx) → M(g, dg) → W(g, dg) → R(g, dg). In
other words, it becomes a multi-fractal first-principle geo-
metric construction, and the geometry is a true chiral meta-
continuum. This will then be fully capable of producing the
true universal equation of motion of the unified fields as a
whole in a single package (including the electromagnetic Lo-
rentz equation of motion and the chromodynamic Yang-Mills
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equation of motion) and the nature of pure geometric motion
— kinemetricity — of the cosmos will be revealed. This,
of course, is part of the the emergence of a purely geome-
tric energy-momentum tensor as well. The ultimate failure of
Einstein’s tireless, beautiful unification efforts in the past was
that he could hardly arrive at the correct geometric Lorentz
equation of motion and the associated energy-momentumten-
sor for the electromagnetic field (and this is not as many pe-
ople, including specialists, would understand it). In my past
works (with each of my theories being independent and self-
contained; and I do not repeat myself ever), I have shown how
all this can be accomplished: one is with the construction of
an asymmetric metric tensor whose anti-symmetric part gives
pure spin and electromagnetism, and whose differential struc-
ture gives an anholonomic, asymmetric connection uniquely
dependent onx anddx (and hence x and the world-velocity
u, giving a new kind of Finslerian space), which ultimately
constructs matter (and motion) from pure kinemetric scratch.
Such a unified field theory is bound to be scale-independent
(and metaphorically saying, “semi-classical”): beyond (i.e.,
truly independent of) both quantum mechanical and classical
formalisms.

4. Such is the ultimate epistemology — and not just
methodology — of a scientific construct with real mindful
power (intellection, and not just intellectualism), i.e.,with
real scientific determination. That is why, the subject of quan-
tum gravity (or quantum cosmology) will look so profoundly
different to those rare few who truly understand the full epis-
temology and the purely geometric method of both our to-
pic (on unification) and General Relativity. These few are
the true infinitely self-reserved ones (truly to unbelievable
lengths) and cannot at all be said to be products of the age
and its trends. Quantizing space-time (even using things like
the Feynman path-integrals and such propagators) in (exten-
ded) General Relativity means nothing if somewhat alien pro-
cedures are merely brought (often in disguise) as part of a
mere embedding procedure: space-time is epistemologically
and dialectically not exactly on the same footing as quantum
and classical fields, matter, and energy (while roughly sharing
certain parallelism with these things); rather, it must categori-
cally, axiomatically qualify these things. Even both quantum
mechanically and classically it is evident that material things
possessed of motion and energy are embedded in a configu-
ration space, but the space-time itself cannot be wholly found
in these constituents. In the so-called “standard model”, for
example, even when quarks are arrived at as being material
constituents “smaller than atoms”, one still has no further
(fundamental) information of the profounder things a quark
necessarily contains, e.g., electric charge, spin, magnetic mo-
ment, and mass. In other words, the nature of both electro-
magnetism and matter is not yet understood in such a way. At
the profoundest level, things cannot merely be embedded in
space-time nor can space-time itself be merely embedded in
(and subject to) a known quantum procedure. Geometry is ge-

ometry: purer, greater levels of physico-mathematical reality
reside therein, within itself, and this is such only with thefirst-
principle construction of a new geometry of spin-curvature
purely from scratch — not merely synthetically from without
— with the singular purpose to reveal a complete kinemetric
unity of the geometry itself, which is none other than mo-
tion and matter at once. Again, such a geometry is scale-
independent, non-simply connected, anholonomic, asymme-
tric, inhomogeneous: it ultimately has no “inside” nor “out-
side” (which, however, goes down to saying that there are
indeed profound internal geometric symmetries).

5. Thus, the mystery (and complete insightful understan-
ding) of the cosmos lies in certain profound scale-independ-
ent, kinemetric, internal symmetries of the underlying geo-
metry (i.e., meta-continuum), and not merely in ad hoc pro-
jective, embedding, and variational procedures (including the
popular syllogism of “extra dimensions”).

“There are few who swim against the currents of time,
living certain majestic smolderings and alien strengths asif
they have died to live forever. There are so few who are like
the vortex of a midnight river and the slope of a cosmic edge,
in whose singularity and declivity the age is gone. There are
fewer who are like a solid, unnamed, stepping stone in the
heavy currents of the age of false light and enlightenment;
as a generic revolutionary praxis goes, they’d rather be so
black and coarse — solidly ingrained and gravitating — than
smooth and merely afloat. But fewer still are those who are
the thunder for all ages and in all voids: they are not groun-
ded and sheltered on earth — they terrify it, — nor do they
hang and dwell in the sky — they split it: — that light, so
very few can witness its pure blinding longitude and touch
its brief sublime density, is the truest Sensation (Sight-Sense,
Causation-Reason) for real humanity to be the exact thing at
the exact time in the Universe: itself.”

Submitted on May 15, 2012/ Accepted on May 16, 2012
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Pluto Moons exhibit Orbital Angular Momentum Quantization per Mass

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA, 92646, USA. E-mail: frank11hb@yahoo.com

The Pluto satellite system of the planet plus five moons is shown to obey the quan-
tum celestial mechanics (QCM) angular momentum per mass quantization condition
predicted for any gravitationally bound system.

The Pluto satellite system has at least five moons, Charon,
P5, Nix, P4, and Hydra, and they are nearly in a 1:3:4:5:6 res-
onance condition! Before the recent detection of P5, Youdin
et al. [1] (2012) analyzed the orbital behavior of the other
four moons via standard Newtonian gravitation and found
regions of orbital stability using distances from the Pluto-
Charon barycenter.

I report here that these five moons each exhibit angular
momentum quantization per mass in amazing agreement with
the prediction of the quantum celestial mechanics (QCM)
proposed by H. G. Preston and F. Potter [2, 3] in 2003. QCM
predicts that bodies orbiting a central massive object in grav-
itationally bound systems obey the angular momentum L per
mass µ quantization condition

L
µ
= mcH, (1)

with m an integer and c the speed of light. For most systems
studied, m is an integer less than 20. The Preston gravitational
distance H defined by the system total angular momentum
divided by its total mass

H =
LT

MTc
(2)

provides a characteristic QCM distance scale for the system.
At the QCM equilibrium orbital radius, the L of the or-

biting body agrees with its Newtonian value µ
√

GMT r. One
assumes that after tens of millions of years that the orbiting
body is at or near its QCM equilibrium orbital radius r and
that the orbital eccentricity is low so that our nearly circu-
lar orbit approximation leading to these particular equations
holds true. For the Pluto system, Hydra has the largest eccen-
tricity of 0.0051 and an m value of 12.

Details about the derivation of QCM from the general rel-
ativistic Hamilton-Jacobi equation and its applications to or-
biting bodies in the Schwarzschild metric approximation and
to the Universe in the the interior metric can be found in our
original 2003 paper [2] titled “Exploring Large-scale Gravi-
tational Quantization without ℏ in Planetary Systems, Galax-
ies, and the Universe”. Further applications to gravitational
lensing [4], clusters of galaxies [5], the cosmological redshift
as a gravitational redshift [6], exoplanetary systems and the
Kepler-16 circumbinary system [7] all support this QCM ap-
proach.

Fig. 1: The Pluto System fit to QCM

Table 1: Pluto system orbital parameters

r × 106 m period (d) ϵ m P2/P1

Pluto 2.035 6.387230 0.0022 2

Charon 17.536 6.387230 0.0022 6 1

P5 42. 20.2 ∼ 0 9 2.915

Nix 48.708 24.856 0.0030 10 3.880

P4 59. 32.1 ∼ 0 11 5.038

Hydra 64.749 38.206 0.0051 12 6.405

The important physical parameters of the Pluto system
satellites from NASA, ESA, and M. Showalter (SETI Insti-
tute) et al. [8] as listed at Wikipedia are given in the table. The
system total mass is essentially the combined mass of Pluto
(13.05 × 1021 kg) and Charon (1.52 × 1021 kg). The QCM
values of m in the next to last column were determined by
the best linear regression fit (R2 = 0.998) to the angular mo-
mentum quantization per mass equation and are shown in the
figure as L′ = L/µc plotted against m with slope H = 2.258
meters. Using distances from the center of Pluto instead of
from the barycenter produces the same m values (R2 = 0.995)
but a slightly different slope.

In QCM the orbital resonance condition is given by the
period ratio given in the last column calculated from

P2

P1
=

(m2 + 1)3

(m1 + 1)3 . (3)

With Charon as the reference, this system of moons has nearly
a 1:3:4:5:6 commensuration, with the last moon Hydra having
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the largest discrepancy of almost 7%. If Hydra moves further
out from the barycenter toward its QCM equilibrium orbital
radius for m = 12 in the next few million years, then its posi-
tion on the plot will improve but its m value will remain the
same. Note also that P5 at m = 9 may move slightly closer
to the barycenter. Dynamic analysis via the appropriate QCM
equations will be reported later. Note that additional moons
of Pluto may be found at non-occupied m values.

The QCM plot reveals that not all possible m values are
occupied by moons of Pluto and at the same time predicts or-
bital radii where additional moons are expected to be. The
present system configuration depends upon its history of for-
mation and its subsequent evolution, both processes being de-
pendent upon the dictates of QCM. Recall [2] that the satellite
systems of the Jovian planets were shown to obey QCM, with
some QCM orbital states occupied by more than one moon.

Fig. 2: The Solar System fit to QCM

I show in Fig. 2 the linear regression plot (r2 = 0.999) for
the Solar System, this time with 8 planets plus the largest 5
additional minor planets Ceres, Pluto, Haumea, Makemake,
and Eris. From the fit, the slope gives us a Solar System total
angular momentum of about 1.78 × 1045 kg m2/s, far exceed-
ing the angular momentum contributions of the planets by a
factor of at least 50! Less than a hundred Earth masses at
the 50,000–100,000 A.U. distance of the Oort Cloud there-
fore determines the angular momentum of the Solar System.
Similar analyses have been done for numerous exoplanet sys-
tems [7] with multiple planets with the result that additional
angular momentum is required, meaning that more planets
and/or the equivalent of an Oort Cloud are to be expected.

The existence of angular momentum per mass quantiza-
tion dictates also that the energy per mass quantization for a
QCM state obeys

E
µ
= −

r2
gc

2

8n2H2 = −
G2M4

T

2n2LT
2 (4)

with n = m + 1 for circular orbits and Schwarzschild radius
rg. One expects H ≫ rg for the Schwarzschild approxima-
tion to be acceptable, a condition upheld by the Pluto system,
the Solar System, and all exoplanet systems. The correspond-

ing QCM state wave functions are confluent hypergeometric
functions that reduce to hydrogen-like wave functions for cir-
cular orbits. Therefore, a QCM energy state exists for each
n ⩾ 2. A body in a QCM state but not yet at the equilibrium
radius for its m value will slowly drift toward this radius over
significant time periods because the QCM accelerations are
small.

In retrospect, the Pluto system is probably more like a
binary system than a system with a single central mass, with
the moons beyond Charon in circumbinary orbits around the
barycenter. As such, I was surprised to find such a good fit to
the QCM angular momentum restriction which was derived
for the single dominant mass system. Additional moons of
Pluto, should they exist, can provide some more insight into
the application of QCM to this gravitationally bound system.

Meanwhile, the identification of additional exoplanets in
nearby systems, particularly circumbinary planets, promises
to create an interesting challenge for establishing QCM as a
viable approach toward a better understanding of gravitation
theory at all size scales.
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On the Decomposition of the Spacetime Metric Tensor
and of Tensor Fields in Strained Spacetime

Pierre A. Millette
University of Ottawa (alumnus), K4A 2C3 747, Ottawa, CANADA. E-mail: PierreAMillette@alumni.uottawa.ca

We propose a natural decomposition of the spacetime metric tensor of General Relativ-
ity into a background and a dynamical part based on an analysis from first principles
of the effect of a test mass on the background metric. We find that the presence of
mass results in strains in the spacetime continuum. Those strains correspond to the dy-
namical part of the spacetime metric tensor. We then apply the stress-strain relation of
Continuum Mechanics to the spacetime continuum to show that rest-mass energy den-
sity arises from the volume dilatation of the spacetime continuum. Finally we propose
a natural decomposition of tensor fields in strained spacetime, in terms of dilatations
and distortions. We show that dilatations correspond to rest-mass energy density, while
distortions correspond to massless shear transverse waves. We note that this decom-
position in a massive dilatation and a massless transverse wave distortion, where both
are present in spacetime continuum deformations, is somewhat reminiscent of wave-
particle duality. We note that these results are considered to be local effects in the
particular reference frame of the observer. In addition, the applicability of the proposed
metric to the Einstein field equations remains open.

1 Introduction

We first demonstrate from first principles that spacetime is
strained by the presence of mass. Strained spacetime has been
explored recently by Tartaglia et al. in the cosmological con-
text, as an extension of the spacetime Lagrangian to obtain a
generalized Einstein equation [1, 2]. Instead, in this analysis,
we consider strained spacetime within the framework of Con-
tinuum Mechanics and General Relativity. This allows for the
application of continuum mechanical results to the spacetime
continuum. In particular, this provides a natural decomposi-
tion of the spacetime metric tensor and of spacetime tensor
fields, both of which are still unresolved and are the subject
of continuing investigations (see for example [3–7]).

2 Decomposition of the Spacetime Metric Tensor

There is no straightforward definition of local energy density
of the gravitational field in General Relativity [8, see p. 84,
p. 286] [6, 9, 10]. This arises because the spacetime metric
tensor includes both the background spacetime metric and the
local dynamical effects of the gravitational field. No natu-
ral way of decomposing the spacetime metric tensor into its
background and dynamical parts is known.

In this section, we propose a natural decomposition of the
spacetime metric tensor into a background and a dynamical
part. This is derived from first principles by introducing a
test mass in the spacetime continuum described by the back-
ground metric, and calculating the effect of this test mass on
the metric.

Consider the diagram of Figure 1. Points A and B of the
spacetime continuum, with coordinates xµ and xµ + dxµ re-

spectively, are separated by the infinitesimal line element

ds2 = gµν dxµdxν (1)

where gµν is the metric tensor describing the background state
of the spacetime continuum.

We now introduce a test mass in the spacetime continuum.
This results in the displacement of point A to Ã, where the
displacement is written as uµ. Similarly, the displacement of
point B to B̃ is written as uµ + duµ. The infinitesimal line
element between points Ã and B̃ is given by d̃s

2
.

By reference to Figure 1, the infinitesimal line element
d̃s

2
can be expressed in terms of the background metric tensor

as
d̃s

2
= gµν(dxµ + duµ)(dxν + duν). (2)

Multiplying out the terms in parentheses, we get

d̃s
2
= gµν(dxµdxν + dxµduν + duµdxν + duµduν). (3)

Expressing the differentials du as a function of x, this equa-
tion becomes

d̃s
2
= gµν(dxµdxν + dxµ uν;α dxα + uµ;α dxαdxν+

+ uµ;α dxα uν;β dxβ)
(4)

where the semicolon (;) denotes covariant differentiation. Re-
arranging the dummy indices, this expression can be written
as

d̃s
2
= (gµν + gµα uα;ν + gαν uα;µ + gαβ uα;µuβ;ν) dxµdxν (5)

and lowering indices, the equation becomes

d̃s
2
= (gµν + uµ;ν + uν;µ + uα;µuα;ν) dxµdxν. (6)
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Fig. 1: Effect of a test mass on the background metric tensor
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The expression uµ;ν + uν;µ + uα;µuα;ν is equivalent to the
definition of the strain tensor εµν of Continuum Mechanics.
The strain εµν is expressed in terms of the displacements uµ

of a continuum through the kinematic relation [11, see p. 149]
[12, see pp. 23–28]:

εµν =
1
2

(uµ;ν + uν;µ + uα;µuα;ν). (7)

Substituting for εµν from Eq.(7) into Eq.(6), we get

d̃s
2
= (gµν + 2 εµν) dxµdxν. (8)

Setting [12, see p. 24]

g̃µν = gµν + 2 εµν (9)

then Eq.(8) becomes

d̃s
2
= g̃µν dxµdxν (10)

where g̃µν is the metric tensor describing the spacetime con-
tinuum with the test mass.

Given that gµν is the background metric tensor describing
the background state of the continuum, and g̃µν is the space-
time metric tensor describing the final state of the continuum
with the test mass, then 2 εµν must represent the dynamical
part of the spacetime metric tensor due to the test mass:

g
dyn
µν = 2 εµν. (11)

We are thus led to the conclusion that the presence of mass
results in strains in the spacetime continuum. Those strains
correspond to the dynamical part of the spacetime metric ten-
sor. Hence the applied stresses from mass (i.e. the energy-
momentum stress tensor) result in strains in the spacetime
continuum, that is strained spacetime.

3 Rest-Mass Energy Relation

The introduction of strains in the spacetime continuum as a
result of the energy-momentum stress tensor allows us to use
by analogy results from Continuum Mechanics, in particular
the stress-strain relation, to provide a better understanding of
strained spacetime.

The stress-strain relation for an isotropic and homoge-
neous spacetime continuum can be written as [12, see pp.
50–53]:

2µ0ε
µν + λ0g

µνε = T µν (12)

where T µν is the energy-momentum stress tensor, εµν is the
resulting strain tensor, and

ε = εαα (13)

is the trace of the strain tensor obtained by contraction. ε
is the volume dilatation defined as the change in volume per
original volume [11, see p. 149–152] and is an invariant of
the strain tensor. λ0 and µ0 are the Lamé elastic constants of
the spacetime continuum: µ0 is the shear modulus and λ0 is
expressed in terms of κ0, the bulk modulus:

λ0 = κ0 − µ0/2 (14)

in a four-dimensional continuum. The contraction of Eq.(12)
yields the relation

2(µ0 + 2λ0)ε = Tαα ≡ T. (15)

The time-time component T 00 of the energy-momentum
stress tensor represents the total energy density given by [13,
see pp. 37–41]

T 00(xk) =
∫

d3pEp f (xk,p) (16)

where Ep = (ρ2c4 + p2c2)1/2, ρ is the rest-mass energy den-
sity, c is the speed of light, p is the momentum 3-vector and
f (xk,p) is the distribution function representing the number
of particles in a small phase space volume d3xd3p. The space-
space components T i j of the energy-momentum stress tensor
represent the stresses within the medium given by

T i j(xk) = c2
∫

d3p
pi p j

Ep
f (xk,p). (17)

They are the components of the net force acting across a
unit area of a surface, across the xi planes in the case where
i = j.

In the simple case of a particle, they are given by [14, see
p. 117]

T ii = ρ vivi (18)

where vi are the spatial components of velocity. If the parti-
cles are subject to forces, these stresses must be included in
the energy-momentum stress tensor.
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Explicitly separating the time-time and the space-space
components, the trace of the energy-momentum stress tensor
is written as

Tαα = T 0
0 + T i

i. (19)

Substituting from Eq.(16) and Eq.(17), using the metric
ηµν of signature (+ - - -), we obtain:

Tαα(xk) =
∫

d3p
(
Ep −

p2c2

Ep

)
f (xk,p) (20)

which simplifies to

Tαα(xk) = ρ2c4
∫

d3p
f (xk,p)

Ep
. (21)

Using the relation [13, see p. 37]

1

Ehar(xk)
=

∫
d3p

f (xk,p)
Ep

(22)

in equation Eq.(21), we obtain the relation

Tαα(xk) =
ρ2c4

Ehar(xk)
(23)

where Ehar(xk) is the Lorentz invariant harmonic mean of the
energy of the particles at xk.

In the harmonic mean of the energy of the particles Ehar,
the momentum contribution p will tend to average out and be
dominated by the mass term ρc2, so that we can write

Ehar(xk) ≃ ρc2. (24)

Substituting for Ehar in Eq.(23), we obtain the relation

Tαα(xk) ≃ ρc2. (25)

The total rest-mass energy density of the system is obtained
by integrating over all space:

Tαα =
∫

d3x Tαα(xk). (26)

The expression for the trace derived from Eq.(19) depends
on the composition of the sources of the gravitational field.
Considering the energy-momentum stress tensor of the elec-
tromagnetic field, we can show that Tαα = 0 as expected for
massless photons, while

T 00 =
ϵ0
2

(
E2 + c2B2

)
is the total energy density, where ϵ0 is the electromagnetic
permittivity of free space, and E and B have their usual sig-
nificance.

Hence Tαα corresponds to the invariant rest-mass energy
density and we write

Tαα = T = ρc2 (27)

where ρ is the rest-mass energy density. Using Eq.(27) into
Eq.(15), the relation between the invariant volume dilatation
ε and the invariant rest-mass energy density becomes

2(µ0 + 2λ0)ε = ρc2 (28)

or, in terms of the bulk modulus κ0,

4κ0ε = ρc2. (29)

This equation demonstrates that rest-mass energy density
arises from the volume dilatation of the spacetime continuum.
The rest-mass energy is equivalent to the energy required to
dilate the volume of the spacetime continuum, and is a mea-
sure of the energy stored in the spacetime continuum as vol-
ume dilatation. κ0 represents the resistance of the spacetime
continuum to dilatation. The volume dilatation is an invariant,
as is the rest-mass energy density.

4 Decomposition of Tensor Fields in Strained Spacetime

As opposed to vector fields which can be decomposed into
longitudinal (irrotational) and transverse (solenoidal) compo-
nents using the Helmholtz representation theorem [11, see
pp. 260–261], the decomposition of spacetime tensor fields
can be done in many ways (see for example [3–5, 7]).

The application of Continuum Mechanics to a strained
spacetime continuum offers a natural decomposition of tensor
fields, in terms of dilatations and distortions [12, see pp. 58–
60]. A dilatation corresponds to a change of volume of the
spacetime continuum without a change of shape (as seen in
Section 3) while a distortion corresponds to a change of shape
of the spacetime continuum without a change in volume. Di-
latations correspond to longitudinal displacements and distor-
tions correspond to transverse displacements [11, see p. 260].

The strain tensor εµν can thus be decomposed into a strain
deviation tensor eµν (the distortion) and a scalar e (the dilata-
tion) according to [12, see pp. 58–60]:

εµν = eµν + egµν (30)

where
eµν = εµν − eδµν (31)

e =
1
4
εαα =

1
4
ε. (32)

Similarly, the energy-momentum stress tensor T µν is de-
composed into a stress deviation tensor tµν and a scalar t ac-
cording to

T µν = tµν + tgµν (33)

where similarly
tµν = T µν − tδµν (34)

t =
1
4

Tαα. (35)
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Using Eq.(30) to Eq.(35) into the strain-stress relation of
Eq.(12) and making use of Eq.(15) and Eq.(14), we obtain
separated dilatation and distortion relations respectively:

dilatation : t = 2(µ0 + 2λ0)e = 4κ0e = κ0ε

distortion : tµν = 2µ0eµν.
(36)

The distortion-dilatation decomposition is evident in the
dependence of the dilatation relation on the bulk modulus κ0
and of the distortion relation on the shear modulus µ0. As
shown in Section 3, the dilatation relation of Eq.(36) corre-
sponds to rest-mass energy, while the distortion relation is
traceless and thus massless, and corresponds to shear trans-
verse waves.

This decomposition in a massive dilatation and a massless
transverse wave distortion, where both are present in space-
time continuum deformations, is somewhat reminiscent of
wave-particle duality. This could explain why dilatation-mea-
suring apparatus measure the massive ’particle’ properties of
the deformation, while distortion-measuring apparatus mea-
sure the massless transverse ’wave’ properties of the defor-
mation.

5 Conclusion

In this paper, we have proposed a natural decomposition of
the spacetime metric tensor into a background and a dynami-
cal part based on an analysis from first principles, of the im-
pact of introducing a test mass in the spacetime continuum.
We have found that the presence of mass results in strains
in the spacetime continuum. Those strains correspond to the
dynamical part of the spacetime metric tensor.

We have applied the stress-strain relation of Continuum
Mechanics to the spacetime continuum to show that rest-mass
energy density arises from the volume dilatation of the space-
time continuum.

Finally we have proposed a natural decomposition of ten-
sor fields in strained spacetime, in terms of dilatations and
distortions. We have shown that dilatations correspond to
rest-mass energy density, while distortions correspond to ma-
ssless shear transverse waves. We have noted that this de-
composition in a dilatation with rest-mass energy density and
a massless transverse wave distortion, where both are simul-
taneously present in spacetime continuum deformations, is
somewhat reminiscent of wave-particle duality.

It should be noted that these results are considered to be
local effects in the particular reference frame of the observer.
In addition, the applicability of the proposed metric to the
Einstein field equations remains open.
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v. 7(2), 149–188.

4. Krupka D. The Trace Decomposition Problem. Contributions to Alge-
bra and Geometry, 1995, v. 36(2), 303–315.

5. Straumann N. Proof of a decomposition theorem for symmetric tensors
on spaces with constant curvature. arXiv: gr-qc/0805.4500v1.

6. Chen X.-S., Zhu B.-C. Physical decomposition of the gauge and gravi-
tational fields. arXiv: gr-qc/1006.3926v3.

7. Chen X.-S., Zhu B.-C. Tensor gauge condition and tensor field decom-
position. arXiv: gr-qc/1101.2809v5.

8. Wald R.M. General Relativity. The University of Chicago Press,
Chicago, 1984.

9. Szabados L.B. Quasi-Local Energy-Momentum and Angular Momen-
tum in GR: A Review Article. Living Reviews in Relativity, 2004, v. 7,
4.

10. Jaramillo J.L., Gourgoulhon E. Mass and Angular Momentum in Gen-
eral Relativity. arXiv: gr-qc/1001.5429v2.

11. Segel L.A. Mathematics Applied to Continuum Mechanics. Dover Pub-
lications, New York, 1987.

12. Flügge W. Tensor Analysis and Continuum Mechanics. Springer-
Verlag, New York, 1972.

13. Padmanabhan T. Gravitation, Foundations and Frontiers. Cambridge
University Press, Cambridge, 2010.

14. Eddington A.S. The Mathematical Theory of Relativity. Cambridge
University Press, Cambridge, 1957.

8 Pierre A. Millette. On the Decomposition of the Spacetime Metric Tensor and of Tensor Fields in Strained Spacetime



October, 2012 PROGRESS IN PHYSICS Volume 4

Quantum Constraints on a Charged Particle Structure

Eliahu Comay

Charactell Ltd., PO Box 39019, Tel-Aviv, 61390, Israel. E-mail: elicomay@post.tau.ac.il

The crucial role of a Lorentz scalar Lagrangian density whose dimension is [L−4]
(~= c= 1) in a construction of a quantum theory is explained. It turns out that quan-
tum functions used in this kind of Lagrangian density have a definite dimension. It is
explained why quantum functions that have the dimension [L−1] cannot describe parti-
cles that carry electric charge. It is shown that the 4-current of a quantum particle should
satisfy further requirements. It follows that the pion and theW± must be composite par-
ticles. This outcome is inconsistent with the electroweak theory. It is also argued that
the 125GeV particle found recently by two LHC collaborations is not a Higgs boson
but att̄ meson.

1 Introduction

The fundamental role of mathematics in the structure of the-
oretical physics is regarded as an indisputable element of the
theory [1]. This principle is utilized here. The analysis relies
on special relativity and derives constraints on the structure
of equations of motion of quantum particles. The discussion
examines the dimensions of wave functions and explains why
spin-0 and spin-1 elementary quantum particles cannot carry
an electric charge. This conclusion is relevant to the validity
of the electroweak theory and to the meaning of recent results
concerning the existence of a particle having a mass of 125
GeV [2,3].

Units where~= c= 1 are used in this work. Hence, only
one dimension is required and it is the length, denoted by [L].
For example, mass, energy and momentum have the dimen-
sion [L−1], etc. Greek indices run from 0 to 3 and the diagonal
metric used isgµν = (1,−1,−1,−1). The symbol,µ denotes the
partial differentiation with respect toxµ and an upper dot de-
notes a differentiation with respect to time. The summation
convention is used for Greek indices.

The second section shows that quantum functions have a
definite dimension. This property is used in the third section
where it is proved that Klein-Gordon (KG) fields and those
of theW± particle have no self-consistent Hamiltonian. The
final section contains a discussion of the significance of the
results obtained in this work.

2 The dimensions of quantum fields

In this section some fundamental properties of quantum the-
ory are used for deriving the dimensions of quantum fields. A
massive quantum mechanical particle is described by a wave
functionψ(xµ). The phaseϕ(α) is an important factor ofψ(xµ)
because it determines the form of an interference pattern. For
the present discussion it is enough to demand that the phase
is an analytic function which can be expanded in a power se-
ries that contains more than one term. It means that in the

following expansion of the phase,

ϕ(α) =
∞∑
i=0

aiα
i , (1)

the inequalityai , 0 holds for two or more values of the
indexi.

The requirement stating that all terms of a physical ex-
pression must have the same dimension and the form of the
right hand side of (1) prove thatα must be dimensionless. By
the same token, in a relativistic quantum theory,α must also
be a Lorentz scalar. (The possibility of using a pseudoscalar
factor is not discussed here because this work aims to ex-
amine the parity conserving electromagnetic interactionsof a
quantum mechanical particle.) It is shown below how these
two requirements impose dramatic constraints on acceptable
quantum mechanical equations of motion of a charged parti-
cle.

Evidently, a pure number satisfies the two requirements.
However, a pure number is inadequate for our purpose, be-
cause the phase varies with the particle’s energy and momen-
tum. The standard method of constructing a quantum theory
is to use the Plank’s constant~ which has the dimension of
the action, and to define the phase as the action divided by
~. In the units used here,~=1 and the action is dimension-
less. Thus, a relativistic quantum theory satisfies the two re-
quirements presented above if it is derived from a Lagrangian
densityL that is a Lorentz scalar having the dimension [L−4].
Indeed, in this case, the action

S =
∫
Ld4xµ (2)

is a dimensionless Lorentz scalar. It is shown below how
the dimension [L−4] of L defines the dimension of quantum
fields.

Being aware of these requirements, let us find the dimen-
sion of the quantum functions used for a description of three
kinds of quantum particles. The Dirac Lagrangian density of
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a free spin-1/2 particle is [4, see p. 54]

L = ψ̄[γµi∂µ −m]ψ. (3)

Here the operator has the dimension [L−1] and the Dirac wave
functionψ has the dimension [L−3/2].

The Klein-Gordon Lagrangian density of a free spin-0
particle is [4, see p. 38]

L = φ∗,µφ,νgµν −m2φ∗φ. (4)

Here the operator has the dimension [L−2] and the KG wave
functionφ has the dimension [L−1].

The electrically charged spin-1W± particle is described
by a 4-vector functionWµ. Wµ and the electromagnetic
4-potentialAµ are linear combinations of related quantities
[5, see p. 518]. Evidently, they have the same dimension.
Hence, like the KG field, the dimension ofWµ is [L−1].

The dimension of each of these fields is used in the dis-
cussions presented in the rest of this work.

3 Consequences of the dimensions of quantum fields

Before analyzing the consequences of the dimension of quan-
tum fields and of the associated wave functions, it is required
to realize the Hamiltonian’s role in quantum theories. The
following lines explain why the Hamiltonian is an indispens-
able element of Relativistic Quantum Mechanics (RQM) and
of Quantum Field Theory (QFT). This status of the Hamilto-
nian is required for the analysis presented below.

The significance of hierarchical relationships that hold be-
tween physical theories is discussed in the literature [6, see
pp. 1-6] and [7, see pp. 85, 86]. The foundation of the argu-
ment can be described as follows. Physical theories take the
form of differential equations. These equations can be exam-
ined in appropriate limits. Now RQM is a limit of QFT. The
former holds for cases where the number of particles can be
regarded as a constant of the motion. Therefore, if examined
in this limit, QFT must agree with RQM. By the same token,
the classical limit of RQM must agree with classical physics.
This matter has been recognized by the founders of quantum
mechanics who have proven that the classical limit of quan-
tum mechanics agrees with classical physics. The following
example illustrates the importance of this issue. Let us exam-
ine an inelastic scattering event. The chronological orderof
this process is as follows:

a. First, two particles move in external electromagnetic
fields. Relativistic classical mechanics and classical
electrodynamics describe the motion.

b. The two particles are very close to each other. RQM
describes the process.

c. The two particles collide and interact. New particles
are created. The process is described by QFT.

d. Particle creation ends but particles are still very close
to one another. RQM describes the state.

e. Finally, the outgoing particles depart. Relativistic clas-
sical mechanics and classical electrodynamics describe
the motion.

Evidently, in this kind of experiment, energy and momen-
tum of the initial and the final states are well defined quan-
tities and their final state values abide by the law of energy-
momentum conservation. It means that the specific values of
the energy-momentum of the final state agree with the corre-
sponding quantities of the initial state. Now, the initial and the
final states are connected by processes that are described by
RQM and QFT. In particular, the process of new particle cre-
ation is described only by QFT. Hence, RQM and QFT must
“tell” the final state what are the precise initial values of the
energy-momentum. It follows that RQM as well as QFT must
use field functions that have a self-consistent Hamiltonian.

The HamiltonianH and the de Broglie relations between
a particle’s energy-momentum and its wave properties yield
the fundamental equation of quantum mechanics

i
∂ψ

∂t
= Hψ. (5)

The Hamiltonian densityH is derived from the Lagran-
gian density by the following well known Legendre transfor-
mation

H =
∑

i

ψ̇i
∂L
∂ψ̇ i

− L, (6)

where the indexi runs on all functions.
The standard form of representing the interaction of an

electric charge with external fields relies on the following
transformation [8, see p. 10]

−i
∂

∂xµ
→ −i

∂

∂xµ
− eAµ(xν). (7)

Now let us examine the electromagnetic interaction of the
three kinds of quantum mechanical particle described in the
previous section. This is done by adding an interaction term
Lint to the Lagrangian density. As explained above, this term
must be a Lorentz scalar whose dimension is [L−4]. The
required form of the electromagnetic interaction term rep-
resents the interaction of charged particles with electromag-
netic fieldsand the interaction of electromagnetic fields with
charged particles. This term is written as follows [9, see p.75]

Lint = − jµAµ. (8)

Here jµ is the 4-current of the quantum particle andAµ is the
electromagnetic 4-potential.

Charge conservation requires thatjµ satisfies the continu-
ity equation

jµ,µ = 0. (9)

The 0-component of the 4-vectorjµ represents density. It
follows that its dimension is [L−3] and the electromagnetic in-
teraction (8) is a term of the Lagrangian density. For this rea-
son, it is a Lorentz scalar whose dimension is [L−4]. Hence,
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a quantum particle can carry electric charge provided a self-
consistent 4-current can be defined for it. Furthermore, a self-
consistent definition of density is also required for a construc-
tion the Hilbert space where density is used for defining its
inner product.

It is well known that a self-consistent 4-current can be
defined for a Dirac particle [8, see pp. 8,9,23,24]

jµ = eψ̄γµψ. (10)

This expression has properties that are consistent with
general requirements of a quantum theory. In particular, the
4-current is related to a construction of a Hilbert space. Here
the densityψ†ψ is the 0-component of the 4-current (10). As
required, this quantity has the dimension [L−3]. Thus, elec-
tromagnetic interactions of charged spin-1/2 Dirac particles
are properly described by the Dirac equation.

Let us turn to the case of a charged KG orWµ particle.
Here the appropriate wave function has the dimension [L−1].
This dimension proves that it cannot be used for constructing
a self-consistent Hilbert space. Indeed, letφ denote a function
of such a Hilbert space and letO be an operator operating on
this space. Then, the expectation value ofO is

< O >=
∫

φ∗Oφd3x. (11)

Now, < O > andO have the same dimension. Therefore
φ must have the dimension [L−3/2]. This requirement is not
satisfied by the functionφ of a KG particle or byWµ because
here the dimension is [L−1]. Hence, there is no Hilbert space
for a KG or Wµ particle. For this reason, there is also no
Hamiltonian for these functions, because a Hamiltonian is an
operator operating on a Hilbert space. Analogous results are
presented for the specific case of the KG equation [10].

The dimension [L−1] of the KG and theWµ functions also
yields another very serious mathematical problem. Indeed,in
order to have a dimension [L−4], their Lagrangian density has
terms that arebilinear in derivatives with respect to the space-
time coordinates. Thus, the KG Lagrangian density is (4) and
theWµ Lagrangian density takes the following form [11, see
p. 307]

LW = −
1
4

(∂µWν − ∂νWµ + gWµ ×Wν)
2. (12)

As is well known, an operation of the Legendre trans-
formation (6) on a Lagrangian density that islinear in time
derivatives yields an expression that isindependentof time
derivatives. Thus, the Dirac Lagrangian density (3) yields
a Hamiltonian that is free of time derivatives. On the other
hand, the Hamiltonian density of the KG andWµ particles de-
pends on time derivatives. Indeed, using (5) , one infers that
for these particles, the Hamiltonian density depends quadrat-
ically on the Hamiltonian. Hence, there is no explicit expres-
sion for the Hamiltonian of the KG and theWµ particles.

Two results are directly obtained from the foregoing dis-
cussion. The Fock space, which denotes the occupation num-
ber of particles in appropriate states, is based on functions of
the associated Hilbert space. Hence, in the case of KG orWµ

function there are very serious problems with the construc-
tion of a Fock space because these functions have no Hilbert
space. Therefore, one also wonders what is the meaning of
the creation and the annihilation operators of QFT.

Another result refers to the 4-current. Thus, both the KG
equations and theWµ function have a 4-current that satisfies
(9) [11, see p. 12] and [12, see p. 199]. However, the contra-
dictions derived above prove the following important princi-
ple: The continuity relation(9) is just a necessary condition
for an acceptable 4-current. This condition is not sufficient
and one must also confirm that a theory that uses a 4-current
candidate is contradiction free.

The contradictions which are described above hold for the
KG and theW± particles provided that these particles are ele-
mentary pointlike quantum mechanical objects which are de-
scribed by a function of the formψ(xµ). Hence,in order to
avoid contradictions with the existence of charged pions and
W±, one must demand that the pions and the W± are compos-
ite particles.Several aspects of this conclusion are discussed
in the next section. It should also be noted that the results of
this section are consistent with Dirac’s lifelong objection to
the KG equation [13].

4 Discussion

An examination of textbooks provides a simple argument sup-
porting the main conclusion of this work. Indeed, quantum
mechanics is known for more than 80 years. It turns out that
the Hamiltonian problem of the hydrogen atom of a Dirac par-
ticle is discussed adequately in relevant textbooks [8,14]. By
contrast, in spite of the long duration of quantum mechanics
as a valid theory, an appropriate discussion of the Hamilto-
nian solution of a hydrogen-like atom of a relativistic elec-
trically charged integral spin particle is not presented intext-
books. Note that the operator on the left hand side of the KG
equation [14, see p. 886]

(∂µ + ieAµ)gµν(∂ν + ieAν)φ = −m2φ (13)

is notrelated to a Hamiltonian because (13) is a Lorentz scalar
whereas the Hamiltonian is a 0-component of a 4-vector.

An analogous situation holds for the Hilbert and the Fock
spaces that are created from functions on which the Hamil-
tonian operates. Thus, in the case of a Dirac particle, the
densityψ†ψ is the 0-component of the conserved 4-current
(10). This expression is suitable for a definition of the Hilbert
space inner product of any pair of integrable functions

(ψ†i , ψ j) ≡
∫

ψ
†
i ψ j d3x. (14)

Indeed, it is derivative free and this property enables the
usage of the Heisenberg picture which is based on time-
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independent functions. Integration properties prove that(14)
is linear inψ†i andψ j . Thus,

(aψ†i + bψ†k, ψ j)=a(ψ†i , ψ j)+b(ψ†k, ψ j).

Furthermore, (ψ†i , ψi) is a real non-negative number that van-
ishes if and only ifψi ≡ 0. These properties are required from
a Hilbert space inner product. It turns out that the construc-
tion of a Hilbert space is the cornerstone used for calculating
successful solutions of the Dirac equation and of its associ-
ated Pauli and Schroedinger equations as well.

By contrast, in the case of particles having an integral
spin, one cannot find in the literature an explicit construc-
tion of a Hilbert space. Indeed, the [L−1] dimension of their
functions proves that the simple definition of an inner prod-
uct in the form

∫
φ∗i φ j d3x has the dimension [L] which is

unacceptable. An application of the 0-component of these
particles 4-current [11, see p. 12] and [12, see p. 199] is not
free of contradictions. Thus, the time derivative includedin
these expressions prevents the usage of the Heisenberg pic-
ture. Relation (7) proves that in the case of a charged particle
the density depends onexternalquantities. These quantities
may vary in time and for this reason it cannot be used in a
definition of a Hilbert space inner product. In the case of the
Wµ function, the expression is inconsistent with the linearity
required from a Hilbert space inner product.

The results found in this work apply to particles described
by a function of the form

ψ(xµ). (15)

Their dependence on a single set of four space-time coordi-
natesxµ means that they describe an elementary pointlike par-
ticle. For example, this kind of function cannot adequately
describe a pion because this particle is not an elementary par-
ticle but a quark-antiquark bound state. Thus, it consists of a
quark-antiquark pair which are described bytwo functions of
the form (15). For this reason, one function of the form (15)
cannot describe a pion simply because a description of a pion
should use a larger number of degrees of freedom. It follows
that the existence of aπ+, which is a spin-0 charged particle,
does not provide an experimental refutation of the theoretical
results obtained above.

Some general aspects of this work are pointed out here.
There are two kinds of objects in electrodynamics of Dirac
particles: massive charged spin-1/2 particles and charge-free
photons. The dimension of a Dirac function is [L−3/2] and the
dimension of the electromagnetic 4-potential is [L−1]. Now,
the spin of any interaction carrying particle must take an inte-
gral value in order that the matrix element connecting initial
and final states should not vanish. The dimension of an inter-
action carrying particle must be [L−1] so that the Lagrangian
density interaction term have the dimension [L−4]. These
properties must be valid for particles that carry any kind ofin-
teraction between Dirac-like particles. Hence, the pions and

the W± have integral spin and dimension [L−1]. However,
in order to have a self-consistent Hilbert and Fock spaces, a
function describing an elementary massive particle must have
the dimension [L−3/2]. Neither a KG function nor theWµ

function satisfies this requirement.
The conclusion stating that the continuity equation (9) is

only anecessary conditionrequired from a physically accept-
able 4-current and that further consistency tests must be car-
ried out, looks like a new result of this work that has a general
significance.

Before discussing the state of theW± charged particles,
let us examine the strength of strong interactions. Each of the
following arguments proves that strong interactions yieldex-
tremely relativistic bound states and that the interactionpart
of the Hamiltonian swallows a large portion of the quarks’
mass.

A. Antiquarks have been measured directly in the proton
[15, see p. 282]. This is a clear proof of the extremely
relativistic state of hadrons. Indeed, for reducing the
overall mass of the proton, it is energetically “prof-
itable” to add the mass of two quarks because the in-
creased interaction is very strong.

B. The mass of theρ meson is about five times greater
than the pion’s mass. Now these mesons differ by the
relative spin alignment of their quark constituents. Ev-
idently, spin interaction is a relativistic effect and the
significantπ, ρmass difference indicates that strong in-
teractions are very strong indeed.

C. The pion is made of au, d quark-antiquark pair and
its mass is about 140MeV. Measurements show that
there are mesons made of theu, d flavors whose mass
is greater than 2000MeV [6]. Hence, strong interac-
tions consume most of the original mass of quarks.

D. Let us examine the pion and find an estimate for the
intensity of its interactions. The first objective is to
find an estimate for the strength of the momentum of
the pion’s quarks. The calculation is done in units of
fm, and 1fm−1 ≃ 200MeV. The pion’s spatial size is
somewhat smaller than that of the proton [16]. Thus, let
us assume that the pion’s quark-antiquark pair are en-
closed inside a box whose size is 2.2 fmand the pion’s
quark wave function vanishes on its boundary. For the
x-component, one finds that the smallest absolute value
of the momentum is obtained from a function of the
form sin(πx/2.2). Hence, the absolute value of this
component of the momentum isπ/2.2. Thus, for the
three spatial coordinates, one multiplies this number
by
√

3 and another factor of 2 accounts for the quark-
antiquark pair. It follows that the absolute value of the
momentum enclosed inside a pion is

| p | ≃ 1000MeV. (16)

This value of the momentum is much greater than the
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pion’s mass. It means that the system is extremely
relativistic and (16) is regarded as the quarks’ kinetic
energy. Thus, the interaction consumes about 6/7 of
the kinetic energyand the entire mass of the quark-
antiquark pair. In other word, the pion’s kinetic energy
is about 7 times greater than its final mass. It is interest-
ing to compare these values to the corresponding quan-
tities of the positronium, which is an electron-positron
system bound by the electromagnetic force. Here the
ratio of the kinetic energy to the final mass is about
7/1000000. On the basis of this evidence one concludes
that strong interactions must be much stronger than the
experimental mass of the pion.

Relying on these arguments and on the theoretical con-
clusion stating that theW± must be composite objects, it is
concluded that theW± particles contain one top quark. Thus,
theW+ is a superposition of three meson families:td̄, ts̄ and
tb̄. Here the top quark mass is 173GeVand the mass of the
W is 80GeV [16]. The difference indicates the amount swal-
lowed by strong interactions. This outcome also answers the
question where are the mesons of the top quark? The fact that
the W± is a composite particle which is a superposition of
mesons is inconsistent with the electroweak theory and this
fact indicates that the foundations of this theory should be
examined.

Another result of this analysis pertains to recent reports
concerning the existence of a new particle whose mass is
about 125GeVand its width is similar to that of theW± [2,3].
Thus, since the mass of the top quark is about 173GeV and
this quantity is by far greater than the mass of any other quark,
it makes sense to regard the 125GeV particle as att̄ meson.
For this reason, thett̄ meson is heavier than the 80GeV W±

which consists of one top quark and a lighter quark.

A tt̄ mesonic structure of the 125GeV particle explains
naturally its quite sharp disintegration into two photons.In-
deed, the disintegration of a bound system of charged spin-
1/2 particle-antiparticle pair into two photons is a well known
effect of the ground state of the positronium and of theπ0

meson. On the other hand, the results obtained in this work
deny theW+W− disintegration channel of the 125GeV par-
ticle, because theWs are composite particles and aW+W−

system is made of two quark-antiquark pairs. For this rea-
son, their two photon disintegration should be accompanied
by other particles. Hence, aW+W− two photon outcome
should show a much wider energy distribution. This kind
of W+W− → γγ disintegration is inconsistent with the quite
narrow width of the 125GeVdata. It turns out that for a Higgs
mass of 125GeV, Standard Model Higgs decay calculations
show that theW+W− → γγ channel is dominant [17, see sec-
tion 2.3.1]. However, it is proved in this work that theW+W−

disintegration channel of the 125GeVparticle is incompatible
with the data. Therefore, one denies the Higgs boson interpre-
tation of the 125GeVparticle found at the LHC [2, 3]. This

outcome is consistent with the Higgs boson inherent contra-
dictions which are discussed elsewhere [10].
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We analyze the recent no go theorem by Pusey, Barrett and Rudolph (PBR) concerning
ontic and epistemic hidden variables. We define two fundamental requirements for the
validity of the result. We finally compare the models satisfying the theorem with the
historical hidden variable approach proposed by de Broglie and Bohm.

1 Introduction

Recently, a new no go theorem by M. Pusey, J. Barret and
T. Rudolph (PBR in the following) was published [1]. The
result concerns ontic versus epistemic interpretations of quan-
tum mechanics. Epistemic means here knowledge by oppo-
sition to “ontic” or ontological and is connected with the sta-
tistical interpretation defended by Einstein. This of course
stirred much debates and discussions to define the condition
of validity of this fundamental theorem. Here, we discuss two
fundamental requirements necessary for the demonstration of
the result and also discuss the impact of the result on possible
hidden variable models. In particular, we will stress the dif-
ference between the models satisfying the PBR theorem and
those who apparently contradict its generality.

2 The axioms of the PBR theorem

In order to identify the main assumptions and conclusions of
the PBR theorem we first briefly restate the original reason-
ing of ref. 1 in a slightly different language. In the simplest
version PBR considered two non orthogonal pure quantum
states |Ψ1⟩ = |0⟩ and |Ψ2⟩ = [|0⟩ + |1⟩]/

√
2 belonging to a

2-dimensional Hilbert space E with basis vectors {|0⟩, |1⟩}.
Using a specific (nonlocal) measurement M with basis |ξi⟩
(i ∈ [1, 2, 3, 4]) in E ⊗ E (see their equation 1 in [1]) they de-
duced that ⟨ξ1|Ψ1 ⊗ Ψ1⟩ = ⟨ξ2|Ψ1 ⊗ Ψ2⟩ = ⟨ξ3|Ψ2 ⊗ Ψ1⟩ =
⟨ξ4|Ψ2 ⊗ Ψ2⟩ = 0. In a second step they introduced hypo-
thetical “Bell’s like” hidden variables λ and wrote implicitly
the probability of occurrence PM(ξi; j, k) = |⟨ξi|Ψ j ⊗ Ψk⟩|2 in
the form:

PM(ξi; j, k) =
∫

PM(ξi|λ, λ′)ϱ j(λ)ϱk(λ′)dλdλ′ (1)

where i ∈ [1, 2, 3, 4] and j, k ∈ [1, 2]. One of the fundamen-
tal axiom used by PBR (axiom 1) is an independence crite-
rion at the preparation which reads ϱ j,k(λ, λ′) = ϱ j(λ)ϱk(λ′).
In these equations we introduced the conditional “transition”
probabilities PM(ξi|λ, λ′) for the outcomes ξi supposing the
hidden state λ, λ′ associated with the two independent Q-bits
are given. The fundamental point here is that PM(ξi|λ, λ′) is
independent of Ψ1,Ψ2. This a very natural looking-like ax-
iom (axiom 2) which was implicit in ref. 1 and was not fur-
ther discussed by the authors. We will see later what are the
consequence of its abandonment.

For now, from the definitions and axioms we obtain:∫
PM(ξ1|λ, λ′)ϱ1(λ)ϱ1(λ′)dλdλ′ = 0∫
PM(ξ2|λ, λ′)ϱ1(λ)ϱ2(λ′)dλdλ′ = 0∫
PM(ξ3|λ, λ′)ϱ2(λ)ϱ1(λ′)dλdλ′ = 0∫
PM(ξ4|λ, λ′)ϱ2(λ)ϱ2(λ′)dλdλ′ = 0


. (2)

The first line implies PM(ξ1|λ, λ′) = 0 if ϱ1(λ)ϱ1(λ′) , 0.
This condition is always satisfied if λ and λ′ are in the support
of ϱ1 in the λ-space and λ′-space. Similarly, the fourth line
implies PM(ξ4|λ, λ′) = 0 if ϱ2(λ)ϱ2(λ′) , 0 which is again
always satisfied if λ and λ′ are in the support of ϱ2 in the λ-
space and λ′-space. Finally, the second and third lines imply
PM(ξ2|λ, λ′) = 0 if ϱ1(λ)ϱ2(λ′) , 0 and PM(ξ3|λ, λ′) = 0 if
ϱ1(λ)ϱ2(λ′) , 0.

Taken separately these four conditions are not problem-
atic. But, in order to be true simultaneously and then to have

PM(ξi|λ, λ′) = 0 (3)

for a same pair of λ, λ′ (with [i = 1, 2, 3, 4]) the conditions
require that the supports of ϱ1 and ϱ2 intersect. If this is the
case Eq. 3 will be true for any pair λ, λ′ in the intersection.

However, this is impossible since from probability con-
servation we must have

∑i=4
i=1 PM(ξi|λ, λ′) = 1 for every pair

λ, λ′. Therefore, we must necessarily have

ϱ2(λ) · ϱ1(λ) = 0 ∀λ (4)

i.e. that ϱ1 and ϱ2 have nonintersecting supports in the λ-
space. Indeed, it is then obvious to see that Eq. 2 is satisfied
if Eq. 4 is true. This constitutes the PBR theorem for the
particular case of independent prepared states Ψ1,Ψ2 defined
before. PBR generalized their results for more arbitrary states
using similar and astute procedures described in ref. 1.

If this theorem is true it would apparently make hidden
variables completely redundant since it would be always pos-
sible to define a bijection or relation of equivalence between
the λ space and the Hilbert space: (loosely speaking we could
in principle make the correspondence λ ⇔ ψ). Therefore it
would be as if λ is nothing but a new name for Ψ itself. This
would justify the label “ontic” given to this kind of interpreta-
tion in opposition to “epistemic” interpretations ruled out by
the PBR result.
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However, the PBR conclusion stated like that is too strong
as it can be shown by carefully examining the assumptions
necessary for the derivation of the theorem. Indeed, using the
independence criterion and the well known Bayes-Laplace
formula for conditional probability we deduce that the most
general Bell’s hidden variable probability space should obey
the following rule

PM(ξi; j, k) =
∫

PM(ξi|Ψ j,Ψk, λ, λ
′)ϱ j(λ)ϱk(λ′)dλdλ′ (5)

in which, in contrast to equation 1, the transition probabilities
PM(ξi|Ψ j,Ψk, λ, λ

′) now depend explicitly on the considered
quantum states Ψ j,Ψk. We point out that unlike λ, Ψ is in this
more general approach not a stochastic variable. This differ-
ence is particularly clear in the ontological interpretation of
ref. 3 where Ψ plays the role of a dynamic guiding wave for
the stochastic motion of the particle. Clearly, relaxing this
PBR premise has a direct effect since we lose the ingredient
necessary for the demonstration of Eq. 4. (more precisely we
are no longer allowed to compare the product states |Ψ j ⊗Ψk⟩
as it was done in ref. 1). Indeed, in order for Eq. 2 to be simul-
taneously true for the four states ξi (where PM(ξi|Ψ j,Ψk, λ, λ

′)
now replace PM(ξi|λ, λ′)) we must have

PM(ξ1|Ψ1,Ψ1, λ, λ
′) = 0, PM(ξ2|Ψ1,Ψ2, λ, λ

′) = 0

PM(ξ3|Ψ2,Ψ1, λ, λ
′) = 0, PM(ξ4|Ψ2,Ψ2, λ, λ

′) = 0

 . (6)

Obviously, due to the explicit Ψ dependencies, Eq. 6 doesn’t
anymore enter in conflict with the conservation probability
rule and therefore doesn’t imply Eq. 4. In other words the
reasoning leading to PBR theorem doesn’t run if we abandon
the axiom stating that

PM(ξi|Ψ j,Ψk, λ, λ
′) := PM(ξi|λ, λ′) (7)

i.e. that the dynamic should be independent of Ψ1,Ψ2. This
analysis clearly shows that Eq. 7 is a fundamental prerequisite
(as important as the independence criterion at the preparation)
for the validity of the PBR theorem [4]. In our knowledge this
point was not yet discussed [5].

3 Discussion

Therefore, the PBR deduction presented in ref. 1 is actually
limited to a very specific class of Ψ-epistemic interpretations.
It fits well with the XIXth like hidden variable models us-
ing Liouville and Boltzmann approaches (i.e. models where
the transition probabilities are independent of Ψ) but it is not
in agreement with neo-classical interpretations, e.g. the one
proposed by de Broglie and Bohm [3], in which the transition
probabilities PM(ξ|λ,Ψ) and the trajectories depend explicitly
and contextually on the quantum states Ψ (the de Broglie-
Bohm theory being deterministic these probabilities can only
reach values 0 or 1 for discrete observables ξ). As an illustra-
tion, in the de Broglie Bohm model for a single particle the

spatial position x plays the role of λ. This model doesn’t re-
quire the condition ϱ1(λ) · ϱ2(λ) = |⟨x|Ψ1⟩|2 · |⟨x|Ψ1⟩|2 = 0 for
all λ in clear contradiction with Eq. 4. We point out that our
reasoning doesn’t contradict the PBR theorem per se since the
central axiom associated with Eq. 7 is not true anymore for
the model considered. In other words, if we recognize the im-
portance of the second axiom discussed before (i.e. Eq. 7) the
PBR theorem becomes a general result which can be stated
like that:

i) If Eq. 7 applies then the deduction presented in ref. 1
shows that Eq. 4 results and therefore λ ↔ Ψ which means
that epistemic interpretation of Ψ are equivalent to ontic in-
terpretations. This means that a XIXth like hidden variable
models is not really possible even if we accept Eq. 7 since we
don’t have any freedom on the hidden variable density ρ(λ).

ii) However, if Eq. 7 doesn’t apply then the ontic state of
the wavefunction is already assumed - because it is a variable
used in the definition of PM(ξ|λ,Ψ). This shows that ontic
interpretation of Ψ is necessary. This is exemplified in the
de Broglie-Bohm example: in this model, the ”quantum po-
tential” is assumed to be a real physical field which depends
on the magnitude of the wavefunction, while the motion of
the Bohm particle depends on the wavefunction’s phase. This
means that the wavefunction has ontological status in such a
theory. This is consistent with the spirit of PBR’s paper, but
the authors didn’t discussed that fundamental point.

We also point out that in the de Broglie-Bohm ontological
approach the independence criterion at the preparation is re-
spected in the regime considered by PBR. As a consequence,
it is not needed to invoke retrocausality to save epistemic ap-
proaches.

It is important to stress how Eq. 4, which is a consequence
of Eq. 7, contradicts the spirit of most hidden variable ap-
proaches. Consider indeed, a wave packet which is split into
two well spatially localized waves Ψ1 and Ψ2 defined in two
isolated regions 1 and 2. Now, the experimentalist having ac-
cess to local measurements ξ1 in region 1 can define probabil-
ities |⟨ξ1|Ψ1⟩|2. In agreement with de Broglie and Bohm most
proponents of hidden variables would now say that the hid-
den variable λ of the system actually present in box 1 should
not depends of the overall phase existing between Ψ1 and Ψ2.
In particular the density of hidden variables ϱΨ(λ) in region
1 should be the same for Ψ = Ψ1 + Ψ2 and Ψ′ = Ψ1 − Ψ2
since |⟨ξ1|Ψ⟩|2 = |⟨ξ1|Ψ′⟩|2 for every local measurements ξ1
in region 1. This is a weak form of separability which is ac-
cepted even within the so exotic de Broglie Bohm’s approach
but which is rejected for those models accepting Eq. 4.

This point can be stated differently. Considering the state
Ψ = Ψ1+Ψ2 previously discussed we can imagine a two-slits
like interference experiment in which the probability for de-
tecting outcomes x0, ie., |⟨x0|Ψ⟩|2 vanish for some values x0
while |⟨x0|Ψ1⟩|2 do not. For those models satisfying Eq. 7 and
forgetting one instant PBR theorem we deduce that in the hy-
pothetical common support of ϱΨ1 (λ) and ϱΨ(λ) we must have
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PM(ξ0|λ) = 0 since this transition probability should vanish
in the support of Ψ. This allows us to present a “poor-man”
version of the PBR’s theorem: The support of ϱΨ1 (λ) can not
be completely included in the support of ϱΨ(λ) since other-
wise PM(ξ0|λ) = 0 would implies |⟨x0|Ψ1⟩|2 = 0 in contradic-
tion with the definition. PBR’s theorem is stronger than that
since it shows that in the limit of validity of Eq. 7 the support
of ϱΨ1 (λ) and ϱΨ(λ) are necessarily disjoints. Consequently,
for those particular models the hidden variables involved in
the observation of the observable ξ0 are not the same for the
two states Ψ and Ψ1. This is fundamentally different from de
Broglie-Bohm approach where λ (e.g. x(t0)) can be the same
for both states.

This can lead to an interesting form of quantum correla-
tion even with one single particle. Indeed, following the well
known scheme of the Wheeler Gedanken experiment one is
free at the last moment to either observe the interference pat-
tern (i.e. |⟨x0|Ψ⟩|2 = 0) or to block the path 2 and destroy
the interference (i.e. |⟨x0|Ψ1⟩|2 = 1/2). In the model used
by Bohm where Ψ acts as a guiding or pilot wave this is not
surprising: blocking the path 2 induces a subsequent change
in the propagation of the pilot wave which in turn affects the
particle trajectories. Therefore, the trajectories will not be the
same in these two experiments and there is no paradox. How-
ever, in the models considered by PBR there is no guiding
wave since Ψ serves only to label the non overlapping den-
sity functions of hidden variable ϱΨ1 (λ) and ϱΨ(λ). Since the
beam block can be positioned after the particles leaved the
source the hidden variable are already predefined (i.e. they
are in the support of ϱΨ(λ)). Therefore, the trajectories are
also predefined in those models and we apparently reach a
contradiction since we should have PM(ξ0|λ) = 0 while we
experimentally record particles with properties ξ0. The only
way to solve the paradox is to suppose that some mysterious
quantum influence is sent from the beam blocker to the parti-
cle in order to modify the path during the propagation and
correlate it with presence or absence of the beam blocker.
However, this will be just equivalent to the hypothesis of
the de Broglie-Bohm guiding wave and quantum potential
and contradicts apparently the spirit and the simplicity of Ψ-
independent models satisfying Eq. 7.

4 An example

We point out that despite these apparent contradictions it is
easy to create an hidden variable model satisfying all the re-
quirements of PBR theorem. Let any state |Ψ⟩ be defined
at time t = 0 in the complete basis |k⟩ of dimension N as
|Ψ⟩ = ∑N

k Ψk |k⟩ with Ψk = Ψ
′
k + iΨ′′k . We introduce two

hidden variables λ, and µ as the N dimensional real vectors
λ := [λ1, λ2..., λN] and µ := [µ1, µ2..., µN]. We thus write the
probability PM(ξ, t,Ψ) = |⟨ξ|U(t)Ψ⟩|2 of observing the out-

come ξ at time t as∫
PM(ξ, t|{λk, µk}k)

N∏
k

δ(Ψ′k − λk)δ(Ψ′′k − µk)dλkdµk

= PM(ξ, t|{Ψ′k,Ψ′′k }k) = |
∑

k

⟨ξ|U(t)|k⟩Ψk |2 (8)

where U(t) is the Schrodinger evolution operator. Since Ψ
can be arbitrary we thus generally have in this model

PM(ξ, t|{λk, µk}k) = |
∑

k

⟨ξ|U(t)|k⟩(λk + iµk)|2.

The explicit time variation is associated with the unitary
evolution U(t) which thus automatically includes contextual
local or non local influences (coming from the beam blocker
for example). We remark that this model is of course very for-
mal and doesn’t provide a better understanding of the mech-
anism explaining the interaction processes. The hidden vari-
able model we proposed is actually based on a earlier version
shortly presented by Harrigan and Spekkens in ref. [2]. We
completed the model by fixing the evolution probabilities and
by considering the complex nature of wave function in the
Dirac distribution. Furthermore, this model doesn’t yet sat-
isfy the independence criterion if the quantum state is defined
as |Ψ⟩12 = |Ψ⟩1 ⊗ |Ψ⟩2 in the Hilbert tensor product space.
Indeed, the hidden variables λ12,k and µ12,k defined in Eq. 8
are global variables for the system 1,2. If we write

|Ψ⟩12 =

N1,N2∑
n,p

Ψ12;n,p|n⟩1 ⊗ |p⟩2

=

N1,N2∑
n,p

Ψ1;nΨ2;p|n⟩1 ⊗ |p⟩2 (9)

the indices k previously used become a doublet of indices n, p
and the probability

PM(ξ, t|Ψ12) = |
N1,N2∑

n,p

⟨ξ|U(t)|n, p⟩12Ψ12;n,p|2

in Eq. 8 reads now:∫
PM(ξ, t|{λ12;n,p, µ12;n,p}n,p)

×
N1∏
n

N2∏
p

δ(Ψ′12;n,p − λ12;n,p)

×δ(Ψ′′12;n,p − µ12;n,p)dλ12;n,pdµ12;n,p

= PM(ξ, t|{Ψ′12;n,p,Ψ
′′
12;n,p}n,p) (10)

which indeed doesn’t show any explicit separation of the hid-
den variables density of states for subsystems 1 and 2. How-
ever, in the case where Eq. 9 is valid we can alternatively
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introduce new hidden variable vectors λ1, λ2 and µ1, µ2 such
that PM(ξ, t|Ψ12) reads now:∫

PM(ξ, t|{λ1;n, λ2;p, µ1;n, µ2;n}n,p)

×
N1∏
n

δ(Ψ′1;n − λ1;n)δ(Ψ′′1;n − µ1;n)dλ1;ndµ1;n

×
N2∏
p

δ(Ψ′2;p − λ2;p)δ(Ψ′′2;p − µ2;p)dλ2;ndµ2;p

= PM(ξ, t|{Ψ′1;n,Ψ2′2;p,Ψ
′′
1;n,Ψ

′′
2;n}n,p). (11)

Clearly here the density of probability ϱ12(λ1, λ2, µ1, µ2) can
be factorized as ϱ1(λ1, µ1) · ϱ2(λ2, µ2) where

ϱ1(λ1, µ1) =
N1∏
n

δ(Ψ′1;n − λ1;n)δ(Ψ′′1;n − µ1;n)

ϱ2(λ2, µ2) =
N2∏
n

δ(Ψ′2;n − λ2;n)δ(Ψ′′2;n − µ2;n) (12)

Therefore, the independence criterion at the preparation (i.e.
axiom 1) is here fulfilled.

Additionally, since by definition Eq. 8 and 10 are equiva-
lent we have

PM(ξ, t|{Ψ′1;n,Ψ2′2;p,Ψ
′′
1;n,Ψ

′′
2;n}n,p)

= PM(ξ, t|{Ψ′12;n,p,Ψ
′′
12;n,p}n,p). (13)

Moreover, since Ψ1;n and Ψ2;n can have any complex values
the following relation holds for any value of the hidden vari-
ables:

PM(ξ, t|{λ1;n, λ2;p, µ1;n, µ2;n}n,p)
= PM(ξ, t|{λ12;n,p, µ12;n,p}n,p) (14)

with λ12;n,p + iµ12;n,p = (λ1;n + iµ1;n)(λ2;p + iµ2;p). This clearly
define a bijection or relation of equivalence between the hid-
den variables [λ12, µ12] on the one side and [λ1, µ1, λ2, µ2] on
the second side. Therefore, we showed that it is always pos-
sible to define hidden variables satisfying the 2 PBR axioms:
i) statistical independence at the sources or preparation

ϱ j,k(λ, λ′) = ϱ j(λ)ϱk(λ′)

(if Eq. 9 is true) and ii) Ψ-independence at the dynamic level,
i.e., satisfying Eq. 7. We point out that the example discussed
in this section proves that the PBR theorem is not only formal
since we explicitly proposed a hidden variable model satisfy-
ing the two requirements of PBR theorem. This model is very
important since it demonstrates that the de Broglie Bohm ap-
proach is not the only viable hidden variable theory. It is
interesting to observe that our model corresponds to the case
discussed in point i) of section 3 while Bohm’s approach cor-
responds to the point labeled ii) in the same section 3. Ad-
ditionally, the new model is fundamentally stochastic (since

the transition probabilities PM(ξ|λ) have numerical values in
general different from 1 or 0) while Bohm’s approach is de-
terministic.

5 Conclusion

To conclude, we analyzed the PBR theorem and showed that
beside the important independence criterion already pointed
out in ref. 1 there is a second fundamental postulate associ-
ated with Ψ-independence at the dynamic level (that is our
Eq. 7). We showed that by abandoning this prerequisite the
PBR conclusion collapses. We also analyzed the nature of
those models satisfying Eq. 7 and showed that despite their
classical motivations they also possess counter intuitive fea-
tures when compared for example to de Broglie Bohm model.
We finally constructed an explicit model satisfying the PBR
axioms. More studies would be be necessary to understand
the physical meaning of such hidden variable models.
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The motion of test and photons in the vicinity of a uniformly charged spherically sym-
metric mass distribution is studied using a newly developed relativistic dynamical ap-
proach. The derived expressions for the mechanical energy and acceleration vector of
test particles have correction terms of all orders of c−2. The expression for the gravita-
tional spectral shift also has additional terms which are functions of the electric potential
on the sphere.

1 Introduction

In a recent article [1], the relativistic dynamical approach
to the study of classical mechanics in homogeneous spheri-
cal distributions of mass (Schwarzschild’s gravitational field)
was introduced. Here, the relativistic dynamical theory of a
combined gravitational and electric field within homogeneous
spherical distributions of mass is developed.

2 Motion of test particles

According to Maxwell’s theory of electromagnetism, the
electric potential energy for a particle of non-zero rest mass
in an electric field Ve is given by

Ve = qΦe , (1)

where q is the electric charge of the particle andΦe is the elec-
tric scalar potential. Also, from Newton’s dynamical theory,
it is postulated [2] that the instantaneous mechanical energy
for test particles in combined gravitational and electric fields
is defined by

E = T + Vg + Ve , (2)

where T is the total relativistic kinetic energy and Vg is the
gravitational potential. From [1], T and Vg in Schwarzschild’s
gravitational field are given by

T =

(1 − u2

c2

)−1/2

− 1

 m0c2 (3)

and the instantaneous relativistic gravitational potential en-
ergy (Vg) for a particle of nonzero rest mass is

Vg = mpΦe = −
(
1 − u2

c2

)−1/2 GMm0

r
, (4)

where Φe =
−GM

r is the gravitational scalar potential in a
spherically symmetric gravitational field, r > R, the radius
of the homogeneous sphere, G is the universal gravitational
constant, c is the speed of light in vacuum, mp is the passive
mass of the test particle, M is the mass of the static homoge-
neous spherical mass, m0 is the rest mass of the test particle

and u is the instantaneous velocity of the test particle. Also,
for a uniformly charged spherically symmetric mass the elec-
tric potential energy is given as

Ve =
qQ

4πϵ0r
, (5)

where Q is the total charge on the sphere and q is the charge
on the test particle. Thus, the instantaneous mechanical en-
ergy for the test particle can be written more explicitly as

E = m0c2

(1 − GM
c2r

) (
1 − u2

c2

)−1/2

− 1

 + qQ
4πϵ0r

. (6)

The expression for the instantaneous mechanical energy has
post Newton and post Einstein correction terms of all orders
of c−2. The relativistic dynamical equation of motion for par-
ticles of non-zero rest masses in combined electric and grav-
itational fields is given as [2]

d
dτ

P = −mp∇Φg − q∇Φe , (7)

where P is the instantaneous linear momentum of the test par-
ticles . Thus, in this field, the relativistic dynamical equation
of motion for test particles is given explicitly as

d
dτ

(1 − u2

c2

)−1/2

u

 =
= −

(
1 − u2

c2

)−1/2

∇Φg −
q

m0
∇Φe (8)

or

a +
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)u =

=
GM
r2 −

q
m0

(
1 − u2

c2

)1/2

∇Φe , (9)

where a is the instantaneous acceleration vector of the test
particles and thus the time equation of motion is obtained as

ax0 +
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)ux0 = 0 . (10)
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The azimuthal equation of motion is

ṙ sin θ ϕ̇ + r cos θ θ̇ ϕ̇ + r sin θ ϕ̈ +

+
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2) uϕ = 0 . (11)

The polar equation of motion is given as

r θ̈ + ṙ θ̇ +
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2) uθ = 0 (12)

and the radial equation of motion is

ar +
1

2c2

(
1 − u2

c2

)−1 d
dτ

(u2)ur =

= −GM
r2 −

q
m0

(
1 − u2

c2

)1/2

∇Φe . (13)

As in [1], the equations have correction terms not found
in the general relativistic approach.It is also worth remarking
that the homogeneous charge distribution on the sphere and
the charge on the test particle affects only the radial compo-
nent of the motion and hence the other components are the
same as those of an uncharged sphere [1].

3 Motion of photons

From [1], it can be deduced that the instantaneous gravita-
tional potential energy of a photon is given as

Vg = −
h ν
c2

GM
r
. (14)

The instantaneous electric potential energy of the photon is
given [2] as

Ve = −
h ν
c2 ∇Φe (15)

or more explicitly in this field as

Ve = −
hν
c2

Q
4πϵ0r

. (16)

Also, the instantaneous kinetic energy of the photon [1] is
given as

T = h(ν − ν0) . (17)

Thus, the instantaneous mechanical energy of a photon in this
combined gravitational and electric field is obtained as

E = h(ν − ν0) − hν
c2r

(
GM +

Q
4πϵ0

)
. (18)

Suppose at r = r0, E = E0 then

E0 = −
khν0
c2r0

, (19)

where
k = GM +

Q
4πϵ0

. (20)

Thus, from the principle of conservation of mechanical en-
ergy

−khν0
c2r0

= h(ν − ν0) − khν
c2r

(21)

or

ν = ν0

(
1 − k

c2r0

) (
1 − k

c2r

)−1

. (22)

Equation (22) is the expression for spectral shift in this field
with contributions from the gravitational and electric poten-
tials. It has corrections of all orders of c−2.

Also, for photons, the instantaneous linear momentum is
given [1] as

P =
hν
c2 u . (23)

Hence, as in Newton’s dynamical theory, the equation of mo-
tion of photons in this field is obtained from equation (7) as

d
dτ

(νu) = −ν∇Φg −
qc2

h
∇Φe . (24)

Thus the presence of an electric field introduces an additional
term to the expression for the equation of motion of photons.

4 Conclusion

This article provides a crucial link between gravitational and
electric fields. It also introduces, hither to unknown correc-
tions of all orders of c−2 to the expressions of instantaneous
mechanical energy, spectral shift and equations of motion for
test particles and photons in combined spherically symmetric
gravitational and electric field.
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The philosophical idea of a bipolar nature (the Chinese “Yin and Yang”) is combined
with the mathematical formalism of a fractal scaling model originally published by
Müller in this journal. From this extension new rules for the calculation of proton and
electron resonances via continued fractions are derived. The set of the 117 most accu-
rately determined elementary particle masses (all with error< 0.13%) was expressed
through this type of continued fractions. Only one outlier was found, in all other cases
the numerical errors were smaller than the standard deviation. Speaking in terms of
oscillation properties, the results suggest that the electron is an inverted or mirrored
oscillation state of the proton and vice versa. A complete description of elementary
particle masses by the model of oscillations in a chain system is only possible when
considering both, proton and electron resonances.

1 Introduction

The mass distribution of elementary particles is still an un-
solved mystery of physics. According tho the Standard
Model, mass is given by arbitrary variable couplings to the
Higgs boson, and the coupling is then adequately adjusted to
reproduce the experimentally observed mass.

However, the particle mass spectrum is not completely
chaotic, and some groupings are clearly visible. Several at-
tempts have already been made to obtain equations to de-
scribe regularities in the set of elementary particle masses.

For instance Greulich [1] calculated the masses of all fun-
damental elementary particles (those with a lifetime> 10−24

seconds) with an inaccuracy of approximately 1% using the
equation

mparticle

melectron
=

N
2α
,

whereα is the fine structure constant (= 1/137.036), and N is
an integer variable.

Paasch [2] assigned each elementary particle mass a posi-
tion on a logarithmic spiral. As a result, particles then accu-
mulate on straight lines.

A study from India [3] revealed a tendency for succes-
sive mass differences between particles to be close to an in-
teger multiple or integer fraction of 29.315 MeV. The value
29.315 MeV is the mass difference between a muon and a
neutral pion.

Even more recently Boris Tatischeff published a series of
articles [4–8] dealing with fractal properties of elementary
particle masses. He even predicted tentatively the masses of
some still unobserved particles [5].

An other fractal scaling model was used in a previous
article of the present author [9], and a set of 78 accurately
measured elementary particle masses was expressed in the

form of continued fractions. This underlying model was orig-
inally published by M̈uller [10–12], and its very basic idea
is to treat all protons as fundamental oscillators connected
through the physical vacuum. This leads to the idea of a chain
of equal harmonic proton oscillators with an associated loga-
rithmic spectrum of eigenfrequencies which can be expressed
through continued fractions. Particle masses are interpreted
as proton resonance states and expressed in continued fraction
form. However, the results obtained in reference [9] were not
completely satisfying since around 14% of the masses were
outliers, i.e. could not be reproduced by this model.

A more recent article [13] revealed that electron reso-
nance states exist analogously which serves now as the basis
for further extensions of M̈uller’s model. From this starting
point, the present article proposes a new version of the model
developed with the objective to reproduce all elementary par-
ticle masses.

2 Data sources and computational details

Masses of elementary particles (including the proton and
electron reference masses) were taken from the Particle Data
Group website [14] and were expressed in GeV throughout
the whole article. An electronic version of these data is avail-
able for downloading. Quark masses were eliminated from
the list because it has not been possible to isolate quarks.

Some of the listed particle masses are extremely accurate
and others have a quite high measurement error. Figure 1
shows an overview of the particle masses and their standard
deviations (expressed in % of the particle mass). It can be
roughly estimated that more or less 60% of the particles have
a standard deviation (SD) below 0.13%; this set of excellent
measurements consists of 117 particles and only this selection
of very high quality data was used for the numerical analysis
and extension of M̈uller’s model.
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Fig. 1: Overview of particle masses on the logarithmic number line
together with their standard deviations expressed in % of the mass.
Note that a few particles with very low or high mass or percentage
error were omitted for clarity (e.g. electron, muon, proton, gauge
bosons).

For consistency with previous articles on this topic, the
following abbreviations and conventions for the numerical
analysis hold:

Calculation method:
The considered particle mass is transformed into a continued
fraction according to the equations

ln
mparticle

melectron
= p+ S, ln

mparticle

mproton
= p+ S,

wherep is the phase shift and S is the continued fraction (e is
Euler’s number)

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (1)

The continued fraction representationp+S is abbreviated
as [p; n0 | n1,n2,n3, . . . ], where the free linkn0 is allowed to
be 0,±3,±6,±9 . . . and all partial denominatorsni can take
the valuese+1,−e−1,±6,±9,±12. . . . In the tables these ab-
breviations were marked with P or E, in order to indicate pro-
ton or electron resonance states.

For practical reasons only 18 partial denominators were
determined. Next, the particle mass was repeatedly calculated
from the continued fraction, every time considering one more
partial denominator. As soon as the calculated mass value
(on the linear scale) was in the interval “mass± standard de-
viation”, no further denominators were considered and the
resulting fractions are displayed in the tables. In some rare
cases, this procedure provides a mass value just a little in-
side the interval and considering the next denominator would

Table 1: Continued fraction representations of the lepton masses
(x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

electron 5.10998910× 10−4 ± 1.3× 10−11

P [x; -6 | 12, -6] 1.21× 10−15

μ− 1.05658367× 10−1 ± 4.0× 10−9

P [x; 0 | -6, -9, -e-1, 12, -6, -15] 2.45× 10−10

E [-x; 3 | e+1, e+1, -e-1, e+1, 9, -48,
e+1, -e-1] 3.06× 10−9

τ− 1.77682± 1.6× 10−4

P [0; 0 | e+1, 6, -e-1, e+1, -e-1, -e-1] 4.52× 10−5

P [x; 3 | -e-1, -e-1, 231] 2.50× 10−6

E [0; 9 | -e-1, 6, -e-1, -e-1, -6] 6.81× 10−5

E [-x; 6 | 6, e+1, -45] 1.92× 10−5

Table 2: Continued fraction representations of the boson masses
(x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

W+ 8.0399× 101 ± 2.3× 10−2

E [0; 12 | -81, e+1, (24)] 3.23× 10−5

Z0 9.11876× 101 ± 2.1× 10−3

P [x; 6 | 9, -e-1, -15, -e-1, e+1] 1.01× 10−3

E [0; 12 | 30, -6, (12)] 7.23× 10−4

match the measured value almost exactly. In such cases this
denominator is then additionally given in brackets.

The numerical error is always understood as the absolute
value of the difference between the measured particle mass
and the mass calculated from the corresponding continued
fraction representation.

In order to avoid machine based rounding errors, numer-
ical values of continued fractions were always calculated us-
ing the the Lenz algorithm as indicated in reference [15].
Outliers:
A particle mass is considered as an outlier (i.e. does not fit
into the here extended M̈uller model) when its mass, as cal-
culated from the corresponding continued fraction represen-
tation provides a value outside the interval “particle mass±
standard deviation”.

3 Results and discussion

3.1 Fundamental philosophical idea

Chinese philosophy is dominated by the concept of “Yin and
Yang” describing an indivisible whole of two complementary
effects (male–female, day–night, good–bad, etc.). This means
that everything has two opposite poles, and both poles are
necessary to understand the whole thing (e.g. male can only
be understood completely because female also exists as the
opposite).
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Table 3: Continued fraction representations of the light unflavored
mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

π+ 1.3957018× 10−1 ± 3.5× 10−7

P [x; 0 | -18, 6, 6, (-117)] 7.67× 10−10

E [0; 6 | -6, -e-1, e+1, -e-1, 48] 1.68× 10−7

π0 1.349766× 10−1 ± 6.0× 10−7

E [0; 6 | -6, -6, -6, 6, -e-1] 2.49× 10−7

η0 5.47853× 10−1 ± 2.4× 10−5

P [0; 0 | -6, e+1, -e-1, 6, -e-1, 12] 6.52× 10−7

E [0; 6 | e+1, -e-1, e+1, -6, -e-1,
e+1, (24)] 2.51× 10−7

ρ(770)0,+ 7.7549× 10−1 ± 3.4× 10−4

P [0; 0 | -15, e+1, (-174)] 1.73× 10−7

ω(782)0 7.8265× 10−1 ± 1.2× 10−4

P [0; 0 | -15, (243)] 2.10× 10−7

E [-x; 6 | -6, -6, e+1, -9, (135)] 4.51× 10−11

η′(958)0 9.5778× 10−1 ± 6.0× 10−5

P [0; 0 | 132, (30)] 6.81× 10−7

E [-x; 6 | -12, -e-1, -6, (-24)] 4.66× 10−7

φ(1020)0 1.019455± 2.0× 10−5

P [0; 0 | 33, -12, e+1] 4.92× 10−6

f2(1270)0 1.2751± 1.2× 10−3

P [0; 0 | 9, -21] 3.84× 10−4

P [x; 3 | -e-1, e+1, -6, (36)] 1.87× 10−5

E [-x; 6 | 39, -e-1] 3.78× 10−4

f1(1285)0 1.2818± 6.0× 10−4

P [0; 0 | 9, -9, -6] 2.46× 10−5

P [x; 3 | -e-1, e+1, -6, -e-1, e+1] 9.88× 10−5

E [-x; 6 | 36, -6] 1.20× 10−4

a2(1320)0,+ 1.3183± 5.0× 10−4

P [0; 0 | 9, -e-1, e+1, -e-1, e+1,
-e-1, e+1] 4.50× 10−4

P [x; 3 | -e-1, e+1, 186] 5.66× 10−6

E [-x; 6 | 27, -e-1, e+1, -e-1] 2.98× 10−4

f1(1420)0 1.4264± 9.0× 10−4

P [0; 0 | 6, 6, -6, (-39)] 1.64× 10−6

P [x; 3 | -e-1, 6, 24] 9.34× 10−5

E [-x; 6 | 15, -15] 3.29× 10−5

ρ3(1690)0,+ 1.6888± 2.1× 10−3

P [0; 0 | e+1, e+1, -e-1, (-51)] 1.95× 10−5

P [x; 3 | -e-1, -6, -e-1, e+1] 5.29× 10−4

E [0; 9 | -e-1, e+1, 12] 8.78× 10−4

In physics we can find a number of analogous dualities,
for instance: positive and negative charges, north and south
magnetic poles, particles and antiparticles, emission and ab-
sorption of quanta, destructive and constructive interference
of waves, nuclear fusion and fission, and in the widest sense
also Newton’s principle “action= reaction”.

From these observations an interesting question arises:
does such a duality also exist in the model of oscillations in a
chain system, and how must this model be extended to make
the “Yin-Yang” obvious and visible?

Applying this idea to M̈uller’s model, it must be claimed

Table 4: Continued fraction representations of masses of the strange
mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

K+ 4.93677× 10−1 ± 1.6× 10−5

P [0; 0 | -e-1, -6, e+1, 45] 5.65× 10−7

E [0; 6 | e+1, -e-1, -e-1, 15, -e-1] 6.96× 10−6

E [-x; 6 | -e-1, e+1, e+1, 6, e+1, -6] 4.04× 10−6

K0, K0
S, K0

L 4.97614× 10−1 ± 2.4× 10−5

E [-x; 6 | -e-1, e+1, e+1, -e-1, -e-1,
e+1, e+1] 4.73× 10−6

K*(892)+ 8.9166× 10−1 ± 2.6× 10−4

P [0; 0 | -54, e+1] 6.63× 10−5

E [-x; 6 | -9, -6, 6] 6.13× 10−5

K*(892)0 8.9594× 10−1 ± 2.2× 10−4

P [0; 0 | -60, e+1, -e-1] 1.47× 10−4

E [-x; 6 | -9, -e-1, -6] 5.48× 10−5

K2*(1430)+ 1.4256± 1.5× 10−3

P [0; 0 | 6, 6, -6] 7.56× 10−4

P [x; 3 | -e-1, 6, 30] 1.08× 10−4

E [-x; 6 | 15, -21] 1.40× 10−4

K2*(1430)0 1.4324± 1.3× 10−3

P [0; 0 | 6, 6, 6] 3.72× 10−4

P [x; 3 | -e-1, 6, 9, (-e-1)] 6.31× 10−4

E [-x; 6 | 15, -6, e+1, (36)] 5.37× 10−7

that the fundamental spectrum of proton resonances must
have an opposite, an anti-oscillation or inverted oscillation
spectrum. What could it be?

We know that these proton master-oscillations are stable,
so the theorized counter-oscillations must belong to a particle
with similar lifetime than the proton. Consequently the elec-
tron is the only particle that could be a manifestation of such
an inverted oscillation.

Now the concept of an inverted oscillation must be trans-
lated into a mathematical equation. According to Müller’s
standard model, we can express the electron mass as a proton
resonance and the proton mass as an electron resonance:

ln
melectron

mproton
= p+ Sp,

ln
mproton

melectron
= p+ Se,

where p is the phase shift (with value 0 or 1.5) and S the
continued fraction as discussed in previous papers (given in
equation (1)). Obviously forp , 0, Sp , Se, and this is the
starting point for the further modification of the model. We
have to adjust the phase shift (when different from zero) in
such a way that both continued fractions become opposite in
the sense of oscillation information. This means that the de-
nominators of Sp and Se must be the same, but with opposite
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sign. If

Sp = n0 +
e

n1 +
e

n2 +
e

n3 + ...

,

then must hold for Se:

Se = −n0 +
e

−n1 +
e

−n2 +
e

−n3 + ...

.

Mathematically it is now obvious that one equation must
be modified by a minus sign and we have to write:

ln
melectron

mproton
= p+ Sp, (2)

ln
mproton

melectron
= −p+ Se, (3)

However, this is not yet a complete set of rules to find new
continued fraction representations of the proton and electron;
in order to arrive at a conclusion, it is absolutely necessary to
develop further physical ideas.

Idea 1 – Length of continued fractions
The resulting continued fractions Sp and Se should be short.
A previous article already suggested that short fractions are
associated with stability [9]. However, the fractions must not
be too short. The fundamental oscillators must be represented
by the simplest variant of a chain of oscillators. This is a sin-
gle mass hold via two massless flexible strings between two
motionless, fixed walls. This setup leads to 3 parameters de-
termining the eigenfrequency of the chain, the mass value and
the two different lengths of the strings. Consequently the con-
tinued fraction also should have 3 free parameters (the free
link and two denominators). This idea solves the conceptual
problem of a “no information oscillation”. When express-
ing the electron mass as a proton resonance, then lnmelectron

mproton
=

p + S, andp must not have values determiningS as zero or
any other integer number (±3,±6,±9...). In such a case no
continued fraction can be written down, and the oscillation
would not have any property.

Idea 2 – Small denominators
According to M̈uller’s theory, a high positive or negative de-
nominator locates the data point in a fluctuating zone. Conse-
quently the considered property should be difficult to be kept
constant. From all our observations, it is highly reasonable
to believe that proton and electron masses are constant even
over very long time scales. Therefore their masses cannot be
located too deep inside a fluctuation zone. In this study, the
maximum value of the denominators was tentatively limited
to ±18.

Idea 3 – The free link
The calculation

ln
melectron

mproton
≈ −7.51

Table 5: Continued fraction representations of masses of the
charmed, and charmed strange mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

D+ 1.86957± 1.6× 10−4

P [0; 0 | e+1, 12, 27] 2.92× 10−5

E [0; 9 | -e-1, 9, 39] 5.45× 10−6

E [-x; 6 | 6, -213] 1.95× 10−8

D0 1.86480± 1.4× 10−4

P [0; 0 | e+1, 12, -e-1, -6] 1.03× 10−4

E [0; 9 | -e-1, 9, -12, e+1] 1.29× 10−4

E [-x; 6 | 6, 129] 6.40× 10−6

D*(2007)0 2.00693± 1.6× 10−4

P [0; 0 | e+1, -18, -e-1, e+1, -e-1] 8.59× 10−5

P [x; 3 | -6, 6, 15] 7.91× 10−5

E [0; 9 | -e-1, -78] 3.94× 10−5

E [-x; 6 | 6, -e-1, 6, e+1, 6] 2.21× 10−5

D*(2010)+ 2.01022± 1.4× 10−4

P [0; 0 | e+1, -18, (-102)] 4.53× 10−7

P [x; 3 | -6, 6, 6, (-21)] 5.72× 10−6

E [0; 9 | -e-1, -63, (6)] 3.23× 10−7

E [-x; 6 | 6, -e-1, 6, -12] 1.62× 10−4

D1(2420)0 2.4213± 6.0× 10−4

P [0; 0 | e+1, -e-1, 6, -e-1, 6] 4.56× 10−4

P [x; 3 | -9, -102] 3.68× 10−6

E [0; 9 | -6, e+1, -e-1, 9, -e-1] 4.37× 10−4

E [-x; 6 | e+1, 27, e+1, -e-1, e+1] 4.10× 10−4

D2*(2460)0 2.4626± 7.0× 10−4

P [0; 0 | e+1, -e-1, e+1, 18, -9] 5.21× 10−6

E [0; 9 | -6, e+1, -15] 9.58× 10−5

E [-x; 6 | e+1, 348] 1.02× 10−5

D2*(2460)+ 2.4644± 1.9× 10−3

P [0; 0 | e+1, -e-1, e+1, 24] 7.45× 10−5

P [x; 3 | -9, -e-1, -e-1, (e+1, 18)] 2.40× 10−6

E [0; 9 | -6, e+1, -18] 1.14× 10−4

E [-x; 6 | e+1, 663] 1.95× 10−6

D+
s 1.96845± 3.3× 10−4

P [0; 0 | e+1, -54, (-e-1, -15)] 3.13× 10−7

P [x; 3 | -6, e+1, 6, (-63)] 6.81× 10−7

E [0; 9 | -e-1, 42, e+1, -e-1] 2.34× 10−4

E [-x; 6 | 6, -e-1, -e-1, -6] 2.00× 10−4

Ds*+ 2.1123± 5.0× 10−4

P [x; 3 | -6, -12, -e-1] 4.00× 10−4

E [0; 9 | -e-1, -9, 6, -e-1, (-18, -45)] 3.42× 10−9

E [-x; 6 | e+1, e+1, -e-1, e+1, -e-1,
e+1, -e-1] 4.70× 10−4

Ds0*(2317)+ 2.3178± 6.0× 10−4

P [0; 0 | e+1, -e-1, -27] 4.57× 10−4

E [0; 9 | -e-1, -e-1, e+1, -e-1, -39] 1.50× 10−5

Ds1(2460)+ 2.4595± 6.0× 10−4

P [0; 0 | e+1, -e-1, e+1, 12, (15)] 1.19× 10−6

P [x; 3 | -9, -6, e+1, (-9)] 5.71× 10−5

E [0; 9 | -6, e+1, -12, e+1, (12)] 4.66× 10−6

E [-x; 6 | e+1, 189] 5.06× 10−5

Ds1(2536)+ 2.53528± 2.0× 10−4

P [0; 0 | e+1, -e-1, e+1, -e-1, e+1,
e+1, -6] 3.89× 10−5

E [0; 9 | -6, 6, -36] 1.87× 10−5

E [-x; 6 | e+1, -21, e+1, -e-1, (-e-1)] 1.88× 10−5

Ds2*(2573)+ 2.5726± 9.0× 10−4

P [x; 3 | -12, e+1, 15] 8.95× 10−5

E [0; 9 | -6, 9, 6] 2.24× 10−4
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Table 6: Continued fraction representations of masses of the
bottom mesons (including strange and charmed mesons) (x=

-1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

B+ 5.27917± 2.9× 10−4

P [x; 3 | 6, -9, 6, 6] 8.81× 10−5

B0 5.27950± 3.0× 10−4

P [x; 3 | 6, -9, 6, (33)] 4.56× 10−6

B*0,+ 5.3251± 5.0× 10−4

P [x; 3 | 6, -6, -6, e+1, e+1] 1.09× 10−4

B2*(5747)0,+ 5.743± 5.0× 10−3

E [0; 9 | 9, -e-1, -12] 2.95× 10−4

B0
s 5.3663± 6.0× 10−4

P [x; 3 | 6, -6, e+1, e+1, (9)] 4.93× 10−6

Bs*0 5.4154± 1.4× 10−3

P [x; 3 | 6, -e-1, -e-1, 12] 2.19× 10−5

Bs2*(5840)0 5.8397± 6.0× 10−4

P [x; 3 | e+1, e+1, -e-1, e+1, -9, (-6)] 4.08× 10−5

B+
c 6.277± 6.0× 10−3

P [x; 3 | e+1, 6, -153] 1.21× 10−5

E [0; 9 | 6, 6, -e-1, e+1, (63)] 1.71× 10−6

leads to a value between the principal nodes -6 and -9. From
this is follows that in the continued fractions, the free linkn0

can only take the values±6 and±9.

Idea 4 – Effect of canceling denominators
Elementary particles can be divided in two groups: the vast
majority with an extremely short half-life, and a small set
with comparable longer lifetime. When analyzing the more
stable particles with M̈uller’s standard model, already a strik-
ing tendency can be discovered that especially the sum of the
free link and the first denominators tends to be zero.
Examples:
Theτ can be interpreted as proton resonance and the full con-
tinued fraction representation, as calculated by the computer
is: P [0; 0| e+1, 6, -e-1, e+1, -e-1, -e-1, (6)]. Note that in the
end, every determination of a continued fraction results in an
infinite periodical alternating sequence of the denominators
e+1 and -e-1, which is always omitted here. Without signifi-
cantly changing the mass value, the fraction can be rewritten:
P [0; 0 | e+1, 6, -e-1, e+1, -e-1, -e-1, (e+1, -6)], and then the
sum of all denominators equals zero.

The full continued fraction for the charged pion is:
E [0; 6 | -6, -e-1, e+1, -e-1, 48, (-e-1, 6, -24, e+1, -e-1, 12)].
It can be seen that the free link and the first 3 denominators
cancel successively. Then this changes. A minimal manipu-
lation leads to:
E [0; 6 | -6, -e-1, e+1, -e-1, 48, (-e-1, 6, -48, e+1, -6, e+1)].

The full continued fraction for the neutral pion is:
E [0; 6 | -6, -6, -6, 6, -e-1, (12, -12, e+1, -e-1, e+1, 45, 6)].
Here we have only to eliminate the 11th denominator (45) and

Table 7: Continued fraction representations of masses of thecc
mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

ηc(1S)0 2.9803± 1.2× 10−3

P [x; 3 | -30, e+1, -e-1] 6.56× 10−5

E [0; 9 | -9, e+1, (-216)] 7.34× 10−7

E [-x; 6 | e+1, -e-1, 18, -e-1, e+1] 8.84× 10−4

J/ψ(1S)0 3.096916± 1.1× 10−5

E [-x; 6 | e+1, -e-1, e+1, 6, -e-1, e+1, 6,
e+1, (-18)] 1.19× 10−8

χc0(1P)0 3.41475± 3.1× 10−4

P [x; 3 | 63, e+1, (57)] 6.99× 10−8

E [0; 9 | -15, e+1, -e-1, (-12)] 9.48× 10−6

χc1(1P)0 3.51066± 7.0× 10−5

no continued fraction found outlier

hc(1P)0 3.52541± 1.6× 10−4

P [x; 3 | 36, 6, (-24)] 1.94× 10−6

χc2(1P)0 3.55620± 9.0× 10−5

P [x; 3 | 33, -9, e+1, -e-1, e+1] 7.52× 10−5

E [0; 9 | -18, 21, -e-1] 5.36× 10−5

ηc(2S)0 3.637± 4.0× 10−3

E [0; 9 | -21, (66)] 5.00× 10−6

ψ(2S)0 3.68609± 4.0× 10−5

E [0; 9 | -24, e+1, e+1, e+1, e+1] 6.30× 10−6

ψ(3770)0 3.77292± 3.5× 10−4

E [0; 9 | -30, e+1, (-12)] 5.90× 10−5

χc2(2P)0 3.9272± 2.6× 10−3

P [x; 3 | 15, -27] 1.47× 10−4

E [0; 9 | -51, -9, e+1] 1.10× 10−4

ψ(4040)0 4.0390± 1.0× 10−3

P [x; 3 | 12, e+1, -e-1, (495)] 3.14× 10−8

E [0; 9 | -108, -e-1] 5.66× 10−4

ψ(4160)0 4.1530± 3.0× 10−3

P [x; 3 | 12, -e-1, -e-1, (6)] 1.88× 10−5

E [0; 9 | 915] 1.36× 10−5

ψ(4415)0 4.421± 4.0× 10−3

P [x; 3 | 9, 81] 4.82× 10−5

E [0; 9 | 42, -6] 3.64× 10−4

the sum equals zero.

The full continued fraction for theη0 is:
P [0; 0 | -6, e+1, -e-1, 6, -e-1, 12, (-9, -12, -e-1, e+1, -e-1,
-e-1, e+1, -e-1, e+1, e+1)].
Again the first 4 denominators form a zero sum, then the 7th

denominator (-9) interrupts this canceling. Without signif-
icant change of the numerical value, this fraction could be
shortened and rewritten: P [0; 0| -6, e+1, -e-1, 6, -e-1, 12,
(-12, e+1)].

When interpretingη0 as electron resonance, again adding
the free link to the first 5 denominators gives zero:
E [0; 6 | e+1, -e-1, e+1, -6, -e-1, e+1, (24)]. We can add and
rewrite: E [0; 6| e+1, -e-1, e+1, -6, -e-1, e+1, (24, -e-1, -24)].

A completely different case is the neutron; here the con-
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Table 8: Continued fraction representations of masses of thebb
mesons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

Υ(1S)0 9.46030± 2.6× 10−4

P [0; 3 | -e-1, -12, -87] 1.02× 10−5

E [-x; 9 | -e-1, e+1, -12, -63] 9.33× 10−6

χb0(1P)0 9.8594± 5.0× 10−4

E [0; 9 | e+1, -e-1, -e-1, e+1, -9, -e-1] 1.96× 10−4

E [-x; 9 | -e-1, e+1, 6, -e-1, 6, e+1] 3.40× 10−4

χb1(1P)0 9.8928± 4.0× 10−4

E [0; 9 | e+1, -e-1, -e-1, 6, (-75)] 4.52× 10−6

E [-x; 9 | -e-1, e+1, e+1, e+1, -12] 3.00× 10−4

χb2(1P)0 9.9122± 4.0× 10−4

P [0; 3 | -e-1, -6, e+1, 15, -e-1] 8.26× 10−5

E [0; 9 | e+1, -e-1, -e-1, 12, -6] 1.07× 10−5

E [-x; 9 | -e-1, e+1, e+1, 6] 2.21× 10−6

Υ(2S)0 1.002326× 101 ± 3.1× 10−4

P [0; 3 | -e-1, -e-1, -e-1, e+1, -75] 1.86× 10−6

E [0; 9 | e+1, -e-1, -6, e+1, e+1,
e+1, (-18)] 1.28× 10−6

E [-x; 9 | -e-1, e+1, e+1, -e-1, 6, -e-1,
e+1, -e-1, e+1] 2.49× 10−4

χb0(2P)0 1.02325× 101 ± 6.0× 10−4

P [0; 3 | -e-1, -e-1, 327] 1.29× 10−6

E [0; 9 | e+1, -e-1, -30] 9.85× 10−5

E [-x; 9 | -e-1, 6, -e-1, -e-1, -e-1, -e-1] 2.80× 10−4

χb1(2P)0 1.02555× 101 ± 5.0× 10−4

P [0; 3 | -e-1, -e-1, 30] 2.78× 10−4

E [0; 9 | e+1, -e-1, -54] 4.85× 10−4

E [-x; 9 | -e-1, 6, -6, e+1, -e-1, -6] 8.02× 10−5

χb2(2P)0 1.02686× 101 ± 5.0× 10−4

P [0; 3 | -e-1, -e-1, 21, -e-1, 9] 1.11× 10−5

E [0; 9 | e+1, -e-1, -93] 2.07× 10−5

E [-x; 9 | -e-1, 6, -6, 9, (-12)] 4.33× 10−6

Υ(3S)0 1.03552× 101 ± 5.0× 10−4

P [0; 3 | -e-1, -e-1, 6, e+1, 6] 3.94× 10−5

E [-x; 9 | -e-1, 6, -30, -e-1] 1.75× 10−4

Υ(4S)0 1.05794× 101 ± 1.2× 10−3

P [0; 3 | -e-1, -e-1, e+1, -e-1, e+1, -15] 9.28× 10−5

E [0; 9 | e+1, -e-1, 6, e+1, 21] 4.37× 10−5

Υ(10860)0 1.0876× 101 ± 1.1× 10−2

E [0; 9 | e+1, -e-1, e+1, 24] 8.32× 10−5

Υ(11020)0 1.1019× 101 ± 8.0× 10−3

P [0; 3 | -6, e+1, -e-1, 6, e+1] 3.60× 10−3

E [0; 9 | e+1, -e-1, e+1, -6, (-18)] 3.89× 10−5

tinued fraction is: P [0; 0| 1974, -e-1, -e-1, (-24)]. As the
first denominator is very high, the following denominators
can make only minor changes of the numerical value of the
fraction. So here it would be easily possible adding denom-
inators to force the sum to be zero. Actually many particle
representations fall in that category, so from looking only at
these examples, the fundamental idea of a vanishing sum of
denominators does not come out at all.

Hypothesis:
From all these examples we can theorize that for a perma-
nently stable particle such as the proton and electron, the sum
of the free link and all partial denominators must be zero.

3.2 Rules for constructing continued fractions

With these physical ideas, we can express the proton and elec-
tron through a very limited set of 10 pairs of continued frac-
tions (Table 12), which can all be written down. For every
continued fraction, the phase shift p can be calculated, so that
equations (2) and (3) hold. Then, new rules for the interpre-
tation of elementary particle masses can be derived. First, a
mass can be either a proton or an electron resonance, and sec-
ond, this newly found phase shift must now be considered.

When interpreting particle masses as proton resonance
states we write (x is the new phase shift):

ln
mparticle

mproton
= (0 or x)+ S (4)

and for electron resonances holds:

ln
mparticle

melectron
= (0 or −x) + S. (5)

The basic rule that the phase shift can be zero, is funda-
mental and will not be changed.

Now for every of these 10 different phase shifts, the new
model must be checked. We have to find out to what extent
other elementary particles are compatible to one of these 10
new versions of the model and still accumulate in spectral
nodes. There is a set of 18 particle masses, which cannot be
expressed as proton or electron resonances with phase shift
zero; these are:μ−, K0, B+, B0, B*0,+, B0

s, Bs*0, Bs2*(5840)0,
J/ψ(1S)0, χc1(1P)0, hc(1P)0, Λ(1520)0, Σ0, Σ(1385)+, Ξ−, Λ+

c ,
Σb*0,+ andΣb*−. The question is now: which of the 10 possi-
ble phase shifts can reproduce these 18 masses best, with the
lowest number of outliers?

By trial and error it was found that there is indeed such a
“best possibility”, providing only one outlier:

ln
melectron

mproton
= x + (−6)+

e

12+
e
−6

(6)

ln
mproton

melectron
= −x + 6+

e

−12+
e
6

. (7)

The phase shift x equals -1.75083890054 and the numer-
ical errors are very small (see Tables 1 and 9).

Tables 1 to 11 show the continued fraction representa-
tions for the considered data set (117 particles, 107 different
masses) All possible fractions are given for both, proton and
electron resonances with the phase shifts 0 and±x. For com-
pleteness, Table 12 displays the 10 alternative continued frac-
tion representations together with the calculated phase shifts
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and the number of outliers when trying to reproduce the afore-
mentioned set of 18 masses.

A single outlier is a very satisfying result when comparing
to 14% outliers, which have been found with the standard ver-
sion of Müller’s model [9]. Since the spectra of electron and
proton resonances overlap, most particles can even expressed
as both, proton and electron resonances. This demonstrates
that it makes only sense to analyze high accuracy data, other-
wise easily a continued fraction representation can be found.

As expected, the principle of “Yin and Yang” has not been
found anymore in this set of particles. There are no other
pairs of particles with opposite oscillation information. It
seems to be that this fundamental concept is only applicable
to longterm stable systems or processes. Further research on
other data sets should confirm this.

3.3 Model discussion

Is the principle of “Yin and Yang” really necessary to obtain
continued fraction representations for most elementary par-
ticle masses? The critical reader could argue that alone the
additional consideration of electron resonances greatly en-
hances the chances to express particle masses via standard
continued fractions (with phase shift 0 and 3/2). This is true,
however, the author has found that the 14% outliers were very
little reduced when considering such additional electron res-
onances. So another phase shift is definitively required.

But, are the electron resonances really necessary? Would
it not be possible to write only

ln
mparticle

mproton
= (0 or p)+ S (8)

where p is just any other phase shift different from the stan-
dard value 3/2 (between 0 and±3)? This was exactly the
author’s first attempt to modify M̈uller’s model. It was found
that such phase shift does not exist.

For that reason the problem can only be solved through
a new physical or philosophical idea. Every good physical
theory consists of two parts, equivalent to a soul and a body.
The soul represents a fundamental physical law or a philo-
sophical principle, while always mathematics is the body.

From this viewpoint the author is particularly satisfied
having found the “Yin-Yang” principle as an adequate exten-
sion of the proton resonance concept. It clearly justifies the
importance of electron resonances and distinguishes the
model from numerology.

Regarding the selection of the appropriate phase shift, a
very critical reader could note that there is only one outlier
difference between

ln
melectron

mproton
= [x1;−9 | − 9,18] (2 outliers)

and the best variant

ln
melectron

mproton
= [x2;−6 | 12,−6], (1 outlier)

Table 9: Continued fraction representations of masses of the N,Δ,
Λ, Σ, Ξ andΩ baryons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

p+ 9.38272013× 10−1 ± 2.3× 10−8

E [-x; 6 | -12, 6] 2.22× 10−12

n0 9.39565346× 10−1 ± 2.3× 10−8

P [0; 0 | 1974, -e-1, -e-1, (-24)] 7.85× 10−11

Δ(1232)−,0,+,++ 1.2320± 1.0× 10−3

P [0; 0 | 9, e+1, -e-1, e+1] 4.29× 10−4

P [x; 3 | -e-1, e+1, -e-1, 6, e+1, -e-1] 7.12× 10−4

E [-x; 6 | 75] 8.61× 10−4

Λ0 1.115683± 6.0× 10−6

P [0; 0 | 15, e+1, 15, -6] 9.92× 10−8

Λ(1405)0 1.4051± 1.3× 10−3

P [0; 0 | 6, e+1] 2.50× 10−5

P [x; 3 | -e-1, 6, -e-1, -e-1] 6.44× 10−4

Λ(1520)0 1.5195± 1.0× 10−3

P [x; 3 | -e-1, 15, e+1] 5.71× 10−4

E [-x; 6 | 12, -e-1, e+1, -e-1] 4.36× 10−4

Σ+ 1.18937± 7.0× 10−5

P [0; 0 | 12, -6, e+1, -e-1, 6] 5.70× 10−6

Σ0 1.192642± 2.4× 10−5

E [-x; 6 | 606] 1.24× 10−5

Σ− 1.197449± 3.0× 10−5

P [0; 0 | 12, -e-1, 6, -e-1, e+1,
-e-1, (93)] 5.89× 10−9

E [-x; 6 | 321, -e-1] 1.22× 10−5

Σ(1385)+ 1.3828± 4.0× 10−4

E [-x; 6 | 18, -15 (-e-1)] 8.96× 10−5

Σ(1385)0 1.3837± 1.0× 10−3

P [0; 0 | 6, e+1, -e-1, e+1, -e-1] 6.88× 10−4

E [-x; 6 | 18, -12, (e+1, 60)] 2.95× 10−8

Σ(1385)− 1.3872± 5.0× 10−4

P [0; 0 | 6, e+1, -e-1, e+1, e+1] 3.03× 10−4

E [-x; 6 | 18, -6, e+1] 1.66× 10−4

Ξ0 1.31486± 2.0× 10−4

P [0; 0 | 9, -e-1, e+1, -6] 1.42× 10−4

P [x; 3 | -e-1, e+1, -93] 2.86× 10−5

E [-x; 6 | 27, -9, e+1] 1.53× 10−4

Ξ− 1.32171± 7.0× 10−5

P [x; 3 | -e-1, e+1, 45, e+1] 5.35× 10−5

Ξ(1530)0 1.53180± 3.2× 10−4

P [0; 0 | 6, -6, (165)] 1.35× 10−6

E [0; 9 | -e-1, e+1, -e-1, e+1, -e-1,
-e-1, -e-1] 5.19× 10−5

Ξ(1530)− 1.5350± 6.0× 10−4

P [0; 0 | 6, -6, 9, (-12)] 1.09× 10−5

P [x; 3 | -e-1, 21, 6] 1.01× 10−4

E [0; 9 | -e-1, e+1, -e-1, e+1,
-6, (-54)] 1.18× 10−6

Ω− 1.67245± 2.9× 10−4

P [0; 0 | e+1, e+1, -e-1, e+1, -e-1,
-e-1] 1.09× 10−4

P [x; 3 | -e-1, 9, e+1, -9] 1.50× 10−4

E [0; 9 | -e-1, e+1, 48] 1.23× 10−4
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Table 10: Continued fraction representations of masses of the
charmed baryons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s) error [GeV]

Λ+
c 2.28646± 1.4× 10−4

E [-x; 6 | e+1, 6, 9, -e-1, (-e-1)] 8.64× 10−6

Λc(2595)+ 2.5954± 6.0× 10−4

P [x; 3 | -12, 9, e+1] 5.64× 10−4

E [0; 9 | -6, 15, (66)] 1.23× 10−6

E [-x; 6 | e+1, -12, e+1, -9] 1.13× 10−4

Σc(2455)++ 2.45403± 1.8× 10−4

P [x; 3 | -9, -6, -39] 8.51× 10−7

E [0; 9 | -6, e+1, -9, e+1, -e-1] 2.02× 10−5

E [-x; 6 | e+1, 105] 7.84× 10−5

Σc(2455)+ 2.4529± 4.0× 10−4

P [0; 0 | e+1, -e-1, e+1, 6, e+1, -e-1,
e+1] 2.84× 10−4

P [x; 3 | -9, -6, -9] 1.07× 10−4

E [-x; 6 | e+1, 96] 1.02× 10−4

Σc(2455)0 2.45376± 1.8× 10−4

P [x; 3 | -9, -6, -24] 3.06× 10−5

E [0; 9 | -6, e+1, -9, e+1, -e-1, e+1] 1.48× 10−4

E [-x; 6 | e+1, 102, (e+1)] 8.05× 10−5

Σc(2520)++ 2.5184± 6.0× 10−4

P [0; 0 | e+1, -e-1, e+1, -e-1, -18] 1.44× 10−4

E [0; 9 | -6, 6, -e-1, e+1, (18)] 1.05× 10−5

E [-x; 6 | e+1, -27, e+1, (6)] 1.68× 10−5

Σc(2520)+ 2.5175± 2.3× 10−3

P [0; 0 | e+1, -e-1, e+1, -e-1, -15, e+1] 1.01× 10−4

E [0; 9 | -6, 6, -e-1, e+1, (-6)] 7.02× 10−5

E [-x; 6 | e+1, -27] 4.20× 10−4

Σc(2520)0 2.5180± 5.0× 10−4

P [0; 0 | e+1, -e-1, e+1, -e-1, -15] 2.46× 10−4

E [0; 9 | -6, 6, -e-1, e+1, (-21)] 8.75× 10−6

E [-x; 6 | e+1, -27, 6] 2.10× 10−5

Ξ+
c 2.4678± 4.0× 10−4

P [0; 0 | e+1, -e-1, e+1, 60] 5.29× 10−5

P [x; 3 | -9, -e-1, -e-1, e+1, e+1] 2.82× 10−4

E [0; 9 | -6, e+1, -33] 8.89× 10−6

E [-x; 6 | e+1, -933] 1.45× 10−6

Ξ0
c 2.47088± 3.4× 10−4

P [0; 0 | e+1, -e-1, e+1, -162] 2.87× 10−7

P [x; 3 | -9, -e-1, -9, (-9)] 1.73× 10−5

E [0; 9 | -6, e+1, -141] 6.33× 10−6

E [-x; 6 | e+1, -294] 5.91× 10−6

Ξ′+c 2.5756± 3.1× 10−3

P [x; 3 | -12, e+1, 6] 4.33× 10−4

E [0; 9 | -6, 9, e+1] 1.02× 10−3

E [-x; 6 | e+1, -12, -e-1, e+1] 1.40× 10−3

Ξ′0c 2.5779± 2.9× 10−3

P [x; 3 | -12, e+1, e+1] 5.26× 10−4

E [-x; 6 | e+1, -12, -e-1] 8.16× 10−4

Ξc(2645)0,+ 2.6459± 5.0× 10−4

P [x; 3 | -12, -e-1, 9] 7.47× 10−6

E [0; 9 | -6, -39, (-330)] 1.13× 10−8

E [-x; 6 | e+1, -9, e+1, 6] 2.50× 10−4

Ω0
c 2.6952± 1.7× 10−3

P [x; 3 | -15, e+1, -e-1, e+1] 6.84× 10−4

E [0; 9 | -6, -9, e+1, (-12)] 3.15× 10−6

E [-x; 6 | e+1, -6, e+1] 9.61× 10−4

Ωc(2770)0 2.7659± 2.0× 10−3

E [0; 9 | -6, -e-1, (93)] 9.99× 10−6

E [-x; 6 | e+1, -6, e+1, e+1] 3.47× 10−4

Table 11: Continued fraction representations of masses of the bot-
tom baryons (x= -1.75083890054)

Particle Mass± SD [GeV] Numerical
Continued fraction representation(s)error [GeV]

Λ0
b 5.6202± 1.6× 10−3

P [x; 3 | 6, e+1, -e-1, e+1, 9] 1.25× 10−4

E [0; 9 | 9, -27] 3.49× 10−4

Σ+b 5.8078± 2.7× 10−3

E [0; 9 | 9, -e-1, e+1, -e-1, (-27)] 2.47× 10−6

Σ−b 5.8152± 2.0× 10−3

E [0; 9 | 9, -e-1, e+1, -e-1, e+1,
(-e-1, 24)] 4.30× 10−6

Σb*+, Σb*0 5.8290± 3.4× 10−3

P [x; 3 | e+1, e+1, -e-1, e+1] 8.39× 10−4

Σb*− 5.8364± 2.8× 10−3

P [x; 3 | e+1, e+1, -e-1, e+1, -6] 7.39× 10−5

Ξ
−,0
b 5.7905± 2.7× 10−3

E [0; 9 | 9, -e-1, e+1, 9] 2.20× 10−4

Table 12: List of the 10 possible continued fraction representations
of the electron mass when considering the rules that denominators
must be small and their sum including the free link equals zero, to-
gether with their associate phase shifts and the number of outliers
when considering the following set of 18 particles:μ−, K0, B+, B0,
B*0,+, B0

s, Bs*0, Bs2*(5840)0, J/ψ(1S)0, χc1(1P)0, hc(1P)0, Λ(1520)0,
Σ0, Σ(1385)+, Ξ−, Λ+

c , Σb*0,+ andΣb*−

Continued fraction representation phase shift number of
for ln melectron

mproton
= x + S x outliers

P [x; -9 | 15, -6] 1.29770965366 3

P [x; -9 | -6, 15] 1.95172884111 5

P [x; -9 | 18, -9] 1.33097940724 4

P [x; -9 | -9, 18] 1.79175802145 2
μ−, Σ0

P [x; -6 | -6, 12] -1.04460536299 6

P [x; -6 | 12, -6] -1.75083890054 1
χc1(1P)0

P [x; -6 | -9, 15] -1.20718990898 6

P [x; -6 | 15, -9] -1.70037040878 6

P [x; -6 | 18, -12] -1.66836807753 3

P [x; -6 | -12, 18] -1.2860171871 4

so one single outlier might not be sufficiently significant to
make a clear decision. Here it is now worth looking at the
outlier particles. In the first case, the two outliers are the
muon and theΣ0. The muon has a comparatively long mean
lifetime of 2.2μs. So it is fare more stable than the average
elementary particle. Therefore it is reasonable to request that
the muon mass is reproduced by the model, i.e. the muon
must not be an outlier.

4 Conclusions

The here presented bipolar version of Müller’s continued
fraction model is so far the best description of elementary
particle masses. It demonstrates two facts: first, electron and
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proton can be interpreted as a manifestation of the “Yin and
Yang” principle in nature. They both can be interpreted as
fundamental reference points in the model of a chain of har-
monic oscillations. Second, the proton resonance idea alone
is an incomplete concept and we have to recognize that elec-
tron resonances also play an important role in the universe.

These results can be obtained only when strictly consider-
ing the individual measurement errors of the particles and all
similar future analyses should be based on the most accurate
data available.

Until now, this bipolar version of M̈uller’s model has re-
produced only one data set. It is obvious that this alone can-
not be considered as a full proof of correctness of this model
variant and much more data should be analyzed.
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Galaxy S-Stars Exhibit Orbital Angular Momentum Quantization per Unit Mass

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646 USA. E-mail: frank11hb@yahoo.com

The innermost stars of our Galaxy, called S-stars, are in Keplerian orbits. Quantum
celestial mechanics (QCM) predicts orbital angular momentum quantizationper unit
massfor each of them. I determine the quantization integers for the 27 well-measured
S-stars and the total angular momentum of this nearly isolated QCM system within the
Galactic bulge.

1 Introduction

The innermost stars of our Galaxy, called S-stars, are in Kep-
lerian orbits about a proposed [1] black hole of mass 4.3± 0.3
million solar masses. Their orbital planes appear to have ran-
dom orientations, their orbital eccentricities range from 0.131
to 0.963 with no apparent pattern, and their origins of forma-
tion remain an issue. The star labelled S0-2 has the smallest
semi-major axis of about 1020 AU and has been monitored
for one complete revolution of its orbit, thereby allowing a
determination of the position of the Galactic center Sgr A* at
a distance of 8.33± 0.36 kpc.

In this brief report I use the orbital distances of the 27
well-measured S-stars revolving about the Galactic Center as
a test of the orbital angular momentum quantizationper unit
masspredicted by the quantum celestial mechanics (QCM)
introduced by H.G. Preston and F. Potter in 2003 [2, 3]. For
the derivation of QCM from the general relativistic Hamilton-
Jacobi equation, see the published articles online [2,4].

In a Schwarzschild metric approximation, their proposed
gravitational wave equation (GWE) reduces to a Schrödinger-
like equation in ther-coordinate while the angular coordi-
nates (θ, φ) dictate the angular momentum quantization per
unit mass. In particular, a body of massμ orbiting a central
massM has an orbital angular momentumL that obeys

L
μ

= m c H, (1)

wherem is the quantization integer andc is the speed of light.
We assume that over millions of years the orbit has reached
a QCM equilibrium distancer that agrees in angular momen-
tum value with its Newtonian valueL = μ

√
GMr.

H is the Preston gravitational distance, a different con-
stant for each separate gravitationally bound system, equal to
the system’s total angular momentumLT divided by its total
massMT

H =
LT

MTc
. (2)

Note thatH is not a universal constant, unlike~, and that
QCM is not quantum gravity. Also recall that the GWE in the
free particle limit becomes the standard Schrödinger equation
of quantum mechanics.

Fig. 1: QCM fit of S-stars at the Galactic Center.

2 S-star Orbital Quantization

The pertinent orbital parameters [5] for the 27 S-stars are
listed in Table 1. Note that some uncertainties in both the
semi-major axis column and in the eccentricity column are
quite a large percentage of the mean values. These uncertain-
ties will become smaller as more of these stars complete their
orbits in the decades to come. More than an additional 100
S-stars are being studied in order to determine their orbital
parameters. S0-16, whose orbital parameters are still being
determined, has come the closest [1] to the Galactic Center
Sgr A* at 45 AU (6.75× 1012 m) with a tangential velocity
of 1.2× 107 m/sec!

I assume that each S-star is in a QCM equilibrium orbit
in order to use the Newtonian values for the plot ofL’ = L/μc
versusm in Figure 1. The linear regression measure R2 =

0.9986 indicates an excellent fit. I did not take the proposed
black hole mass forM but used one solar mass instead as a
reference. The slopeH = 6.59× 107 meters for one solar
mass, which becomesHBH = 1.30× 1011 meters (0.87 AU)
for the proposed central black hole mass. For comparison, the
Schwarzschild radius for this BH is 1.27× 1010 meters.

Stars having the same QCM values form, such as the six
stars withm= 11, have orbits in different planes. I.e., their or-
bital angular momentum vectors point in different directions.
There might be orbital resonances among stars with different
m values even though their orbital planes have quite differ-
ent orientations. With much more S-star orbital data to be
determined, future fits to the QCM angular momentum quan-
tization constraint should be very interesting.
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S-star m a [”] ε

S0-2 7 0.123± 0.001 0.880± 0.003
S0-38 7 0.139± 0.041 0.802± 0.041
S0-21 9 0.213± 0.041 0.784± 0.028
S0-5 10 0.250± 0.042 0.842± 0.017
S0-14 10 0.256± 0.010 0.963± 0.006
S0-18 10 0.265± 0.080 0.759± 0.052
S0-9 11 0.293± 0.050 0.825± 0.020
S0-13 11 0.297± 0.012 0.490± 0.023
S0-4 11 0.298± 0.019 0.406± 0.022
S0-31 11 0.298± 0.044 0.934± 0.007
S0-12 11 0.308± 0.008 0.900± 0.003
S0-17 11 0.311± 0.004 0.364± 0.015
S0-29 13 0.397± 0.335 0.916± 0.048
S0-33 13 0.410± 0.088 0.731± 0.039
S0-8 13 0.411± 0.004 0.824± 0.014
S0-6 14 0.436± 0.153 0.886± 0.026
S0-27 14 0.454± 0.078 0.952± 0.006
S0-1 15 0.508± 0.028 0.496± 0.028
S0-19 18 0.798± 0.064 0.844± 0.062
S0-24 21 1.060± 0.178 0.933± 0.010
S0-71 21 1.061± 0.765 0.844± 0.075
S0-67 21 1.095± 0.102 0.368± 0.041
S0-66 23 1.210± 0.126 0.178± 0.039
S0-87 23 1.260± 0.001 0.880± 0.003
S0-96 25 1.545± 0.209 0.131± 0.054
S0-97 30 2.186± 0.844 0.302± 0.308
S0-83 34 2.785± 0.234 0.657± 0.096

Table 1: Galaxy Center S-star orbital parameters.

3 Total Angular Momentum

If there exists the BH at the center, from the value ofHBH we
calculate the predicted QCM total angular momentumLT of
this system to be about 3.35× 1056 kg m2/s. The rotating BH
can contribute a maximum angular momentum of J= GM2/c,
about 1.64× 1055 kg m2/s, meaning that the orbiting stars
dominate the angular momentum of this system.

Spectroscopic measurements to determine S-star types in-
dicate that their masses lie between 10 and 30 solar masses,
so assuming about 100 such stars randomly distributed within
10 times the orbital radius of S0-83, one estimates an average
total contribution of about 1.4× 1056 kg m2/s, large enough
to accommodate the QCM predicted total angular momentum
value. Therefore, most of the system angular momentum is
in the orbital motion of the S-stars.

Just how big radially is this gravitationally bound system
involving the S-stars according to the QCM fit? Obviously,
the angular momentum totals indicate that this gravitationally
bound system does not extend significantly into the Galactic
bulge, otherwise, the system’s predictedH value will increase
by many orders of magnitude with increases in radial dis-

tance. The Preston gravitational distance for the Galaxy,HGal

= 1.2× 1017 meters, may be the partition distance between
this nearly isolated inner system and the rest of the Galaxy.

Therefore, this S-star system behaves as a nearly isolated
system obeying QCM in the larger system called the Galaxy
(or perhaps the Galaxy Bulge). Such QCM smaller systems
within larger QCM systems already exist in the Solar Sys-
tem, e.g., the satellite systems of the planets [2], including
the Jovian systems and the moons of Pluto [6]. Our Solar
System [6] is a QCM system out on one spiral arm of the
Galaxy, which is itself a QCM system requiring a different
metric [4]. This hierarchy of QCM systems even applies to
clusters of galaxies [7] and the Universe [8].

4 Final Comments

QCM predicts the orbital angular momentum quantization ex-
hibited by the 27 S-stars nearest the Galactic Center. The
result does not disagree with the proposed black hole mass
of about 4.3 million solar masses there. The consequence is
that the S-stars seem to be in their own nearly isolated QCM
gravitationally bound system within the larger system of the
Galaxy and the Galaxy bulge.
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Does the Equivalence between Gravitational Mass and Energy Survive
for a Quantum Body?

Andrei G. Lebed
Department of Physics, University of Arizona, 1118 E. 4th Street, Tucson, AZ 85721, USA. E-mail: lebed@physics.arizona.edu

We consider the simplest quantum composite body, a hydrogen atom, in the presence of
a weak external gravitational field. We show that passive gravitational mass operator of
the atom in the post-Newtonian approximation of general relativity does not commute
with its energy operator, taken in the absence of the field. Nevertheless, the equivalence
between the expectations values of passive gravitational mass and energy is shown to
survive at a macroscopic level for stationary quantum states. Breakdown of the equiva-
lence between passive gravitational mass and energy at a microscopic level for station-
ary quantum states can be experimentally detected by studying unusual electromagnetic
radiation, emitted by the atoms, supported and moved in the Earth gravitational field
with constant velocity, using spacecraft or satellite.

1 Introduction

Formulation of a successful quantum gravitation theory is
considered to be one of the most important problems in mod-
ern physics and the major step towards the so-called “Theory
of Everything”. On the other hand, fundamentals of general
relativity and quantum mechanics are so different that there is
a possibility that it will not be possible to unite these two the-
ories in a feasible future. In this difficult situation, it seems to
be important to suggest a combination of quantum mechan-
ics and some non-trivial approximation of general relativity.
In particular, this is important in the case where such theory
can be experimentally tested. To the best of our knowledge,
so far only quantum variant of the trivial Newtonian approxi-
mation of general relativity has been tested experimentally in
the famous COW [1] and ILL [2] experiments. As to such im-
portant and nontrivial quantum effects in general relativity as
the Hawking radiation [3] and the Unruh effect [4], they are
still very far from their direct and unequivocal experimental
confirmations.

The notion of gravitational mass of a composite body is
known to be non-trivial in general relativity and related to the
following paradoxes. If we consider a free photon with en-
ergy E and apply to it the so-called Tolman formula for grav-
itational mass [5], we will obtain mg = 2E/c2 (i.e., two times
bigger value than the expected one) [6]. If a photon is con-
fined in a box with mirrors, then we have a composite body
at rest. In this case, as shown in Ref. [6], we have to take into
account a negative contribution to mg from stress in the box
walls to restore the Einstein equation, mg = E/c2. It is im-
portant that the later equation is restored only after averaging
over time. A role of the classical virial theorem in establish-
ing of the equivalence between averaged over time gravita-
tional mass and energy is discussed in detail in Refs. [7, 8] for
different types of classical composite bodies. In particular, for
electrostatically bound two bodies with bare masses m1 and

m2, it is shown that gravitational field is coupled to a combi-
nation 3K +2U, where K is kinetic energy, U is the Coulomb
potential energy. Since the classical virial theorem states that
the following time average is equal to zero,

⟨
2K + U

⟩
t
= 0,

then we conclude that averaged over time gravitational mass
is proportional to the total amount of energy [7, 8]:⟨

mg
⟩

t
= m1 + m2 +

⟨
3K + 2U

⟩
t
/c2 = E/c2. (1)

2 Goal

The main goal of our paper is to study a quantum problem
about passive gravitational mass of a composite body. As the
simplest example, we consider a hydrogen atom in the Earth
gravitational field, where we take into account only kinetic
and Coulomb potential energies of an electron in a curved
spacetime. We claim three main results in the paper (see also
Refs. [9, 10]). Our first result is that the equivalence between
passive gravitational mass and energy in the absence of grav-
itational field survives at a macroscopic level in a quantum
case. More strictly speaking, we show that the expectation
value of the mass is equal to E/c2 for stationary quantum
states due to the quantum virial theorem. Our second result
is a breakdown of the equivalence between passive gravita-
tional mass and energy at a microscopic level for stationary
quantum states due to the fact that the mass operator does not
commute with energy operator, taken in the absence of grav-
itational field. As a result, there exist a non-zero probability
that a measurement of passive gravitational mass gives value,
which is different from E/c2, given by the Einstein equation.
Our third result is a suggestion of a realistic experiment to de-
tect this inequivalence by measurements of electromagnetic
radiation, emitted by a macroscopic ensemble of hydrogen
atoms, supported and moved in the Earth gravitational field,
using spacecraft or satellite.
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3 Gravitational Mass in Classical Physics

Below, we derive the Lagrangian and Hamiltonian of a hy-
drogen atom in the Earth gravitational field, taking into ac-
count couplings of kinetic and potential Coulomb energies of
an electron with a weak centrosymmetric gravitational field.
Note that we keep only terms of the order of 1/c2 and dis-
regard magnetic force, radiation of both electromagnetic and
gravitational waves as well as all tidal and spin dependent ef-
fects. Let us write the interval in the Earth centrosymmetric
gravitational field, using the so-called weak field approxima-
tion [11]:

ds2 = −
(
1+2
ϕ

c2

)
(cdt)2 +

(
1−2
ϕ

c2

)
(dx2 + dy2 + dz2),

ϕ = −GM
R
,

(2)

where G is the gravitational constant, c is the velocity of light,
M is the Earth mass, R is a distance between a center of the
Earth and a center of mass of a hydrogen atom (i.e., proton).
We pay attention that to calculate the Lagrangian (and later
— the Hamiltonian) in a linear with respect to a small pa-
rameter ϕ(R)/c2 approximation, we do not need to keep the
terms of the order of [ϕ(R)/c2]2 in metric (2), in contrast to
the perihelion orbit procession calculations [11] .

Then, in the local proper spacetime coordinates,

x′ =
(
1 − ϕ

c2

)
x, y′ =

(
1 − ϕ

c2

)
y,

z′ =
(
1 − ϕ

c2

)
z, t′ =

(
1 +
ϕ

c2

)
t,

(3)

the classical Lagrangian and action of an electron in a hydro-
gen atom have the following standard forms:

L′ = −mec2 +
1
2

me(v′)2 +
e2

r′
, S ′ =

∫
L′dt′, (4)

where me is the bare electron mass, e and v′ are the elec-
tron charge and velocity, respectively; r′ is a distance between
electron and proton. It is possible to show that the Lagrangian
(4) can be rewritten in coordinates (x, y, z, t) as

L = −mec2 +
1
2

mev2 +
e2

r
− meϕ −

(
3me

v2

2
− 2

e2

r

)
ϕ

c2 . (5)

Let us calculate the Hamiltonian, corresponding to the La-
grangian (5), by means of a standard procedure, H(p, r) =
pv − L(v, r), where p = ∂L(v, r)/∂v. As a result, we obtain:

H = mec2 +
p2

2me
− e2

r
+ meϕ +

(
3

p2

2me
− 2

e2

r

)
ϕ

c2 , (6)

where canonical momentum in a gravitational field is p =
mev(1 − 3ϕ/c2). [Note that, in the paper, we disregard all

tidal effects (i.e., we do not differentiate gravitational poten-
tial with respect to electron coordinates, r and r′, correspond-
ing to a position of an electron in the center of mass coor-
dinate system). It is possible to show that this means that
we consider the atom as a point-like body and disregard all
effects of the order of |ϕ/c2|(rB/R) ∼ 10−26, where rB is the
Bohr radius (i.e., a typical size of the atom).] From the Hamil-
tonian (6), averaged over time electron passive gravitational
mass, < mge >t, defined as its weight in a weak centrosym-
metric gravitational field (2), can be expressed as

< mge >t = me +

⟨
p2

2me
−e2

r

⟩
t

1
c2 +

⟨
2

p2

2me
−e2

r

⟩
t

1
c2

= me +
E
c2 ,

(7)

where E = p2/2me − e2/r is an electron energy. We pay at-
tention that averaged over time third term in Eq. (7) is equal
to zero due to the classical virial theorem. Thus, we conclude
that in classical physics averaged over time passive gravita-
tional mass of a composite body is equivalent to its energy,
taken in the absence of gravitational field [7, 8].

4 Gravitational Mass in Quantum Physics

The Hamiltonian (6) can be quantized by substituting a mo-
mentum operator, p̂ = −iℏ∂/∂r, instead of canonical momen-
tum, p. It is convenient to write the quantized Hamiltonian in
the following form:

Ĥ = mec2 +
p̂2

2me
− e2

r
+ m̂geϕ, (8)

where we introduce passive gravitational mass operator of an
electron to be proportional to its weight operator in a weak
centrosymmetric gravitational field (2),

m̂ge = me +

(
p̂2

2me
− e2

r

)
1
c2 +

(
2

p̂2

2me
− e2

r

)
1
c2 . (9)

Note that the first term in Eq. (9) corresponds to the bare elec-
tron mass, me, the second term corresponds to the expected
electron energy contribution to the mass operator, whereas
the third nontrivial term is the virial contribution to the mass
operator. It is important that the operator (9) does not com-
mute with electron energy operator, taken in the absence of
the field. It is possible to show that Eqs. (8), (9) can be also
obtained directly from the Dirac equation in a curved space-
time, corresponding to a weak centrosymmetric gravitational
field (2). For example, the Hamiltonian (8), (9) can be ob-
tained [9, 10] from the Hamiltonian (3.24) of Ref. [12], where
different physical problem is considered, by omitting all tidal
terms.

Below, we discuss some consequences of Eq. (9). Sup-
pose that we have a macroscopic ensemble of hydrogen atoms
with each of them being in a ground state with energy E1.
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Then, as follows from Eq. (9), the expectation value of the
gravitational mass operator per one electron is

< m̂ge >= me +
E1

c2 +

⟨
2

p̂2

2me
− e2

r

⟩
1
c2 = me +

E1

c2 , (10)

where the third term in Eq. (10) is zero in accordance with the
quantum virial theorem [13]. Therefore, we conclude that the
equivalence between passive gravitational mass and energy
in the absence of gravitational field survives at a macroscopic
level for stationary quantum states.

Let us discuss how Eqs. (8), (9) break the equivalence be-
tween passive gravitational mass and energy at a microscopic
level. First of all, we recall that the mass operator (9) does
not commute with electron energy operator, taken in the ab-
sence of gravitational field. This means that, if we create a
quantum state of a hydrogen atom with definite energy, it will
not be characterized by definite passive gravitational mass.
In other words, a measurement of the mass in such quantum
state may give different values, which, as shown, are quan-
tized. Here, we illustrate the above mentioned inequivalence,
using the following thought experiment. Suppose that at t = 0
we create a ground state wave function of a hydrogen atom,
corresponding to the absence of gravitational field,

Ψ1(r, t) = Ψ1(r) exp(−iE1t/ℏ). (11)

In a weak centrosymetric gravitational field (2), wave func-
tion (11) is not anymore a ground state of the Hamiltonian (8),
(9), where we treat gravitational field as a small perturbation
in an inertial system [7–12]. It is important that for inertial
observer, in accordance with Eq. (3), a general solution of the
Schrodinger equation, corresponding to the Hamiltonian (8),
(9), can be written as

Ψ(r, t) = (1 − ϕ/c2)3/2
∞∑

n=1

anΨn[(1 − ϕ/c2)r]

× exp[−imec2(1 + ϕ/c2)t/ℏ]

× exp[−iEn(1 + ϕ/c2)t/ℏ].

(12)

We pay attention that wave function (12) is a series of
eigenfunctions of passive gravitational mass operator (9), if
we take into account only linear terms with respect to the pa-
rameter ϕ/c2. Here, factor 1 − ϕ/c2 is due to a curvature of
space, whereas the term En(1 + ϕ/c2) represents the famous
red shift in gravitational field and is due to a curvature of time.
Ψn(r) is a normalized wave function of an electron in a hydro-
gen atom in the absence of gravitational field, corresponding
to energy En. [Note that, due to symmetry of our problem,
an electron from 1S ground state of a hydrogen atom can be
excited only into nS excited states. We also pay attention
that the wave function (12) contains a normalization factor
(1 − ϕ/c2)3/2.]

In accordance with the basic principles of the quantum
mechanics, probability that, at t > 0, an electron occupies
excited state with energy mec2(1 + ϕ/c2) + En(1 + ϕ/c2) is

Pn = |an|2,
an =

∫
Ψ∗1(r)Ψn[(1 − ϕ/c2)r]d3r

= −(ϕ/c2)
∫
Ψ∗1(r)rΨ′n(r)d3r.

(13)

Note that it is possible to demonstrate that for a1 in Eq. (13) a
linear term with respect to gravitational potential, ϕ, is zero,
which is a consequence of the quantum virial theorem. Tak-
ing into account that the Hamiltonian is a Hermitian operator,
it is possible to show that for n , 1:∫

Ψ∗1(r)rΨ′n(r)d3r =
Vn,1

ℏωn,1
,

ℏωn,1 = En − E1, n , 1,
(14)

where Vn,1 is a matrix element of the virial operator,

Vn,1 =

∫
Ψ∗1(r)V̂(r)Ψn(r)d3r, V̂(r) = 2

p̂2

2me
− e2

r
. (15)

It is important that, since the virial operator (15) does not
commute with the Hamiltonian, taken in the absence of grav-
itational field, the probabilities (13)–(15) are not equal to zero
for n , 1.

Let us discuss Eqs. (12)–(15). We pay attention that they
directly demonstrate that there is a finite probability,

Pn = |an|2 =
(
ϕ

c2

)2 ( Vn,1

En − E1

)2
, n , 1, (16)

that, at t > 0, an electron occupies n-th (n , 1) energy
level, which breaks the expected Einstein equation, mge =
me + E1/c2. In fact, this means that measurement of pas-
sive gravitational mass (i.e., weight in the gravitational field
(2)) in a quantum state with a definite energy (11) gives the
following quantized values:

mge(n) = me + En/c2, (17)

corresponding to the probabilities (16). [Note that, as it fol-
lows from quantum mechanics, we have to calculate wave
function (12) in a linear approximation with respect to the
parameter ϕ/c2 to obtain probabilities (16), (22), (23), which
are proportional to (ϕ/c2)2. A simple analysis shows that
an account in Eq. (12) terms of the order of (ϕ/c2)2 would
change electron passive gravitational mass of the order of
(ϕ/c2)me ∼ 10−9me, which is much smaller than the distance
between the quantized values (17), δmge ∼ α2me ∼ 10−4me,
where α is the fine structure constant.] We also point out
that, although the probabilities (16) are quadratic with respect
to gravitational potential and, thus, small, the changes of the
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passive gravitational mass (17) are large and of the order of
α2me. We also pay attention that small values of probabili-
ties (16), Pn ∼ 10−18, do not contradict the existing Eötvös
type measurements [11], which have confirmed the equiva-
lence principle with the accuracy of the order of 10−12-10−13.
For our case, it is crucial that the excited levels of a hydro-
gen atom spontaneously decay with time, therefore, one can
detect the quantization law (17) by measuring electromag-
netic radiation, emitted by a macroscopic ensemble of hy-
drogen atoms. The above mentioned optical method is much
more sensitive than the Eötvös type measurements and we,
therefore, hope that it allows to detect the breakdown of the
equivalence between energy and passive gravitational mass,
revealed in the paper.

5 Suggested Experiment

Here, we describe a realistic experiment [9, 10]. We consider
a hydrogen atom to be in its ground state at t = 0 and located
at distance R′ from a center of the Earth. The corresponding
wave function can be written as

Ψ̃1(r, t) = (1 − 2ϕ′)3/2Ψ1[(1 − ϕ′/c2)r]

× exp[−imec2(1 + ϕ′/c2)t/ℏ]

× exp[−iE1(1 + ϕ′/c2)t/ℏ],

(18)

where ϕ′ = ϕ(R′). The atom is supported in the Earth gravita-
tional field and moved from the Earth with constants velocity,
v ≪ αc, by spacecraft or satellite. As follows from Ref. [7],
the extra contributions to the Lagrangian (5) are small in this
case in an inertial system, related to a center of mass of a hy-
drogen atom (i.e., proton). Therefore, electron wave function
and time dependent perturbation for the Hamiltonian (8), (9)
in this inertial coordinate system can be expressed as

Ψ̃(r, t) = (1 − 2ϕ′)3/2
∞∑

n=1

ãn(t)Ψn[(1 − ϕ′/c2)r]

× exp[−imec2(1 + ϕ′/c2)t/ℏ]

× exp[−iEn(1 + ϕ′/c2)t/ℏ],

(19)

Û(r, t) =
ϕ(R′ + vt) − ϕ(R′)

c2

(
3

p̂2

2me
− 2

e2

r

)
. (20)

We pay attention that in a spacecraft (satellite), which
moves with constant velocity, gravitational force, which acts
on each hydrogen atom, is compensated by some non-gravi-
tational forces. This causes very small changes of a hydro-
gen atom energy levels and is not important for our calcu-
lations. Therefore, the atoms do not feel directly gravita-
tional acceleration, g, but feel, instead, gravitational poten-
tial, ϕ(R′ + vt), changing with time due to a spacecraft (satel-
lite) motion in the Earth gravitational field. Application of

the time-dependent quantum mechanical perturbation theory
gives the following solutions for functions ãn(t) in Eq. (19):

ãn(t) =
ϕ(R′) − ϕ(R′ + vt)

c2

Vn,1

ℏωn,1
exp(iωn,1t), n , 1, (21)

where Vn,1 and ωn,1 are given by Eqs. (14), (15); ωn,1 ≫ v/R′.
It is important that, if excited levels of a hydrogen atom

were strictly stationary, then a probability to find the passive
gravitational mass to be quantized with n , 1 (17) would be

P̃n(t) =
(

Vn,1

ℏωn,1

)2 [ϕ(R′ + vt) − ϕ(R′)]2

c4 , n , 1. (22)

In reality, the excited levels spontaneously decay with time
and, therefore, it is possible to observe the quantization law
(17) indirectly by measuring electromagnetic radiation from
a macroscopic ensemble of the atoms. In this case, Eq. (22)
gives a probability that a hydrogen atom emits a photon with
frequency ωn,1 = (En − E1)/ℏ during the time interval t. [We
note that dipole matrix elements for nS → 1S quantum tran-
sitions are zero. Nevertheless, the corresponding photons can
be emitted due to quadrupole effects.]

Let us estimate the probability (22). If the experiment
is done by using spacecraft or satellite, then we may have
|ϕ(R′ + vt)| ≪ |ϕ(R′)|. In this case Eq. (22) is reduced to
Eq. (16) and can be rewritten as

P̃n =

(
Vn,1

En − E1

)2
ϕ2(R′)

c4 ≃ 0.49 × 10−18
(

Vn,1

En − E1

)2

, (23)

where, in Eq. (23), we use the following numerical values
of the Earth mass, M ≃ 6 × 1024 kg, and its radius, R0 ≃
6.36 ×106 m. It is important that, although the probabilities
(23) are small, the number of photons, N, emitted by macro-
scopic ensemble of the atoms, can be large since the factor
V2

n,1/(En−E1)2 is of the order of unity. For instance, for 1000
moles of hydrogen atoms, N is estimated as

Nn,1 = 2.95 × 108
(

Vn,1

En − E1

)2

, N2,1 = 0.9 × 108, (24)

which can be experimentally detected, where Nn,1 stands for
a number of photons, emitted with energy ℏωn,1 = En − E1.

6 Summary

To summarize, we have demonstrated that passive gravita-
tional mass of a composite quantum body is not equivalent
to its energy due to quantum fluctuations, if the mass is de-
fined to be proportional to a weight of the body. We have
also discussed a realistic experimental method to detect this
inequivalency. If the corresponding experiment is done, to
the best of our knowledge, it will be the first experiment,
which directly tests some nontrivial combination of general
relativity and quantum mechanics. We have also shown that
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the corresponding expectation values are equivalent to each
other for stationary quantum states. It is important that our
results are due to different couplings of kinetic and potential
energy with an external gravitational field. Therefore, the cur-
rent approach is completely different from that discussed in
Refs. [12, 14, 15], where small corrections to electron energy
levels are calculated for a free falling hydrogen atom [14, 15]
or for a hydrogen atom supported in a gravitational field [12].
Note that phenomena suggested in the paper are not restricted
by atomic physics, but also have to be observed in solid state,
nuclear, and particle physics.
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As an attempt to explain the “flattening of galaxies rotation-curves”, Milgrom proposed
a Modification of Newtonian Dynamics MOND, in which he needed a new constant of
naturea0 , termed as “critical-acceleration-of MOND”, in his best-fit empirical formula.
But so far it has been an ad-hoc introduction of a new constant. Whereas this article pro-
poses: (i) a genesis of this constant; (ii) explains its recurrences in various physical sit-
uations; and (iii) its role in determining the size and radii of various structures, like: the
electron, the proton, the nucleus-of-atom, the globular-clusters, the spiral-galaxies, the
galactic-clusters and the whole universe. In this process we get a new interpretation of
“the cosmological-red-shift”, that the linear part of the cosmological-red-shift may not
be due to “metric-expansion-of-space”; and even the currently-believed “accelerated-
expansion” may be slowing down with time.

1 Introduction

The observations of “flattening of galaxies rotation curves”
are generally explained by assuming the presence of “dark-
matter”, but there is no way to directly detect it other than its
presumed gravitational effect. M. Milgrom [1] proposed an
alternative explanation for the “galaxies rotation curves”, by
modifying Newton’s law of gravitation, for which he needed
an ad-hoc introduction of a new constant of naturea0, termed
as “critical-acceleration of MOND”, of the order of magni-
tude: 1.2× 10−10 meter per seconds squared. But so far it has
been an ad-hoc introduction of a new constant; and there has
been no explanation for why its value is this much. Sivaram
noticed its recurrences in various physical situations. This au-
thor has been of the opinion that the matching of values of the
“anomalous decelerations of the four space-probes”: Pioneer-
10, Pioneer-11, Galileo and Ulysses and the “deceleration of
cosmologically-red-shifting-photons” can not be an acciden-
tal coincidence. Now, this article presents a genesis of this
“critical-acceleration of MOND”. And based on this gene-
sis, the formation of various structures, like the electron, the
proton, the nucleus-of-atom, the globular-clusters, the spiral-
galaxies, the galactic-clusters and the whole universe, are ex-
plained here.

2 Genesis of the “critical acceleration of MOND”

R.K. Adair, in his book “Concepts in Physics” [2] has given
a derivation, that the sum of “gravitational-potential-energy”
and “energy-of-mass’ of the whole universe is, strikingly,
zero! i.e.

M0c2 −
GM0M0

R0
= 0 (1)

whereM0 andR0 are total-mass and radius of the universe
respectively, andG is Newton’s gravitational constant; i.e.

GM0m
R0

= mc2. (2)

Wherem is mass of any piece of matter. That is, the relati-
vistic-energy of any piece of matter of massm is equal to
its “cosmic-gravitational-potential-energy”. So the “cosmic-
gravitational-force” experienced by every piece of matter is:

GM0m

R2
0

= m
c2

R0
. (3)

We know thatR0H0 = c, so, R0 = c/H0. Here H0 is
Hubble’s constant; i.e.

GM0m

R2
0

= mH0c (4)

wherem is mass of any object; andH0c is a “cosmic-constant-
of-acceleration”. H0c = 6.87 × 10−10 meter/second2. In
the next section we will see the recurrences of this “cosmic-
constant-of-acceleration” in various physical situations.

3 Observable recurrences of “the cosmic-constant-of-
acceleration”

Inter-galactic-photons experience the “cosmological red-
shift”. We can express the cosmological red-shiftzc in terms
of de-acceleration experienced by the photon [3, 4], as fol-
lows:

zc =
f0 − f

f
=

H0D
c

i.e.
hΔ f
h f

=
H0D

c

i.e.

hΔ f =
h f
c2

(H0c)D. (5)

Here: h is Plancks constant,f0 is frequency of photon at
the time of its emission,f is the red-shifted frequency mea-
sured on earth,H0 is Hubble’s constant, andD the luminosity-
distance.
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That is, the loss in energy of the photon is equal to its mass
(h f/c2) times the accelerationa = H0c, times the distanceD
travelled by it. Where:H0 is Hubble-parameter. And the
value of constant accelerationa is: a = H0c, a = 6.87×10−10

meter/sec2.
Now, we will verify that the accelerations experienced

by the Pioneer-10, Pioneer-11, Galileo and Ulysses space-
probes do match significantly with the “cosmic-constant-of-
acceleration”. Slightly higher value of decelerations of the
space-probes is then explained.

Carefully observed values of de-accelerations [5]:
For Pioneer-10:

a = (8.09± 0.2)× 10−10 m/s2 = H0c. (6)

For Pioneer-11:

a = (8.56± 0.15)× 10−10 m/s2 = H0c. (7)

For Ulysses:

a = (12± 3)× 10−10 m/s2 = H0c. (8)

For Galileo:

a = (8± 3)× 10−10 m/s2 = H0c. (9)

For Cosmologically-red-shifted-photon,

a = 6.87× 10−10 m/s2 = H0c. (10)

This value of acceleration is also the “critical accelera-
tion” of modified Newtonian dynamics MOND,

a0 = H0c (11)

and the rate of “accelerated-expansion of the universe”

aexp= H0c. (12)

According to Weinberg, mass of a fundamental-particle
can be obtained from the “fundamental-constants” as follows:
Mass of a fundamental-particle,

m=

(
h2H0

cG

)1/3

i.e.
Gm

(h/mc)2
= H0c. (13)

That is, the self-gravitational-acceleration of Weinberg’s [7]
“fundamental-particle” is also equal to the “cosmic-constant-
of-acceleration”.

Reason why the apparent value of deceleration of the cos-
mic-photon is slightly small:

When the extra-galactic-photon enters our own milky-way-
galaxy, the photon also experiences the gravitational-blue-
shift, because of the gravitational-pull of our galaxy. The
photon of a given frequency, if it has come from a near-by-
galaxy, then it gets more blue-shifted, compared to the pho-
ton which has come from very-very far-distant-galaxy; so the
galaxy which is at closer distance, appears at more closer
distance, than the galaxies at far-away-distances. That is,
the cosmic photon decelerated during its long inter-galactic-
journey, and then accelerated because of the gravitational-pull
of our milky-way galaxy; so we measure slightly lesser value
of H0; H0c = 6.87× 10−10 meter per seconds squared. But if
we could send the Hubble-like Space-Telescope out-side our
milky-way-galaxy, then the value ofH0c will match perfectly
with the value of deceleration of all the four space-probes;
= 8.5× 10−10 meters per seconds squared.

Currently, the whole values of “anomalous accelerations
of the space-probes” are “explained” in terms of radiation-
pressure, gas-leakage. . . etc. So here we can explain the slight
differences in their values of decelerations in terms of radi-
ation-pressure, gas-leakage etc! Thus, the matching of values
of decelerations of all the four space-probes is itself an inter-
esting observation; and its matching with the deceleration of
cosmologically-red-shifting-photons can not be ignored by a
scientific mind as a coincidence. There is one more interest-
ing thing about the value of this deceleration as first noticed
by Milgrom, that: with this value of deceleration, an object
moving with the speed of light would come to rest exactly
after the timeT0 which is the age of the universe.

4 Formation of structures

Sivaram [6] has noticed that:

G M0

R2
0

=
G mp

r2
p

=
G me

r2
e

=
G mn

r2
n

=
G Mgc

R2
gc

=
G Mgal

R2
gal

=
G Mcg

R2
cg

(14)

= the “critical-acceleration” of MOND
= H0c.

(Here:M0 andR0 are mass and radius of the universe respec-
tively, mp andr p are mass and radius of the proton,me andre

are mass and radius of the electron,mn andrn are mass and
radius of the nucleus of an atom,Mgc andRgc are mass and
radius of the globular-clusters,Mgal and Rgal are mass and
radius of the spiral-galaxies, andMcg andRcg are mass and
radius of the galactic-clusters respectively).

That is, the self-gravitational-pulling-force experienced
by all the above bodies will be: Self-gravitational-force F=
(mass of the body, say a galaxy) times (a constant value of
decelerationH0c).

For the formation of a stable structure, the “self-gravita-
tional-acceleration” of a body of massm should be equal to
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the value of “cosmic-constant-of-acceleration”H0c. In the
expressions of eq. 14 above we found that: at the “surface”
of the electron, the proton, the nucleus-of-atom, the globular-
clusters, the spiral-galaxies, and the galactic-clusters this con-
dition is beautifully satisfied. That is:

GM
R2

= H0c. (15)

WhereM andR represent mass and radius of the above ob-
jects. And the size and radius of the above structures get de-
cided as follows: i.e.

GM
R2

= H0c =
c2

R0

i.e.

R2 =
GM
c2

R0

i.e.
R= (rGR0)1/2 (16)

whererG is “gravitational-radius” of the above objects. This
is how all the structures get formed, beginning from the elec-
tron to the galactic-clusters.

5 Explanation for the “flattening of galaxies rotation-
curves”

As seen in the expression-15, the condition for the formation
of a stable structure is:GM/R2 = H0c whereM andR are
mass and radius of a galaxy. That is, the centripetal accelera-
tion at the surface of a structure is:

v2

R
=

GM
R2

= H0c (17)

i.e.
v2 = RH0c. (18)

Now, by dividing both the sides of the above expression
by a distancer greater thanR, the acceleration towards the
center of spiral-galaxy experienced by a star at a distancer
form the center is:

v2

r
=

R
r

H0c. (19)

Wherer > R.
So, the velocity of the stars at the out-skirts of spiral

galaxies is:

v =

[(GM
c2

GM0

c2

)1/2

a0

]1/2

(20)

i.e.

v =

[(GM
c2

R0

)1/2 c2

R0

]1/2

(21)

i.e.

v =

[
M
M0

]1/4

c, (22)

a constant velocity. The above expression-22 is equal to Mil-
grom’s expression: (v2/r) = [(GM/r2)a0]1/2 becausea0 =

GM0/R2
0. This is how we can explain the “flattening of galax-

ies rotation-curves”.

6 Conclusion

We presented here the genesis or root of the “critical acceler-
ation of MOND”, that it follows from the equality of “gravi-
tational potential-energy” and “energy-of-mass” of the uni-
verse; and showed that there are as many as fifteen phys-
ical situations where we find recurrences of this “cosmic-
constant-of-acceleration”. The sizes of various structures like
the electron, the proton, the nucleus-of-atom, the globular-
clusters, the spiral-galaxies, the galactic-clusters and the
whole universe get decided based on the condition that: the
“self-gravitational-acceleration” of them all should be equal
to the “cosmic-constant-of-acceleration”H0c. The flattening
of galaxies rotation curves at the out skirts of spiral galaxies
also emerge from the above-mentioned equality.

We are sure that the space-probes Pioneer-10 et al. did
show decelerations of the orderH0c. Now, similar to the
space-probes, if the cosmologically red-shifting photons also
decelerate due to the “cosmic-gravitational-force” then the
linear part of the cosmological-red-shift may not be due to the
“metric-expansion-of-space”; only the recently-discovered
accelerated-expansion may be due to the “metric-expansion-
of-space”; and its rateH0c suggests that even the receding
galaxies may be getting decelerated like the space-probes!
Thus we may be able to explain even the “accelerated-ex-
pansion of the universe” without any need for dark-energy.
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By using a computer simulated search program, the experimental gamma transition en-
ergies for superdeformed rotational bands (SDRB’s) inA ∼ 150 region are fitted to
proposed three-parameters model. The model parameters and the spin of the bandhead
were obtained for the selected ten SDRB’s namely:150Gd (yrast and excited SD bands),
151Tb (yrast and excited SD bands),152Dy (yrast SD bands),148Gd (SD-1,SD-6),149Gd
(SD-1),153Dy (SD-1) and148Eu (SD-1). The KinematicJ(1) and dynamicJ(2) moments
of inertia are studied as a function of the rotational frequency~ω. From the calculated
results, we notic that the excited SD bands have identical energies to their Z+1 neigh-
bours for the twinned SD bands in N=86 nuclei. Also the analysis done allows us to
confirmΔI = 2 staggering in the yrast SD bands of148Gd, 149Gd, 153Dy, and148Eu and
in the excited SD bands of148Gd, by performing a staggering parameter analysis. For
each band, we calculated the deviation of the gamma ray energies from smooth ref-
erence representing the finite difference approximation to the fourth derivative of the
gamma ray transition energies at a given spin.

1 Introduction

The superdeformed (SD) nuclei is one of the most interesting
topics of nuclear structure studies. Over the past two decades,
many superdeformed rotational bands (SDRB’s) have been
observed in several region of nuclear chart [1]. At present al-
though a general understanding of these SDRB’s have been
achieved, there are still many open problems. For example
the spin, parity and excitation energy relative to the ground
state of the SD bands have not yet been measured. The dif-
ficulty lies with observing the very weak discrete transitions
which link SD levels with normal deformed (ND) levels. Un-
til now, only several SD bands have been identified to exist
the transition from SD levels to ND levels. Many theoretical
approaches to predict the spins of these SD bands have been
proposed [2–11].

Several SDRB’s in theA ∼ 150 region exhibit a rather
surprising feature of aΔI = 2 staggering [12–25] in its transi-
tion energies,i.e. sequences of states differing by four units of
angular momentum are displaced relative to each other. The
phenomenon ofΔI = 2 staggering has attached much atten-
tion and interest, and has thus become one of the most fre-
quently considerable subjects. Within a short period, a con-
siderable a mounts of effort has been spent on understand-
ing its physical implication based on various theoretical ideas
[9,26–41]. Despite such efforts, definite conclusions have not
yet been reached until present time.

The discovery of the phenomenon of identical bands (IB’s)
[42, 43] at high spin in SD states in even-even and odd-A
nuclei aroused a considerable interest. It was found that the
transition energies and moments of inertia in neighboring nu-
clei much close than expected. This has created much theo-

retical interest [44, 45]. The first interpretation [46] to IB’s
was done within the framework of the strong coupling limit
of the particle-rotor model, in which one or more particles are
coupled to a rotating deformed core and follow the rotation
adiabatically. Investigation also suggest that the phenomena
of IB’s may result from a cancelation of contributions to the
moment of inertia occurring in mean field method [47].

In the present paper we suggest a three-particle model to
predict the spins of the rotational bands and to study the prop-
erties of the SDRB’s and to investigate the existence ofΔI = 2
staggering and also investigate the presence of IB’s observed
in theA ∼ 150 mass region.

2 Nuclear SDRB’s in framework of three parameters ro-
tational model

In the present work, the energies of the SD nuclear RB’sE(I )
as a function of the unknown spin I are expressed as:

E(I ) = E0 + a[[1 + bÎ2]1/2 − 1] + cÎ2 (1)

with Î2 = I (I + 1), wherea,b andc are the parameters of the
model. The rotational frequency~ω is defined as the deriva-
tive of the energy E with respect to the angular momentumÎ

~ω =
dE

dÎ
= [2c+ ab[1 + bI(I + 1)]1/2](I (I + 1))−1/2.

(2)

Two possible types of nuclear moments of inertia have
been suggested which reflect two different aspects of nuclear
dynamics. The kinematic moment of inertiaJ(1), which is
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Table 1: The adopted best parametersa,b, c of the model and the band-head spin assignmentI0 of our ten SDRB’s. The rms deviations are
also shown.

SD Band Eγ(I + 2→ I ) I0 a b c χ
(keV) (~) (keV) (keV) (keV)

148Gd (SD-1) 699.9 31 -0.313446E+07 0.163069E-04 0.311027E+02 7.387009E-01
(SD-6) 802.2 39 -0.106162E+06 0.107495E-03 0.105003E+02 2.104025E-01

150Gd (SD-1) 815.0 47 -0.148586E+06 -0.517219E-04 0.954401E-01 5.250988E-01
(SD-2) 727.9 31 -0.617154E+06 -0.134929E-04 0.163288E+01 1.734822E+00

152Dy (SD-1) 602.4 26 -0.144369E+06 0.207972E-04 0.733270E+01 5.217181E-01
149Gd (SD-1) 617.8 27.5 -0.825976E+05 -0.698261E-04 0.285641E+01 4.559227E-01
148Eu (SD-1) 747.7 29 -0.131028E+06 0.432608E-04 0.928191E+01 7.010767E-01
151Tb (SD-1) 726.5 30.5 -0.852833E+06 -0.546382E-05 0.364770E+01 2.023767E+00

(SD-2) 602.1 26.5 -0.136986E+07 -0.431179E-05 0.289128E+01 6.644767E-01
153Dy (SD-1) 721.4 30.5 -0.671437E+06 -0.386442E-05 0.464507E+01 2.171267E+00

equal to the inverse of the slope of the curve of energy E ver-
susÎ :

J(1) = ~2Î (
dE

dÎ
)−1

=
~2

ab
[1 + bI(I + 1)]1/2 +

1
2c

(3)

and the dynamic moment of inertiaJ(2), which is related to
the curvature in the curve of E versusÎ :

J(2) = ~2(
d2E

dÎ2
)−1

=
~2

ab
[1 + bI(I + 1)]3/2 +

1
2c
.

(4)

For the SD bands, one can extract the rotational frequency,
dynamic and kinematic moment of inertia by using the exper-
imental interband E2 transition energies as follows:

~ω =
1
4

[Eγ(I + 2)+ Eγ(I )], (5)

J(2)(I ) =
4~2

ΔEγ
, (6)

J(1)(I − 1) =
~2(2I − 1)

Eγ
, (7)

where

Eγ = E(I ) − E(I − 2),

ΔEγ = Eγ(I + 2)− Eγ(I ).

It is seen that whereas the extractedJ(1) depends on I
proposition,J(2) does not.

3 Analysis of theΔI = 2 staggering effects

It has been found that some SD rotational bands in different
mass region show an unexpectedΔI = 2 staggering effects in
the gamma ray energies [12–25]. The effect is best seen in

long rotational sequences, where the expected regular behav-
ior of the energy levels with respect to spin or to rotational
frequency is perturbed. The result is that the rotational se-
quence is split into two parts with states separated byΔI = 4
(bifurcation) shifting up in energy and the intermediate states
shifting down in energy. The curve found by smoothly inter-
polating the band energy of the spin sequence I, I+4 ,I+8. . . is
somewhat displaced from the corresponding curve of the se-
quence I+2, I+6, I+10. . . .

To explore more clearly theΔI = 2 staggering, for each
band the deviation of the transition energies from a smooth
referenceΔEγ is determined by calculating the fourth deriva-
tive of the transition energiesEγ(I ) at a given spinI by

ΔEγ(I ) = 3
8

(
Eγ(I ) − 1

6[4Eγ(I − 2)+ 4Eγ(I + 2)

−Eγ(I − 4)− Eγ(I + 4)]
)
.

(8)

This expression was previously used in [15] and is identi-
cal to the expression forΔ4Eγ(I ) in Ref. [33]. We chose to the
use the expression above in order to be able to follow higher
order changes in the moments of inertia of the SD bands.

4 Superdeformed identical bands

A particularly striking feature of SD nuclei is the observation
of numerous bands with nearly identical transition energies
in nuclei differing by one or two mass unit [42–45]. To de-
termine whether a pair of bands is identical or not, one must
compare the dynamical moment of inertia or compare the E2
transition energies of the two bands.

5 Numerical calculations and discussions

Nine SDRB’s observed in nuclei of mass numberA ∼ 150
have been analyzed in terms of our three parameter model.
The experimental transition energies are taken from Ref. [1].
The studied SDRB’s are namely:
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Fig. 1: Calculated KinematicJ(1) (open circles) and dynamicJ(2)

(closed circles) moments of inertia as a function of rotational fre-
quency~ω for the set of identical bands151Tb(SD-1),152Dy(SD-1),
150Gd(SD-3) and151Tb(SD-2).

150Gd(SD1, SD2),151Tb(SD1, SD2),152Dy(SD1),148Gd(SD1,
SD6),149Gd(SD1),153Dy(SD1) and148Eu(SD1). The differ-
ence between the SD bands in various mass region are ob-
viously evident through the behavior of the dynamicalJ(2)

and kinematicJ(1) moments of inertia seems to be very use-
ful to the understanding of the properties of the SD bands.
The bandhead moment of inertiaJ0 at J(2) = J(1) is a sensi-
tive guideline parameter for the spin proposition.

A computer simulated search program has been used to
get a minimum root mean square (rms) deviation between the
experimental transition energiesEexp

γ and the calculated ones
derived from our present three parameter modelEcal

γ :

χ =
1
N




n∑

i=1

∣∣∣∣∣∣∣

Ecal
γ (Ii) − Eexp

γ (Ii)

δEexp
γ (Ii)

∣∣∣∣∣∣∣

2

1/2

(9)

where N is the number of data points enters in the fitting pro-
cedure andδEexp

γ (i) is the uncertainties in theγ−transitions.
For each SD band the optimized best fitted four parameters

Fig. 2: Calculated KinematicJ(1) (open circles) and dynamicJ(2)

(closed circles) moments of inertia as a function of rotational
frequency~ω for the SDRB’s 148Gd(SD-1, SD-6),149Gd(SD-1),
153Dy(SD-1) and148Eu(SD-1).

a,b, c and the bandhead spinI0 were obtained by the adopted
fit procedure. The procedure is repeated for several sets of
trail valuesa,b, c and I0. The spinI0 is taken as the near-
est integer number, then another fit with onlya,b andc as
free parameters is made to determine their values. The lowest
bandhead spinI0 and the best parameters of the modela,b, c
for each band is listed in Table(1). The SD bands are identi-
fied by the lowest gamma transition energiesEγ(I0 + 2→ I0)
observed.

The dynamicalJ(2) and kinematicJ(1) moments of iner-
tia using our proposed model at the assigned spin values are
calculated as a function of rotational frequency~ω and illus-
trated in Figs. (1,2).J(2) mostly decrease with a great deal
of variation from nucleus to nucleus. The properties of the
SD bands are mainly influenced by the number of the high-
N intruder orbitals occupied. For example the large slopes of
J(2) against~ω in 150Gd and151Tb are due to the occupation of
π62, ν72 orbitals, while in152Dy theπ64 level is also occupied
and this leads to a more constantJ(2) against~ω. A plot of
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Fig. 3: Percentage differencesΔEγ/Eγ in transition energiesEγ =

E(I ) − E(I − 2) as a function of spinI for the set of identical bands
(151Tb(SD-2),152Dy(SD-1)) and (150Gd(SD-2),151Tb(SD-1)).

J(2) against~ω for the excited SD band in151Tb gives a curve
that is practically constant and which closely follows theJ(2)

curved traced out by the yrast SD band in152Dy but which is
very different from the yrast SD band in151Tb. Similarly the
150Gd excited SD band hasJ(2) values which resemble those
observed in the151Tb yrast SD band. It is concluded that the
N=86 isotones SD nuclei have identical supershell structures:

Nucleus Yrast band Excited band
150
64 Gd π(3)0̄[(4)10(5)12](i13/2)2 π(3)1̄[(4)10(5)12](i13/2)3

151
65 Tb π(3)0̄[(4)10(5)12](i13/2)3 π(3)1̄[(4)10(5)12](i13/2)4

152
66 Dy π(3)0̄[(4)10(5)12](i13/2)4 π(3)1̄[(4)10(5)12](i13/2)5

6 Identical bands in the isotones nuclei N=86

A particularly striking feature of SD nuclei is the observation
of a numerous bands with nearly identical transition energies
in neighboring nuclei. Because of the large single particle SD
gaps at Z=66 and N=86, the nucleus152Dy is expected to be
a very good doubly magic SD core. The difference inγ−ray
energiesΔEγ between transition in the two pairs of N=86 iso-
tones (excited151Tb (SD-2), yrast152Dy (SD-1)) and (excited
150Gd (SD-2), yrast151Tb (SD-1)) were calculated.

The gamma transition energies of the excited band (SD-2)
in 151Tb are almost identical to that of the yrast band (SD-1)
in 152Dy. This twin band has been associated with a [301]1/2

Fig. 4: The calculatedΔ4Eγ staggering as a function of rota-
tional frequency~ω of the SDRB’s 148Eu(SD-1), 148Gd(SD-6),
149Gd(SD-1).

hole in the152Dy core. The orbitalsπ62 andν72 are occupied
in 151Tb, while in 152Dy the π64 level is occupied and this
leads to a more constant in dynamic moment of inertiaJ(2).
Clearly theJ(2) values for the excited SD bands are very sim-
ilar to the yrast SD bands in their Z+1, N=86 isotones. The
plot of percentage differencesΔEγ/Eγ in transition energies
versus spin for the two pairs (151Tb(SD-2),152Dy(SD-1)) and
(150Gd(SD-2),151Tb(SD-1)) are illustrated in Fig. (3).

7 ΔI = 2 Staggering

Another result of the present work is the observation of a
ΔI = 2 staggering effects in theγ−ray energies, where the two
sequences for spinsI = 4 j,4 j + 1 (j=0,1,2,...) andI = 4 j + 2
(j=0,1,2,...) are bifurcated. For each band the deviation of
the γ−ray energies from a smooth referenceΔEγ is deter-
mined by calculating the fourth derivative of theγ−ray ener-
giesΔEγ(I ) at a given spinΔ4Eγ. The staggering in theγ−ray
energies is indeed found for the SD bands in148Eu(SD-1),
148Gd(SD-6) and149Gd(SD-1) in Fig. (4).
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Based on a fractal scaling model of matter, that reproduces systematic features in
the distribution of elementary particle rest masses, the paper presents natural oscilla-
tions in chain systems of harmonic quantum oscillators as mechanism of particle mass
generation.

1 Introduction

The origin of particle masses is one of the most important
topics in modern physics. In this paper we won’t discuss the
current situation in the standard theory and the Higgs mecha-
nism. Based on a fractal scaling model [1] of natural oscilla-
tions in chain systems of harmonic oscillators we present an
alternative mechanism of mass generation.

Possibly, natural oscillations of matter generate scaling
distributions of physical properties in very different process-
es. Fractal scaling models [2] of oscillation processes arenot
based on any statements about the nature of the link or in-
teraction between the elements of the oscillating chain sys-
tem. Therefore the model statements are quite generally, what
opens a wide field of possible applications.

Within the last 10 years many articles were published
which show that scaling is a widely distributed natural phe-
nomenon [3–7]. As well, scaling is a general property of in-
clusive distributions in high energy particle reactions [8] –
the quantity of secondary particles increases in dependence
on the logarithm of the collision energy.

Particularly, the observable mass distribution of celestial
bodies is connected via scaling with the mass distribution of
fundamental particles [9], that can be understood as contri-
bution to the fundamental link between quantum – and astro-
physics.

Based on observational data, Haramein, Hyson and Raus-
cher [10,11] discuss a scaling law for all organized matter uti-
lizing the Schwarzschild condition, describing cosmological
to subatomic structures. From their point of view the univer-
sality of scaling suggests an underlying polarizable structured
vacuum of mini white and black holes. They discuss the man-
ner in which this structured vacuum can be described in terms
of resolution of scale analogous to a fractal scaling as a means
of renormalization at the Planck distance.

In the framework of our model [1], particles are resonance
states in chain systems of harmonic quantum oscillators and
the masses of fundamental particles are connected by the scal-
ing exponent12. For example, the logarithm of the proton-to-
electron mass ratio is 712, but the logarithm of the W-boson-
to-proton mass ratio is 412. This means, they are connected by
the equation:

ln (mw/mproton) = ln (mproton/melectron) − 3 (1)

The logarithm of the W-boson-to-electron mass ratio is
41

2 + 71
2 = 12:

ln (mw/melectron) = 12. (2)

Already within the eighties the scaling exponent3
2 was

found in the distribution of particle masses by V. A. Kolom-
bet [12]. In addition, we have shown [9] that the masses of
the most massive bodies in the Solar System are connected by
the scaling exponent12. The scaling exponent 3× 1

2 arises as
consequence of natural oscillations in chain systems of sim-
ilar harmonic oscillators [2]. If the natural frequency of one
harmonic oscillator is known, one can calculate the complete
fractal spectrum of natural frequencies of the chain system.
Spectral nodes arise on the distance of1

2 logarithmic units.
Near spectral nodes the spectral density reaches local maxi-
mum and natural frequencies of the oscillating chain system
are distributed maximum densely. We suspect, that stable par-
ticles correspond to main spectral nodes which represent ra-
tional number logarithms.

The colossal difference between the life times of stable
and “normal” particles is amazing. The life-time of a proton
is minimum 1034 times larger than the life of a neutron, al-
though the mass difference between them is only 0.13% of
the proton rest mass. From this point of view seems that the
stability of a particle is not connected with its mass.

In the framework of the standard theory, the electron is
stable because it’s the least massive particle with non-zero
electric charge. Its decay would violate charge conservation.
The proton is stable, because it’s the lightest baryon and the
baryon number is conserved. Therefore the proton is the most
important baryon, while the electron is the most important
lepton and the proton-to-electron mass ratio can be under-
stood as a fundamental physical constant. Within the standard
theory, the W- and Z-bosons are elementary particles which
mediate the weak force. The rest masses of all these particles
are measured with high precision. The precise rest masses
of other elementary or stable particles (quarks, neutrinos) are
nearly unknown and not measured directly.

The life-times of electron and proton seem not measur-
able. In addition, there is no comparison between the life ofa
proton (τproton> 1030 years) and the age of the visible universe
(τuniverse> 1010 years). Though, there is an interesting scale
similarity between the product of the proton lifeτproton>1030

years and the proton mass generating frequencyωproton, on
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the one side, and the product of the ageτuniverse> 1010 years
of the visible universe and the Planck frequencyωPlanck, on
the other side:

ωproton= Eproton/~ = 938 MeV/~ = 1.425· 1024 Hz

ωprotonτproton > 1060
(3)

ωPlanck=
√

(c5/~G) = 1.855· 1043 Hz

ωPlanckτuniverse> 1060.
(4)

If both products are of the same scale, we can write:

ωprotonτproton� ωPlanckτuniverse. (5)

Because the frequenciesωproton andωPlanckare fundamen-
tal constants, the equation (5) means that possibly exists a
fundamental connection between the age of the visible uni-
verse and the proton life-time.

2 Methods

Based on the continued fraction method [13] we will search
the natural frequencies of a chain system of many similar har-
monic oscillators in this form:

ωjk = ω00 exp (Sjk). (6)

ωjk is a set of natural frequencies of a chain system of
similar harmonic oscillators,ω00 is the natural angular oscil-
lation frequency of one oscillator,Sjk is a set of finite contin-
ued fractions with integer elements:

Sjk = nj0 +
1

nj1 +
1

nj2 +. . . + 1
njk

=[nj0; nj1, nj2, . . . , njk ] , (7)

wherenj0, nj1, nj2, . . . , njk ∈ Z, j = 0,∞. We investigate con-
tinued fractions (7) with a finite quantity of layers k, which
generate discrete spectra, because in this case allSjk rep-
resent rational numbers. Possibly, the free linksnj0 and the
partial denominatorsnj1, nj2, . . . , njk could be interpreted as
some kind of “quantum numbers”. The present paper follows
the Terskich [13] definition of a chain system, where the in-
teraction between the elements proceeds only in their move-
ment direction. Model spectra (7) are not only logarithmic-
invariant, but also fractal, because the discrete hyperbolic dis-
tribution of natural frequenciesωjk repeats itself on each spec-
tral layer.

The partial denominators run through positive and neg-
ative integer values. Ranges of relative low spectral density
(spectral gaps) and ranges of relative high spectral density
(spectral nodes) arise on each spectral layer. In addition to the
first spectral layer, fig. 1 shows the second spectral layer k=2
with |nj1|=2 (logarithmic representation). Maximum spectral
density areas (spectral nodes) arise automatically on the dis-
tance of integer and half logarithmic units.

Fig. 1: The spectrum (7) on the first layer k= 1, for |nj0 |= 0, 1,2, . . .
and|nj1|= 2,3, 4, . . . and, in addition, the second spectral layer k= 2,
with |nj1 |= 2 and|nj2 |= 2, 3,4, . . . (logarithmic representation).

Fractal scaling models of natural oscillations are not
based on any statements about the nature of the link or inter-
action between the elements of the oscillating chain system.
For this reason we assume that our model could be useful
also for the analysis of natural oscillations in chain systems
of harmonic quantum oscillators. We assume that in the case
of natural oscillations the amplitudes are low, the oscillations
are harmonic and the oscillation energyE depends only on
the frequency (~ is the Planck constant):

E = ~ω. (8)

In the framework of our model (6) all particles are reso-
nance states of an oscillating chain system, in which to the
oscillation energy (8) corresponds the particle mass m:

m= ω~/c2. (9)

In this connection the equation (9) means that quantum
oscillations generate mass. Under consideration of (6) now
we can create a fractal scaling model of the mass spectrum of
model particles. This mass spectrum is described by the same
continued fraction 7, for m00=ω00~/c2:

ln (mjk/m00) = [nj0; nj1, nj2, . . . , njk ]. (10)

The frequency spectrum (7) and the mass spectrum (10)
are isomorphic. The mass spectrum (10) is fractal and con-
sequently it has a clear hierarchical structure, in which con-
tinued fractions (7) of the form [nj0;∞] and [nj0; 2,∞] define
main spectral nodes, as fig. 1 shows.

3 Results

Based on (10) in the present paper we will calculate a list of
model particle masses which correspond to the main spectral
nodes and compare this list with rest masses of well measured
stable and fundamental particles – hadrons, leptons, gauge
bosons and Higgs bosons.

The model mass spectrum (10) is logarithmically sym-
metric and the main spectral nodes arise on the distance of 1
and1

2 logarithmic units, as fig. 1 shows. The mass m00 in (10)
corresponds to the main spectral nodeS00= [0;∞], because
ln (m00/m00)= 0. Let’s assume that m00 is the electron rest
mass 0.510998910(13) MeV/c2 [14]. In this case (10) de-
scribes the mass spectrum that corresponds to the natural fre-
quency spectrum (7) of a chain system of vibrating electrons.
Further stable or fundamental model particles correspond to
further main spectral nodes of the form [nj0;∞] and [nj0; 2].
Actually, near the node [12;∞] we find the W- and Z-bosons,
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S calculated (10) mass-interval corresponding particle mass mc2 (MeV) ln (m/m00) d
mjkc2 (MeV) particle [14,15]

[0;∞] 0.451 – 0.579 electron (m00) 0.510998910± 0.000000013 0.000 0.000

[7; 2,∞] 815 – 1047 proton 938.27203± 0.00008 7.515 0.015

[7; 2,∞] 815 – 1047 neutron 939.565346± 0.000023 7.517 0.017
[12;∞] 73395 – 94241 W-boson 80398± 25 11.966 −0.034

[12;∞] 73395 – 94241 Z-boson 91187.6 ± 2.1 12.092 0.092

[12; 2,∞] 121008 – 155377 Higgs-boson? 125500± 540 12.411 −0.089
[13;∞] 199509 – 256174 EWSB?

[51; 2,∞] (1.048− 1.345)× 1022 Planck mass 1.22089(6)× 1022 51.528 0.028

Table 1: The calculatedS-values (7) of1
4 logarithmic units width and the corresponding calculated model mass-intervals of main spectral

nodes for the electron calibrated model mass spectrum. The deviationd = ln (m/m00) – S is indicated.

but near the node [7; 2,∞] the proton and neutron masses, as
table 1 shows.

Theoretically, a chain system of vibrating protons gener-
ates the same spectrum (10). Also in this case, stable or fun-
damental model particles correspond to main spectral nodes
of the form [nj0;∞] and [nj0; 2,∞], but relative to the elec-
tron calibrated spectrum, they are moved by−71

2 logarithmic
units. Actually, if m00 is the proton rest mass 938.27203(8)
MeV/c2 [14], then the electron corresponds to the node
[−7;−2,∞], but the W- and Z-bosons correspond to node
[4; 2,∞].

Consequently, the core claims of our model don’t depend
on the selection of the calibration mass m00, if it is the rest
mass of a fundamental resonance state that corresponds to a
main spectral node. As mentioned already, this is why the
model spectrum (10) is logarithmically symmetric.

Because a chain system of any similar harmonic oscilla-
tors generates the spectrum (10), m00 can be much less than
the electron mass. Only one condition has to be fulfilled: m00

has to correspond to a main spectral node of the model spec-
trum (10). On this background all particles can be interpreted
as resonance states in a chain system of harmonic quantum
oscillators, in which the rest mass of each single oscillator
goes to zero. In the framework of our oscillation model this
way can be understood the transition of massless to massive
states.

Within our model particles arise as resonance states in
chain systems of harmonic quantum oscillators and their mass
distribution is logarithmically symmetric. In [1] we have in-
vestigated the distribution of hadrons (baryons and mesons)
in dependence on their rest masses. We have shown that all
known baryons are distributed over an interval of 2 logarith-
mical units, of [7; 2,∞] to [9; 2,∞]. Maximum of baryons
occupy the logarithmic center [8; 2,∞] of this interval. Max-
imum of mesons occupy the spectral node [8;∞] that split up
the interval of [0;∞] to [12;∞] between the electron and the
W- and Z-bosons proportionally of23. In addition, we have
shown that the mass distribution of leptons isn’t different of
the baryon and meson mass distributions, but follows them.

The rest mass of the most massive lepton (tauon) is near the
maximum of the baryon and meson mass distributions.

In the framework of our model [1], the Planck frequency
ωPlanckcorresponds to a main spectral node of the model mass
spectrum (10). Actually, relative to the proton mass gen-
erating frequencyωproton the Planck frequencyωPlanck cor-
responds to the main node [44;∞] of the frequency spec-
trum (6):

ln
ωPlanck

ωproton
= ln

1.855× 1043

1.425× 1024
� 44. (11)

Relative to the electron mass generating frequencyωe the
Planck frequencyωPlanck corresponds to the spectral node
[51; 2,∞]:

ln
ωPlanck

ωe
= ln

1.855× 1043

7.884× 1020

� 51.5 = 44+ 7.5.

(12)

The Planck frequencyωPlanck is e44 times larger than the
proton mass generating frequencyωproton and the same rela-
tionship is between the Planck mass mPlanck and the proton
rest mass mproton:

ln
mPlanck

mproton
= ln

2.177× 10−8

1.673× 10−27
� 44

mPlanck=
√

(~c/G) = 2.177× 10−8 kg.

(13)

The Planck mass mPlanck � 21.77 µg corresponds to the
main node [44;∞] of the proton calibrated mass spectrum
(10) and therefore, probably, mPlanck is the rest mass of a
fundamental particle. In the framework of our model [1] the
gravitational constant G is connected directly with the funda-
mental particles masses. Now we can calculate G based on
the proton rest mass mproton:

G =
~c

(e44mproton)2
(14)

46 Hartmut Müller. Emergence of Particle Masses in Fractal Scaling Models of Matter



October, 2012 PROGRESS IN PHYSICS Volume 4

Resume

In the framework of the present model discrete scaling mass
distributions arise as result of natural oscillations in chain
systems of harmonic quantum oscillators. With high preci-
sion, the masses of known fundamental and stable particles
are connected by the model scaling factor1

2. Presumably,
the complete mass distribution of particles is logarithmically
symmetric and, possibly, massive particles arise as resonance
states in chain systems of quantum oscillators.

Within our model any chain system of harmonic quan-
tum oscillators generates the same mass spectrum (10) and
the corresponding to the spectral node [12; 2,∞] observated
particle mass of 125 GeV [15] can be interpreted as resonance
state in a chain system of oscillating protons, for example.
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The paper shown that notions of resonance and roughness of real physical systems in
applications to the real numbers set lead to existence of two complementary fractals on
the sets of rational and irrational numbers accordingly. Also was shown that power of
equivalence classes of rational numbers is connected with well known fact that reso-
nance appear more easily for pairs of frequencies, which are small natural numbers.

1 Introduction

Well known that resonance is relation of two frequenciesp
andq, expressed by rational numberr ∈Q:

r =
p
q
, (1)

wherep,q∈N andN is the set of natural numbers,Q is set of
rational numbers. Ifr is irrational number, i.e.r ∈Q∗, where
Q∗ is set of irrational numbers, resonance is impossible.

Resonance definition asr ∈Q leads to the next question.
For real physical systemp, q and, consequently,r cannot be
a fixed number due to immanent fluctuations of the system.
Consequently, conditionr ∈Q cannot be fulfilled all time be-
cause of irrational numbers, which fill densely neighborhood
of any rational number. By these reasons, resonance condi-
tion r ∈Q cannot be fulfilled and resonance must be impossi-
ble. But it is known that in reality resonance exists. The ques-
tion is: in which way existence of resonance corresponds with
it’s definition asr ∈Q?

Also is known that resonance appear more easily for such
r ∈Q for which p andq are small numbers. As will be shown
this experimental fact is closely connected with the question
stated above.

2 Rational numbers distribution

The question stated above for the first time was considered
by Kyril Dombrowski [1]. He suppose that despite the fact
that rational numbers distributed densely along the number
axis this distribution may be in some way non-uniform. In
cited work K. Dombrowski used proposed by Khinchin [2]
procedure of constructing of rational numbers set, based on
the following continued fraction:

{
Qai

i

}
=

1

a1 ±
1

a2 ±
1

. . .

ai ±
1
. . .

(2)

wherea1,a2, . . . , ai = 1,N, i = 1,N. Continued fraction (2)
gives rational numbers, which belongs to interval [0,1].

Is known that exists one-to-one correspondence between [0,1]
and [1,∞) intervals. I.e., any regularities obtained from (2) on
the interval [0,1] will be also true and for interval [1,∞).

In caseN→∞ expression (2) leads to

{
Qai

i

∣∣∣N→∞
}
→Q.

Apparently, in this case no distribution available, because ra-
tional numbers distributed along number axis densely.

For case of real physical system, conditionN→∞means
that any parameters of the system must be defined with in-
finite accuracy. But in reality parameters values of the sys-
tems cannot be defined with such accuracy even if we have an
ideal, infinite-accuracy measuring device. Such exact values
simply don’t exist because of quantum character of physical
reality.

All this means that for considered physical phenomenon
– resonance – we need to limit parameteri in (2) by some
finite numberN. Fig. 1 presents numerical simulation of (2)
for the first two cases of finiteN: N= 1, N= 2, andN= 3.
In the caseN= 1 (Fig. 1a) we have only one valuei = 1, and
from (2) we can obtain:

{
Qa1

1

}
=

1
a1
, i = 1, a1 = 1,∞. (3)

In the case ofN= 2, analogously:

{
Qai

i

}
=

1

a1 ±
1
a2

=
a2

a1a2 ± 1
, i = 1,2, a1,a2 = 1,∞. (4)

For the caseN= 3 we have

{
Qai

i

}
=

1

a1 ±
1

a2 ±
1
a3

=
a2a3 ± 1

a1(a2a3 ± 1)± a3
,

i = 1,2,3; a1,a2,a3 = 1,∞.

(5)

It’s easy to see that final set presented in Fig. 1c has a fractal
character. Vicinity of every line in Fig. 1b is isomorphic to
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a

b

c

d

e

f

Fig. 1: Rational (a) – (d) and irrational (e) – (f) numbers distribution.

Victor A. Panchelyuga, Maria S. Panchelyuga. Resonance and Fractals on the Real Numbers Set 49



Volume 4 PROGRESS IN PHYSICS October, 2012

whole set in Fig. 1a. Consequently, vicinity of every line in
Fig. 1c is isomorphic to whole set in Fig. 1b. Apparently that
such regularity will be repeated on every next step of the al-
gorithm and we can conclude that (2), in the case ofN→∞,
gives an example of mathematical fractal, which in the case
of finite N gives an pre-fractal, which can be considered as
physical fractal.

From Fig. 1c we can conclude that rational numbers for
the case of finiteN distributed along number axis inhomo-
geneously. This conclusion proves density distribution of ra-
tional numbers, constructed on the base of set presented in
Fig. 1c, and given in Fig. 1d.

Summarizing, we can state that roughness of parameters
of real physical system modeled by finiteN in (2) leads to
inhomogeous fractal distribution of rational numbers along
number axis. As follows from Fig. 1d major maxima in the
distribution defined by first steps of algorithm given in (3).

3 Equivalence classes of rational numbers and resonance

Expression (1) can be rewrite in terms of wavelengthλp and
λq, which corresponds to frequenciesp andq:

r =
p
q
=
λq

λp
. (6)

Suppose, thatλq>λp. Then (6) means that wavelengthλq is
an integer part ofλp. In this case resonance condition can be
write in the formλq modλp = 0, or in more general form:

n mod i = 0, (7)

wherei,n∈N, i,n= 1,∞. All i, which satisfy (7) gives integer
divisors of natural numbern. Fig. 2 gives graphical represen-
tation of numbers of integer divisors ofn, obtained from (7).

Analogously to previous, roughness of physical system
in the case of (7) can be modeled if instead ofn→∞ will
be used conditionn→N, whereN is quite large, but finite
natural number. In this case we can directly calculate power
of equivalence classes ofn, which belong to segment [1,N].
Result of the calculation forN= 5000 is given in Fig. 3.

As follows from Fig. 3a – b the power of equivalence
classes is maximal only for first members of natural numbers
axis.

From our point of view this result can explain the fact
that resonance appears easier whenp andq are small num-
bers. Really, for the larger power of equivalence classes exist
the greater number of pairsp andq (different physical situa-
tions), which gives the same value ofr, which finally make
this resonance relation more easy to appear.

An interesting result, related to the power of equivalence
classes, is presented in Fig. 4. This result for the first time was
described, but not explained in [3]. In Fig. 4 are presented
diagrams, obtained by means of the next procedure.

Number sequence, presented in Fig. 2, was divided onto

Fig. 2: Numbers of integer divisors ofn.

(a)

(b)

Fig. 3: Power of equivalence classes forN= 5000, (a); magnified
part of (a) forN= 100, (b). X-axis: value of N, Y-axis: power of
equivalence classes.

equalΔ n-points segments. In this way we obtain
N
Δn

seg-

ments. The points in the segments was numerated from 1 to

Δn. Finally all points with the same number in
N
Δn

segments

were summarized.
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2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

18 19 20 21

22 23 24 25

26 27 28 29

Fig. 4: Diagrams constructed on the base of sequence, presented in Fig. 2. The length ofΔn-points segments pointed by number below the
diagrams.
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It can be seen from Fig. 4 that form of straight case when
Δn is a prime number diagram always have a line. Other-
wise presents some unique pattern. If we examine patterns,
displayed in Fig. 4, we can find that in the role of buildings
blocks, which define structure of the patterns with relatively
big Δn, serve the patterns obtained for relatively smallΔn.
The patterns with smallΔn based on numbers with greater
power of equivalence classes and therefore manifests itself
trough summarizing process in contradiction from relatively
big values ofΔn.

4 On irrational numbers distribution

Presented in Fig. 1c – d rational numbers distribution displays
some rational maxima. Existence of such maxima means that
in the case of rational relations, which correspond to the max-
ima, resonance will appear more easy and interaction between
different parts of considered physical system will be more
strong. If parameters of the system correspond to the max-
ima, such system becomes unstable, because of interaction,
which is maximal for this case.

Analogously to rational maxima is interesting to consider
existence of irrational maxima, which in opposition to ra-
tional one, must correspond to minimal interaction between
parts of the system and to its maximal stability. Work [1] sup-
pose that irrational maxima correspond to minima in rational
numbers distribution. In the role of “the most irrational num-
bers” was proposed algebraic numbers, which are roots of
equation

α2 + αb+ c = 0. (8)

Assume thatc=− 1. Then

α =
1
α + b

=
1

b+
1

b+
1

b+ ∙ ∙ ∙

=

√
b2 + 4− b

2
. (9)

Infinite continued fraction gives the worst approximation for
irrational numberα the smaller is itsk+ 1 component. So,
the worst approximation will be in the caseb= 1:

α1 =
1

1+
1

1+
1

1+ ∙ ∙ ∙

=

√
5− 1
2

= 0.6180339. (10)

The caseb= 1 corresponds to co-called golden section. Far-
ther calculations on the base of (9) give:

α2 =
1

2+
1

2+
1

2+ ∙ ∙ ∙

=

√
8− 2
2

= 0.4142135,

α3 = 0.3027756,

α4 = 0.2360679,

. . . . . . . . . . . . . . .

Results of calculations are presented in Fig. 1e. Grey lines
in Fig. 1e give rational numbers distribution, which is identi-
cal to Fig. 1c. Black lines give results of numerical calcula-

tion, based on (9) forb = 1,100. Bold black lines point cases
α1, . . . , α4.

As possible to see from Fig. 1e algebraic numbers with
grows ofb have tendency became closer to rational maxima.
This result, indicate that such numbers, possibly, are not the
best candidate for “the most irrational ones” [1].

In present work we don’t state the task to find explicit
form of irrational numbers fractal. It is clear, that first ir-
rational maxima must be connected with golden section. The
question is about the rest of the maxima. Fig. 1f gives another
attempt to construct such maxima on the base of set, given by
generalized golden proportion [4]. It is obvious from Fig. 1f
that this case also is far away from desired result.

5 Summary

All results described in the paper are based on the notions of
resonance and roughness of real physical system. This no-
tions in applications to set of real numbers leads to existence
of rational numbers distribution, which has fractal character.
Maxima of the distribution (Fig. 1d) correspond to maximal
sensitivity of the system to external influences, maximal in-
teraction between parts of the system. Resonance phenomena
are more stable and appear more easy ifr (1) belong to ratio-
nal maxima (Fig. 1d).

Obtained rational numbers distribution (Fig. 1c – d) con-
tains also areas where density of rational numbers are mini-
mal. It’s logically to suppose that such minima correspond to
maxima in irrational numbers distribution. We suppose that
such distribution exists and is complementary to distribution
of rational numbers. Maxima in such distribution correspond
to high stability of the system, minimal interaction between
parts of the system, minimal interaction with surrounding.

Both irrational and rational numbers distribution are re-
lated to the same physical system and must be consider to-
gether.

Question about explicit form of irrational numbers dis-
tribution remains open. At the moment we can only state
that main maxima in this distribution must corresponds to co-
called golden section (10).

Ideas about connection between resonance and rational
numbers distribution can be useful in [4–8] where used the
same mathematical apparatus, but initial postulates are based
on the model of chain system.
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Atomic Masses of the Synthesed Elements (No.104–118)
being Compared to Albert Khazan’s Data

Albert Khazan
E-mail: albkhazan@gmail.com

Herein, the Hyperbolic Law of the Periodic System of Elements is verified by new data
provided by theory and experiments.

A well-known dependence exist in the Periodic Table of Ele-
ments. This dependence links atomic masses of chemical
elements with their numbers in the Table. Our research stu-
dies [1, 2] produced in the recent years showed that this de-
pendence continues onto also the region of the synthetic ele-
ments located, in the Table, from Period 7 upto the end of
Period 8. As is seen in Fig. 1, our calculations can be descri-
bed by an equation whose coefficient of truth approximation
is R2 = 0.99995. However the experimental data obtained
by the nuclear physicists, who synthesed the super-heavy ele-
ments, manifest a large scattering which gives no chance to
get a clear dependence in this region. This is because their
experiments were produced in the hard conditions, and only
single atoms were synthesed that makes no possibilities for
any statistics. Despite this drawback, the nuclear physicists
continue attempts to synthese more and more super-heavy
elements, still giving their characteristics to be unclearex-
posed. At the present day, 15 super-heavy elements (No.104–
118) were synthesed. Obtained portions of them are as mi-
croscopic as the single atoms [3]. Therefore, masses of the
products of the reactions are estimated on the basis of cal-
culations. Analysis of the calculated data being compared to
the data obtained on the basis of our theory is given in Fig. 2.
The upper arc shows the difference between the atomic mas-
ses obtained on the basis of the experimental data (which are
unclear due to the large scattering) and our exact calculations.
All given in the Atomic Units of Mass (A.U.M.).

In the upper arc of Fig. 2, these numerical values are con-
verted into percents. As is seen, this arc has a more smooth
shape, while there is absolutely not deviations for elements
No. 105 and No. 106. Most of the deviations is less than 2%.
Only 5 points reach 2.5–3.6%. Proceeding from these results,
we arrive at the following conclusion. Because our calcula-
tion was true on the previous numerical values, it should be
true in the present case as well. Hence, the problem rises due
to the complicate techniques of the experiments, not doubts
in our theory which was checked to be true along all elements
of the Periodic Table. It is important to note that our theore-
tical prediction of element No.155 [1,2], heavier of whom no
other elements can be formed, arrived after this.

Concerning the experimental checking of our theory.
There are super-heavy elements which were synthesed alre-

ady later as my first research conclusions were published in
2007 [1]. These new elements — their characteristics obtai-
ned experimentally (even if with large scattering of the nume-
rical values) — can be considered as the experimental verifi-
cation of the theory I suggested [1,2], including the Hyperbo-
lic Law in the Periodic Table of Elements, and the upper limit
of the Table in element No.155.
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Fig. 1: Dependence of the atomic masses of the elements on their number in the Periodic Table. The experimental data (obtained with large
scattering of the numerical values) are shown as the curved arc. Our calculations are presented with the straight line.

Fig. 2: Differences between the atomic masses (experimental and our theoretical), obtained in the region of the super-heavy (synthetic)
elements No.104–No.188. The upper arc manifests the differences in A.U.M. (g/mole). The lower arc — the same presented in percents.
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